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Abstract

Unsolicited e-mail (spam) is a severe problem due to intrusion of privacy,
online fraud, viruses and time spent reading unwanted messages. To solve
this issue, Collaborative Filtering (CF) and Content-Based Filtering (CBF)
solutions have been adopted. We propose a new CBF-CF hybrid approach
called Symbiotic Data Mining (SDM), which aims at aggregating distinct
local filters in order to improve filtering at a personalized level using
collaboration while preserving privacy. We apply SDM to spam e-mail
detection and compare it with a local CBF filter (i.e. Naive Bayes). Several
experiments were conducted by using a novel corpus based on the well
known Enron datasets mixed with recent spam. The results show that the
symbiotic strategy is competitive in performance when compared to CBF
and also more robust to contamination attacks.

1. Introduction

Nowadays, it is easy to collect, process and share data.

The field of Data Mining (DM) deals with the extraction

of knowledge (e.g. patterns) from raw data and it has

been successfully used in distinct domains (e.g. marketing,

medicine or Internet) [1]. Moreover, the Internet growth

opened room for important communication and information

sharing services (e.g. Web, e-mail). However, this expansion

also led to severe problems, such as information overload

and unsolicited e-mail (known as spam).

The cost of sending spam is tiny and it is easy to reach a

high number of potential consumers [2]. Spam emerged very

quickly after e-mail itself and currently over 120 billion of

these messages are sent each day [3]. While e-mail is the

most known form of spam, this phenomenon also affects

other services, such as instant messaging (spim). Spam is an

intrusion of privacy and many messages are of adult content,

online fraud or viruses. Moreover, spam has costs in terms

of traffic fees and time spent reading unwanted messages.

Currently, there are two major approaches to fight spam

[4]: Collaborative Filtering (CF) and Content-Based Fil-

tering (CBF). CF is based on sharing information about

spam messages, while CBF uses a DM classifier (e.g.

Naive Bayes) that learns to discriminate spam from message

features (e.g. common spam words). CF can be based on

blacklists [5], which contain IP addresses of known spam

senders, or fingerprints extracted from spam messages [6].

Current research on spam CBF relies mainly on improving

individual classifier performance, by a better preprocessing

[4] or enhancement of the learning algorithm [7]. Ensem-

bles that combine distinct spam classifiers have also been

proposed [8].

Both CF and CBF have drawbacks. CF often suffers

from sparsity of data (e.g. users may classify few messages)

and first-rater problem (e.g. an e-mail cannot be classified

unless a user has rated it before). Moreover, people have

personal views of what is spam and CF often discards

this issue [9]. On the other hand, in CBF there may be

a large gap between low-level features (e.g. bit color) and

high-level concepts (e.g. spam images). Furthermore, poor

performances may be achieved by new users, since CBF

requires several representative training examples. CBF is

also vulnerable to dictionary or focused attacks, where the

adversary can exploit DM models by contaminating the

training set (e.g. by sending spam with a large amount of

normal words) [10]. By fusing these two views there is a

potential for a better personalized filtering. However, the

number of studies that unify CBF and CF is scarce and

mainly addressed towards recommendation systems that run

at centralized systems [11].

We propose a novel Distributed DM (DDM) approach,

based on a hybrid CBF-CF view and named Symbiotic

Data Mining (SDM). The idea is to join distinct entities

(e.g. e-mail users) interested on similar DM goals (e.g.

spam filtering). Rather than exchanging data (e.g. messages),

these entities will share information about what each local

filter has learned (e.g. DM models). The aim of SDM is

to foster mutual relationships, where all or most members

benefit. Under SDM, each user is interested in improving

filtering at a personal level. The Internet is used to gather

collaborators among these (high number of) users. Users

may dynamically join or leave this collaboration and there

are privacy issues regarding what can be shared. The classic

DDM approach [12] is targeted to obtain a scalable global

DM model for a single entity by aggregating several local

DM analyses. SDM is different from pure DDM and the

centralized CBF-CF works (e.g. [11]) since SDM data and

models are distributed through distinct entities. Hence, there

are issues of user management (e.g. adding or removing a

user), privacy, security and motivation (e.g. each user should
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benefit from the collaboration).

