
CISTI 2011 | 624

OML: A Scripting Approach for Manipulating
Ontologies

Nuno Carvalho, José João Almeida
Departamento de Informática

Universidade do Minho
Braga, Portugal

{narcarvalho,jj}@di.uminho.pt

Alberto Simões
Instituto de Letras e Ciências Humanas

Universidade do Minho
Braga, Portugal

ambs@ilch.uminho.pt

Abstract— There are different definitions for ontologies. Different
knowledge areas tend to define ontologies in a different way. For
computer science, an ontology can be used to describe, in a well
defined and structured way, knowledge about a specific domain.
These artifacts store rich information that can be reasoned about,
this information can also be target of many structured processing
functions. There is a diversity of programs that can be
implemented to take advantage of these features and produce
applications in every area of knowledge.

The Ontology Manipulation Language (OML) is a Domain
Specific Language (DSL) designed to describe and execute
operations that reason about ontologies. These reasoning
operations can be used to manipulate and maintain the current
information in the ontology, infer new knowledge or concepts, or
even produce any kind of side effect. OML is a simple and
descriptive language, yet it is powerful enough to implement
complex operations or reasoning engines in a clear and efficient
way.

To actually run programs written in OML a standalone compiler
is available, as well as a mechanism for embedding OML
programs in a generic programming language. This allows the
quick development of applications that make use of ontologies, by
describing ontology related operations in wove OML snippets
throughout the code. This mechanism has proven to be a very
effective and clear approach for taking advantage of adopting
ontologies to represent information, while maintaining the
implicit advantages of using a general-goal programming
language.

Keywords: ontology scripting

I. INTRODUCTION
Ontologies are a common approach to store knowledge.

They are used in a wide range of applications in all areas of
science. Many heterogeneous standards and options for storing
these artifacts in a persistent and processable way are available.
The Web Ontology Language (OWL) [5] is a good example of
a well accepted family of schemas for publishing and sharing
ontologies mainly for the World Wide Web (WWW). Topic
Maps [7] and the Simple Knowledge Organization System
(SKOS) [6] are other good examples of approaches for creating
and maintaining ontologies. Since there are several ways to
represent ontologies, there are also different approaches to
manipulate them. Several software packages offer methods to
change and manipulate information in a ontology, as well ways

to infer new information and reason about the existing
knowledge. Engines to infer new knowledge from the existing
information are a very interesting feature of some of these
languages [4].

Tools for these formats can be divided in two major groups:
tools based on graphical interfaces, and tools that offer
interaction based on Application Programming Interfaces
(API). The tools that implement a graphical interface for
manipulating information are suitable approaches to be used by
humans in common situations. This is not exactly our aim since
we plan on using our ontologies and reasoning rules to build
more complex tools, and most of the manipulation operations
should be decided in runtime. Tools that do not implement a
graphical interface but rather expose an usable API for
executing operations, allow a wider range of possible
applications, since more complex tools can be built using the
provided interfaces. This approach suits our needs best,
providing a complete module to manipulate information
through a well defined API.

Tools available today for manipulating information
described in ontologies are very powerful and can easily deal
with many common problems, however, sometimes, they still
lack some properties that would greatly increase their
efficiency and adoption. One of these would be more
expressiveness or efficiency on their languages syntax: many
times more effort is spent to comply the language standards
and specifications than dealing with the problem itself. Another
major problem is that most of these tools work at very low
abstract levels, making it hard to develop simple tools that can
be elegantly composed to solve complex problems.

With these concerns in mind some design goals for the
OML were defined:

• It should be a simple and expressive language, easy to
use and easy to extend, simple and clean but powerful
enough to allow creating complex tools.

• The language needs to be compact and elegant, aiming
at high-level languages, achieving more in less syntax,
but maintaining readability.

• It should allow a declarative approach for defining
operations, suitable for writing transformation and
reasoning engines.

This work was partly supported by project CROSS (PTDC/EIACCO/
108995/2008), funded by the Portuguese Foundation for Science and
Technology.

CISTI 2011 | 625

• Allow a modular approach, building small blocks that
can be composed together to build more complex
operations.

