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Abstract

The advances in computational mechanics witnesgethe last decades have made
available a large variety of numerical tools. Sgpbated non-linear models are now
standard in several finite element based progrdrhgs paper addresses the ability of
continuum numerical methods, based on plasticity emacking, as well as on analytical
methods to provide reliable estimations of masarognpressive strength. In addition, a
discussion on the load transfer between masonrypooents is presented and special
attention is given to the numerical failure patterithe results found overestimate the
experimental strength and peak strain. Alternatngelelling approaches that represent the

micro-structure of masonry components are therefessled.
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Introduction

Masonry compressive behaviour is of crucial impoeta for design and safety
assessment purposes, since masonry structuresriararily stressed in compression.
However, the compressive failure mechanism of gbattle materials is rather complex,
especially when compared with tensile failure. Cospive failure is characterized by the
coalescence and growth of diffuse micro-crackspenpanied by progressive localization
of deformations and development of traction freecro&racks. At ultimate stage, a
distributed continuous pattern of splitting andaheracks is formed, being responsible for
failure, see Vonk [1].

The most relevant material property when dealinth wompression is clearly the
compressive strength. Experimentally, this properan be obtained according to the
European norm EN 1052-1 [2], which specifies aitgsspecimen similar to the RILEM
specimen, see Figure la. Mann and Betzler [3] @bsethat, initially, vertical cracks
appear in the units along the middle line of thecépen, i.e., continuing the vertical joint.
Upon increasing deformation, additional cracks app@ormally vertical cracks at the
smaller side of the specimen that lead to failyrefditting of the prism. Experimental tests
on representative masonry specimens are, howealatively costly and not practical for
design purposes. This fact persuaded researchermvéstigate semi-empirical and
analytical relations to predict masonry strengtbdabon the components characteristics and
on the type of masonry. Several semi-empiricalti@a can be gathered from the literature
and the reader is referred to Rostampour [4], Blitgg [5], Haseltine [6] and

Vermeltfoort [7] for details. Both European and MNwAmerican masonry



codes / specifications [8,9] use empirical relatido estimate the compressive strength of
masonry from the compressive strength of unit ancdan.

Although empirical relations provide a safe basis éstablishing design code
provisions, little insight on the physical behavidsaiobtained when compared to analytical
methods. Today, it is well accepted by the reseaocchmunity that masonry compressive
failure is mainly governed by the interaction betweunits and mortar. Assuming
compatibility of strains between the components, difference in stiffness leads, under
uniaxial compressive loading, to a state of strelsaracterized by compression/biaxial
tension of units and triaxial compression of mgrsee Figure 1b. This holds true, of
course, when mortar is more deformable than uwitéch is generally the case of ancient
masonry.

In the pioneer work of Hilsdsdorf [10], this phenemon was firstly described and
an equilibrium approach was developed to predetiasonry strength. Yet, Hilsdorf [10]
assumed that failure of mortar coincides with fealof masonry, which is not necessarily
true. In the theory proposed by Khoo and Hendry] [thls problem is overcome by
considering a limit strain criterion based on theetal strain exhibited by brick units at
failure. Another relevant contribution was given ®hler [12], which proposed an
expression that in general shows good agreemehtexperimental data. Failure theories
that allow following stress and strain evolutionoapincreasing loading have been also
developed. Examples can be found in Fraatel. [13] and Atkinsoret al [14].

The present paper focuses on the ability of ar@ytnethods and continuum non-
linear finite element models to reproduce the expemtal behaviour of masonry under
compression. A micro-modelling strategy incorpargtunits and mortar is followed, which

is a powerful tool in the analysis of the composiaterial [15,16]. In addition, a
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discussion on the load transfer between the commisnepon increasing loading is
presented and special attention is given to theemaad failure patterns obtained, which is

an issue often disregarded in literature.

2. Brief description of adopted experimental testing

Bindaet al [17] carried out deformation controlled testsmasonry prisms with
dimensions of 60€600x250mnT, built up with nine courses of 28020x55 mnT solid soft
mud bricks and 1@mthick mortar joints. Three different types of nasrthamelyM1, M2
and M3, have been considered and testing aimed at thieiagian of the compressive
properties of the prisms. For each type of mogdotal of three prisms were tested.

