Parser Generation in Perl:
Crafting an AnTLR Back-end

Hugo Areias!, Alberto Simdes?, Pedro Henriques!, and Daniela da Cruz!

!Departamento de Informatica, Universidade do Minho
2Escola Superior de Estudos Industriais e de Gestao, Instituto Politécnico do Porto
hugomsareias@gmail.com,alberto.simoes@eu.ipp.pt
pedrorangelhenriques@gmail.com,danieladacruz@di.uminho.pt

Abstract. Completely convinced of the benefits of Perl for the imple-
mentation of language processors and after doing a deep review of the
state of the art on parser generation in Perl, we have identified a clear
need for a powerful tool that accepts attribute grammars and builds
compilers in Perl.

The objective of this paper is to present a solution based on the de-
veloping of a back-end for ANTLR to generate attribute based language
processors in Perl, to overcome the lack of this kind tools described in
the preliminary study referred above.

To achieve the intended objective, the parser generator tool ANTLR was
studied in detail to understand its components and to plan the best
strategies to perform the necessary retargeting of its back-end. In this
process, the Java compilers generated by ANTLR were analysed carefully
to learn the algorithms adopted and the language resources employed.
After that, the general scheme for Perl compiler was sketched. This task
has required a comparative study of object-oriented extensions to the
standard Perl in order to decide how to provide the basic features avail-
able in Java.

We also discuss in the paper the performance tests carried out to prove
that the generated processors, produced by our new tool, are efficient
and provide indeed a reliable and competitive solution.

Keywords: Parser generators, Perl, grammars, ANTLR, language pro-
cessors

1 Introduction

This project! has emerged in the context of language processing and parser
generation, motivated by the need to create an efficient and viable alternative
to the existing Perl [8] parser generators as addressed in further detail in a
preliminary study [3] done last year.

Although there are some tools to generate parsers in Perl, most of them reveal
some drawbacks — such as the non-support for attribute grammars [1,5,7] and

! https://github.com/HugoAreias/AnTLR-Back-end-for-Perl

258

lack of efficiency — which causes Perl to be discarded from projects that require
high levels of efficiency [3].

It was intended with this project to workaround the known flaws when gen-
erating Perl parsers. The starting point was to port the parser algorithms gen-
erated by other tools to Perl language.

To accomplish this task, the compiler generator AnTLR?[6] was chosen. AnTLR
is a tool developed in Java that provides support for attribute grammars, well
known for its professional contribution to LL(k) (recursive-descent) [1,2] parser
generation®. This tool was chosen instead of other tools, such as LISA, due to its
wide use on parser generation and amount of documentation available; moreover
AnTLR was developed taking into account the possibility of creating code gen-
erators for specific target languages and easily fold them with AnTLR. AnTLR
already has a few code generators associated with it, for languages such as C,
Java, Ruby, JavaScript, C#, Python, amongst others. The internal structure of
AnTLR and the fact that the tool provide a template engine to assist on the
retargeting, stimulates the creation of new output modules to produce parsers
in other languages, such as Perl.

With the assistance of this tool, it was possible to develop a Perl code gen-
erator folded into AnTLR, with the purpose of translating the generated parsers
to Perl language taking advantage of AnTLR algorithms and grammars sup-
port. Besides, the use of grammars would turn Perl parsers more readable, easy
to write and maintain. To obtain the desired results, an exhaustive study over
ANTLR was made to correctly understand its functioning and to obtain the
maximum knowledge about the tool.

The main goal was to develop a new AnTLR back-end to output Perl parsers,
with support for attribute grammars, that evidences slightly better efficiency
levels than the existing alternatives for the Perl language. It is intended to
generate Perl parsers that can be used as a valid alternative to parsers generated
in other languages.

Lavanda* grammar [4] was chosen to serve as example throughout this paper.

This paper is organised in six sections. First, section 2 gives a quick explana-
tion of the importance of StringTemplate in the development of the tool. section 3
explains the strategies adopted to implement the Perl Code Generator. The Run-
time Library is explained in section 4. In section 5 analysis are made about the
tool features, and performance tests are carried out to prove the generated lan-
guage processors are reliable and efficient. Lastly, conclusions and comments
about the tool and this work will be drawn in section 6.