In this paper, we apply SDM to spam detection and

compare it with a local CBF filter (i.e. Naive Bayes). The

remainder of this paper is structured as follows. Section 2

presents the e-mail data, local and symbiotic filtering meth-

ods, and evaluation metrics. Next, the results are presented

and discussed (Section 3). Finally, closing conclusions are

drawn (Section 4).

2. Materials and Methods

2.1. Spam data

Several public benchmark datasets to evaluate anti-spam

filters have been proposed [13], such as : the Ling-spam1,

SpamAssassin2, Spambase3 and TREC 2005 Spam Track4.

The first dataset mixed spam with legitimate messages (ham)

collected from public archives (e.g. newsgroups), the second

uses public fora or donations by users, the third includes only

preprocessed features (e.g. word frequencies) and the fourth

employed several filters to discard spam of the Enron e-mail

[14] collection. As pointed by [13], none of these datasets

is fitted for personalized filtering. Ham messages from

Ling-spam are more topic-specific than what normal users

tend to receive. In contrast, SpamAssassin ham messages

are less-specific, since users tend to donate general (non-

sensitive) messages. Spambase does not contain raw data

(e.g. message date). Finally, the Spam Track was used for a

global evaluation of filters, merging all user messages into

a single corpus.

To evaluate SDM, ideally there should be real spam/ham

messages collected from distinct users (possibly from a

social network) during a given time period. Yet, due to

logistic and privacy issues, it is quite difficult to obtain such

data and make it public. Hence, we will use a synthetic

mixture of real spam and ham messages, in a strategy

similar to what has been proposed in [6], [13]. The ham

messages will be related to five Enron employees with the

largest mailboxes collected during the same time period. In

particular, we will use the cleaned-up form provided by

[14] of the mailboxes: kaminski-v (kam), farmer-d (far),

beck-s (bec), lokay-m (lok) and kitchen-l (kit). Since these

employees worked at the same organization, it is reasonable

to assume that they would know each other, i.e. belong to

a social network. We will also use the spam collection of

Bruce Guenter5, which is based in spam traps (i.e. fake

emails published in the Web), during the years of 2006

and 2007 (our dataset was built in 2008). Only messages

with Latin character sets were selected, because the ham

1. http://www.iit.demokritos.gr/skel/i-config/downloads/

2. http://spamassassin.apache.org/publiccorpus/

3. http://archive.ics.uci.edu/ml/datasets/Spambase

4. http://plg.uwaterloo.ca/˜gvcormac/treccorpus/

5. http://untroubled.org/spam/

messages use this type of character coding and non-Latin

mails would be easy to detect. Also, since this collection

contains several copies of the same messages (due to the

use of multiple traps), we removed duplicates by comparing

MD5 signatures of the body messages.

We propose a mixture algorithm that is based on the

time that each message was received (date field, using the

GMT time zone), which we believe is more realistic than the

sampling procedure adopted in [13]. Since the Enron data is

from a previous period (see Table 1), we first added 6 years

to the date field of all ham messages. Let St denote a spam

message received at time t, Si,f = (Sti
, Sti+1 , . . . , Stf

) the

time ordered sequence of the Bruce Guenter spam, Hu,i,f

and Su,i,f the sequences of ham and spam messages for user

u from time ti to tf . For a given time period t ∈ (ti, . . . , tf ),
the algorithm randomly selects |S′

i,j | spam messages from

Si,j . Then, Su,i,j is set by sampling messages from S′
i,j with

a probability of P for each message selection. The size of

S′
i,j (cardinality) is given by:

|S′
i,j | =

R·
∑L

i=1
|Hu,i,j |

P ·L
(1)

where L denotes the total number of users available at the

time period and R is the overall (i.e. including all user

and time data) spam/ham ratio. Since the time periods are

different for each user (Table 1), four time sequences (i.e.

ti and tj values) were used by the algorithm (Figure 1).