The tests were carried out in a uniaxial testingimree MTS® 311.01.00, with non-
rotational steel plates and a maximum capacitys@0XN. The applied load was measured
by a load cell located between the upper platet@desting machine, while displacements
were recorded by strain gauges located in thedat®e specimens up to the peak load, see
Figure 2. In addition, the average vertical displaent of each prism was also recorded
with the machine in-built displacement transdugegrmitting to capture the complete
stress-strain diagram, including the softening megiIn this study, the prisms vertical
strains and elastic moduli have been calculatedn frthe transducer measured
displacements. Teflon sheets were placed betweerpisms and the loading plates in
order to minimize restraining frictional stresses.

The characteristics of the masonry componentsrma®f compressive strength

flexural tensile strength, elastic modulug& and coefficient of Poissomare given in Table



1. The results obtained for the prisms are givehable 2. Prism®1, P2 andP3 were built
with mortarsM1, M2 andM3 of increasing strength, respectively. The expeni@efailure
patterns found were rather similar despite of fipe tof mortar used [18]. Figure 3 depicts

the typical failure pattern.

3. Outline of the numerical model

The simulations were carried out resorting tbasic cel] i.e., a periodic pattern
associated to a frame of reference, see Figur@dthié application envisaged here, units
and mortar were represented by a structured cantirfinite-element mesh. Yet, to reduce
computational effort, only a quarter of the basall evas modelled assuming adequate
conditions for the in-plane boundaries, see Fidurén such a way, symmetry boundary
conditions were assumed for the two sides alonghbsic cell symmetry axes and
periodicity conditions for the two sides definirigetexternal boundary of the basic cell.

It is certain that the boundary conditions and tést set-up affect the response of
masonry under uniaxial compression. This is mogeiicant in the post-peak regime but
the peak load and pre-peak regime are also affecteel e.g. [3]. The choice of an
appropriate test set-up resulted in the CEN spetif@g§ which leads to the usage of
moderately large specimens. The authors assumeédhihaxperimental values from the
actual testing program [17] aimed at obtaining ‘tinee” compressive strength of masonry
and, therefore, assumed the typical representatikene element (or basic cell) for such a
material. Of course that the approach is only agprate of the real geometry and the
obtained numerical response is phenomenologicas Mieans that an exact comparison in

terms of experimental and numerical failure pagera not possible. In particular,
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localization of deformation, boundary effects oé thpecimen and non-symmetric failure
modes are not captured by the numerical analygigini these combined effects control
mostly the post-peak response, which is not areigsthe present contribution.

Regarding the out-of-plane boundaries, three diffeapproaches were considered:
(a) plane-stresBS (b) plane-straifPE and (c) an intermediate state, here named enhanced
plane-strainEPE This last approach consists of modelling a thit-af-plane masonry
layer with 3D elements, imposing equal displacementhe two faces of the layer. Full 3D
analyses with refined meshes and softening behavawe unwieldy, and were not
considered. Moreover, a recent paper indicatesethiaanced plane stress analysis and 3D
analysis provides very similar results [19].

Each approach corresponds to a different level wfobplane confinement. In
plane-stress, out-of-plane stresses are preclutdha specimen can freely deform in this
direction. This condition holds generally truela¢ surface of a specimen. On the contrary,
in plane-strain, out-of-plane deformations are luded, which is the limiting condition at
the centre of a thick specimen. An intermediat¢éeshetween these extreme conditions is
also of interest in the evaluation of the model &nel enhanced-plane-strain state was
considered.

For PSandPE, the masonry components were represented by appatety 1200
8-noded quadrilateral elements with 3700 nodesgllitag 7400 degrees of freedomx3
Gauss integration was adopted. The material bebawi@s described by a composite
plasticity model with a Drucker-Prager yield critgr in compression and a Rankine yield
criterion in tension [20,21]. The inelastic behawio exhibits a parabolic

hardening/softening diagram in compression andxgorential-type softening diagram in



tension. The material behaves elastically up tetbird of the compressive strength and up
to the tensile strength.