• While we aim an expressive and powerful language,
there are details that should not be handled by OML.
For example, we should not build an interface for
relational databases in our languages. Therefore, OML
should be possible to mix OML blocks in a general
purpose programming language.

• Giving this modular approach, keep in mind a scripting
flavor for the tools, allowing us to build tools that can
be easily combined together with already existing
programs in pipelines for example, Linux style.

OML is a domain specific language that can be used to
write programs that act on knowledge stored in a ontology.
OML is a domain specific language, it can be used to write
programs. Programs can be executed using a special program,
typically this program is called a compiler. Figure 1 illustrates
the execution of an OML program. We feed the compiler a
program (written in OML) and an ontology, and a result is
produced. The result can be changes on the ontology itself, or
any kind of arbitrary side effect. With current implementation,
the ontology that is feed to the compiler needs to be
concretized using the Biblio::Thesaurus framework.
This framework allows storing information in a ontology using
an information structure based on ISO 2778, initially created to
allow the description of monolingual thesaurus. It has already
been use for building applications with success in previous
work, see [1] and [9].

The principle for writing programs in OML is simple, we
define a pattern and an action. Then we search the ontology for
that pattern, if the pattern is found the action is executed. Note
that a pattern can be found once or more that once, in this later
case the action block is executed once for each instance of the
pattern found.

In the next chapters of this article we start by introducing
the OML language specification and how to write programs,
we briefly describe the current implementation of the OML
compiler. And finally describe some applications and tools
created with OML that illustrate its’ use.

II. OML SPECIFICATION
OML is a simple language, one of the major goals during

design was to make sure that it would be easy and intuitive to
use, even for people without any programming language
background. In this section we illustrate a glimpse of what
OML can do.

In a nutshell OML programs are a sequence of statements
which are executed in order. Each statement consists of a
<pattern> block, everything on the left side of the fat-arrow
operator (=>) and an <action> block, everything on the right
side. A statement always ends with a single dot (.), as shown
here:

<pattern> => <action> .

TABLE 1 Example Patterns

Pattern
1 term(Buster) term Buster
2 rel(ISA) relation ISA
3 term($t) for all terms
4 rel($r) for all relations
5 Buster ISA cat
6 $pet ISA cat
7 $pet ISA $animal
8 Buster $rel $term for all related to Buster
9 Buster ISA cat ∧ Twitty ISA bird
10 Buster ISA cat ∨ Twitty ISA bird
11 $c ISA cat ∧ $b ISA bird

A. Patterns
Patterns are used to describe knowledge in the ontology.

Typically some action needs to be performed when this pattern
is found. Patterns can be used to represent simple terms or
relations between terms, or any combination of these. Table 1
illustrates some patterns that give an idea of what can be done.

The simplest pattern that can be defined is a single term or
a single relation. Pattern 1 shown in Table 1 will evaluate as
found if there is a term in the ontology named Buster. A
single relation described in a pattern is shown in Pattern 2 in
Table 1. This pattern will evaluate as found if there is at least
one relation named ISA in the ontology. Variables can be used
instead of terms, or relations names. So, Pattern 3 shown in
Table 1 describes all the terms in the ontology, and Pattern 4
represents all the relations. Of course that more interesting
would be to describe facts, relations between terms, a very
simple example of a pattern that describes a fact is Pattern 5 in
Table 1. This pattern is considered found if the term Buster
and the term cat are linked by a relation named ISA.

Variable containers can also be used in patterns, which
means that the pattern can be found more than once for a given
ontology. Pattern 6 in Table 1 is one possible example. This
pattern represents all the facts that relate the term cat with any
other term by a relation named ISA. Another example of using
variable containers is Pattern 7 in Table 1. This pattern
represents all the possible combinations of facts that relate
terms with the ISA relation.

Patterns can be grouped together using the binary operators
AND and OR, which have their traditional meaning. Patterns
paired with the AND operator will be evaluated as found if both
patterns are found, and if they are paired with the OR operator
only one needs to be found in the ontology for the pattern be
evaluated as found. Patterns 9, 10 and 11 in Table 1 illustrate
this.

