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a  b  s  t  r  a  c  t

This  work  focuses  on the  use  of  chemometric  techniques  for identifying  activated  sludge  process  abnor-
malities.  Chemometric  methods  combined  with  image  analysis  can  improve  activated  sludge systems
monitoring  and  minimize  the  need  of  analytical  measurements.  For  that  purpose  data  was  collected
from  aggregated  and  filamentous  biomass,  biomass  composition  on  Gram-positive/Gram-negative  bac-
teria  and  viable/damaged  bacteria,  and  operational  parameters.  Principal  component  analysis  (PCA)  was
eywords:
ctivated sludge

mage analysis
orphology

hysiology

subsequently  applied  to  identify  activated  sludge  abnormalities,  allowing  the  identification  of  several  dis-
turbances,  namely  filamentous  bulking,  pinpoint  flocs  formation,  and  zoogleal  bulking  as  well  as  normal
conditions  by  grouping  the  collected  samples  in  corresponding  clusters.

© 2011 Elsevier B.V. All rights reserved.
hemometric techniques

. Introduction

Activated sludge systems are very sensitive to unexpected
hanges in operating conditions, mainly in terms of organic load,
utrients and oxygen contents. The modification of the operat-

ng conditions mostly affects the solid–liquid separation, a stage
hat is often characterized by the sludge volume index (SVI).
roblems related to the sludge settling ability were previously
eported encompassing pinpoint flocs formation, filamentous bulk-
ng, dispersed growth, and zoogleal or viscous bulking as the

ost common phenomena in activated sludge systems. Based on
icroscopy inspection, the biomass structure in activated sludge

ystems [1,2] has been shown to be related to the SVI, especially on
lamentous bulking surveys [3–8].

Usually, pinpoint flocs phenomenon is related to the formation
f small, weak and roughly spherical flocs, with low settling abil-
ties. Consequently, pinpoint flocs occurrence originates a turbid
nd hardly settleable effluent presenting high suspended solids
ontents. Zoogleal (or viscous) bulking occurs when floc-forming
acteria are present in large amounts producing large contents
f extracellular material (namely exopolysaccharides) lowering

he sludge settling properties. However, the most common sludge
ulking problem reported in activated sludge systems is the fila-
entous bulking caused by an excessive growth of different types

∗ Corresponding author. Tel.: +351 253604402; fax: +351 253678986.
E-mail address: ecferreira@deb.uminho.pt (E.C. Ferreira).

003-2670/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.aca.2011.05.050
of filamentous microorganisms [9–11]. The massive presence of
filamentous microorganisms forms a large and open network, by
linking the flocs, thus interfering with sludge compaction, settling
and thickening. Several factors emerge in determining the commu-
nity composition of filamentous bacteria including the operating
conditions and the nature of the influent being treated. Conse-
quently, the success of a given activated sludge system depends on
the ecosystem balance among floc-forming bacteria, such as Pseu-
domonas spp., Zoogleal spp., Alcaligens spp., and Achromobacter spp.,
and filamentous bacteria, such as Nocardia spp., Rhodococcus spp.,
Type 1863 and Microthrix spp., where control strategies must be
performed [12,13].

Image processing and analysis methodologies have been
increasingly used for activated sludge characterization. Several
studies [14–16] used automated image analysis to relate the sludge
structure in biological systems with the sludge settling ability, since
this characteristic is strongly influenced by floc structure and fila-
mentous bacteria contents [17]. Recently, image analysis has been
the basis of the assessment of biomass morphological changes using
different types of microscopy techniques [5–7,18]. Furthermore,
the combination of settling properties and image analysis data,
such as the aggregated and filamentous bacteria contents and mor-
phology (morphological data), and Gram-positive/Gram-negative
and viable/damaged bacteria ratios (physiological data), may  offer

powerful information, as well as a mechanism to decide if a given
intervention should be performed into the system.