For EPE modelling of the cell was carried out using apgrately 900 20-noded
brick elements with 6650 nodes, totalling 13300rdeg of freedom (note that the tying
adopted for the out-of-plane degrees of freedongmibat a basically 2D model is used).
3 x 3x 3 Gauss integration was adopted. The material mabel in 2D simulations is not
available for 3D models and a combined model widlditional smeared crack model in
tension [22], specified as a combination of tensiot-off (two orthogonal cracks), tension
softening and shear retention, and Drucker-Pralgestipity in compression had to be used
[20]. The models in tension provide comparable lte4@3] but the plasticity based model
is numerically more robust.

The loading scheme adopted in the simulations stetiin applying a vertical
compressive stress at the upper and lower boursdairigne basic cell. The DIANA® finite
element code [20] was adopted to carry out the laioms, being the non-linear
equilibrium equations that arise from the finiteerakbnt discretization solved using an
incremental-iterative regular Newton-Raphson metheidh arc-length control and line-

search technique.

4 Definition of the model parameters

The parameters were obtained, whenever possile) the experimental tests.

However, most of the inelastic parameters were awknand had to be estimated from



other tests. Despite the effort made in the lastades, micro-simulations are often
hindered by the lack of experimental data on thelheear properties of the components.
The elastic material properties adopted were ptshogiven in Table 1 and the
inelastic properties are fully detailed in TableHere,c is the cohesiort; is the tensile
strength,gis the friction angley is the dilatancy anglésf; is the tensile fracture energy
andGf. is the compressive fracture energy. The value tediofor the friction angle was 10°
(a larger value in plane-stress would implicateogarestimation of the biaxial strength)
and, for the dilatancy angle, a value of 5° wasimgsl [24]. The values assumed for the
fracture energy have been based in recommendatigmzorted in experimental evidence
[25,26] and practical requirements to ensure nuwakgonvergence. Severe convergence
problems were found due to the strongly inhomogesetress and strain fields that result
from the analysis, especially in the case of pri&mwhich features very large differences

between the properties of units and mortar.

5. Numerical results and comparison with experimental data

5.1 Stress-strain diagrams

The boundary conditions imposed on the model leaehtial normal displacements
along each boundary but non-uniform stress fidllshis way, the average stress applied
on the cell results from the integral of stresseerahe upper and bottom boundaries
divided by their length. The strain is the measafran equivalent homogenised basic cell.

The comparison between the numerical and experahstress-strain diagrams is given in



Figure 6. Here it is shown th&PE response is always between the extreme responses
obtained withPS and PE. For this reason, enhanced-plane-strain is acdepte the
reference solution for the numerical analysis i tbst of the paper. It is further noted that
the difference between the strength values pratlict®S andPE conditions increase with
larger compressive strength ratfegnit/ fc mortar ThiS can be explained by the fact that weak
mortar joints fail at a very early stage if no @iplane confinement is present.

Another important aspect is that the numericalngjtie largely overestimates the
experimental strength in all the three prisms, efé¢hne peak strain is well reproduced by
the numerical analysis. Comparing the results imseof stiffness, it is possible to observe
that the numerical response is much stiffer than dkperimental response. This can be
explained by the fact that the stiffness of the taroinside the composite is different from
the stiffness of mortar specimens cast separataly w different laying and curing
conditions, see e.g. Lourenco [15]. This complesuésrequires advanced experimental
research on the mortar interface. Preliminary tesndicate the presence of a clear weak
interface between the mortar and brick [27]. Thauld require a more complex simulation
with one additional material.

The difficulty in evaluating the stiffness of theortar inside the composite
represents a severe drawback of detailed micro-teode reproduce correctly the
experimental elastic stiffness of the masonry psisthhe elastic modulus of the mortar had
to be adjusted by inverse fitting. An estimate led value of the adjusted stiffness can be

obtained, disregarding the interaction unit-mortiamn

AyyM = Ayyu + Ayym (1)



where4, v is the vertical displacement of a masonry prigm, is the vertical displacement
contribution of the units and , is the vertical displacement contribution of thertar

joints. This equation reads, after some maniputatio

E - hm EM Eu
° Eu(hm+hu)_EMhu

()

here, E.qj is the adjusted elastic modulus of the morkarjs the elastic modulus of the
units, Ey is the elastic modulus of the composite given abl& 2,hy, is the joint thickness
andh, is the height of the units.

