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Abstract. We investigate the initial value problem (IVP) associated to the equation

ut + ∂3
xu+ g(ωt)∂x(u5) = 0,

where g is a periodic function. We prove that, for given initial data φ ∈ H1(R), as

|ω| → ∞, the solution uω converges to the solution U of the initial value problem

associated to

Ut + ∂3
xU +m(g)∂x(U5) = 0,

with the same initial data, wherem(g) is the average of the periodic function g. Moreover,

if the solution U is global and satisfies ‖U‖L5
xL10

t
< ∞, then we prove that the solution

uω is also global provided |ω| is sufficiently large.

1. Introduction

Let us consider the initial value problem (IVP)ut + ∂3
xu+ g(ωt)∂x(u

5) = 0,

u(x, t0) = φ(x),
(1.1)

where x, t, t0, ω ∈ R and u = u(x, t), is a real valued function and g ∈ C(R,R) is a

periodic function with period L > 0. To simplify the analysis, we translate the initial

time t0 to 0 and consider the following IVPut + ∂3
xu+ g(ω(t+ t0))∂x(u

5) = 0,

u(x, 0) = φ(x).
(1.2)
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Before analyzing the IVP (1.1) with time oscillating nonlinearity, we discuss some

aspects of the critical Korteweg-de Vries (KdV) equation,ut + ∂3
xu+ ∂x(u

5) = 0,

u(x, 0) = φ(x), x, t ∈ R.
(1.3)

In the literature, the equation (1.3) is known as the critical KdV equation because,

if one considers the nonlinearity ∂x(u
p), p ∈ Z, then for p < 5 there exists the global

solution for all data in H1(R), while for p ≥ 5 the global solutions exists only for small

data (i.e., data with small H1(R)-norm). Also, the solitary wave solutions are orbitally

stable for p < 5 and unstable for p > 5, see [3].

Well-posedness issues for the IVP (1.3) have been extensively studied in the literature,

see for example [11] and [15], [16] and references therein. A detailed account of the recent

well-posedness results can be found in Kenig, Ponce and Vega [15], where they proved that,

there exists δ > 0 such that the IVP (1.3) is globally well-posed for any data φ ∈ Hs(R),

s ≥ 0 satisfying ‖φ‖L2
x
< δ. They were also able to relax the smallness condition on the

given data to obtain local well-posedness result, but paying the price that the existence

time now depends on the shape of the data φ and not just in its size. These are the best

well-posedness results in the sense that s = 0 is the critical exponent given by the scaling

argument. However, for data in Hs(R), s > 0, they were able to remove the size and

shape restriction and got local-well posedness for arbitrary data with life span T of the

solution depending on ‖φ‖Hs(R).

We recall that, the L2
x(R) norm and energy are conserved by the flow of (1.3). More

precisely, ∫
R
|u(x, t)|2dx =

∫
R
|φ(x)|2dx, (1.4)

and

E(u(·, t)) :=
1

2

∫
R
(ux(x, t))

2dx− 1

3
u6(x, t)dx = E(φ), (1.5)

are conserved quantities.

These conserved quantities yield an a priori estimate if the ‖φ‖L2
x
-norm is small enough

which allows to iterate the local solution to get the global one for data inH1(R). Note that,
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for u ∈ H1(R), Weinstein [26] proved the following Gagliardo-Nirenberg type inequality

1

3
‖u‖6L2

x
≤
(
‖u‖L2

x

‖Q‖L2
x

)4

‖ux‖2L2
x
, (1.6)

where Q(x) = {3c sech2(2
√
c x)} 1

4 , c > 0, is the solitary wave solution of (1.3). So, in

view of (1.6), the size restriction on the initial data needed to obtain global solutions for

(1.3) in H1(R) is ‖φ‖L2(R) < ‖Q‖L2(R). For recent global results for low regularity data,

we refer the works of [7] and [8].

Although there are many works that deal with the well-posedness issues for the IVP

(1.3) with low regularity initial data, in many practical situation, the behavior of the

H1(R) solution holds much importance, for eg. [22] in the blow-up context. Kenig, Ponce

and Vega in [16] gave a detailed account for the concentration of blow-up solutions. Martel

and Merle in [20] proved that there exists φ ∈ H1(R), satisfying ‖φ‖L2(R) > ‖Q‖L2(R), such

that the corresponding solution to the IVP (1.3) blows-up in finite time. For further results

on the existence and dynamics of the blow-up solutions and the stability of the blow-up

profile, we refer the readers to the works of Martel and Merle in [20, 21, 22].

Our motivation for considering the critical KdV equation with time periodic nonlin-

earity arises from the paper of Abdullaev et al [1] and Konotop and Pacciani [19] where

the authors investigate the effect of a time oscillating term in factor of the nonlinearity

in Bose-Einstein condensates. In [1] the authors investigate solutions which are global for

large frequencies, while the authors in [19] study solutions which blow-up in finite time.

Their results are numerical. Roughly speaking, the physicists claim that the periodic time

dependent term in factor of the nonlinearity would disturb the blow-up solution, either

accelerating it or delaying it. Recently, Cazenave and Scialom [5] considered the nonlinear

Schrödinger (NLS) equation and got an analytical insight to understand the problem by

showing that the solution really depends on the frequency of the oscillating term. They

proved that the solution u to the IVP associated to the NLS equation

iut + ∆u+ θ(ωt)|u|αu = 0, x ∈ RN , (1.7)

where 0 < α < 4
(N−2)+

is an H1-subcritical exponent and θ is a periodic function, with

initial data φ ∈ H1(RN) converges as |ω| → ∞ to the solution U of the limiting equation

iUt + ∆U + I(θ)|U |αU = 0, x ∈ RN , (1.8)
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with the same initial data, where I(θ) is the average of θ. Moreover, they also showed

that, if the limiting solution U is global and has a certain decay property as t→∞, then

u is also global if |ω| is sufficiently large.

In this work, we are interested in obtaining similar results for the critical KdV equation.

The existence of blow-up solution in finite time to the IVP (1.3) for some H1(R)-data

due to Martel and Merle [20], and the discussion made above strengthen our problem of

studying (1.1) with time oscillating nonlinearity.

Our interest here is to investigate the behavior in H1(R) of the solution of the IVP

(1.1) as |ω| → ∞. The natural limiting candidate to think of is the solution to the the

following IVP

Ut + ∂3
xU +m(g)∂x(U

5) = 0,

U(x, 0) = φ(x), x, t ∈ R,
(1.9)

where m(g) := 1
L

∫ L
0
g(t)dt is the mean value of g and is a real number. To do so, we

need an appropriate well-posedness result for the critical KdV equation in H1(R). Kenig,

Ponce and Vega in [15] have proved a local well-posedness result for arbitrary data in

Hs(R), s > 0, with life span of solution depending only on the Hs(R)-norm of the initial

data. To this end, they used two additional norms ‖Ds/3
t u‖L5

xL
10
T

and ‖Ds/3
t ∂xu‖L∞x L2

T

which involve time derivatives of the solution. The presence of these norms create extra

difficulty to handle the time-oscillating nonlinearity. In our case, it is very important

to have an explicit expression that gives the local existence time of the solution. In the

literature, we did not find an explicitly written proof of the H1(R) well-posedness that

fulfills our requirement. Therefore, we will provide a new proof for the well-posedness

of the IVP (1.3) in H1(R). Our proof allows us to extend the result to (1.2) and as a

consequence to have an estimate of the local existence time.