Monitoring of an activated sludge system, may represent the
determination of huge amounts of data, regarding the system biotic

dx.doi.org/10.1016/j.aca.2011.05.050
http://www.sciencedirect.com/science/journal/00032670
http://www.elsevier.com/locate/aca
mailto:ecferreira@deb.uminho.pt
dx.doi.org/10.1016/j.aca.2011.05.050
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nd abiotic characterization. To make sense of such complexity,
hemometric techniques are, quite often, indispensable. In fact, due
o the large data contents provided by image analysis techniques,
hemometric techniques are quite valuable to organize such infor-
ation in order to better characterize the activated sludge system.
s matter of fact, principal component analysis (PCA) and partial

east squares (PLSs) have already proven to be important tools for
he identification of operating conditions and the prediction of cer-
ain parameters [19–23].

PCA is a tool used for data compression and information extrac-
ion, finding combinations of variables describing major trends in
he data [24]. The aim of PCA is to project the high dimensional
pace into a more visual low dimensional one, and by doing this
nd the key variables of the system. Thus, there will be a number
f new principal components, which describe most of the variance
n the process in a space of fewer dimensions than the original
25]. Recently, PCA techniques have been successfully applied for

onitoring a wide range of wastewater treatment systems [26–29].
In the present work, a large amount of data, reflecting the oper-

tion of an activated sludge system in four different experimental
onditions (pinpoint flocs formation, filamentous bulking, zoogleal
ulking and normal conditions), was treated using chemometric
ethods. PCA was applied integrating image analysis parame-

ers from aggregated and filamentous biomass characterization,
iomass composition on Gram-positive/Gram-negative bacteria
nd viable/damaged bacteria, alongside operational parameters.
he potential of PCA was examined for the identification of each
f the lab-scale activated sludge conditions.

. Materials and methods

.1. Activated sludge system description

Experimental data was  obtained from a lab-scale activated
ludge system based on a 17 L aerated tank with suspended
iomass, followed by a 2.5 L cylindrical clarifier. The aerated
ank was inoculated with activated sludge from a domes-
ic wastewater treatment plant. The system was  fed with a
ynthetic medium prepared with the following composition
mg  L−1): NaCH3COO·3H2O, 2073; (NH4)2SO4, 140; MgSO4·7H2O,
5; KH2PO4, 44; K2HPO4·2H2O, 59; CaCl2·2H2O, 30; FeCl3·6H2O,
8.8; NaHCO3, 105. A micronutrients solution was also added to
he system to guarantee the biomass maintenance. The pH of the
ystem was controlled with a pH meter and a control pump (Model
L 7916-BL 7917, Hanna Instruments, Woonsocket, RI, USA) with
.01 M HCl solution. Complete mixing inside the reactor was guar-
nteed by supplying a continuous inflow of air bubbles through an
ir diffuser placed at the bottom of the reactor. An oxygen probe
TriOmatic 690, WTW,  Weilheim, Germany) was used to measure
he amount of dissolved oxygen. The concentration of dissolved
xygen was maintained around 7 mg  L−1. Sludge recirculation from
he settler to the reactor was performed.

.2. Off-line process monitoring

The system was regularly monitored for parameters as total sus-
ended solids (TSSs), sludge volume index (SVI), chemical oxygen
emand (COD), ammonium (N–NH4

+), nitrite (N–NO2
−) and nitrate

N–NO3
−) concentrations. The TSS measurements were conducted

n accordance with the procedures described in Standard Methods
30]. The SVI was  determined in a 1 L Imhoff cone, with the sludge

eight variation monitored for 30 min. Samples for COD, ammo-
ium, nitrite and nitrates quantification were collected and filtered,

rom the feed and the reactor. COD was measured with Hach Lange
OD cell tests (LCK 414 and LCK 514) on a spectrophotometer
ica Acta 705 (2011) 235– 242

(Hach Lange DR 5000). Nitrite was  determined with Griess–Hosvay
method, similar to the colorimetric method from Standard Methods
[30]. Ammonium was determined according to Nessler’s method
[30]. Nitrate was  determined by HPLC (Jasco, Tokyo, Japan) with
automatic injection, UV detector (210 nm), and a Varian (Palo Alto,
CA, USA) Metacarb 67H column operating at room temperature
of 60 ◦C. The eluent was a solution of sulfuric acid (0.005 mol  L−1)
with a flow rate of 0.7 mL  min−1 and a pressure between 70 and
80 kg cm−2.