Table 1. Summary of the S-Enron corpus

user ham spam time spam
size size period /ham

kam 4363 2827 [12/05,05/07] 0.6
far 3294 2844 [12/05,05/07] 0.9
bec 1965 2763 [01/06,05/07] 1.4
lok 1455 2202 [06/06,05/07] 1.5
kit 789 623 [02/07,05/07] 0.8

Date (Year)
2006 2007

kam

far

bec

lok

kit

L=2 L=3 L=4 L=5
I

II
III

Figure 1. Temporal view of the S-Enron mailboxes.

The mixture is affected by the R and P parameters. Since

a high number of experiments is addressed in this work,
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we will fix these parameters to reasonable values. While

the global spam/ham ratio is R = 1, the individual ratios

range from 0.6 to 1.5. Also, the spam/ham ratios fluctuate

through time (as shown in Figure 3). On the other hand,

the probability of spam selection affects the percentage of

common spam between users. If two users have similar

profiles (e.g. e-mail exposure), then they should receive

similar spam. We assume that this scenario is expected

for the Enron employees and thus set P = 0.5. Under

this setup and for a given time period, any 2 users will

receive around 50% of similar spam, 3 users will share

around 25% of spam and so on. The resulting corpus is

named S-Enron and it is public available in its raw form at:

http://www3.dsi.uminho.pt/pcortez/S-Enron.

2.2. Local filter

We will address only textual content (i.e. word fre-

quencies) of e-mail messages. This popular approach (e.g.

Thunderbird filter) has the advantage of being generalizable

to wider contexts (e.g. spim detection). While different

algorithms can be adopted for spam filtering, such as Support

Vector Machines (SVM) [2], we will use the simpler Naive

Bayes (NB), which is widely adopted by anti-spam filtering

tools [4], [15]. As both individual and symbiotic strategies

will be compared using the same learning algorithm, we

believe that most of the results presented in this paper can

be extended to other text classifiers. We will also adopt the

preprocessing proposed in [16]:

1) The word frequencies are extracted from the subject

and body message (with the HTML tags previously

removed). Each message j is encoded into a vector

xj = (x1j , . . . , xmj), where xij is the number of

occurrences of token Xi in the text.

2) The feature selection is applied, which consists in

ignoring any words when xij < 5 in the training set

and then selecting up to the 3000 most relevant fea-

tures according to the Mutual Information (MI(Xi))
criterion:

MI(Xi) =
∑

c∈{s,¬s}
p(Xi|c)log p(Xi|c)

p(Xi)p(c)
(2)

where c is the message class (s - spam or ¬s - ham),

p(Xi|c) is the probability of finding token Xi in e-

mails from class c, p(Xi) and p(c) are the proportions

of Xi terms and c class examples present in the data.

3) Each xij value is transformed into: x′
ij = log(xij +1)

(TF transform), x′′
ij = x′

ij · log(k/
∑

k δik) (IDF

transform) and x′′′
ij = x′′

ij/
√∑

l(xlj)2 (length nor-

malization), where δik is 1 if the token i exists in the

message k and 0 otherwise.

The NB computes the probability that a document j is

spam (s) for a filter trained over Du email data from user

u, according to:

p(s|xj ,Du) = α · p(s|Du)
m∏

i

p(Xi|s,Du) (3)

where α is normalization constant that ensures that

p(s|x,Du)+p(¬s|x,Du) = 1, p(s|Du) is the p(s) of dataset

Du. The p(Xi|s,Du) estimation depends on the NB version.

In this work, we will use the multi-variate Gauss NB (as

implemented in the R tool, see Section 3) [13]:

p(Xi|c,Du) =
1

σi,c

√
2π

e
−

(x′′′
ij
−μi,c)2

2σ2
i,c (4)

where μi,s and σi,s are the mean and standard deviation

estimated from the c = s or c = ¬s messages of Du.

In [10], it has been shown that local spam filters are

vulnerable to dictionary and focused contamination attacks.