Actually, we weaken the regularity requirement on the initial data to obtain local well-

posedness in Hs(R) without the norms that involve time derivatives. At this end, for

s ∈ (3/8, 1), we use new maximal function type estimates and Leibniz rule for fractional

derivatives and prove that the IVP (1.3) (consequently IVPs (1.2) and (1.9)) is locally

well-posed in Hs(R).
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The only works other than [5] we did find in the literature that address the well-

posedness issue for the equations of the KdV-family and NLS with explicitly time de-

pendent nonlinearity were by Nunes [23, 24] and Damergi and Goubet [6]. The authors

in [6] deal with the NLS equation in R2 with nonlinearity cos2(Ωt)|u|p−1u in the critical

and supercritical case. The author in [23] considered the transitional KdV with non-

linearity f(t)u∂xu, f a continuous function such that f ′ ∈ L1

loc(R) and proved global

well-posedness in Hs(R), s ≥ 1. The transitional KdV arises in the study of long solitary

waves propagating on the thermocline separating two layers of fluids of almost equal den-

sities in which the effect of the change in the depth of the bottom layer, which the wave

feels as it approaches the shore, results in the coefficient of the nonlinear term, for details

see [18]. In [24], transitional Benjamin-Ono equation with time dependent coefficient in

the nonlinearity has been considered and the main result is the global existence of the

solution for data in Hs(R), s ≥ 3
2
.

Before stating the main results of this work, we define notations that will be used

throughout this work.

Notation: We use f̂ to denote the Fourier transform of f and is defined as,

f̂(ξ) =
1

(2π)1/2

∫
R
e−ixξf(x) dx.

The L2-based Sobolev space of order s will be denoted by Hs with norm

‖f‖Hs(R) =
(∫

R
(1 + ξ2)s|f̂(ξ)|2 dξ

)1/2

.

The Riesz potential of order −s is denoted by Ds
x = (−∂2

x)
s/2. For f : R× [0, T ]→ R we

define the mixed LpxL
q
T -norm by

‖f‖LpxLqT =
(∫

R

(∫ T

0

|f(x, t)|q dt
)p/q

dx
)1/p

,

with usual modifications when p = ∞. We replace T by t if [0, T ] is the whole real line

R. We use the notation f ∈ Hα+ if f ∈ Hα+ε for ε > 0.

We define four more spaces Zs
T , XT , Y s

T and YT with norms

‖f‖ZsT :=‖f‖L∞T Hs + ‖∂xf‖L∞x L2
T

+ ‖Ds
x∂xf‖L∞x L2

T

+ ‖∂xf‖L40/3
x L

20/7
T

+ ‖Ds
xf‖L20/3

T L20
x

+ ‖f‖L8
xL
∞
T
,

(1.10)
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‖f‖XT :=‖f‖L∞T H1 + ‖∂xf‖L∞x L2
T

+ ‖∂2
xf‖L∞x L2

T

+ ‖f‖L5
xL

10
T

+ ‖∂xf‖L5
xL

10
T

+ ‖∂xf‖L20
x L

5/2
T

+ ‖f‖L4
xL
∞
T
,

(1.11)

‖f‖Y sT := ‖Ds
xf‖L2

xL
2
T

+ ‖f‖L2
xL

2
T
, (1.12)

and

‖f‖YT := ‖∂xf‖L2
xL

2
T

+ ‖f‖L2
xL

2
T
, (1.13)

respectively. We replace XT by Xt or X(T,∞), if the time integral is taken in the interval

(0,∞) or (T,∞) respectively, and similarly for Zs
T , Y s

T and YT . We would like to notice

that the space YT is obtained from Y s
T by setting s = 1, however it is not the case for Zs

T

and XT , and they are independent.

We use the letter C to denote various constants whose exact values are immaterial and

which may vary from one line to the next.

First, we state the local well-posedness result for more general IVPut + uxxx + h(t)∂xu
5 = 0, x, t ∈ R,

u(x, 0) = φ(x),
(1.14)

where h ∈ L∞ is a given function of t.

Theorem 1.1. Suppose φ ∈ Hs(R), s ∈ (3/8, 1). Then there exist T = T (‖φ‖Hs(R), ‖h‖L∞t ) >

0 and a unique solution u to the IVP (1.14) satisfying

u ∈ C([0, T ];Hs(R)), (1.15)

‖∂xu‖L∞x L2
T

+ ‖Ds
x∂xu‖L∞x L2

T
<∞, (1.16)

‖∂xu‖L40/3
x L

20/7
T

+ ‖Ds
xu‖L20/3

T L20
x
<∞, (1.17)

‖u‖L8
xL
∞
T
<∞. (1.18)

Moreover, for any T ′ ∈ (0, T ), there exists a neighborhood V of φ in Hs(R) such that

the map φ̃ 7→ ũ from V into the class defined by (1.15) to (1.18) with T ′ in place of T is

Lipschitz.
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Using Duhamel’s principle, we prove Theorem 1.1 by considering the integral equation

associated to the IVP (1.14),

u(t) = S(t)φ−
∫ t

0

S(t− t′)h(t′)∂x(u
5)(t′) dt′, (1.19)

where S(t) is the unitary group generated by the operator ∂3
x that describes the solution to

the linear problem. Our interest is to solve (1.19) using the contraction mapping principle

in appropriate metric spaces.

As particular cases, we have the similar well-posedness results for the IVPs (1.2), (1.3)

and (1.9) in Hs(R), s ∈ (3/8, 1), as in Theorem 1.1.

As discussed above, we are interested in proving the convergence of the solution, as

|ω| → ∞, of the IVP (1.2) to that of the IVP (1.9) for given data in H1(R). For technical

reason (see proof of Lemma 3.2 below), we use the following local well-posedness results

in H1(R) whose proofs follow by using the space XT .

Theorem 1.2. Suppose φ ∈ H1(R). Then there exist T = T (‖φ‖H1(R), ‖h‖L∞t ) > 0 and a

unique solution u to the IVP (1.14) satisfying

u ∈ C([0, T ];H1(R)), (1.20)

‖∂xu‖L∞x L2
T

+ ‖∂2
xu‖L∞x L2

T
<∞, (1.21)

‖u‖L5
xL

10
T

+ ‖∂xu‖L5
xL

10
T

+ ‖∂xu‖L20
x L

5/2
T

<∞, (1.22)

‖u‖L4
xL
∞
T
<∞. (1.23)

Moreover, for any T ′ ∈ (0, T ), there exists a neighborhood V of φ in H1(R) such that

the map φ̃ 7→ ũ from V into the class defined by (1.20) to (1.23) with T ′ in place of T is

Lipschitz.

Remark 1.3. As a particular case, we have the similar well-posedness result for the IVP

(1.3) (h(t) = 1), for given data in H1(R). Since the average m(g) is a constant, the proof

of Theorem 1.2 can also be adapted line by line to obtain the similar well-posedness result

for the IVP (1.9). The only difference in this case is that, to complete the contraction

argument we need to choose T > 0 in such a way that C|m(g)|T 1/2‖φ‖4H1(R) <
1
2
. So the

existence time T depends on |m(g)| and ‖φ‖Hs(R). We also have the following bound

‖U‖XT ≤ C‖φ‖H1(R), ∀ t ∈ [0, T ]. (1.24)
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Theorem 1.4. Suppose φ ∈ H1(R). Then there exist T = T (‖φ‖H1(R), ‖g‖L∞t ) > 0 and a

unique solution uω,t0 ∈ C([0, T ];H1(R)) to the IVP (1.2) satisfying (1.21)–(1.23).

Moreover, for any T ′ ∈ (0, T ), there exists a neighborhood V of φ in H1(R) such that

the map φ̃ 7→ ũω,t0 from V into the class defined by (1.20) to (1.23) with T ′ in place of T

is Lipschitz.

Now, we state the main results of this work.

Theorem 1.5. Fix φ ∈ H1(R). For given ω, t0 ∈ R, let uω,t0 be the maximal solution

of the IVP (1.2) and U be the solution of the limiting IVP (1.9) defined on the maximal

time of existence [0, Smax). Then, for given any 0 < T < Smax, the solution uω,t0 exists on

[0, T ] for all t0 ∈ R and |ω| large. Moreover, ‖uω,t0 − U‖XT → 0, as |ω| → ∞, uniformly

in t0 ∈ R. In particular, the convergence holds in C([0, T ];H1(R)) for all T ∈ (0, Smax).