2.3. Staining procedures

For all staining procedures, a sterile solution of 0.85% NaCl was
prepared. 1.5 �L of each dye was  put into 5 mL  of the NaCl solution
and the tube was  wrapped with aluminum foil (staining solution). A
volume of 100 �L of undiluted biomass suspension was  mixed with
50 �L of staining solution and incubated in darkness for 15 min  at
room temperature. A preliminary experiment allowed concluding
that this concentration was  sufficient for staining the overall bacte-
ria population. The bacteria population was then visualized through
fluorescence microscopy.

The Live/Dead® BacLightTM bacterial viability kit was used to
differentiate viable and damaged bacteria [31]. The kit utilizes a
mixture of SYTO® 9 green-fluorescent nucleic acid stain and a red-
fluorescent nucleic acid stain, propidium iodide (PI). Viable bacteria
are stained by SYTO® 9 and damaged bacteria are stained by PI.

The Live BaclightTM bacterial Gram stain kit allows to easily
classify bacteria as Gram-positive or Gram-negative without fix-
atives [32]. This kit utilizes a mixture of SYTO® 9 green-fluorescent
nucleic acid stain and a red-fluorescent nucleic acid stain, hexid-
ium iodide (HI). Gram-negative bacteria are stained by SYTO® 9 and
Gram-positive bacteria are stained by HI.

2.4. Bright field image acquisition

The microbial community structure was  observed by means
of an Olympus BX51 optical microscope (Olympus, Tokyo, Japan),
at 100× magnification, coupled with an Olympus DP25 camera
(Olympus, Tokyo, Japan). Images were acquired at 1360 × 1024
pixels and 8-bit format through the commercial software CellB̂
(Olympus, Tokyo, Japan). Samples were taken from the aerated
tank, and 3 slides per sample were used resulting in a total of 150
images (3 × 50 images/slide). A recalibrated micropipette with a
sectioned tip at the end, with a large enough diameter to allow
larger aggregates to flow, was used to deposit samples on the
slides. For each slide, a volume of 10 �L was covered with a
20 mm × 20 mm cover slip, for visualization and image acquisition.
Images were acquired in the upper, middle and bottom of the slide
in order to improve the representativeness of the microbial com-
munity in the system.

2.5. Fluorescence image acquisition

Slides with stained sludge samples (10 �L on each slide) were
observed in an Olympus BX51epifluorescence microscope (Olym-
pus, Tokyo, Japan) at 200× magnification. Two filters were used, the
first in the green wavelength range with an excitation bandpass of
470–490 nm and emission at 516 nm (long pass filter), and the sec-
ond filter in the red wavelength range with an excitation bandpass
of 530–550 nm and emission at 591 nm (long pass filter). Images

were acquired at 1360 × 1024 pixels, and 24-bit RGB format (8 bit
red, 8 bit green and 8 bit blue channels) through the commercial
software CellB̂ (Olympus, Tokyo, Japan), and 2 slides per sample
were used resulting in a total of 100 images (2 × 50 images/slide).
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Fig. 1. Bright field image processing: (a) original image

.6. Bright field image processing

The image analysis program used for the recognition of the
ggregated and filamentous biomass in the grayscale images was
dapted from a previous version of Amaral [33], developed in Mat-
ab 7.3 (The Mathworks, Inc., Natick, USA). Fig. 1 shows an original
rayscale image, and the final binary images of microbial aggregates
nd filamentous bacteria.

.7. Fluorescence image processing

A new program was developed in Matlab 7.3 (The Mathworks,
nc., Natick, USA) to recognize and characterize the aggregated
nd filamentous biomass in the fluorescent images, comprising
he extraction of the green channel from the original RGB image
ollected at 516 nm (green filter) and of the red channel from the
riginal RGB image collected at 591 nm (red filter). For each of the
bove channels the program performed a background correction,
mage segmentation and aggregated and filamentous biomass
ecognition. The determination of the SYTO® 9-stained cells was
btained through the use of the green channel of the RGB image
ollected at 516 nm,  whereas the determination of the propidium
odide and the hexidium iodide-stained bacteria was  performed
hrough the use of the red channel of the RGB image collected at
91 nm.  The developed program also allowed for the calculation
f a fluorescence-based intensity image, for both green and red
hannels, directly correlated with the fluorescence of the aggre-
ated and filamentous biomass. These images were subsequently

sed, regarding the filamentous biomass, to accurately identify the
ram and viability status of overlapping SYTO® 9 and propidium
r hexidium iodide stained cells. Fig. 2 presents the original,
uorescence based intensity and recognized aggregates and

ig. 2. Images from the green filter: (a) original image, (b) area detection image, (c) inten
f)  intensity image.
ggregates binary image and (c) filaments binary image.

filaments images in both the green filter (a–c) and in the red filter
(d–f).