The former attack is used to reduce the CBF efficiency,

leading the victim to read spam, while the latter can be

used to prevent the victim from reading an important email.

Both attacks can be achieved by sending spam messages

mixed with normal words. Once the victim labels these

messages as spam, the training set is contaminated and

the filter will be affected the next time it is retrained. A

dictionary aggression consists in sending a large amount of

normal words, while the focused assault assumes that the

attacker has some knowledge of a specific message that the

victim will receive in the future (e.g. a competing offer for

a given contract).

2.3. Symbiotic filter

While sharing models is less sensitive than exchanging

e-mail messages, there are still privacy issues. For instance,

if user A has access to the filter of user B, then A may

feed a given token (or set of tokens) into the model and

thus know some probability that such token was classified

by B as spam or ham. To solve this problem, we propose an

anonymous distribution of the filters, under two possibilities:

using a trustable application or a secure server. The former

can be used in a Peer-2-Peer (P2P) setting, where the users

trust the software to blindly share filters among all members,

while the latter works under a centralized model where the

anonymization is achieved by an intermediate secure server.

Figure 2 shows example of both scenarios, where user C

receives the local filters from users A and B without knowing

who built each model. Since in SDM there will be typically

a large number of users that dynamically may join or leave

the collaboration, it will be very difficult to “guess” who

created each model. The degree of privacy can be increased

further if each user does not know who belongs to the

symbiotic group. Regarding the filter sharing, a standard

format should be adopted, such as the Predictive Model
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anonymous
filter filter

anonymous

filter A filter B

anonymousanonymous
filter filter

user A

user C

user B

user C

user Buser A secure
server

Figure 2. Blind exchange of filters by using a trustable
application (left) or secure server (right).

Markup Language [17], which is compatible with a large

number of DM products.

In SDM, the individual predictions can be combined by

using a collaborative ensemble of the local filters. While

several combination functions can be adopted (e.g. average),

we propose a hierarchical learning, where the outputs of

the local DM models are used as the inputs of another

(meta-level) learner. Hence, each SDM user would have a

local meta-learner that is dynamically trained to get a high

accuracy on its past personal data. When compared with

the equal weights (average) function, the meta-learner is

more fitted for SDM, since it can dynamically (i.e. through

time) assign different weights to distinct users (see Figure 5).

While several algorithms could be used for the hierarchical

learning (e.g. SVM), we will adopt the same NB described in

the previous section. The rationale is that NB is commonly

adopted by anti-spam solutions, thus incorporating SDM into

these tools would be simpler by reuse of code.

We assume that each user u trains a local filter θu,t

over her/his Du training data. Filters can be trained asyn-

chronously and L filters will be available for each user at

time t: {θ1,t, . . . , θL,t}. The Symbiotic NB (SNB) meta-

model spam probability is given by:

p(s|xj ,D′
u) = α · p(s|D′

u)
∏L

i=1 p(θi,t|s,D′
u)

p(θi,t|c,D′
u) = 1

σi,c

√
2π

e
− (p(s|xj ,θi,t,D′u)−μi,c)2

2σ2
i,c

(5)

where D′
u is the SNB training set and p(s|xj , θi,t,D′

u) is the

probability given by the filter θi,t, as computed in Equation

3. To reduce memory and computational requirements, we

allow that D′
u ⊆ Du, where M = |D′

u| denotes the most

recent messages from u mailbox. It should be noted that

any token from xj that is not considered by θi,t will simply

be discarded by the filter from user i. Similarly, any input

attribute from θi,t that is not included in xj will be set to 0.

2.4. Evaluation

Since spam detection evolves through time (i.e. there is a

concept drift), we will adopt the more realistic incremental

retraining evaluation procedure, where a mailbox is split into

batches b1, . . . , bn of K adjacent messages (|bn| may be less

than K) [13]. For i ∈ {1, . . . , n − 1}, the filter is trained

with Du = b1 ∪ . . .∪ bi and tested the messages from bi+1.

