
Parser Generation in Perl:
an Overview and Available Tools

Hugo Areias1, Alberto Simões2, Pedro Henriques1, and Daniela da Cruz1

1Departamento de Informática, Universidade do Minho
2Escola Superior de Estudos Industriais e de Gestão, Instituto Politécnico do Porto

hugomsareias@gmail.com,pedrorangelhenriques@gmail.com
alberto.simoes@eu.ipp.pt,danieladacruz@di.uminho.pt

Abstract. There are some modules on Comprehensive Perl Archive
Network to help with the parser generation process in Perl. Unfortu-
nately, some are limited, only supporting a particular parser algorithm
and do not covering some developer needs. In this document we will
analyse some of these modules, testing them in terms of performance
and usability, allowing a proper evaluation of the results and careful
considerations about the state of art of parser generation using Perl.

Keywords: Parser generators, Perl, grammars

1 Introduction

The primary aim of this paper is to provide an overview of the particular con-
dition of parser generation in Perl and analyse some of the available tools.
In the Comprehensive Perl Archive Network (CPAN1) there are some modules
available to automate the process of generating a parser. However, the user
should choose carefully according to his needs and because the lack of mainte-
nance and efficiency of some of them.
We chose four tools, the most used, the more robust, the more elaborate and the
more recent:

– Parse::RecDescent (v 1.962.2) – one of the most used tools, generate on-
the-fly a recursive-descent parser;

– Parse::Yapp (v 1.05) – can be compared with the well known yacc parser
generator tool in terms of algorithm and syntax;

– Parse::Eyapp (v 1.154) – an extended version of Parse::Yapp including
new recursive constructs;

– Regexp::Grammars (v 1.002) – an implementation of the future Perl 6
grammars2

1 http://www.cpan.org/
2 This tool is only supported in recent Perl versions (> 5.10).



1.1 Parse::RecDescent

Parse::RecDescent [3] supports LL(1) parsers [1] and generates recursive-
descent parsers on-the-fly. It is a powerful module that provides useful mech-
anisms to create parsers with ease, such as auto-actions (automatically adding
pre-defined actions) and named access to semantic rule values (allowing the re-
trieve of data from an associative array using the symbol name instead of the
usual array indexes). To create the parser, Parse::RecDescent generates rou-
tines in runtime, doing the lexical and syntactic analysis, and achieving the re-
sults on the fly. The drawbacks are the incapacity to deal with left recursion and
its efficiency when dealing with large inputs. Therefore, it is not recommendable
for cases where the performance is an issue.

1.2 Parse::Yapp

Parse::Yapp [5] is one of the oldest parser generators in Perl and probably still
one of the most robust. It is based on yacc [2]. Just like yacc, it is well known
for supporting LALR parsers [1] and for its parsing speed. Such traits makes
it an obvious choice for the users. As an addition, it also provides a command-
line script that, when executed over an input grammar file, generates a Perl
Object Oriented (OO) parser. This module only supports Backus-Naur Form
(BNF) rules to write the grammar. Also, Parse::Yapp does not include lexical
analyser features, forcing the user to provide one. Gratefully, there are some
useful modules on CPAN to help in this process, such as Text::RewriteRules [8].

1.3 Parse::Eyapp

Parse::Eyapp [6] is an extension of Parse::Yapp. Just like yapp, it only sup-
ports LALR parsers, but is able to parse extended BFN rules. While it introduces
a lot of new useful features, it still keeps the same structure of Parse::Yapp al-
lowing parsers made for the second to run when executed by the first. The most
relevant features from Parse::RecDescent implemented in this module include
auto-actions and named access to semantic rule values.

1.4 Regexp::Grammars

Regexp::Grammars [4] is a module that tries to implement Perl 6 grammar
support with Perl 5. This is possible given the new recursive regular expressions
introduced in Perl 5.10. The module extends the regular expressions in a way
that makes them similar to typical grammars. While it is easy to use, it has
some efficiency problems, very similar to the presented for Parse::RecDescent,
given that it also generates recursive-descent parsers. Also, Regexp::Grammars
creates automatically abstract data structures for the grammar, reducing the
number of visible semantic actions.