Theorem 1.6. Let φ ∈ H1(R) and uω,t0 be the maximal solution of the IVP (1.1). Suppose

U be the maximal solution of the IVP (1.9) defined on [0, Smax). If Smax =∞ and

‖U‖L5
xL

10
t
<∞, (1.25)

then it follows that uω,t0 is global for all t0 ∈ R if |w| is sufficiently large. Moreover,

‖uω,t0 − U‖Xt → 0, when |w| → ∞, (1.26)

uniformly in t0. In particular, convergence holds in L∞((0,∞);H1(R)).

Taking in account the result in [20], the Theorem 1.6 is very interesting in the sense that

when m(g) = 0 the solution U to the IVP (1.9) will be global for all initial H1-data and

the solution uω,t0 to the nonlinear problem (1.2) will be global too, for |ω| large enough.

Remark 1.7. It is natural to ask if similar results to the ones in Theorem 1.5 and

Theorem 1.6 hold for the Hs(R) solution obtained in Theorem 1.1. The convergence result

of Lemma 3.2 plays a central role in our analysis. For the norms involved in Theorem 1.1,

we could not get such convergence result. This is one of the reason that forced us to have

a different well-posedness results in H1(R), viz., Theorems 1.2 and 1.4. Note that, the

indices involved in the norms used in Theorems 1.2 and 1.4 are the admissible triples (see

Definition 2.6 below), however those in Theorem 1.1 are not. As far as we know, there are

no blow-up solutions in Hs(R), for s < 1 so we did not proceed to have convergence for
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this range of Sobolev regularity. In this sense, the local well-posedness result of Theorem

1.1 is of independent interest.

Before leaving this section, we discuss the example constructed in [5] in the context

of the NLS equation with time oscillating nonlinearity. The authors in [5] showed that

for small frequency |ω|, the solution uω,t0 blows-up in finite time or is global depending

on t0, while for the large frequency |ω|, the solution uω,t0 is global for all t0 ∈ R. The

same example can be utilized with small modification in the context of the critical KdV

equation. We present it here for the convenience of the readers.

Example 1.8. Let L > 1, 0 < ε < L−1
2

and consider a periodic function g defined by

m(g) = 0, and g(s) =

1, |s| ≤ ε,

0, 1 ≤ s ≤ 1 + ε,
(1.27)

with period L.

Fix φ ∈ H1(R) with ‖φ‖L2
x
> ‖Q‖L2

x
be such that the solution v of the IVPvt + vxxx + v4∂xv = 0,

v(x, 0) = φ(x),
(1.28)

blows-up in finite time, say T ∗. There exists such a solution v(x, t) of (1.28) with t ∈
[0, T ∗), see [20].

From Theorem 1.5, for this particular φ and the periodic function g, we have that the

solution uω,t0 to the IVP (1.2) converges, as |ω| → ∞, to the solution U of the linear KdV

equation with same initial data φ. So, in view of Theorem 1.6, uω,t0 is global as |ω| → ∞
for all t0 ∈ R.

Now we move to analyze the behavior of the solution for |ω| small. Note that g(ωs) = 1

when |ωs| ≤ ε. Therefore, if we consider |ω| < ε
T ∗

, then we see that the solution v to

the IVP (1.28) satisfies (1.2) for t0 = 0 on [0, T ∗). By uniqueness, uω,0 = v. Hence the

solution uω,0 of the IVP (1.2) blows-up in finite time, provided |ω| < ε
T ∗

.

Let ε = ε(A) be as in Corollary 3.4 with A = ‖g‖L∞t . From the linear estimate (2.7) we

have that S(·)φ ∈ L5
xL

10
t , so there exists T > 0 such that

‖S(·)[S(T )φ]‖L5
xL

10
t

= ‖S(·)φ‖L5
xL

10
(T,∞)

≤ ε. (1.29)
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For ω > 0, if we consider t0 = 1
ω

, we have that g(ω(s+ t0)) = 0 for all 1 ≤ ω(s+ t0) ≤
1+ε, i.e., for all 0 ≤ s ≤ ε

ω
. Therefore, if we let ω > 0 satisfying ω ≤ ε

T
(i.e., T ≤ ε

ω
), and

choose t0 = 1
ω

, then g(ω(s + t0)) = 0 for all 0 ≤ s ≤ T . So, with this choice, uω,t0 solves

the linear KdV equation if 0 ≤ t ≤ T . Therefore, for ω ≤ ε
T

, uω,t0 exists on [0, T ] and

is given by S(t)φ, in particular uω,t0(T ) = S(T )φ. From (1.29), ‖S(·)uω,t0(T )‖L5
xL

10
t
≤ ε.

Hence, from Corollary 3.4 we conclude that uω,t0 is global.

This paper is organized as follows. In Section 2 we record some preliminary estimates

associated to the linear problem and other relevant results. In Section 3 we give a proof of

the local well-posedness result for the critical KdV equation in Hs(R), s ∈ (3/8, 1), H1(R)

and some other results that will be used in the proof of the main Theorems. Finally, the

proof of the main results will be given in Section 4.

2. Preliminary estimates

In this section we give some linear estimates associated to the IVP (1.1). These esti-

mates are not new and can be found in the literature. Consequently, we just sketch the

idea of the proof and mention the references where they can be found.

Lemma 2.1. If u0 ∈ L2(R), then

‖∂xS(t)u0‖L∞x L2
t
≤ C‖u0‖L2

x
. (2.1)

If f ∈ L1
xL

2
t , then ∥∥∥∂x ∫ t

0

S(t− t′)f(·, t′)dt′
∥∥∥
L∞t L

2
x

≤ C‖f‖L1
xL

2
t
, (2.2)

and ∥∥∥∂2
x

∫ t

0

S(t− t′)f(·, t′)dt′
∥∥∥
L∞x L

2
t

≤ C‖f‖L1
xL

2
t
. (2.3)

Proof. For the proof of the homogeneous smoothing effect (2.1) and the double smoothing

effect (2.3), see Theorem 3.5 in [15] (see also Section 4 in [14]). The inequality (2.2) is

the dual version of (2.1). �

Now we give the maximal function estimate.

Lemma 2.2. If u0 ∈ Ḣ1/4(R), then

‖S(t)u0‖L4
xL
∞
T
≤ C‖D1/4

x u0‖L2(R). (2.4)
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Also, we have

‖S(t)u0‖L∞x L∞T ≤ C‖u0‖H 1
2+(R)

, (2.5)

and for, 0 ≤ θ ≤ 1

‖S(t)u0‖
L

4
θ
x L
∞
T

≤ C‖u0‖
H

2−θ
4 +(R)

. (2.6)

Proof. For the proof of the estimate (2.4) we refer to Theorem 3.7 in [15] (see also [13]

and [17]). The estimate (2.5) follows from Sobolev embedding. The interpolation between

(2.4) and (2.5) yields (2.6). �

In what follows, we state some more estimates that will be used in our analysis.

Lemma 2.3. If u0 ∈ L2(R), then

‖S(t)u0‖L5
xL

10
t
≤ C‖u0‖L2

x
. (2.7)

Also we have

‖∂xS(t)u0‖L20
x L

5/2
t
≤ C‖D1/4

x u0‖L2
x
, (2.8)

and

‖∂xS(t)u0‖L40/3
x L

20/7
t
≤ C‖D3/8

x u0‖L2
x
. (2.9)

Proof. The proof of the estimates (2.7) and (2.8) can be found in Corollary 3.8 and

Proposition 3.17 in [15] respectively. To prove (2.9) we consider the analytic family of

operators

Tzu0 = D−z/4x D1−z
x S(t)u0, with z ∈ C, 0 ≤ <z ≤ 1.