2 The StringTemplate

The StringTemplate engine was introduced by ANTLR to convert the code gen-
eration procedures to a template based model. It provides its own template cre-

2 ANother Tool for Language Recognition

3 Language processor generation, to be more accurate.

4 http://epl.di.uminho.pt/~{}gepl/LP/
p://epl.di.uminho.p gep.

259

ation language, used by the code generator templates. Basically, the templates
in charge of generating the parsers for each target programming language, are
implemented with StringTemplate language, and are interpreted by StringTem-
plate engine. These templates are included in the Code Generator component,
along with a target class for each language available.

The integration of the template engine StringTemplate with ANTLR proved
to be worthwhile and a catalyst for code generation, because it strengthened the
ANTLR position among parser generators, increased the employment of this tool
on serious projects and acted as an encouragement for programmers to retarget
code generators for other languages, such as Java, Python, C, C# and others.

StringTemplate is a library that operates separately from ANTLR. This sep-
aration makes possible the use of template construction actions in the rules of
a grammar implemented in ANTLR and to specify output templates directly in
the grammar rules, taking advantage of a specific notation provided by ANTLR
for this purpose.

These features contribute to a more clean and readable code, and encourages
the separation of the output specifications from the remaining code and the
reuse of replicated segments of code to emit output. However, the most significant
advantage of StringTemplate integration with ANTLR is the easiness of generating
a parser in different languages without the need of rewritten it for each target
language. Furthermore, it saves time and avoids unexpected bugs.

These features made it easier to develop the Perl Code Generator since it was
not required to know how exactly ANTLR compiles the grammars and how it
handles the extracted data. The StringTemplate integration was of a consider-
able help and made us concentrate mostly on the generation of the language
processors in Perl.

The StringTemplate language was crucial in this process since it functioned
as a kind of bridge between the generated language processor and the data
extracted from the compiled grammar required to generate its code.

3 The Perl Code Generator

The Perl Code Generator is constituted by two major components, the runtime
library and the template group. Although these are the essential components to
generate a Perl Language Processor with ANTLR, there are complement com-
ponents, responsible for performing the tests and installation of the Runtime
library, and providing examples of the implementation of grammars in ANTLR
using Perl syntax. The functional specification of the Perl Code Generator can be
seen in figure 1. This functional specification was initially designed by Ronald
Blaschke®.

The Perl Code Generator was implemented with two priority aspects in mind,
readability and efficiency. The Perl code, generated by ANTLR, should be as
easy as possible to understand, with simple processes and similar in structure

® http://www.rblasch.org/

260

with the Java solution, but at the same time the generated Language Processor
(LP) should be able to parse input text efficiently, especially when dealing with
large input streams. To achieve these goals it was required a careful analysis of
the code generated by ANTLR and how it was generated taking into account the
specification of the grammar.

dependencies AnTLR

[BSUI 0} %0
_ Jewwelb

(2]
o

3
sojelousd U J1axa| pue Josred sa}maueﬁl 5 sy sa|idwoo

generation

se|npow

Runtime
Library
Perl Program

teeds the parse’

< ndino ayy

Output

Fig. 1. Functional specification of the Perl Code Generator.

The first step to implement the Code Generator was to analyse the gener-
ated code for Java. Java was chosen mainly because it is the default generated
language and therefore it keeps the original hierarchy and structure of ANTLR

261

template files intact. With these analysis it was possible to obtain a general idea
of how the parser and lexer works and the algorithms implemented by them.

After having a precise idea of the expected Perl code, the next step was to
create the template group for Perl language. The template group was not created
from scratch since it would be easier to replicate the Java template group and
replace the code fragments with the corresponding in Perl. However, to make
the changes it was essential to understand how ANTLR generates the code and
how the Code Generator works internally, including the data structures where
the information about the grammar and the defined language are stored.

With all this in mind, the development of the Code Generator was a slow and
careful process assisted closely by a battery of tests to assure that the code was
being generated correctly and that it actually works as expected when executed.

The strategy used to achieve a runnable LP was to work on one block of
the grammar at a time, studying the templates responsible for generating the
corresponding code and then change them to generate Perl. Lastly, ANTLR was
executed to generate the code in Perl, to allow the verification of the generated
code, checking whether it was syntactically correct or not.