B. Actions
After being able to specify the patterns we are looking for

in the ontology we need to describe the operations that are
going to be executed when the pattern is actually found. Any
number of operations can be executed in an action block.
Operations are executed in order and can be one of the
following types:

CISTI 2011 | 626

• an operation from the predefined list of operations
available, this is typically used to add or change the
current knowledge of the ontology, for example
adding or removing facts or relations;

• or we choose to define our own operation, and write
the complete code, this is typically used to produce
any arbitrary side effect, updating a data base,
printing, creating a PDF file or anything else.

An example, of using a predefined operation can be:

add(Buster ISA Mammal)

This adds new information to the ontology, specifically
relating the term Buster with the term Mammal using the
relation ISA. Variables found in the pattern can also be used in
the action side of any statement, having their values
instantiated according to the pattern found, which means we
can write an action block that looks something like:

add($pet ISA Mammal)
This action would be executed an arbitrary number of

times, one time for each instance found in the ontology. The
variable $pet is automatically replaced with the term (or
relation) that matched in the pattern.

As advertised before we can also produce any side effect,
by executing any arbitrary action, for example:

sub { print $name; }
The sub keyword has a special meaning, it means that the

following action block is a user defined operation and that
needs to be executed as is. At the current time this block needs
to be written in the programming language Perl [3]. Remember
that any side effect can be produced with this, approach, for
example adding information to a relational database:

sub {
 $db->execute(
 ’INSERT INTO terms (name) VALUES ($term)’
);
}
Putting everything together we can write statements that

look like:
$ci CAPITAL $co
=> add($ci ISA city)add($co ISA country).

This statement says that for every two terms linked by a
relation named CAPITAL add two new relations linking the
first term with the term city by a relation ISA, and the
second term with the term country also by a ISA relation.
Imagine a geographical ontology describing information about
cities and countries, in more loosen English this statement
reads: for every city which is a capital, add a fact stating that
city is a city, and country is a country.

This is just a brief overview of what can be written in
OML, a more exhaustive and complete introduction to the
language can be found in [2].

Figure 1. OML architecture overview.

III. IMPLEMENTATION
After being able to write a program in this DSL the next

natural step, as in any other programming language is to
actually execute the program. An compiler was implemented to
allow the execution of programs written in OML. An
architecture overview of the system is illustrated in figure 1. In
simple terms we feed a program and an ontology to the
compiler and after some intermediate stages a final result is
produced. This final result can be translated in information
changes in the original ontology, any kind of side effects, like
updating a external database or producing LaTeX code for
example, or even a combination of these.

Figure 2 illustrates the compiler work-flow. Executing a
program is divided in three main stages:

A. The Parsing Stage
In this stage the parser is responsible for analyzing the

source program written in OML, and creating a parsing tree
(pTree). This tree contains the same information that is in the
source program but in a more structured way.

B. The Expanding Stage
After creating a pTree the control is handled to the

expander engine, which is responsible for looking at the
patterns described in the pTree, and expand the pattern by
looking for the information in the ontology and storing possible
variations of the pattern being searched for. All the instances of
the pattern found are stored in a diTree.

C. The Reaction Stage
Finally the reaction engine is responsible for actually

executing the actions described in the initial program. This
engine uses the diTree to instantiate the variables found in
the action blocks of each statement.

These tools are available for download 1 . Full
documentation and example applications can also be found
there. All the tools were implemented in Perl and are ready to
use OML program to build full featured applications.
Implementation and design details can be found in [2].

IV. EMBEDDED OML
We also developed tools that allow the use of OML inside

other programs. In this case we also used the Perl programming

1 http://search.cpan.org/perldoc?Biblio::Thesaurus::ModRewrite

CISTI 2011 | 627

Figure 2. OML compiler architecture overview.

language to develop a proof of concept. This means that you
can write something like this in a traditional Perl program:

OML function(arguments)
...
ENDOML
This lets you call function as a normal Perl routine,

passing needed arguments, in a Perl script, but executes OML
programs. This has proved to be very useful while building
larger applications, because it allows the use of typical Perl
tools and frameworks to build applications and use OML
programs to handle ontology information and operations.

V. USING OML
We have been using OML to implement several

applications that have to deal with information stored in an
ontology. A brief introduction to a couple of these applications
follows.