Now the estimate (2.9) follows by choosing z = 3/40 in the Stein’s theorem of analytic

interpolation (see [25]) between the smoothing estimate (2.1) and the maximal function

estimate (2.4). �

Lemma 2.4. Let u0 ∈ L2
x, then for any (θ, α) ∈ [0, 1]× [0, 1

2
], we have

‖Dθα/2
x S(t)u0‖LqTLpx ≤ C‖u0‖L2

x
, (2.10)

where (q, p) = ( 6
θ(α+1)

, 2
1−θ ).

Proof. See Lemma 2.4 in [12]. �

We state next the Leibniz’s rule for fractional derivatives whose proof is also given in

[15], Theorem A.8.
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Lemma 2.5. Let α ∈ (0, 1), α1, α2 ∈ [0, α], α1 + α2 = α. Let p, p1, p2, q, q1, q2 ∈ (1,∞)

be such that 1
p

= 1
p1

+ 1
p2

, 1
q

= 1
q1

+ 1
q2

. Then

‖Dα
x (fg)− fDα

xg − gDα
xf‖LpxLqT ≤ C‖Dα1

x f‖Lp1x L
q1
T
‖Dα2

x g‖Lp2x L
q2
T
. (2.11)

Moreover, for α1 = 0 the value q1 =∞ is allowed.

Definition 2.6. Let 1 ≤ p, q ≤ ∞, −1
4
≤ α ≤ 1. We say that a triple (p, q, α) is an

admissible triple if

1

p
+

1

2q
=

1

4
and α =

2

q
− 1

p
. (2.12)

Proposition 2.7. For any admissible triples (pj, qj, αj), j = 1, 2, the following estimate

holds ∥∥∥Dα1
x

∫ t

0

S(t− t′)f(·, t′)dt′
∥∥∥
L
p1
x L

q1
t

≤ C‖D−α2
x f‖

L
p′2
x L

q′2
t

, (2.13)

where p′2, q
′
2 are the conjugate exponents of p2, q2.

Proof. For the proof we refer to Proposition 2.3 in [16]. �

The following results will be used to complete the contraction mapping argument.

Lemma 2.8. Let Zs
T and Y s

T be the spaces defined earlier and S be the unitary group

associated to the operator ∂3
x, then for s > 3/8, we have

‖S(t)u0‖ZsT ≤ C0‖u0‖Hs(R), (2.14)

∥∥∥∫ t

0

S(t− t′)f(t′)dt′
∥∥∥
ZsT

≤ CT 1/2‖f‖Y sT . (2.15)

Proof. The estimate (2.14) follows from the linear estimates in Lemmas 2.1, 2.2, 2.3 and

Lemma 2.4 with α = 0 and θ = 9/10.
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Now, we prove the estimate (2.15). Since S(t) is unitary group in L2
x, using Hölder’s

inequality, we have

∥∥∥∫ t

0

S(t− t′)f(t′)dt′
∥∥∥
Hs
≤
∥∥∥Ds

x

∫ t

0

S(t− t′)f(t′)dt′
∥∥∥
L2
x

+
∥∥∥∫ t

0

S(t− t′)f(t′)dt′
∥∥∥
L2
x

=
∥∥∥∫ t

0

S(−t′)Ds
xf(t′)dt′

∥∥∥
L2
x

+
∥∥∥∫ t

0

S(−t′)f(t′)dt′
∥∥∥
L2
x

≤
∫ T

0

‖S(−t′)Ds
xf(t′)‖L2

x
dt′ +

∫ T

0

‖S(−t′)f(t′)‖L2
x
dt′

≤ CT 1/2
[
‖Ds

xf‖L2
xL

2
T

+ ‖f‖L2
xL

2
T

]
.

(2.16)

Using the estimate (2.1) and the fact that S(t) is unitary group in L2
x and Hölder’s

inequality, one can obtain

∥∥∥∂x ∫ t

0

S(t− t′)f(t′)dt′
∥∥∥
L∞x L

2
T

≤
∫ T

0

‖∂xS(t)S(−t′)f(t′)‖L∞x L2
T
dt′

≤ C

∫ T

0

‖S(−t′)f(t′)‖L2
x
dt′

≤ CT 1/2‖f‖L2
xL

2
T
.

(2.17)

Similarly, ∥∥∥Ds
x∂x

∫ t

0

S(t− t′)f(t′)dt′
∥∥∥
L∞x L

2
T

≤ CT 1/2‖Ds
xf‖L2

xL
2
T
. (2.18)

As in (2.16) and (2.17) the use of the estimate (2.9), yields for s > 3/8 that

∥∥∥∂x ∫ t

0

S(t− t′)f(t′)dt′
∥∥∥
L

40/3
x L

20/7
T

≤ C

∫ T

0

‖D3/8
x S(−t′)f(t′)‖L2

x
dt′

≤ C

∫ T

0

‖D3/8
x f(t′)‖L2

x
dt′ ≤ C

∫ T

0

‖f(t′)‖Hs(R)dt
′

≤ CT 1/2
[
‖Ds

xf‖L2
xL

2
T

+ ‖f‖L2
xL

2
T

]
.

(2.19)
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Now, we use the estimate (2.10) from Lemma 2.4 with α = 0 and θ = 9/10 and Hölder’s

inequality, to obtain∥∥∥Ds
x

∫ t

0

S(t− t′)f(t′)dt′
∥∥∥
L

20/3
T L20

x

≤ C

∫ T

0

‖S(−t′)Ds
xf(t′)‖L2

x
dt′

≤ CT 1/2‖Ds
xf‖L2

xL
2
T
.

(2.20)

Finally, using the maximal function estimate (2.6) and the argument as in (2.19) we

obtain, for s > 3/8∥∥∥∫ t

0

S(t− t′)f(t′)dt′
∥∥∥
L8
xL
∞
T

≤ C

∫ T

0

‖S(−t′)f(t′)‖
H

3
8+(R)

dt′

≤ CT 1/2
[
‖Ds

xf‖L2
xL

2
T

+ ‖f‖L2
xL

2
T

]
.

(2.21)

Combining all these estimates we conclude the proof of the lemma. �

Note that, it is these are the estimates (2.19) and (2.21) that give restriction on s in

the local well-posedness result in Theorem 1.1.

Lemma 2.9. The following estimates hold,

‖∂x(u5)‖Y sT ≤ C‖u‖5ZsT . (2.22)

‖∂x(u5 − v5)‖Y sT ≤ F (‖u‖ZsT , ‖v‖ZsT )‖u− v‖ZsT , (2.23)

where F : R2 → R is a locally bounded function.

Proof. Using Hölder’s inequality, we get

‖∂x(u5)‖L2
xL

2
T
≤ C‖u4‖L2

xL
∞
T
‖∂xu‖L∞x L2

T
≤ C‖u‖4L8

xL
∞
T
‖∂xu‖L∞x L2

T
. (2.24)

Similarly, using Leibniz rule for fractional derivatives (2.11) twice, Hölder’s inequality

and the fact that 20 > 20/3, one obtains

‖Ds
x∂x(u

5)‖L2
xL

2
T
≤ ‖Ds

x(u
4∂xu)− u4Ds

x∂xu− ∂xuDs
x(u

4)‖L2
xL

2
T

+ ‖u4Ds
x∂xu‖L2

xL
2
T

+ ‖∂xuDs
x(u

4)‖L2
xL

2
T

≤ C
[
‖∂xu‖L40/3

x L
20/7
T
‖Ds

x(u
4)‖

L
40/17
x L

20/3
T

+‖u4‖L2
xL
∞
T
‖Ds

x∂xu‖L∞x L2
T

]
≤ C

[
‖∂xu‖L40/3

x L
20/7
T
‖u3‖

L
8/3
x L∞T

‖Ds
xu‖L20

x L
20/3
T

+‖u‖4L8
xL
∞
T
‖Ds

x∂xu‖L∞x L2
T

]
≤ C

[
‖∂xu‖L40/3

x L
20/7
T
‖u‖3L8

xL
∞
T
‖Ds

xu‖L20/3
T L20

x
+‖u‖4L8

xL
∞
T
‖Ds

x∂xu‖L∞x L2
T

]
.