Figure 3 shows an example the evolution of the kam mailbox

spam/ham ratio over different batches, with K = 100 and

during the time period III of Figure 1.
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Figure 3. Evolution of the spam/ham ratio for the kam
mailbox.

For a given probabilistic filter, the predicted class is given

by s if p(s|xj ,Du) > D, where D ∈ [0.0, 1.0] is a decision

threshold. For a given D and test set, it is possible to

compute the true (TPR) and false (FPR) positive rates:

TPR = TP/(TP + FN)
FPR = FP/(TN + FP ) (6)

where TP , FP , TN and FN denote the number of true

positives, false positives, true negatives and false negatives,

respectively. The receiver operating characteristic (ROC)

curve shows the performance of a two class classifier across

the range of possible threshold (D) values, plotting FPR
(x-axis) versus TPR (y-axis) [18]. The global accuracy is

given by the area under the curve (AUC =
∫ 1

0
ROCdD). A

random classifier will have an AUC of 0.5, while the ideal

value should be close to 1.0. Since the cost of losing normal

e-mail (FP ) is much higher than receiving spam (FN ), D
is usually set to favor points in the low false-positive region

of the ROC. Thus, we will also adopt the metric TPR at

a specific FPR = r (denoted as TPR@FPR=r), where r is

close to 0.0 [7]. With the incremental retraining procedure,

one ROC will be computed for each bi+1 batch and the

overall results will be presented by adopting the vertical

averaging ROC (i.e. according to the FPR axis) algorithm

presented in [18]. Statistical confidence will be given by the

t-student test at the 95% confidence level [19].

3. Results

All experiments were conducted in the R environment,

an open source and high-level programming language for

data analysis [20]. In particular, the NB algorithm described

in Section 2.2 is implemented by the naiveBayes function

of the e1071 R package, while the text preprocessing uses

several functions from the tm package [21].
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During the all experiments, we set K = 100 (a reasonable

value also adopted in [13], [15]). For the SNB, we used

a similar number for the hierarchical training set size, i.e.

M = 100. This small value has the advantage of reducing

memory requirements (the user only needs 100 messages in

his mailbox) and some initial experiments with larger values

of M revealed no gain in performance. All TPR@FPR

values will be computed with r = 0.01 (1%).

3.1. Fixed symbiotic group

Two distinct scenarios will be tested, according to the time

periods I and II of Figure 1. Given the S-ENRON corpus

characteristics, in this work we will explore a small number

of fixed symbiotic users: L = 5 for I and L = 3 for II.

The incremental retraining method (Section 2.4) was

applied to both scenarios, by considering all messages within

the corresponding time period. Thus, the number of kam,

far and bec batches (n) will be different for I and II. The

obtained results are summarized as the mean of all test sets

(bi+1, i ∈ {1, . . . , n− 1}) and shown in Table 2 and Figure

4. The best values are in bold, while underline denotes

a statistical significance. In Figure 4, bars denote 95% t-

student confidence intervals and only the most interesting

region of FPR is shown for the ROC curves.

For the first scenario (I), the symbiotic strategy outper-

forms the local filter for all users and metrics, except for

lok and TPR@FPR. A similar behavior occurs for the II

setting, where SNB is better than NB except for kam and

AUC. As false positives have higher costs in spam detection,

the TPR@FPR results are particularly important. Thus, it

is interesting to notice that there is a high TPR@FPR

improvement given by the symbiotic method in several cases

(kam, far and kit for I and bec for II).

To demonstrate the SNB dynamics, Figure 5 shows the

first two consecutive graphs of the SNB input importances

under scenario II. Each edge represents the influence (in %)

of the NB filter (the origin) in the symbiotic model (the

destination), as measured by applying a sensitivity analysis

procedure [22]. The text in bold (e.g. b2) denotes the last

batch used to train the NB classifier. For example, the first

SNB model of user far (left graph) uses a NB filter from kam

that was trained using 200 messages (Dkam = b1 ∪ b2).