A. term2dot
The tool term2dot given a term and an ontology, creates a

graph that represents all the relations for the given term in the
given ontology. The graph is created using GraphViz2. For
example, executing the following command:

$ term2dot Portugal geography.onto \
| dot -Tpng > Portugal.png
will create a graph for every relation for the term

Portugal. The actual graph created is illustrated in figure 3.

The following source code snippet is the entire code
required, to implement the term2dot tool:

my $term = $ARGV[0];
my $ontology = $ARGV[1];

use Biblio::Thesaurus::ModRewrite::Embed;
process($ontology,$term);

2 http://www.graphviz.org/

OML process(t)
 begin => sub{ print "digraph t {\n" }.
 t $r $t1 => sub{ print "t->$t1
[label=$r]"}.
 $t1 $r t => sub{ print "$t1->t
[label=$r]"}.
 end => sub{ print "}\n" }.
ENDOML

In this small example we can see that a simple OML
snippet was included in the source code to query the ontology
and print the required information to build the graph with
GraphViz. The Perl code here is only used to process the
argument passed to the tool. First what is the OML code doing
exactly, in the first and last line, where the patterns are first
and end respectively, these patterns are always evaluated as
found, so the associated operations block are always executed.
In this simple case we are using these blocks to print the
GraphViz notation header for the graph, and the closing curly
bracket at the end. The second line in our OML code has a
pattern that evaluates as found for every arbitrary term $t1
(which acts as a container) by an arbitrary relation named $r
(which acts as another container) with the term t which is
passed as argument to this code. In more loosen English this
tells the compiler to look for every relation between the term
passed as argument and any other term in the ontology. The
next line in the snippet is doing the same thing, the only
difference between these two lines is that in the first the term
given as argument is used as the source term for the relation,
and in the second as the target term for the relation. This
pattern will evaluate as found for every relation in the ontology
for the given term and produce the code in GraphViz notation
required to represent that in the graph. In sum this tool
produces code in the GraphViz notation that can be later used
to build an image illustrating the graph of relations for a given
term.

Figure 3.Example of using the tool term2dot.

B. OntoMap
OntoMap is a very interesting application, it was written in

Perl using small embedded OML programs. It manages points
of interest in a map and the information is stored in an
ontology. It provides a web interface that can be used to
display and add new information in a actual map. Perl modules
where used to implement everything related to the interface

CISTI 2011 | 628

itself, to handle retrieving and updating knowledge from our
ontology OML was used. Since embedded programs where
used, the overhead of using another language to accomplish
some tasks was zero. Figure 4 illustrates the application. One
interesting point that can be seen is that we are already using
the tool (term2dot) described in the earlier section. All the
information seen in the application is stored in the ontology.

Every detail regarding anything besides the ontology in
handled by typical Perl code, every task concerning the
ontology is implemented using OML snippets, mixed inside the
application. An example of one of these snippets is:

OML find_points
 $p lat $x ^ $p lng $y
 → sub {
 to_json({name=>$p,
 lat=>$x,
 lng=>$y"})
 }.
ENDOML

This is used to answer a AJAX request for the list of points
of interest to highlight on the map. To mark points in the map
the only thing we need is the points’ latitude and longitude, that
is exactly what we are looking for in our pattern: all the terms
that have a latitude and a longitude, and return a JSON object
to pass the information along. This pattern will evaluate as
found in the ontology more than once, because many points are
defined there, and each point is related with a value for by a
latitude relation name lat and a longitude relation name lng,
for each of these points we create a string, JSON encoded, with
the name of the term found has its’ latitude and longitude. This
information is enough for the application interface display the
points in a map.

The application allows to filter the points in the map by
type. This means that the AJAX request that queries the
ontology for the points list to display can also supply an
additional argument which is a list of types of points to show.
This illustrates another propriety of OML embebed code, it is
dynamic, i.e. this code can be changed in runtime to adapt to
new variables. In this specific case we want to change the
pattern that was last illustrated to cope with this filter. So the
new pattern would be something like:

 $p lat $x � $p lng $y � $p ISA Castle
→ sub { ... }
This way we have the same behavior as before but now we

are only interested in listing points that are castles, because the
user changed that behavior using the provided interface.

We use OML to handle the information in our ontology and
use other language to do everything else. Plus, we use dynamic
code to adapt our OML snippets to the requested behavior of
the application.