(2.25)
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In view of definitions of Zs
T -norm and Y s

T -norm, the estimates (2.24) and (2.25) yield

the required result (2.22).

To prove (2.23), observe that

|∂x(u5 − v5)| ≤ C
[
(|u|4 + |v|4)|∂x(u− v)|+ (|∂xu|+ |∂xv|)(|u|3 + |v|3)||u− v|

]
.

Now, with the same argument as in (2.24) and (2.25) we get the desired estimate (2.23).

�

With the similar argument as in Lemmas 2.8 and 2.9, we can obtain the corresponding

estimates for the spaces XT and YT . We state these results in the following lemma.

Lemma 2.10. Let XT and YT be the spaces defined earlier and S be the unitary group

associated to the operator ∂3
x, then we have

‖S(t)u0‖XT ≤ C0‖u0‖H1(R), (2.26)

∥∥∥∫ t

0

S(t− t′)f(t′)dt′
∥∥∥
XT
≤ CT 1/2‖f‖YT . (2.27)

‖∂x(u5)‖YT ≤ C‖u‖5XT . (2.28)

‖∂x(u5 − v5)‖YT ≤ F (‖u‖XT , ‖v‖XT )‖u− v‖XT , (2.29)

where F : R2 → R is a locally bounded function.

Finally, before leaving this section, we record the following result from [5].

Lemma 2.11. Let T > 0, 1 ≤ p < q ≤ ∞ and A,B ≥ 0. If f ∈ Lq(0, T ) satisfies

‖f‖Lq
(0,t)
≤ A+B‖f‖Lp

(0,t)
, (2.30)

for all t ∈ (0, T ), then there exists a constant K = K(B, p, q, T ) such that

‖f‖Lq
(0,T )
≤ KA. (2.31)
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3. Proof of the well-posedness results

We start this section by proving the well-posedness results for the IVPs (1.14).

Proof of Theorem 1.1. For a > 0 and s ∈ (3/8, 1), consider a ball in Zs
T defined by

BT
a = {u ∈ C([0, T ] : Zs

T ) : ‖u‖ZsT < a}.

Our aim is to show that, there exist a > 0 and T > 0, such that the application Φ

defined by

Φ(u) := S(t)φ−
∫ t

0

S(t− t′)h(t′)∂x(u
5)(t′)dt′, (3.1)

maps BT
a into BT

a and is a contraction.

Using the estimates (2.14), (2.15) and (2.22), we obtain

‖Φ‖ZsT ≤ C0‖φ‖Hs(R) + CT 1/2‖h‖L∞t ‖∂x(u
5)‖Y sT

≤ C0‖φ‖Hs(R) + CT 1/2‖h‖L∞t ‖u‖
5
ZsT
.

(3.2)

Hence, for u ∈ BT
a ,

‖Φ‖ZsT ≤ C0‖φ‖Hs(R) + CT 1/2‖h‖L∞t a
5. (3.3)

Now, choose a = 2C0‖φ‖Hs(R) and T such that CT 1/2‖h‖L∞t a
4 < 1/2. With these

choices we get, from (3.3) that,

‖Φ‖ZsT ≤
a

2
+
a

2
.

Therefore, Φ maps BT
a into BT

a .

With the similar argument, using (2.23) one can prove that Φ is a contraction. The

rest of the proof follows a standard argument.

From the choice of a and T it is clear that the local existence time is given by

T ≤ C‖φ‖−8
Hs(R)‖h‖

−2
L∞t
,

and the solution satisfies the following bound,

‖u‖ZsT ≤ C‖φ‖Hs(R).

�

Now we move to provide an alternative proofs for the local well-posedness results in

H1(R) that we will use to prove the main results of this work.
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Proof of Theorem 1.2. We use the estimates (2.26), (2.27) and (2.28) from Lemma 2.10

to prove that the application Φ defined in (3.1) is a contraction in a ball

BT
a = {u ∈ C([0, T ] : XT (R)) : ‖u‖XT < a}.

for some a > 0. As in the proof of Theorem 1.1, we can do it by choosing a = 2C0‖φ‖H1(R)

and T > 0 such that CT 1/2‖h‖L∞t a
4 < 1/2. The rest of the proof follows a standard

argument. �

Proof of Theorem 1.4. As in the proof of Theorem 1.2, this theorem will also be proved

by considering the integral equation associated to the IVP (1.2),

u(t) = S(t)φ−
∫ t

0

S(t− t′)g(ω(t′ + t0))∂x(u
5)(t′) dt′, (3.4)

and using the contraction mapping principle.

First of all, notice that the periodic function g is bounded, say ‖g‖L∞t ≤ A, for some

positive constant A. Since the norms involved in the space YT permit us to take out

‖g‖L∞t -norm as a coefficient, the proof of this theorem follows exactly the same argument

as in the proof of Theorem 1.2. Moreover, as the initial data φ is the same, the choice

of the radius a of the ball is exactly the same. However, to complete the contraction

mapping argument, we must select T > 0 such that C‖g‖L∞t T
1/2a4 < 1

2
, which implies

that the existence T is given by

T = T (‖g‖L∞t , ‖φ‖H1(R)) =
C

‖g‖2L∞t ‖φ‖
8
H1(R)

. (3.5)

Furthermore, from the proof, one can obtain

‖u‖XT ≤ C‖φ‖H1(R). (3.6)

�

The following lemmas will be used in the proof of the main results.

Lemma 3.1. Let XT and YT be spaces as defined in (1.11) and (1.13). Let f ∈ YT , then

we have the following convergence∫ t

0

g(ω(t′ + t0))S(t− t′)f(t′)dt′ → m(g)

∫ t

0

S(t− t′)f(t′)dt′, (3.7)

whenever |ω| → ∞, in the XT -norm.
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Proof. Using the linear estimates and the fact that g is bounded, we have∥∥∥∫ t

0

g(ω(t′ + t0))S(t− t′)f(t′)dt′
∥∥∥
XT
≤ CT 1/2A‖f‖YT . (3.8)

So, by density argument, it is enough to prove (3.7) considering f ∈ C1
c (R; S(R)).

Define function ψ(t) := g(t)−m(g) and Ψ(t) :=
∫ t

0
ψ(t′)dt′, then

d

dt′
Ψ(ω(t′ + t0)) = ωψ(ω(t′ + t0)).

Integrating by parts, we obtain∫ t

0

ψ(ω(t′ + t0))S(t− t′)f(t′)dt′ =
1

ω
Ψ(ω(t+ t0))f(t)− 1

ω
Ψ(ωt0)S(t)f(0)

− 1

ω

∫ t

0

Ψ(ω(t′ + t0))S(t− t′)[ft(t′) + ∂3
xf(t′)]dt′.

(3.9)

Using the triangular inequality, linear estimates and Lemma 2.8 we get∥∥∥∫ t

0

ψ(ω(t′+ t0))S(t− t′)f(t′)dt′
∥∥∥
XT
≤ C

ω
‖Ψ‖L∞

[
‖f‖XT + ‖f(0)‖H1 +T 1/2‖ft + ∂3

xf‖YT
]
.

(3.10)

Finally, letting |ω| → ∞, we obtain the desired result. �

Lemma 3.2. Let the initial data φ ∈ H1(R). Let uω,t0 be the maximal solution of the

IVP (1.1). Suppose U be the maximal solution of the IVP (1.9) defined in [0, Smax). Let

0 < T < Smax and let uω,t0 exists in [0, T ] for |ω| large and that

lim sup
|ω|→∞

sup
t0∈R
‖uω,t0‖L∞T H1(R) <∞, (3.11)

and

lim sup
|ω|→∞

sup
t0∈R
‖uω,t0‖L4

xL
∞
T
<∞. (3.12)

Then, for all t ∈ [0, T ],

sup
t0∈R
‖uω,t0 − U‖XT → 0, as |ω| → ∞. (3.13)

In particular, uω,t0 → U as |ω| → ∞, in H1(R).
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Proof. Since uω,t0 and U have the same initial data φ, from Duhamel’s formula, we have

uω,t0 − U =

∫ t

0

g(ω(t′ + t0))S(t− t′)∂x(u5
ω,t0

)dt′ −m(g)

∫ t

0

S(t− t′)∂x(U5)dt′

=

∫ t

0

g(ω(t′ + t0))S(t− t′)∂x(u5
ω,t0
− U5)dt′

+

∫ t

0

[g(ω(t′ + t0))−m(g)]S(t− t′)∂x(U5)dt′

=: I1 + I2.