2.8. Morphological parameters determination

The aggregated and filamentous biomass contents and
morphology were assessed by bright field microscopy, and
biomass composition on Gram-positive/Gram-negative bacteria
and viable/damaged bacteria by fluorescence microscopy. Table 1
presents the overall dataset of parameters used in this work. The
morphological parameters definition can be found in Amaral [33]
and Mesquita et al. [34]. The Area ratio (RelArea) is given as the
ratio of the area of the holes in an aggregate and the area of the
aggregate.

The information for the physiological parameters was  obtained
from the green (Gram-negative and viable bacteria) and red
(Gram-positive and damaged bacteria) channels of the fluorescence
images Gram negative/positive and viable/damaged aggregates and
filaments were characterized both in terms of projected area and in
mean intensity values. The ratios between gram positive/negative
and viable/damaged bacteria, both in terms of projected area and
mean intensity values, were next determined.

2.9. Principal component analysis (PCA)

Before PCA decomposition, variables were mean centered
(adjusted to zero mean by subtracting the original mean of each
column). Further, variables were normalized (adjusted to unit vari-

ance by dividing each column by its standard deviation) to give
them equal influence on the model, since variables are expressed
in different units and display substantially different absolute value
ranges [35].

sity image; and from the red filter: (d) original image, (e) area detection image and
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Table 1
Operational parameters, morphological parameters, and fluorescent parameters
included in the dataset.

Variable Name

Operational parameters
CODa Chemical oxygen demand
N–NO3

−a Nitrate
N–NH4

+a Ammonium
N–NO2

−a Nitrite
OLR Organic loading rate
TSS Total suspended solids
SVI Sludge volume index
Morphological parameters (from bright field microscopy)
Deqb Equivalent diameter
Pb Perimeter
Lb Length
Wb Width
FFb Form factor
Convb Convexity
Compb Compactness
Roundb Roundness
Solidb Solidity
Extb Extent
Eccb Eccentricity
Robb Robustness
LrgCb Largest concavity
RelArea Ratio between hole and object area
%Nbb Aggregates number percentage
%Areab Aggregates area percentage
Nb/Volb Aggregates number per volume
TA/Vol Total aggregate area per volume
TL/Vol Total filament length per volume
TL/TA Total filament length per total aggregate area
TL/TSS Total filament length per total suspended solids
Physiological parameters (from epifluorescence microscopy)
G  AA R; G AA G Gram-positive aggregated bacteria area;

Gram-negative aggregated bacteria area
G  INA R; G INA G Gram-positive aggregated bacteria intensity;

Gram-negative aggregated bacteria intensity
G  AF R; G AF G Gram-positive filaments area; Gram-negative

filaments area
G INF R; G INF G Gram-positive filaments intensity; Gram-negative

filaments intensity
LD AA R; LD AA G Damaged aggregated bacteria area; viable aggregated

bacteria area
LD INA R; LD INA G Damaged aggregated bacteria intensity; viable

aggregated bacteria intensity
LD AF R; GR AF G Damaged filaments area; viable filaments area
LD INF R; LD INF G Damaged filaments intensity; viable filaments

intensity
G  AA G/AA R Ratio between Gram-negative and Gram-positive

aggregates area
G INA G/INA R Ratio between Gram-negative and Gram-positive

aggregates intensity
G AF G/AF R Ratio between Gram-negative and Gram-positive

filaments area
G INF G/INF R Ratio between Gram-negative and Gram-positive

filaments intensity
LD AA G/AA R Ratio between viable and damaged aggregates area
LD INA G/INA R Ratio between viable and damaged aggregates

intensity
LD AF G/AF R Ratio between viable and damaged filaments area
LD  INF G/INF R Ratio between viable and damaged filaments intensity

l

u
a

X

s
i
t

Table 2
Percentage variance captured for each PC in the PCA model of each dataset.