The tests were based on small grammars in the first stages of the project.
After obtaining a correct Perl processor, for a specific grammar, more complex
grammars were used to test other templates, until producing valid pieces of Perl
code at the end. During the tests, all the templates not generating Perl were yet
to be translated and tested. This way it was easier to keep track of which ones
were already implemented and which not.

4 ANTLR Perl Runtime Library

The organisation of the files of the Perl Runtime library is very similar to the
Java library. Each class in the Java library corresponds to a Perl module. Since
Perl and Java have a large number of differences, a few classes have not been
retargeted for Perl and one new has been created.

One of the most important decisions before starting to implement the Perl
library was which would be the approach to implement it with object-oriented
Perl, knowing that our model (Java) is an OO language and that OO is a
relevant topic in modern Per! nowadays. Since Perl was not originally designed
to support the OO paradigm, it was not easy to find a way of include it in the
language.

Currently, Perl deals with objects in the same way it deals with hashes; more-
over, an object in Perl is nothing more than a hash that holds all the information
in it. This solution was not desirable in this project since it would negatively
affect the readability of the code (Runtime library and generated language pro-
cessor). It was intended that the solution would have to make a comprehensive
differentiation between hashes and objects usage.

The solution was to integrate Moose® with the runtime classes and include
also its constructs in the generation of the code. By using Moose to implement

6 http://search.cpan.org/~doy/Moose-1.08/1ib/Moose . pm

262

the Runtime library and the generated Language Processors, the code becomes
easier to read and understand, and we can obtain modules similar in structure
with Java classes. Besides that, Moose introduces some concepts that are also
present in Jawva, such as interfaces (roles in Moose), that proved to be useful
during the Perl Runtime library implementation.

Although Moose efficiently solved the Perl OO limitations, there were still
some language drawbacks that needed to be addressed. A small example is the
keyword final in Java, not found in Perl, which determines when the value of a
variable or object is immutable. In the Perl solution it was included a module,
Data::Lock”, to deal with this kind of variables or objects.

One of the most arduous tasks to accomplish during the developing process
of the Runtime library was how to handle exceptions. Again, Perl has no native
solution for this problem, so a module was required to solve it, in this case,
Exception::Class®. However, the module alone was not enough, since ANTLR
as its own set of exception classes to handle mismatch or any other kind of
exception, that inherit the properties of Java Ezception class.

For the equivalent exception classes in Perl to have the ability of throwing
exceptions, throughout the code, it was required a new class, named Ezception,
which inherits Ezception::Class properties, including the “throw” method. This
class would be later extended by all the exception classes present in the Perl
Runtime library.

Exception::Class also provides a method to catch and identify an exception,
however it does not implement a “try” block as found in Java. Therefore, it was
required another Perl module to obtain the same behaviour. The module chosen
was Try::Tiny®.

There were also found significant differences at the string encoding level
between both languages, especially when dealing with unicode characters. This
differences have been overcome by creating a method in the Perl target class
found in the Code Generator, to address and convert the unicode representation
from Java to Perl.

Lastly, one of the major differences between both languages is the type system
used. Jawva is a strongly typed language, on the other hand, Perl is a weakly typed
language, this means a variable in Perl can assume any value and can be used in
evaluations of different types. For example, an instance object of CommonToken
can be assigned to a variable holding an instance object of BitSet at the time of
the assignment without raising an error.

In this project it was required a more tight control over Perl variables, to
assure that variables would not assume other types under specific situations.
Moose was extremely helpful on this matter, since it raises constraints when the
user is manipulating variables instantiated in a class implemented with it. This

" http://search.cpan.org/~dankogai/Attribute-Constant-0.02/1ib/Data/Lock.

pm
8 http://search.cpan.org/~drolsky/Exception-Class-1.32/1ib/Exception/
Class.pm

9 http://search.cpan.org/~nuffin/Try-Tiny-0.06/1ib/Try/Tiny.pm

263

means that values assigned to a variable must correlate with its type, just like
happens in Java.

5 Evaluation of the Generated Parsers

With the developing process of the tool finished it is important to assure that the
tool actually works and behaves as expected. Also, it should be able to execute
correctly and efficiently. It is crucial for a tool of this nature to be submitted to
a number of optimisations to be as much efficient as possible. To prove the tool
is reliable and efficient, performance tests and comparisons with other available
solutions have been done in this section.