The adjusted elastic moduli assumed in the newlaiions are given in Table 4. In
addition, the ratios between the adjusigg and experimentéte,, elastic moduli are also
shown, indicating that the adjusted elastic modulrgges between 6% and 30% of the
values recorded experimentally in mortar prismg.eH# is noted that the relation between
adjusted and mortar prism elastic modulus decreaglbghe mortar strength. The obtained
adjusted stress-strain diagrams are illustratdelgnre 7, together with the results obtained
with the experimental stiffness for a better congmar. The strength values are similar
using either the experimental mortar stiffness loe tdjusted value but a dramatic
difference in the peak strain was found. In faot, the adjusted mortar stiffness, the
numerical peak strain largely overestimates theeewpental value and the difference
increases with increasing mortar strength.

The possibility of adjusting also the mortar stringzas not considered because a
direct relation between strength and stiffness otbe established in such a complex case

of mortar curing, compaction and moisture exchange.



5.2 Failure patterns

Failure patterns are an important feature whensassgnumerical models. Figure 8
to Figure 13 depict the deformed meshes at faflorehe three types of prism iRS PE
and EPE conditions. In addition, the contour of the minmyprincipal plastic strains is
also given in the case &PE

The failure mechanisms obtained depend obviouslythen modelling strategy
adopted. This is numerically correct but physicaibn-realistic, even if it is an issue often
disregarded. Therefore, the analysis of the faipatterns obtained in tieS PE andEPE
conditions easily indicates acceptable out-of-plamesundary effects (or modelling
strategies). IfPS conditions, prism®&1 andP2 fail due to crushing of the bed joints while
prism P3 fails due to vertical cracks arising in the beih®, together with diagonal
“crushing” that crosses the units and connectsnthrealigned vertical cracks (it is noted
that crushing in the centre of the units is mok#qund), see Figure 8a, 10a and 12a. These
failure patterns are unacceptable, see also Figyuralicating thaPS conditions cannot be
generally used for simulation of compressive falaf masonry.

In PE conditions, failure of prismB1 andP2 is mainly governed by vertical cracks
developing close to the centre of the units anthenhead-joints. PrisrR3, instead, fails
due to diffuse vertical cracking crossing both sir@hd joints, combined with crushing of
the centre of the units, see Figure 8b, 10b and TBbse are realistic failure patterns, as
vertical cracks in masonry usually appear to ansthe head joints, followed by vertical

crack propagation across the units.
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In EPE conditions, prisnP1 fails mainly due to the development of verticaals
in the centre of the units and along the head$oibting the mortar in the bed-joints
severely damaged, see Figure 9.. Prie2andP3 fails due to the development of several
vertical cracks arising in the bed joints togethath compressive damage of the units,
especially at the centre, see Figure 11 and Fid@reAgain, these are realistic failure
patterns, as vertical cracks in masonry usuallyeappo arise in the head joints, followed
by vertical crack propagation across the units.

These results indicate that, from a point of vieinfaslure pattern,PE and EPE
conditions seem to be possible. NeverthelBg&sprovides much worse results in terms of

failure loads when compared wBPE, as shown in the previous section.

5.3 Stress distribution

Insight on the stress distribution upon increasosgling can be provided by stress
diagrams along different sections of the cell, Bigeire 14. PrisnP1 has been chosen as an
example because it has a relatively strong unitaarather weak mortar as often occurs in
ancient masonry. Three different load levels wenesaered, each one corresponding to a
different branch of the stress-strain diagram.

Severe non-linear behaviour and stress redistabutias been found, with failure
not occurring when the maximum stress is attainedgiven point of the discretization. As
expected, Figure 14a indicates that mortar is e#&vaxially compressed and the units are
under combined compression-biaxial tension. A deseef vertical compressive stresses in
the bed-joints is observed near the head-jointstdube low stiffness of the mortar, see

Figure 14b. This unloading effect increases clésamllapse, due to inelastic behaviour of
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the head joints. Moreover, in Figure 14c, it is Pbke to observe that increasing stress
concentration develops at the unit edges as loa@ases and the neighbouring head-joint
fails. Also due to increasing damage in the heau;jdhe centre of the units exhibit a

decrease of compressive vertical stresses as dldeiloreases, resulting in a failure of the

unit with horizontal offset with respect to the Hgaints.