PC Eigenvalues Variance (%) Cumulative (%)

1st dataset – morphological parameters
1 15.72 28.58 28.58
2 14.54 26.43 55.01
3  7.17 13.03 68.04
4 4.63 8.42 76.46
2nd dataset – morphological + physiological parameters
1  18.33 23.20 23.2
2  17.62 22.30 45.5
3 8.56 10.84 56.34
4  6.06 7.68 64.02
5 4.07 5.15 69.17
6  2.73 3.45 72.61
7  2.14 2.71 75.34
8  1.87 2.37 77.70
3rd dataset – morphological + physiological + operational parameters
1 20.89 24.01 24.01
2  18.23 20.95 44.96
3 9.36 10.76 55.72
4  6.76 7.77 68.27
5 4.15 4.77 68.27
6  2.89 3.33 71.59
a Determined inside the reactor.
b Determined for small (Deq < 25 �m),  intermediate (25 �m < Deq < 250 �m)  and

arge (Deq > 250 �m)  aggregates.

PCA decomposes the data matrix X as the sum of the outer prod-
ct of T (containing the scores) and P (containing the loadings) plus

 residual matrix E:

 = TP ′ + E (1)
Each of the principal components (PCs) captures as much as pos-
ible the variation which has not been explained by the former PCs,
.e., the first PC maximizes the covariance in the original data and
he subsequent PCs maximize the covariance in the residual matri-
7  2.52 2.89 74.49
8  1.98 2.27 76.77

ces which are left after extracting the former PCs. The dimensional
reduction is based on the fact that the principal components are
orthogonal and hence uncorrelated. It should be kept in mind that
the principal components are linear combinations of the original
variables. Therefore, they are abstract variables which are used to
visualize latent structures and latent phenomena in the data. In this
way, the original data is projected into a new coordinate system in
which the objects are described by the scores and the variables by
the loadings [36].

In this study, MatlabTM 7.3 (The Mathworks, Natick, MA)  was
used to perform PCA.

3. Results and discussion

A principal components analysis (PCA) was  applied to the nor-
malized data of the operation of the lab-scale activated sludge
system. Experiments were conducted within the activated sludge
system in order to observe four different operational conditions
(filamentous bulking, zoogleal bulking, pinpoint flocs formation
and normal conditions). Furthermore, two  distinct filamentous
conditions were studied, the first one identified as FB1, and the
second as FB2. The PCA study was performed with three different
datasets. The first dataset used solely morphological parameters
obtained from bright field microscopy, the second dataset com-
bined morphological and physiological parameters and the third
dataset combined all the information obtained from image anal-
ysis alongside the operational parameters. Table 2 presents the
percentage of variance captured by each principal component (PC)
as a function of the number of PCs. The number of components
used in a PCA model represents a measure of the data complex-
ity and can be regarded as the number of independent underlying
phenomena. In the present study the number of components was
determined by the eigenvalue-one criterion (analysis of the eigen-
values of the covariance matrix), according to which only the PC’s
with eigenvalues greater than one are considered relevant [27].

The number of PCs presenting eigenvalues larger than 1
ascended to four (explaining 76.5% of the total variance) in the
first dataset, and to eight in both the second and third datasets,

corresponding to total variances of respectively 77.8% and 76.8%.

A more explicit way to analyze and detect changes or distur-
bances in the measured data is through a score plot analysis. A
score plot is any pair of score vectors plotted against each other,
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Fig. 3. PCA score plot of the PC1 vs. PC2 (a), PC1 vs. PC3 (b) for the recognition of
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tions by PC2 and PC3 (Fig. 4b), could be attained. PC1 vs. PC2 score
ll phenomena for the 1st dataset. FB1 – filamentous bulking; FB2 – filamentous
ulking 2; PP – pinpoint flocs; ZB – zoogleal bulking; NC – normal conditions.

n which each sample appears as a data point and closely interre-
ated samples appear clustered together [27]. For clarity purposes,
nly the most significant pair of each of the first three PCs score
lot will be presented. Cluster zones for each condition were fur-
her determined for each significant PC pair and each condition was
valuated according to the percentage of samples correctly iden-
ified in the corresponding cluster. The determination of the value
f each sample point in the new PC1, PC2 and PC3 variables was
erformed, followed by a linear transformation with the PCA load-

ngs. Parameters averages, standard deviations (for normalization)
nd loadings are presented as supplementary material (Table S1),
llowing the determination of each sample in the new PC spaces.