(3.14)

We note that

|u5 − v5| ≤ C(|u|4 + |v|4)|u− v| (3.15)

and

|∂x(u5 − v5)| ≤ C
[
(|u|4 + |v|4)|∂x(u− v)|+ (|∂xu|+ |∂xv|)(|u|3 + |v|3)||u− v|

]
. (3.16)

Let ‖g‖L∞T ≤ A. Use of (2.2), (3.15), Hölder’s inequality and the assumptions (3.11)

and (3.12), yield

‖I1‖L∞T L2
x
≤ C‖g‖L∞T ‖u

5
ω,t0
− U5‖L1

xL
2
T

≤ CA‖u4
ω,t0

(uω,t0 − U)‖L1
xL

2
T

+ ‖U4(uω,t0 − U)‖L1
xL

2
T

≤ CA‖u4
ω,t0
‖L2

xL
∞
T
‖uω,t0 − U‖L2

xL
2
T

+ ‖U4‖L2
xL
∞
T
‖uω,t0 − U‖L2

xL
2
T

≤ CA
[
‖u2

ω,t0
‖L∞x L∞T ‖u

2
ω,t0
‖L2

xL
∞
T

+ ‖U2‖L∞x L∞T ‖U
2‖L2

xL
∞
T

]
‖uω,t0 − U‖L2

TL
2
x

≤ CA
[
‖uω,t0‖2L∞T H1(R)‖uω,t0‖2L4

xL
∞
T

+ ‖U‖2L∞T H1(R)‖U‖2L4
xL
∞
T

]
‖uω,t0 − U‖L2

TL
2
x

≤ CA‖uω,t0 − U‖L2
TL

2
x
.

(3.17)

Again, using (2.2) and (3.16), one can obtain

‖∂xI1‖L∞T L2
x
≤ CA‖∂x(u5

ω,t0
− U5)‖L1

xL
2
T

≤ CA
[
‖(|uω,t0|4 + |U |4)∂x(uω,t0 − U)‖L1

xL
2
T

+ ‖(|∂xuω,t0|+ |∂xU |)(|uω,t0|3 + |U |3)(uω,t0 − U)‖L1
xL

2
T

]
=: CA[J1 + J2].

(3.18)
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With the same argument as in (3.17)

J1 ≤ C‖∂x(uω,t0 − U)‖L2
TL

2
x
. (3.19)

Now we move to estimate the first term, ‖u3
ω,t0

∂xuω,t0(uω,t0−U)‖L1
xL

2
T

in J2, the estimates

for the other terms are similar. We have,

‖u3
ω,t0

∂xuω,t0(uω,t0 − U)‖L1
xL

2
T
≤ C‖u2

ω,t0
‖L2

xL
∞
T
‖uω,t0∂xuω,t0(uω,t0 − U)‖L2

xL
2
T

≤ C‖uω,t0‖2L4
xL
∞
T
‖uω,t0∂xuω,t0(uω,t0 − U)‖L2

TL
2
x

≤ C‖uω,t0‖2L4
xL
∞
T
‖uω,t0‖L∞T L∞x ‖∂xuω,t0‖L∞T L2

x
‖(uω,t0 − U)‖L2

TL
∞
x

≤ C‖uω,t0‖2L4
xL
∞
T
‖uω,t0‖2L∞T H1(R)‖(uω,t0 − U)‖L2

TH
1(R)

≤ C‖(uω,t0 − U)‖L2
TH

1(R).

(3.20)

Inserting (3.19) and (3.20) in (3.18), we get

‖∂xI1‖L∞T L2
x
≤ CA‖(uω,t0 − U)‖L2

TH
1(R). (3.21)

Combining (3.17) and (3.21), we obtain

‖I1‖L∞T H1(R) ≤ CA‖(uω,t0 − U)‖L2
TH

1(R). (3.22)

From Lemma 3.1, we have

‖I2‖L∞T H1(R) ≤ Cω → 0, as |ω| → ∞. (3.23)

Therefore, we have

‖uω,t0 − U‖L∞T H1(R) ≤ CA‖(uω,t0 − U)‖L2
TH

1(R) + Cω. (3.24)

Applying Lemma 2.11 in (3.24), we get

‖uω,t0 − U‖L∞T H1(R) ≤ KCω → 0, as |ω| → ∞. (3.25)

From (3.24) and (3.25), it is easy to conclude that

‖(uω,t0 − U)‖L2
TH

1(R) → 0, as |ω| → ∞. (3.26)

Now, we move to estimate the other norms involved in the definition of XT . Let,

L1 := ‖∂x(uω,t0−U)‖L∞x L2
T

+‖∂2
x(uω,t0−U)‖L∞x L2

T
+‖uω,t0−U‖L5

xL
10
T

+‖Dx(uω,t0−U)‖L5
xL

10
T
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and

L2 := ‖∂x(uω,t0 − U)‖
L20
x L

5/2
T

+ ‖uω,t0 − U‖L4
xL
∞
T
.

Use of (2.2), (2.3), the estimate (2.13) from Proposition 2.7 with admissible triples

(p1, q1, α1) = (5, 10, 0), and (p2, q2, α2) = (∞, 2, 1) in (3.14), yields

L1 ≤ CA‖∂x(u5
ω,t0
− U5)‖L1

xL
2
T

+ CA‖u5
ω,t0
− U5‖L1

xL
2
T

+ ‖I2‖XT . (3.27)

Therefore, with the same argument as in (3.17)-(3.21), we can obtain

L1 ≤ CA‖uω,t0 − U‖L2
TH

1 + Cω. (3.28)

Hence, using Lemma 3.2 and (3.26) we get from (3.28) that

L1
|ω|→∞→ 0. (3.29)

Finally, to estimate L2 we use Proposition 2.7 with admissible triples (p1, q1, α1) =

(20, 5/2, 3/4) and (p2, q2, α2) = (20/3, 5, 1/4), to get∥∥∥∂x ∫ t

0

S(t− t′)f(·, t′)dt′
∥∥∥
L20
x L

5/2
T

≤ C‖f‖
L

20/17
x L

5/4
T
, (3.30)

and with admissible triples (p1, q1, α1) = (4,∞,−1/4), and (p2, q2, α2) = (20/3, 5, 1/4), to

have ∥∥∥∫ t

0

S(t− t′)f(·, t′)dt′
∥∥∥
L4
xL
∞
T

≤ C‖f‖
L

20/17
x L

5/4
T
. (3.31)

Using (3.30), (3.31), and the definition of XT , we get from (3.14) that

L2 ≤ CA‖∂x(u5
ω,t0
− U5)‖

L
20/17
x L

5/4
T

+ ‖I2‖XT (3.32)

Using (3.16), we can obtain

‖∂x(u5
ω,t0
− U5)‖

L
20/17
x L

5/4
T
≤ C

[
‖(|uω,t0|4 + |U |4)∂x(uω,t0 − U)‖

L
20/17
x L

5/4
T

+ ‖(|∂xuω,t0|+ |∂xU |)(|uω,t0 |3 + |U |3)(uω,t0 − U)‖
L

20/17
x L

5/4
T

]
=: C[J̃1 + J̃2].