C. OntoMerge
A typical problem nowadays is about merging knowledge

on more that one ontology. We wrote a program in OML to
verify, given a set of assumptions, if we can merge ontology X
with ontology Y. A simple verification can be:

OML exists(tA,rel,tB)
 tA rel tB
 → sub {
 print "relation already exists!";
 }.
ENDOML

that simply verifies if a given relation named between two
given terms already exists in the ontology. But we can do more
complex and trickier things like, for example: after merging
two ontologies we may want to remove the direct transitive
closures for a variable number of given relations since we can
consider that redundant information. A simple implementation
of this can be:

$the = thesaurusMultiLoad(ont1,ont2,...)
for $rel ("NT","BT",...){
rem_trans($the,$rel); }

OML rem_trans(rel)
 $a rel $b � $b rel $c
 → del($a rel $c).
ENDOML

These tools can be easily composed together to build
powerful reasoning engines that act on ontologies. Either for
creating to information, or helping in maintaining information.

VI. CONCLUSION
Our main objective was to develop a set of tools to

manipulate information described in ontologies. Although there
are already tools to manipulate ontologies in standard formats,
like the SPARQL [8] language, they miss the ability to easily
integrate in other programming languages. Therefore, we
specified a new domain specific language, called OML, and
developed the tools required to run programs written in OML.

CISTI 2011 | 629

As presented in the our example scenarios, the process of
writing and using programs with OML is simple, but powerful.
Although the language itself is very compact and simple, the
programs tend to be very expressive and can be used to
implement a wide range of heterogeneous operations.

The ability of embedding OML programs inside a generic
programming language was the step that allowed to build
richer and fully featured applications. It lets the user to focus
on the task he is dealing with, instead of trying to reduce and
hook his problem to a set of basic library API functions. This
approach makes it possible to do all kind of generic operations
one want to perform with nowadays applications (access
databases, web services, etc) easily, keeping the ability to
manipulate ontologies using a specific designed language.

VII. FUTURE WORK
OML is already an usable tool, and much can be

accomplished with its current state. But it is yet a work in
progress, and there are some points we have to deal with to
improve it:

• Software engineering works well with prototyping and
evolutionary development. This means that finding
more problems where OML can be applied will be
crucial to validate the language, to verify its
completeness in terms of functionalities, its efficiency
and adequacy.

• OML is currently implemented in Perl, using a Perl
module that manages interfaces with the ontology data
structures. Although Perl is a robust and versatile

language it is not what might be regarded as one of the
most efficient language. Therefore, performance tests
are relevant. Check how current implementation
handles big ontologies or very complicated
expressions. Reimplementation of some functionality
can be needed.

REFERENCES

[1] José João Almeida and Alberto Simões. “T2O - recycling thesauri into a
multilingual ontology”. In Fifth international conference on Language
Resources and Evaluation, LREC 2006, Genova, Italy, May 2006.

[2] N. Carvalho. “OML - Ontology Manipulation Language”. Master’s
thesis, University of Minho, 2008.

[3] M.J. Dominus. “Higher-order Perl: Transforming Programs with
Programs”. Morgan Kaufmann Publishers, 2005.

[4] A. Gómez-Pérez, M. Fernández-López, and O. Corcho. “Ontological
Engineering”. AI Magazine, 36:56, 1991.

[5] D.L. McGuinness, F. Van Harmelen, et al. “OWL web ontology
language overview”. W3C recommendation, 10:2004-03, 2004.

[6] A. Miles, B. Matthews, M. Wilson, and D. Brickley. “SKOS Core:
Simple Knowledge Organisation for the Web”. In Proceedings of the
International Conference on Dublin Core and Metadata Applications,
pages 12-15, 2005.

[7] S. Pepper. “The TAO of Topic Maps: Finding the Way in the Age of
Infoglut”. In Proceedings of XML Europe 2000 Conférence.

[8] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. “Semantics and
complexity of SPARQL”.In The Semantic Web-ISWC pages 30-43.
2006.

[9] Alberto Manuel Simões and José João Almeida. “Library::* - a toolkit
for digital libraries”. In ElPub 2002 - Technology Interactions, 2002.