Fig. 3 shows the first three PCs capturing 68% of the total variance
sing the first dataset. PC1 vs. PC2 score plot (Fig. 3a) evidenced
wo filamentous bulking clusters, clearly distinct with respect to
he remaining studied conditions. A threshold of −1.40 on PC2 was
stablished to separate filamentous bulking conditions (below the
hreshold limit) from the other disturbances (above the threshold
imit). It was found that 97% (32 out of 33 samples) of the dataset
as properly identified in the filamentous bulking cluster. All the
emaining conditions were able to be separated in three different
lusters, although only barely, by the use of the PC1 and PC3 score
Fig. 4. PCA score plot of the PC1 vs. PC2 (a), PC2 vs. PC3 (b) for the recognition of
all  phenomena for the 2nd dataset. FB1 – filamentous bulking; FB2 – filamentous
bulking 2; PP – pinpoint flocs; ZB – zoogleal bulking; NC – normal conditions.

plots (Fig. 3b). Three cluster zones were defined separating zoogleal
bulking, normal conditions and pinpoint flocs. The cluster zone rep-
resenting zoogleal bulking was  defined by PC3 > 0.92 × PC1 + 3.30,
and a total of 25 out of 29 samples (86.2%) was correctly identi-
fied as zoogleal bulking. The cluster zone representing pinpoint
flocs formation was  defined by PC3 < 0.69 × PC1 − 0.90, and a total
of 39 out of 44 samples (88.6%) was correctly identified as pinpoint
flocs. Finally, the cluster zone representing normal conditions was
defined as 0.92 × PC1 + 3.30 > PC3 > 0.69 × PC1 − 0.90, with a total
of 26 out of 31 samples (83.9%) being correctly identified as nor-
mal  conditions. An estimated time of 1.5 h was required for sample
preparation, image acquisition, and image processing regarding the
first dataset.

The use of the second dataset representing 56.7% of the total
variance for the first three PCs, is shown in Fig. 4. Although the total
variance, explained by these PCs was  smaller than the obtained by
the use the first dataset, this can be explained by the larger original
dataset. However, only a slight improvement regarding the indi-
vidualization of the two filamentous bulking clusters by PC1 vs.
PC2 score plot (Fig. 4a), as well as between the remaining condi-
plot allowed to separate the filamentous bulking conditions from
the remaining by defining a PC2 > −2.50 × PC1 + 5.00 filamentous
bulking zone. A total of 21 out of 22 samples (95.5%) was correctly
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Table 3
Variables presenting larger principal component coefficients in the 1st dataset PCA.

Variables PC1 Variables PC2 Variables PC3

Sol int 0.238 % Area int 0.223 Deq int 0.301
Round int 0.236 % Area s 0.223 L int 0.298
LrgC int 0.233 W s 0.208 W int 0.291
Ext  int 0.229 % Nb s 0.204 % Area lg 0.268
Comp int 0.227 Nb/Vol s 0.203 P int 0.260
Rob  int 0.222 % Nb int 0.202 L s 0.250
FF  int 0.220 FF s 0.191 P s 0.233
FF lg 0.200 Deq s 0.191 % Nb lg 0.216
RelArea lg 0.196 Comp s 0.190 Nb/Vol lg 0.205
Ecc int 0.194 Round s 0.185 Deq s 0.193
Per  lg 0.191 Rob lg 0.184 Conv s 0.183

aggregates morphology and size characterization, respectively.
Analyzing Table 4, it was  found that PC1, the main component

responsible for the separation of the filamentous bulking clusters
from the remaining, was strongly affected by the morphology of

Table 4
Variables presenting larger principal component coefficients in the 2nd dataset PCA.