2 Analysis and Tests

Three different grammars3 were chosen to help testing the four modules de-
scribed earlier: The Swedish Chef, a simple grammar but relatively large with
an high number of semantic actions; The Lavanda, a Domain Specific Language
(DSL) to describe the laundry bags daily sent to wash by a launderette com-
pany; and an highly recursive grammar to match s-expressions. These tests were
performed by a machine with an Intel Pentium 4 with a clock rate of 3.4 GHz
and 3Gb of RAM .
Looking to the following tables it is possible to understand the most efficient
modules. Parse::RecDescent and Regexp::Grammars both use regular expres-
sions to perform the lexical analysis but they store the parsing functions in
memory as they are generated on-the-fly. So, even with the advantages of using
regular expressions, these modules take too long. This also has to do with a few
recursive-descent parser limitations in Perl.

Table 1. User time evolution of the four approaches for the Lavanda grammar.

Nr. Lines Parse::Yapp Parse::Eyapp Parse::RecDescent Regexp::Grammars
10 0.031 s 0.090 s 0.123 s 0.069 s
100 0.115 s 0.184 s 0.258 s 0.163 s
1000 1.240 s 1.380 s 4.041 s 1.399 s
10000 34.896 s 37.640 s 331.814 s out of memory
100000 > 2488.348 s > 4973.639 s
1000000

Table 2. Memory consumption (in megabytes) of the four approaches for the Lavanda
grammar.

Nr Lines Parse::Yapp Parse::Eyapp Parse::RecDescent Regexp::Grammars
10 0.933 3.866 3.583 3.490
100 1.934 4.867 4.607 22.545
1000 12.141 15.214 15.175 181.809
10000 108.697 113.242 115.383 out of memory
100000
1000000

Table 3 show a final analysis of the modules. From these results, it is easy to
realise that Parse::Yapp is the most efficient module available for Perl, mainly
due to the fact that it is based on LALR grammars, slightly more powerful
than LL algorithms. It also offers the best support for integration of the parser
with other code. In the other hand, it does not offer any support for attribute
grammars and for the construction of AST. The lack of documentation makes
it not very easy to start with, increasing the development time. Also, it does
not provides the best support for semantic actions when compared to the other
modules and it requires the lexical analyser to be provided by the user.
3 All grammars, test files and generated parsers are available at http://www.di.

uminho.pt/~gepl/PARSINGinPERL



Table 3. Module Analysis.

Module Debugging
Generated

Parser
Readability

Integration with
External Code

Development
Time

Parse::Yapp +/− +/− ++ +/−
Parse::Eyapp +/− +/− + +/−
Parse::RecDescent + NA + −
Regexp::Grammars ++ NA +/− −−

3 Conclusions

Parser generators in Perl still lacks valuable mechanisms to make them chal-
lengeable when compared with other languages, like C. There is no valid sup-
port for attribute grammars and, according to the research made, there is only
one module on CPAN that supports attribute grammars that, however, lacks of
maintenance for several years now.
The modules that support recursive-descent parsers provide several useful mech-
anisms but due to the lack of efficiency, they are not recommendable for process-
ing large input streams. LALR parsers provide a more efficient solution, however
the lexical analyser must be provided by the user and their efficiency is not the
best when compared with other language solutions [7].
An alternative solution could be combining the Perl modules with other tools
written in another languages to achieve better results. This solution would re-
quire a bridge between both tools and its evaluation would be dependable on the
effort and difficulty level of implementing this bridge. This is precisely the ob-
jective of a master thesis that aims at retargeting AnTLR (a well known LL(K)
compiler generator from attribute grammars) to generate Perl compilers.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Principles, Techniques and Tools.
Addison-Wesley, 1986.

2. Stephen Johnson Bell and Stephen C. Johnson. Yacc: Yet another compiler-
compiler. Technical report, 1979.

3. Damian Conway. Parse::recdescent. http://search.cpan.org/dist/

Parse-RecDescent/lib/Parse/RecDescent.pm, 1997.
4. Damian Conway. Regexp::grammars. http://search.cpan.org/~dconway/

Regexp-Grammars-1.001005/lib/Regexp/Grammars.pm, 2009.
5. Francois Desarmenien. Parse::yapp. http://search.cpan.org/dist/Parse-Yapp/

lib/Parse/Yapp.pm, 1998.
6. Casiano Rodriguez-Leon. Parse::eyapp. http://search.cpan.org/dist/

Parse-Eyapp/lib/Parse/Eyapp.pod, 2006.
7. Alberto Simoes. Parsing with perl. Copenhaga, Aug 2008. Yet Another Perl Con-

ference Europe.
8. Alberto Simoes and José Joao Almeida. Text::rewriterules. http://search.cpan.

org/~ambs/Text-RewriteRules-0.21/lib/Text/RewriteRules.pm, 2004.