5.1 Optimisation and Profiling

When dealing with large input data, the generated parsers must evidence, at
least, a reasonable performance. So, it is important to have some concerns about
the efficiency of the code execution when writing it. However, since the code is
very extensive and integrates multiple components, the refining process can be
arduous to accomplish since it is harder to identify the critical parts.

With this in mind, a profiler was used to assist in the optimisation process
of the tool. The profiler eased the evaluation of the performance of the tool
components and helped to identify exactly which code instructions should be
improved to achieve better results.

The profiler chosen was the Perl module Devel::NYTProf1?, one of the most
used for Perl projects. This module is very useful to know which are the most
inefficient subroutines, how many times and where they are called, etc. It is
also possible to verify the execution times of every subroutine instructions. This
property is extremely useful to know where to start the optimisations of the tool.

Executing the profiler in parallel with the generated LP for the Lavanda
language, it was possible to identify the weaknesses of the Code Generator and
Runtime library.

The code refining process was done by consulting the profiler results for the
parsing process and replacing whenever possible the instructions with the worst
execution time by equivalent instructions.

One of these cases was the “For-Each” loop, that has been replaced by a
“While” loop in most of its occurrences. This happens because the “For-Each”
statement must know how many elements are in the list before iterating over it.
This means the complete list must be pushed to memory at the same time to
calculate its size. On the other hand, the “While” loop does not requires the size
of the list since it iterates until reaches the end of the list. Since parsers deal
with huge amounts of data, the “For-Each” loop would decrease its efficiency.

The continuous call of subroutines in loop conditions is another case that can
decrease the efficiency of the code. These situations were reduced to a minimum,

10 http://search.cpan.org/~timb/Devel-NYTProf-4.06/1ib/Devel/NYTProf . pm

264

even when dealing with accessors. In these cases, the variables were set to public
and accessed directly to avoid calling the accessor methods several times.

To measure the impact of these changes on the parsing times, the execution
times of the generated parser for the Lavanda language, when parsing an input
file with 1000 lines, will be compared below.

Before these changes, the parser spent more than one minute to correctly
recognise the input. After applying the changes described before, the parser
spent around 46 seconds to parse the same input. The changes clearly had a
small impact on the parsing time.

On a second round (Opt 2) of optimisations, replicated computations were
reduced to a single one. For instance, the method “length” would be called
each time the input size was needed. When dealing with large input streams,
calculate its length several times can be a costly process. Since the input cannot
be modified during runtime, its value will be preserved until reaching the end
of execution, and therefore its length will remain the same at any point of the
parsing process. This means that the input size calculation can be reduced to a
single call of the “length” method. This change implies the inclusion of a new
instance variable to store the input size when the object is created.

Applying this optimisation decreases the parsing time from 46 seconds to
approximately 34 seconds. A better result but still with room for improvement.

As explained in the preliminary study, one of the main drawbacks of the
parser generators available for Perl was the fact that the parsers generated by
these tools push the input into memory treating it as a single string, decreasing
considerably their efficiency when operating over large input texts.

To workaround this issue, the class that handles the input text, included in
the Runtime library, turns the string into an array of chars. This way it is easy to
perform operations over the input by accessing it via indexes, such as obtaining
substrings.

This last change (Opt 3) decreased the parsing time, for the same input, to
approximately 20 seconds. Before starting the code refining process, the gen-
erated parser for Lavanda language was taking more than 60 seconds to parse
a file with 7 000 lines, and after it, the execution time was approximately 20
seconds, near 66% less than the first attempt. The accurate times can be seen
in Figure 2 along with the parsing time evolution.

5.2 Evaluation

After refining the code generator to obtain a better performance, specific tests
were planned to evaluate the efficiency of the generated LPs by comparing the
obtained results with the results of the tools evaluated in the preliminary study
mentioned before in this paper.

The same metrics will be used in the following analysis. These comparison
parameters are:

1. the readability of grammars and generated parsers.
2. integration of the lexical analyser.