(3.33)
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Hölder’s inequality, the fact that 20/13 > 10/7, Sobolev immersion and the assumption

(3.11), imply that

J̃1 ≤ C‖∂x(uω,t0 − U)‖L5
xL

10
T
{‖u4

ω,t0
‖
L

20/13
x L

10/7
T

+ ‖U4‖
L

20/13
x L

10/7
T
}

≤ C‖∂x(uω,t0 − U)‖L5
xL

10
T
{‖u4

ω,t0
‖
L

10/7
T L

20/13
x

+ ‖U4‖
L

10/7
T L

20/13
x
}

≤ C‖∂x(uω,t0 − U)‖L5
xL

10
T
T 7/10{‖uω,t0‖4L∞T H1 + ‖U‖4L∞T H1}

≤ C T 7/10‖∂x(uω,t0 − U)‖L5
xL

10
T
.

(3.34)

An in (3.18), we give details in estimating the first term, ‖u3
ω,t0

∂xuω,t0(uω,t0−U)‖
L

20/17
x L

5/4
T

in J̃2, the estimates for the other terms are similar. Here too, Hölder’s inequality, the fact

that 20/3 > 5, Sobolev immersion and the assumption (3.11), yield

‖u3
ω,t0

∂xuω,t0(uω,t0 − U)‖
L

20/17
x L

5/4
T
≤ C‖u3

ω,t0
‖
L

20/3
x L5

T
‖∂xuω,t0‖L2

xL
2
T
‖uω,t0 − U‖L5

xL
10
T

≤ C‖u3
ω,t0
‖
L5
TL

20/3
x
‖∂xuω,t0‖L2

TL
2
x
‖uω,t0 − U‖L5

xL
10
T

≤ C T 7/10‖uω,t0‖4L∞T H1‖uω,t0 − U‖L5
xL

10
T

≤ C T 7/10‖uω,t0 − U‖L5
xL

10
T
.

(3.35)

In view of (3.33), (3.34) and (3.35), we get from (3.32) that

L2 ≤ CAT 7/10{‖∂x(uω,t0 − U)‖L5
xL

10
T

+ ‖uω,t0 − U‖L5
xL

10
T
}+ Cω. (3.36)

Therefore, Lemma 3.2 and (3.29), imply

L2
|ω|→∞→ 0. (3.37)

Now, the proof of the Lemma follows by combining (3.25), (3.29) and (3.37). �

In what follows, we consider the critical KdV equation (1.14) with more general time

dependent coefficient on the nonlinearity.

Proposition 3.3. Given any A > 0, there exist ε = ε(A) and B > 0 such that if

‖h‖L∞ ≤ A and if φ ∈ H1(R) satisfies

‖S(t)φ‖L5
xL

10
t
≤ ε, (3.38)

then the corresponding solution u of (1.14) is global and satisfies

‖u‖L5
xL

10
t
≤ 2 ‖S(t)φ‖L5

xL
10
t
, (3.39)
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‖u‖Xt ≤ B‖φ‖H1(R). (3.40)

Conversely, if the solution u of (1.14) is global and satisfies

‖u‖L5
xL

10
t
≤ ε, (3.41)

then

‖S(t)φ‖L5
xL

10
t
≤ 2‖u‖L5

xL
10
t
. (3.42)

Proof. Since ‖h‖L∞t ≤ A, as in Theorem 1.4 we can prove local well-posedness for the IVP

(1.14) inH1(R) with time of existence T = T (‖φ‖H1(R), ‖h‖L∞). Let u ∈ C([0, Tmax);H
1(R))

be the maximal solution of the IVP (1.14). For 0 ≤ t < Tmax, we have that

u(t) = S(t)φ+ w(t), (3.43)

where

w(t) = −
∫ t

0

S(t− t′)h(t′)∂x(u
5)(t′) dt′.

Using (2.13) from Proposition 2.7 for admissible triples (5, 10, 0) and (∞, 2, 1), we

obtain

‖w‖L5
xL

10
T
≤ CA‖u5‖L1

xL
2
T

= CA‖u‖5L5
xL

10
T
. (3.44)

From (3.43) and (3.44) it follows that

| ‖u‖L5
xL

10
T
− ‖S(t)φ‖L5

xL
10
T
| ≤ CA‖u‖5L5

xL
10
T
. (3.45)

Thus, for all T ∈ (0, Tmax) one has

‖u‖L5
xL

10
T
≤ ε+ CA‖u‖5L5

xL
10
T
. (3.46)

Choose ε = ε(A) such that

CA(2ε)4 < 1/2, (3.47)

and suppose that the estimate (3.38) holds. As the norm is continuous on T and vanishes

at T = 0, using continuity argument, the estimate (3.46) and the choice of ε in (3.47),

imply that

‖u‖L5
xL

10
Tmax

≤ 2ε. (3.48)

Moreover, from (3.45)

‖u‖L5
xL

10
Tmax

≤ ‖S(t)φ‖L5
xL

10
Tmax

+ cA‖u‖5L5
xL

10
Tmax

≤ ‖S(t)φ‖L5
xL

10
Tmax

+ CA(2ε)4‖u‖L5
xL

10
Tmax

.
(3.49)
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Therefore, with the choice of ε satisfying (3.47), the estimate (3.49) yields

‖u‖L5
xL

10
Tmax

≤ 2‖S(t)φ‖L5
xL

10
Tmax

. (3.50)

In what follows, we will show that Tmax =∞. The inequalities (2.2), (2.3), (2.13) with

admissible triples (5, 10, 0) and (∞, 2, 1), and Hölder’s inequality imply

‖w‖L∞T H1+‖∂xw‖L∞x L2
T
+‖∂2

xw‖L∞x L2
T
+‖w‖L5

xL
10
T

+‖∂xf‖L5
xL

10
T
≤ CA‖u‖4L5

xL
10
T
‖u‖XT . (3.51)

Now using (3.30), (3.31) and Hölder’s inequality, we have

‖∂xw‖L20
x L

5/2
T

+ ‖w‖L4
xL
∞
T
≤CA‖∂xu5‖

L
20/17
x L

5/4
T

≤CA‖u4‖
L

5/4
x L

5/2
T
‖∂xu‖L20

x L
5/2
T

≤CA‖u‖4L5
xL

10
T
‖∂xu‖L20

x L
5/2
T
. (3.52)

Combining (3.51) and (3.52), we obtain

‖w‖XT ≤ CA‖u‖4L5
xL

10
T
‖u‖XT . (3.53)

This estimate with (3.47) and (3.48) gives

‖w‖XT ≤ CA(2ε)4‖u‖XT <
1

2
‖u‖XT . (3.54)

Using (3.43) we obtain

‖u‖XT ≤ ‖S(t)φ‖XT + ‖w‖XT ≤ C‖φ‖H1(R) +
1

2
‖u‖XT , (3.55)

for all T ∈ (0, Tmax). Therefore, we have

‖u‖XTmax ≤ 2C‖φ‖H1(R). (3.56)

Hence, from the definition of ‖u‖XTmax , we have that

‖u‖L∞TmaxH1(R) ≤ C‖u(0)‖H1(R). (3.57)

Now, combining the local existence from Theorem 1.4 and the estimate (3.57), the

blow-up alternative implies that Tmax =∞. Finally, the estimates (3.50) and (3.56) yield

(3.39) and (3.40) respectively with B = 2C.

Conversely, let Tmax =∞ and (3.41) holds. With the similar argument as in (3.45), we

can get

| ‖u‖L5
xL

10
t
− ‖S(t)φ‖L5

xL
10
t
| ≤ CA‖u‖5L5

xL
10
t
. (3.58)
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Thus, from (3.58) in view of (3.41) and (3.47), one has

‖S(t)φ‖L5
xL

10
t
≤ ‖u‖L5

xL
10
t

+ CAε4‖u‖L5
xL

10
t
≤ 2‖u‖L5

xL
10
t
. (3.59)

�

Corollary 3.4. Let h ∈ L∞(R) satisfy ‖h‖L∞ ≤ A and ε and B be as in Proposition 3.3.