3.2. Incremental symbiotic group

A more realistic scheme is adopted for the time period

III, where users join the symbiotic group in an incremental

fashion, at different time stages according to Figure 1. Thus,

L will grow from 2 to 5. The results are presented in Table

3. As expected, the symbiotic strategy (SNB) clearly favors

newcomers, which have small mailboxes and thus benefit

from the collaboration. In effect, the TPR@FPR differences

are quite large, such as in bec and lok for L = 4 and L = 5
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Figure 4. ROC curves for scenarios I and II.

and kit for L = 5. For demonstration purposes, the ROC

curves are plot for bec, when L = 3 and L = 5 (Figure

6). However, the results show that even “veteran” users gain

from the symbiotic relation when the number of users grow.

For instance, the kam and far TPR@FPR results for L = 5
are 13.7 and 8.5 pp better.

3.3. Contamination attacks

SDM should be more robust to contamination, since it

aggregates responses from several (possible unknown) users
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Table 2. Summary of the results for I and II

I II
AUC TPR@FPR AUC TPR@FPR

user n NB SNB NB SNB n NB SNB NB SNB
kam 16 62.1 95.6 1.5 75.3 70 94.7 94.3 60.7 75.4
far 13 93.5 95.1 19.9 60.7 60 89.4 91.7 59.7 69.1
bec 9 91.5 94.0 54.2 66.6 48 83.5 93.4 25.5 74.8
lok 9 91.4 95.2 78.0 76.3 - - - - -
kit 15 74.6 95.3 18.9 72.8 - - - - -

Table 3. Summary of the results for III

L=2 L=3 L=4 L=5
AUC TPR@FPR AUC TPR@FPR AUC TPR@FPR AUC TPR@FPR

user NB SNB NB SNB NB SNB NB SNB NB SNB NB SNB NB SNB NB SNB
kam 94.4 88.8 40.6 51.8 91.5 87.4 53.3 60.8 95.4 96.8 79.5 79.7 98.4 98.0 67.5 81.2
far 89.9 82.1 60.7 56.1 86.6 87.0 50.7 59.9 88.7 94.7 58.3 74.6 89.6 95.5 65.5 74.0
bec - - - - 80.4 87.6 58.4 66.8 84.5 96.9 15.3 80.5 85.2 97.4 3.6 73.3
lok - - - - - - - - 73.1 96.2 7.0 74.0 63.6 97.3 1.4 79.2
kit - - - - - - - - - - - - 74.6 97.9 18.9 74.9
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Figure 5. Examples of SNB input importances for II.
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Figure 6. ROC curves for user bec and L=3 (left) and
L=5 (right).

and targeting a specific victim may be easy but contaminat-

ing the whole symbiotic group is not. We will repeat the

experiments of Section 3.1, by considering only scenario I

and user bec to test the effects of mailbox contamination.

The dictionary assault is simulated by replacing the first

10 spam emails at batch 4 from bec by the GNU as-

pell (http://aspell.net/) English dictionary (version 6.0, with

138599 tokens). In Figure 7, gray lines denote the behavior

of NB and SNB without the attack (i.e. results of Section

3.1), black lines show the performance under the attack

and the dot-dashed vertical line shows when the attack

starts6. Local CBF is highly affected. Only 10 messages were

replaced and yet the filter detection capability is reduced to

a random classifier (since AUC=0.5) through all remaining

batches. In contrast, the symbiotic method is only initially

affected, since as time goes by the performance gets closer to

the no attack scenario. Also, the remaining symbiotic users

maintain their spam detection capabilities, as shown by the

kit results, which is a representative example. This behavior

is explained by the SNB algorithm, which simply discards

a given filter if it does not help to predict the recent past

M messages of the user. Hence, this experiment shows that

SDM is robust also to saboteurs, i.e. if a particular user

intentionally feeds the group with a random or bad filter

then this filter will be simply ignored.

The dictionary attack can be solved by performing a roll-

back (i.e. returning to the previous filter) or using the RONI

defense [10], which rejects training examples that have a

large negative impact in spam detection. However, focused

assaults are much more difficult to prevent and finding an

adequate defense is still an open problem [10]. We believe

SDM is an interesting solution due to the same rationale

presented for the dictionary aggression, i.e. the combination

of multiple filters should overcome the limitations of a single

model contamination.