Variables PC1 Variables PC2 Variables PC3

Comp s 0.200 Ext int 0.225 Deq int 0.276
%  Area s 0.198 Rob int 0.223 W int 0.258
%  Area int 0.198 FF int 0.215 L int 0.255
Round s 0.198 Sol int 0.215 % Area lg 0.252
TL/Vol 0.197 LrgC int 0.215 P int 0.211
TL/TSS 0.196 FF lg 0.204 % Nb lg 0.207
FF  s 0.195 Conv lg 0.203 L s 0.207
W  s 0.186 P lg 0.203 LD AA R 0.199
Ecc  s 0.181 Round int 0.197 TA/Vol 0.195
ig. 5. PCA score plot of the PC1 vs. PC2 (a), PC2 vs. PC3 (b) for the recognition of
ll phenomena for the 3rd dataset. FB1 – filamentous bulking; FB2 – filamentous
ulking 2; PP – pinpoint flocs; ZB – zoogleal bulking; NC – normal conditions.

dentified as filamentous bulking. Regarding the PC2 vs. PC3 score
lot three cluster zones were defined separating zoogleal bulking,
ormal conditions and pinpoint flocs. The cluster zone represent-

ng zoogleal bulking was defined by PC3 < 0.93 × PC2 − 2.80, and
 total of 18 out of 19 samples (94.7%) was correctly identified
s zoogleal bulking. The cluster zone representing pinpoint flocs
ormation was defined by PC3 > 0.36 × PC2 + 1.00, and all of the 29
amples (100%) was correctly identified as pinpoint flocs. Finally,
he cluster zone representing normal conditions was defined as
.36 × PC2 + 1.00 > PC3 > 0.93 × PC2 − 2.80, with a total of 23 out of
4 samples (95.8%) being correctly identified as normal conditions.
n estimated time of 2.5 h was required for sample prepara-

ion, staining procedure, image acquisition and image processing
egarding the second dataset.

In Fig. 5, corresponding to the third dataset, although the first
hree PCs (PC1, PC2 and PC3) only explained 55% of the total vari-
nce, again due to a larger original dataset, they allowed to further
istinguish all studied conditions from each other. In fact, the
resented PC1, PC2 and PC3 score plots reflected the five main
lusters (including the two different filamentous bulking clusters)
ound in the data set. Once again, PC1 and PC2 allowed sepa-
ating the filamentous bulking conditions from the rest, whereas

he remaining conditions were able to be separated in differ-
nt clusters by the use of the PC2 vs. PC3 score plot (Fig. 5b).

 threshold of −2.50 on PC1 was established to separate fila-
entous bulking conditions (below the threshold limit) from the
s – small aggregates (Deq < 25 �m);  int – intermediate aggregates
(25 �m < Deq < 250 �m);  lg – large aggregates (Deq > 250 �m).

other disturbances (above the threshold limit). It was found that
95.8% (23 out of 24 samples) of the dataset was properly iden-
tified in the filamentous bulking cluster. PC1 vs. PC2 score plot
allowed to separate the filamentous bulking conditions from the
remaining by defining a PC2 > −2.50 × PC1 + 5.00 filamentous bulk-
ing zone. A total of 21 out of 22 samples (95.5%) was correctly
identified as filamentous bulking. Regarding the PC2 vs. PC3 score
plot three cluster zones were defined separating zoogleal bulking,
normal conditions and pinpoint flocs. The cluster zone represent-
ing zoogleal bulking was  defined by PC3 < 0.25 × PC2 + 0.50, and a
total of 18 out of 20 samples (90.0%) was correctly identified as
zoogleal bulking. The cluster zone representing pinpoint flocs for-
mation was defined by PC3 > 0.67 × PC2 − 3.80, and all of the 29
samples (100%) was correctly identified as pinpoint flocs. Finally,
the cluster zone representing normal conditions was  defined
0.67 × PC2 − 3.80 > PC3 > 0.25 × PC2 + 0.50, with a total of 22 out of
24 samples (91.7%) being correctly identified as normal conditions.
An estimated time of 12 h was  required for sample prepara-
tion, staining, image acquisition, image processing and physical
and chemical parameters determination, with TSS as the limiting
factor.

Tables 3–5 show the variables presenting the larger principal
component coefficients of each PC derived by PCA, regarding the
first, second and third datasets, respectively.

The use of the first dataset (Table 3) revealed that PC2, the
main component responsible for the separation of the filamen-
tous bulking clusters from the remaining, was strongly influenced
by the aggregated biomass size distribution and small aggregates
characterization. PC1 and PC3, responsible for the separation of
the remaining clusters, were strongly affected by the intermediate
LD AF G 0.176 RelArea lg 0.197 Nb/Vol lg 0.194
Ext  s 0.176 Comp int 0.186 Per s 0.190

s – small aggregates (Deq < 25 �m);  int – intermediate aggregates
(25 �m < Deq < 250 �m);  lg – large aggregates (Deq > 250 �m).
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Table 5
Variables presenting larger principal component coefficients in the 3rd dataset PCA.