6. Calculations using ssimplified models

This section contains an analytical interpretatdrthe experimental results, with

simple calculations being used to predict the c@sgve strengtif of the prisms. The

following equations have been utilized:

(a) equation proposed by Franeisal [13]

_ 1
. 14+ 9By V) G (3)
BlL-v,)

where the parameters fandgread

h ! E ft’ (4)
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(b) equation proposed by Khoo and Hendry [11]

Af’+Bf’+Cf +D=0 (5)

where the parametefs B, C andD are given by

3 2
A=-02487f,, [fi] + 0.0018a[i]

c,m

2
B=12781f,, (fi] ~0.052% (fi]

c,u cm

(6)

C=-20264f,, [fij ~0.1126a

c,u

D =0.9968f, , +0.1620c f_
(c) equation proposed by Ohler [12]

' +th f (7)

wheres andt are parameters defining the unit failure envelapdm is the slope of the
mortar failure envelope. The values presented berQh2] for these parameters are given

in Table 5 and Table 6, respectively.
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(d) equation provided by Eurocode 6 [8]
fc,k =K fc,OL.17 fc0n31 (8)

wheref.x is the masonry characteristic compressive streagthK is a parameter that

depends on the type of unit and on the type of mgso

(e) equation provided by ACI Specification for Masp Structures [9]
f, = A{400+BT,,) (psi) ©)

wheref 1 is the specified compressive strength, in sk 1 (inspected masonry) ald=
0.2 for Type N Portland cement-lime mortarBx 0.25 for Type S or M Portland cement-
lime mortar.

In the equations abovk,, andf. , are the compressive strength of units and mortar,
fiu is the tensile strength of units, andE, are the elastic modulus of units and mortar,
and vy, are the coefficients of Poisson of units and matalh, andhy, are the units height
and mortar thickness.

The first three equations follow from equilibriumethods under the assumption
that units are uniaxially compressed - biaxiallynsiened while mortar is triaxially
compressed, see Hendry [28] for a comprehensiveewewn these methods. For this
reason, these equations are only applicable whenutiit stiffness exceeds the mortar

stiffness, which is the case of all the three psissunsidering the mortar adjusted elastic
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modulus. However, in the case of pri$i8, the very large ratio between the mortar and
unit strengths precludes the application of theaéiqus proposed by Khoo & Hendry [11]
and Ohler [12], since their formulation only coresisl explicitly the mortar strength rather
than the mortar elastic properties. On the conjridmy equation proposed by Franetsal
[13] only considers the mortar elastic propertied,dahus, was also applied to prigt&.

Equation (8) is provided by Eurocode 6 [8] and leaspirical nature. In this
formula, the parametdf equals 0.8 x 0.55 = 0.44 for the application hareisaged. It is
also noted that the mortar strength for pridgwas assumed equal to ROmnf, which is
the maximum strength permitted by the code. Thennvadue of the masonry compressive
strengthf; was calculated from the characteristic vdlugassumind. =f.x + 1.64 0, where
ois the standard deviation. A coefficient of vaoatCV equal toodif, = 10% was adopted.

Equation (9) is part of the unit strength methodvpmted by ACI for masonry
structures and is also of empirical nature. TheypaterB was assumed to equal 0.2 in the
case of mortaM1 and 0.25 in the case of mortdv?2 and M3. The mean value of the
masonry compressive strendthwas calculated from the specified stren@gthassumingd.
=fm+ 1.340. Also here, &£V equal to 10% was considered.

The results obtained are given in Table 7. All theee equilibrium formulas
overestimate the experimental strength, espedhadyequation proposed by Franetsal
[13]. On the contrary, EC 6 and ACI empirical folamipredict, as expected, a value lower
than the experimental strength, with ACI formula\pding a better estimate for the low
strength mortar prismB1 and EC6 formula predicting a more accurate vatwetfe high
strength mortar prism®3. It is further noted that Francest al [13] equation yielded

decreasing masonry strength values for prisms Wit increasing strength mortar. This is
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not realistic and can be explained by the high ibditg of Franciset al [13] equation to
the values of the coefficient of Poisson, which barconsidered a drawback of this method
given the difficulties in determining objectively@h values. If a coefficient of Poisson
equal to 0.2 is assumed for the units and the tty@es of mortar, the decreasing trend is
no longer observed and the masonry strength vadbésined are 22.1, 22.5 and 22.8
N/mnf for prismsP1, P2 andP3, respectively.