6. For the bec user, the filters are not trained with contaminated messages
at batch 4, yet these messages appear in the test set and thus the NB and
SNB performances suffer a moderate decay. The true effect of the attack
is only visible at batch 5.
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Figure 7. The dictionary attack effect.

A new set of experiments was devised, using again

scenario I and bec mailbox. During a given run, a legitimate

message was randomly selected, from batches 6 to 9, as the

target text. We assume that the attacker is confident about the

target content and thus can guess 50% of the target words. At

batch 4, 10 spam emails were replaced by the contaminated

messages. We repeated this procedure during 20 runs. The

effect of this attack on spam is minimal and thus we will

only show the effect on the target ham e-mails. Figure 8 plots

the filter spam probability (y-axis) for each target message

(total of 20 runs, x-axis). Since all target messages are ham,

a robust filter should present low spam probabilities, near the

zero horizontal axis. The results show that local filter (NB)

is much more vulnerable than the symbiotic strategy (SNB).

The spam probability mean values of NB and SNB are 0.69

and 0.32 (the differences are statistically significant). For

example, when using a decision threshold of D = 0.5, 14

(of 20) messages are classified by NB as spam, while this

number lowers to 6 for SNB. Even if D is raised to 0.999,

NB predicts 13 spam e-mails and SNB only detects 5.
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Figure 8. The focused attack effect.

4. Conclusions

We proposed a novel distributed data mining approach,

called Symbiotic Data Mining (SDM), that unifies Content-

Based Filtering (CBF) with Collaborative Filtering (CF). The

goal is to reuse local filters from distinct entities in order

to improve personalized filtering while maintaining privacy.

As a case study, we apply the SDM strategy to spam e-

mail detection. Several experiments were carried out under

the new S-Enron corpus, which uses a realistic mixture of

legitimate messages from five Enron employees with recent

spam based in spam traps. We compared the performance

of SDM and CBF using symbiotic groups with fixed and

incremental number of users. Also, we simulated the effect

of contamination attacks. Our results show that for a small

number of users (i.e. 3 to 5), SDM outperforms personalized

text classifiers. Furthermore, SDM is more robust to both

dictionary and focused attacks. Within our knowledge, this

is the first time a solution is proposed for the latter type of

contamination.
Spammers and anti-spammers are in an arms race. As

argued by [8], tuning a single classifier to perfection will
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encourage spammers to eventually defeat it. By dynamically

combining filters from distinct users, we believe that a

stronger protection is achieved. In effect, SDM puts em-

phasis on accessing (indirectly) more data rather than using

more complex local filters. As future work, we intend to

study scalability issues. Under a large group, this could

be achieved by adopting user selection algorithms (e.g.

clustering user profiles). We believe SDM is also potentially

useful in other personalized filtering scenarios, such as

spam over instant messaging (spim) detection and Web page

blocking (e.g. offensive content).

Acknowledgment

This work is supported by FCT grant

PTDC/EIA/64541/2006.

References

[1] E. Turban, R. Sharda, J. Aronson, and D. King, Business
Intelligence, A Managerial Approach. Prentice-Hall, 2007.

[2] V. Cheng and C. Li, “Personalized Spam Filtering with Semi-
supervised Classifier Ensemble,” in IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence, 2006.

[3] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. Voelker,
V. Paxson, and S. Savage, “Spamalytics: An Empirical Anal-
ysis of Spam Marketing Conversion,” in Computer and Com-
munications Security Conference (CCS’08). ACM, 2008, pp.
27–31.

[4] J. Méndez, I. Cid, D. Glez-Peña, M. Rocha, and F. Fdez-
Riverola, “A Comparative Impact Study of Attribute Selection
Techniques on Naı̈ve Bayes Spam Filters,” in 8th Industrial
Conference on Data Mining, Springer, Ed., vol. LNAI 5077,
2008, pp. 213–227.