Variables PC1 Variables PC2 Variables PC3

TL/Vol 0.200 Rob int 0.210 Deq int 0.247
TL/TSS 0.199 Ext int 0.210 W int 0.228
SVI 0.188 Conv lg 0.208 LD AF R 0.228
Comp s 0.185 P lg 0.203 L int 0.228
Round s 0.184 FF lg 0.202 % Area lg 0.226
LD  AF G 0.177 FF int 0.199 TA/Vol 0.226
FF  s 0.176 Sol lg 0.192 N–NO3

− r 0.203
%  Area int 0.175 Conv int 0.192 % Nb lg 0.189
% Area s 0.174 Rob lg 0.190 G INA G 0.184
Ecc s 0.173 LrgC int 0.190 P int 0.184
ln(TL/TA) 0.173 RelArea lg 0.188 Nb/Vol lg 0.181
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 – small aggregates (Deq < 25 �m);  int – intermediate aggregates
25  �m < Deq < 250 �m);  lg – large aggregates (Deq > 250 �m);  r – measurement
nside the reactor.

he small aggregates, by the aggregated biomass size distribution,
nd by the filamentous bacteria contents. PC2 and PC3, respon-
ible for the separation of the remaining clusters, were strongly
nfluenced by the morphology of intermediate aggregates, and by
heir size characterization and aggregated biomass size distribu-
ion, respectively. No significant individual contribution from the
hysiological parameters was noticed in the first three principal
omponents, apart from a small contribution of the viability
f aggregated and filamentous bacteria. However, an overall
mprovement on the separation of the conditions clusters was
bserved.

Considering the third dataset, Table 5 shows the variables pre-
enting the larger principal component coefficients of each PC
erived by PCA. It was found that PC1 was strongly affected by
he filamentous bacteria contents and sludge settling ability (SVI),
ontributing for a clear distinction of the filamentous bulking
henomena. PC2 was strongly influenced by the morphology of

arge and intermediate aggregates, and PC3 by the intermediate
ggregates size characterization. PC2, combined with PC3, was
esponsible for the distinction of the zoogleal bulking conditions
rom the normal operating conditions, reflecting the importance
f the intermediate and large aggregates morphology and size
haracterization for this purpose. PC3 was responsible mainly for
he distinction of the pinpoint flocs conditions from the remain-
ng conditions, emphasizing the importance of the intermediate
ggregates size characterization for this purpose. Again, no sig-
ificant individual contribution from the operational parameters
as noticed in the first three principal components, apart from

he sludge volume index and the nitrate concentration on the
eactor. Furthermore, no significant improvement on the separa-
ion of the conditions clusters, regarding the second dataset, was
bserved.

Looking back at the obtained results, the performed PCA allowed
dentifying the different studied conditions. It was  also found that
he introduction of physiological parameters (regarding cell via-
ility and Gram status) to the morphological parameters led to an

mprovement on the identification of the studied conditions by PCA,
hereas the operational parameters seemed to contribute less to

his purpose.

. Conclusions

This work evaluated the ability of image analysis informa-
ion to monitor an activated sludge system. The performed PCA
llowed the identification of filamentous bulking, pinpoint flocs,

oogleal bulking and normal conditions from the use of mor-
hological, physiological and operational datasets. Furthermore,
his study demonstrated the usefulness of this methodology as

 fast (between 1.5 and 2.5 h), simple (particularly bright field

[

[

ica Acta 705 (2011) 235– 242 241

analysis) and effective (recognition percentages above 84%)
method for detecting deviating conditions in activated sludge,
from the moment they start to occur. Therefore this methodology
can be considered quite promising in full activated sludge wastew-
ater treatment systems monitoring to evaluate the activated
sludge status, and act accordingly in order to correct deviating
conditions in real time.

Acknowledgements

The authors acknowledge the financial support to D.P. Mesquita
through the grant SFRH/BD/32329/2006 and the project PTDC/EBB-
EBI/103147/2008 provided by Fundaç ão para a Ciência e a
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