It is also noted that the numerical simulationsaslsvprovide over-strength, when
compared to analytical solutions [11,12] baseddunildrium approaches. This indicates
that homogenised equilibrium approaches must bd ocaeefully and new approaches are

required.

7. Conclusions

The paper addresses the ability of continuum modelsed in plasticity and
cracking to reproduce the experimental compresbefeaviour of masonry. The results
obtained with simulations of compression tests @sanry prisms allow to conclude that:
(a) continuum finite element modelling largely osgimates the strength and peak strain of
the prisms; (b) plane-stress, plane-strain and deoéd-plane-strain” lead to different
strengths and different failure mechanisms. Pldress leads to unacceptable failure
mechanisms and plane-strain leads to very higlhr&ailoads. Therfore, the usage of 3D
models or enhanced-plane-strain models is recomeakrfd) simplified methods to predict
the strength based on elastic considerations peovesults different from advanced

numerical analyses. This last conclusion has a¢sn lzonfirmed by [16], indicating that
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experimental testing or rather conservative emglifiermulae at the only possible solution
at the present state of knowledge.

In short, as a result of this paper, it is belietkdt standard continuum finite
element modelling, based on plasticity and crackamgl analytical formulations cannot be
used to adequately forecast the mechanics of masamd to adequately predict the
strength from the properties of the componentsrder to further advance in this direction,
it is necessary to: (a) seek alternative modelepoesent the micro-structure of masonry
components, see e.g. [29]; (b) carry out an adwhneeperimental programme to

characterize the mechanical behaviour of mortasisiéna masonry composite.
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Table 1 - Mechanical properties of the masonry comepts [17].

Component E d fe f
[N/mnd] [-] [IN/mnf] | [N/mnf]
Unit 4865 0.09 26.9 4.9
Mortar M1 1180 0.06 3.2 0.9
Mortar M2 5650 0.09 12.7 3.9
Mortar M3 17760 0.12 95.0 15.7
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Table 2 - Mechanical properties of the masonrynpsi§l 7].

Prism type| Mortar type [N/rEm?] [N/rfrcm%]
P1 M1 1110 11.0
P2 M2 2210 14.5
P3 M3 2920 17.8
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Table 3 - Inelastic properties given to masonry gonents.

C fi sing sin g Gty Gfe
Component | o\ ymmd] | [N/mm] [ [ [N/mn] | [N/mn]
Unit 11.3 3.7 0.17 0.09 0.190 125
Mortar M1 1.3 0.7 0.17 0.09 0.350 2.7
Mortar M2 5.3 3.0 0.17 0.09 0.150 10.0
Mortar M3 39.9 12.0 0.17 0.09 0.600 23.0
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Table 4 - Adjusted elastic deformability parameferamortar.

E[N/mn] | Ead/Eep
Mortar M1 355 0.30
Mortar M2 735 0.13
Mortar M3 1065 0.06
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Table 5 - Values for the parametemsndt of Ohler [12] equation.

0<f/fe,<0.33 | 0.33%/f.,<0.67 | 0.67%/f.,<1.0
s 0.662 0.811 1.000
t 0.662 0.960 2.218
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Table 6 - Values for the parameteiof Ohler [12] equation.

o [N/MnT]

31.6

21.4

154

6.4

m[]

5.3

3.6

2.4

2.1
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Table 7 - Experimental and analytical strength &alun brackets, the ratio between the

predicted and experimental strengths is given.

Prism Exp. Franciseit KHZ?\?M%/ Ohler EC6 ACI sl\ilrzmzz;gils
[17] | al.[13] [11] [12] [8] [9] EPEL
P1 11.0 25.0 15.2 14.8 7.5 9.4 18.2
' (225 %) | (140 %) | (135 %) (70 %) (85 %) (165 %)
P2 | 145 24.2 20.2 19.0 11.3 11.0 24.1
' (165 %) | (140 %) | (130 %) (80 %) (75 %) (165 %)
P3 | 178 23.4 i i 13.0 11.0 30.0
' (130 %) (75 %) (60 %) (170 %)
! The given results were obtained with adjusted anatiffness values.
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