[5] A. Ramachandran and N. Feamster, “Understanding the
Network-Level Behavior of Spammers,” in SIGCOMM’06,
ACM, Ed., 2006, pp. 291–302.

[6] Z. Zhong, L. Ramaswamy, and K. Li, “ALPACAS: A Large-
scale Privacy-Aware Collaborative Anti-spam System,” in
IEEE INFOCOM, 2008, pp. 556–564.

[7] M. Chang, W. Yih, and C. Meek, “Partitioned Logistic Re-
gression for Spam Filtering,” in 14th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining,
2008, pp. 97–105.

[8] S. Hershkop and S. Stolfo, “Combining Email Models for
False Positive Reduction,” in 11th ACM SIGKDD Int. Con-
ference on Knowledge discovery and data mining, 2005, pp.
21–24.

[9] A. Gray and M. Haahr, “Personalised, Collaborative Spam
Filtering,” in 1st Conference on E-Mail and Anti-Spam CEAS,
2004.

[10] B. Nelson, M. Barreno, F. Chi, A. Joseph, B. Rubinstein,
U. Saini, C. Sutton, J. Tygar, and K. Xia, “Exploiting Machine
Learning to Subvert Your Spam Filter,” in 1st Usenix Work-
shop on Large-Scale Exploits and Emergent Threats. ACM
Press, 2008, pp. 1–9.

[11] K. Yu, A. Schwaighofer, V. Tresp, W. Ma, and H. Zhang,
“Collaborative Ensemble Learning: Combining Collaborative
and Content-Based Information Filtering via Hierarchical
Bayes,” in 19th International Conference on Uncertainty in
Artificial Intelligence (UAI). ACM, 2003, pp. 353–360.

[12] F. Provost, Advances in Distributed and Parallel Knowledge
Discovery. MIT Press, 2000, ch. Distributed data mining:
Scaling up and beyond.

[13] V. Metsis, I. Androutsopoulos, and G. Paliouras, “Spam
Filtering with Naive Bayes – Which Naive Bayes?” in Third
Conference on Email and Anti-Spam (CEAS), 2006, pp. 125–
134.

[14] R. Beckermann, A. McCallum, and G. Huang, “Automatic
categorization of email into folders: benchmark experiments
on Enron and SRI corpora,” University of Massachusetts
Amherst, IR-418, 2004.

[15] R. Segal, “Combining global and personal anti-spam filter-
ing,” in Forth Conference on Email and Anti-Spam (CEAS),
2007.

[16] A. Kosmopoulos, G. Paliouras, and I. Androutsopoulos,
“Adaptive Spam Filtering Using Only Naive Bayes Text
Classifiers,” in CEAS 2008 - Fifth Conference on Email and
Anti-Spam, August 2008.

[17] R. Grossman, M. Hornick, and G. Meyer, “Data Mining
Standards Initiatives,” Communications of ACM, vol. 45,
no. 8, pp. 59–61, 2002.

[18] T. Fawcett, “An introduction to ROC analysis,” Pattern
Recognition Letters, vol. 27, pp. 861–874, 2006.

[19] A. Flexer, “Statistical Evaluation of Neural Networks Ex-
periments: Minimum Requirements and Current Practice,” in
Proceedings of the 13th European Meeting on Cybernetics
and Systems Research, vol. 2, Vienna, Austria, 1996, pp.
1005–1008.

[20] R Development Core Team, R: A language and environment
for statistical computing, R Foundation for Statistical Com-
puting, Vienna, Austria, ISBN 3-900051-00-3, http://www.R-
project.org, (Accessed 26 March 2008).

[21] I. Feinerer, K. Hornik, and D. Meyer, “Text Mining Infras-
tructure in R,” Journal of Statistical Software, vol. 25, no.
1-54, 2008.

[22] R. Kewley, M. Embrechts, and C. Breneman, “Data Strip
Mining for the Virtual Design of Pharmaceuticals with Neural
Networks,” IEEE Trans Neural Networks, vol. 11, no. 3, pp.
668–679, May 2000.

156156