Given φ ∈ H1(R), let u be the solution of the IVP (1.14) defined on the maximal interval

[0, Tmax). If there exists T ∈ (0, Tmax) such that

‖S(t)u(T )‖L5
xL

10
t
≤ ε,

then the solution u is global. Moreover

‖u‖L5
xL

10
(T,∞)

≤ 2ε, and ‖u‖X(T,∞)
≤ B‖u(T )‖H1(R).

Proof. The proof follows by using a standard extension argument. For details we refer to

the proof of Corollary 2.4 in [5]. �

4. Proof of the main results

This section is devoted to provide the proofs of the main results of this work. The

Lemma 3.2 and the local existence Theorem 1.4 are the main tools used in the proof

of Theorem 1.5. While, Proposition 3.3 and Theorem 1.5 are fundamental in proving

Theorem 1.6. Once we have results from Lemma 3.2 and Proposition 3.3, the idea used

to complete the proofs of the main theorems is similar as in [5].

Proof of Theorem 1.5. Let A = ‖g‖L∞ , T ∈ (0, Smax) fixed and set

M0 = 2 sup
t∈[0,T ]

‖U(t)‖H1(R). (4.1)

In particular, for t = 0, (4.1) gives ‖φ‖H1(R) ≤M0/2. From Theorem 1.4, we have that

for all ω, t0 ∈ R, uω,t0 exists on [0, δ]. Using (3.5) we have that the existence time δ, is

given by

δ =
C

A2M8
0

. (4.2)

Moreover, from (3.6)

lim sup
|w|→∞

sup
t0∈R
‖uω,t0‖L∞δ H1(R) ≤ C‖φ‖H1(R) (4.3)
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and

lim sup
|w|→∞

sup
t0∈R
‖uω,t0‖L4

xL
∞
δ H

1(R) ≤ C‖φ‖H1(R). (4.4)

From Lemma 3.2, we have that supt0∈R ‖uω,t0 − U‖XT
|w|→∞→ 0, in particular

sup
t0∈R
‖uω,t0(δ)− U(δ)‖H1(R)

|w|→∞→ 0. (4.5)

Combining (4.1) and (4.5), for |w| sufficiently large, we deduce that

sup
t0∈R
‖uω,t0(δ)‖H1(R) ≤M0. (4.6)

We suppose δ ≤ T , otherwise we are done. Using Theorem 1.4 we can extend the solu-

tion uω,t0 (as in the proof of Corollary 3.4) on the interval [0, 2δ], with ‖ũω,t0‖L∞t (0,δ)H1(R) ≤
C‖ũω,t0(0)‖H1(R), where ũω,t0(t) = uω,t0(t+δ) i.e., ‖uω,t0‖L∞t (δ,2δ)H1(R) ≤ C‖uω,t0(δ)‖H1(R) ≤
C2‖φ‖H1(R). Therefore, (4.3) gives

lim sup
|w|→∞

sup
t0∈R
‖uω,t0‖L∞t (0,2δ)H1(R) ≤ C(1 + C)‖φ‖H1(R). (4.7)

Similarly, from (4.4),

lim sup
|w|→∞

sup
t0∈R
‖uω,t0‖L4

xL
∞
2δH

1(R) ≤ C(1 + C)‖φ‖H1(R). (4.8)

So, we can again apply the Lemma 3.2. Iterating this argument at a finite number of

times with the same time of existence in each iteration, we see that

lim sup
|w|→∞

sup
t0∈R
‖uω,t0‖L∞T H1(R) ≤ C‖φ‖H1(R)

and

lim sup
|w|→∞

sup
t0∈R
‖uω,t0‖L4

xL
∞
T
≤ C‖φ‖H1(R).

The result is therefore a consequence of Lemma 3.2. �

Proof of Theorem 1.6. Let ε ∈ (0, ε(A)), where ε(A) is as in Proposition 3.3. If T is

sufficiently large, from (1.25), we have that

‖U‖L5
xL

10
(T,∞)

≤ ε

4
. (4.9)
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Applying Proposition 3.3 to the global solution Ũ(t) = U(t + T ), the inequality (3.42)

gives

‖S(t)U(T )‖L5
xL

10
t

= ‖S(t)Ũ(0)‖L5
xL

10
t
≤ 2‖Ũ‖L5

xL
10
t

= 2‖U‖L5
xL

10
(T,∞)

≤ ε

2
. (4.10)

From this inequality and Corollary 3.4 we get

‖U‖X(T ;∞)
≤ B‖U(T )‖H1(R). (4.11)

From Theorem 1.5 it follows that

sup
t0∈R

sup
0≤t≤T

‖uω,t0(t)− U(t)‖H1(R) → 0, as |ω| → ∞. (4.12)

Thus, if |w| is sufficiently large, the triangular inequality along with (4.12) gives

‖S(t)uω,t0(T )‖L5
xL

10
t
≤ ‖S(t)uω,t0(T )− S(t)U(T )‖L5

xL
10
t

+ ‖S(t)U(T )‖L5
xL

10
t

≤ ‖uω,t0(T )− U(T )‖L2
x

+
ε

2

≤ ε.

(4.13)

Therefore, Corollary 3.4 implies that uω,t0 is global. Moreover,

sup
t0∈R
‖uω,t0‖L5

xL
10
(T,∞)

≤ 2ε, and ‖uω,t0‖X(T,∞)
≤ B‖uω,t0(T )‖H1(R), (4.14)

for |w| sufficiently large.

Let M0 = sup0≤t≤T ‖U(t)‖H1(R), as in (4.1). Now, we move to prove (1.26). The

inequalities (4.12) and (4.14) show that there exists L > 0 such that

sup
|w|≥L

sup
t0∈R

sup
t≥0
‖uω,t0(t)‖H1(R) ≤ (1 +M0) +B‖uω,t0(T )‖H1(R) = M1 <∞. (4.15)

In what follows, we prove that uω,t0 → U in the ‖ · ‖Xt-norm, when |ω| → ∞.

Using Duhamel’s formulas for uω,t0 and U we have

uω,t0(T + t)− U(T + t) = S(t)(uω,t0(T )− U(T ))

−
∫ t

0

S(t− t′)g(ω(T + t′ + t0))∂x(u
5
ω,t0

)(T + t′)dt′

+m(g)

∫ t

0

S(t− t′)∂x(U5)(T + t′)dt′

=: I1 + I2 + I3.

(4.16)
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Using properties of the unitary group S(t) we have by (4.12) that

‖I1‖Xt = ‖S(t)(uω,t0(T )− U(T ))‖Xt ≤ C‖uω,t0(T )− U(T )‖H1(R)
|ω|→∞→ 0. (4.17)

With the same argument as in (3.53), we have

‖I2‖Xt ≤ CA‖uω,t0‖4L5
xL

10
(T,∞)
‖uω,t0‖X(T,∞)

, (4.18)

From (4.18), with the use of (4.14) and (4.15), we have

‖I2‖Xt ≤ CA(2ε)4BM1. (4.19)

As in I2, using (4.9) and (4.11), we get

‖I3‖Xt ≤ CA‖U‖4L5
xL

10
(T,∞)
‖U‖X(T,∞)

≤ CA
( ε

4

)4

BM0.
(4.20)

Now given β > 0, we choose ε > 0 sufficiently small (T sufficiently large) such that

CA(2ε)4
[
BM0 +BM1

]
< β/3 and |ω| sufficiently large, so that (4.16), (4.17), (4.19) and

(4.20) imply

‖uω,t0(t)− U(t)‖X(T,∞)
= ‖uω,t0(T + t)− U(T + t)‖Xt
≤ ‖I1‖Xt + ‖I2‖Xt + ‖I3‖Xt
< β.

(4.21)

On the other hand, from Theorem 1.5, we have

‖uω,t0(t)− U(t)‖X(0,T )
= ‖uω,t0(t)− U(t)‖XT

|ω|→∞→ 0. (4.22)

Therefore, from (4.21) and (4.22), we can conclude the proof of the theorem. �
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