265

Time Evolution

a0

Parsing Time (sec)

No Opt Opt1 Opt2 Opt3

© Optimisation Level

Fig. 2. Time evolution after performing each optimisation level.

support for semantic actions.

flexibility of integration of the generated LP with other code.

debugging mechanisms.

efficiency of the generated parser (parsing time and memory consumption).

o Otk W

Good readability is a key aspect of a grammar and generated parser, especially
for language comprehension and maintenance purposes. The developed tool of-
fers the same grammar readability as ANTLR because the grammar is written
in ANTLR metalanguage. Also, ANTLR metalanguage offers support for EBNF
notation and named access, which helps improving the readability of the gram-
mars.

Regarding the generated parser readability, the code is not easy to understand
since the user should have a basic knowledge of the Perl Runtime library. However,
the identification of the grammars rules throughout the parser is straightforward,
since each subroutine of the generated parser corresponds to a production of the
grammar.

As far as the lexical analyser is concerned, the developed tool benefits, once
again, from the organisation and algorithms implemented by ANTLR. When
ANTLR generates a parser in Perl based on a given grammar it also generates a
lexical analyser structured in the same way as the parser.

The main difference between the lexer generated by ANTLR and the ones
used by the tools tested before is that the first treats the input as an array of
chars while the second treat it as a string. The fact that to perform operations
over the input may require it to be processed more than once, instead of accessing

266

the data via indexes, may have severe consequences on the efficiency of the tool
when dealing with large blocks of data.

As mentioned before, none of the available parser generators for Perl offers
any kind of support to generate parsers based on attribute grammars and only
Parse: :Eyapp gives the possibility of creating an AST. On the other hand, the
Perl ANTLR back-end supports attribute grammars, and creates an AST and
a DFA during the parsing process. Also, all the semantic information gathered
during the parsing process can be obtained by the user at the end of it.

The generated parser is easily integrated in any Perl project, however, the
target machine (the one where it is intended to execute the generated code) must
have the Perl Runtime library installed. This is one of the main drawbacks of the
Perl Code Generator when compared to other solutions, such as Parse::Yapp
(can generate standalone parsers).

Most of the parser debugging mechanisms are not implemented yet, since
the debug library has not been included in the Perl Runtime library. However, the
Runtime library offers mechanisms to catch and throw the parsing errors or trace
the parsing process.

For the efficiency tests, only three Perl parser generators were selected, the
best LALR [1,2] (Parse::Yapp) and LL [1,2] (Parse::RecDescent) based parser
generators of the earlier tests [3] and the Perl Code Generator.

LR [1,2] based parsers tend to achieve better parsing times than LL so it is
not a surprise that a parser generated by Parse::Yapp (LALR) achieves better
results that the other generated parsers. However, this only happens for input
streams somewhere below 100 000 lines, since the parser generated by the Perl
Code Generator spent around 1 409 seconds for an input with 700 000 lines,
against the 1 796 spent by the one generated by Parse::Yapp, as seen in Table 1.

Regarding the LL based parser generators, Parse::RecDescent parsers spend
less time parsing small inputs than the Perl Code Generator, but its efficiency
highly decreases when dealing with large input streams.

Table 1. User time evolution of the three approaches for the Lavanda grammar.

ILriII):el: Parse::Yapp Parse::RecDescent Perl Code Generator
10 0.017 s 0.073 s 0.726 s
100 0.073 s 0.183 s 2.525 s
1000 0.763 s 2.796 s 20.542 s
10000 18.915 s 290.914 s 204.679 s
100000 1796.26 s > 14206.187 s 1409.238 s

The Perl Code Generator parsers spend more time to finish the parsing pro-
cess when dealing with small input streams. However, it must be considered that
it generates a Language Processor instead of only a parser, like the other gener-

267

ators tested, so it is acceptable that it executes a larger amount of instructions
than the others.

Despite the LPs generated by our tool present parsing times greater than the
other solutions, when dealing with small input streams, they have proven to be
the best solution to deal with large input streams, even against generated LALR
based parsers, known for being faster than recursive-descent parsers. This was
one of the identified drawbacks of the parsers in Perl in the beginning of this
work.

Table 2. Memory consumption (in megabytes) of the three approaches for the Lavanda
grammar.

Iﬁﬁzst Parse::Yapp Parse::RecDescent Perl Code Generator
10 0.933 3.733 10.440
100 1.934 4.764 11.646
1000 12.142 15.335 23.743
10000 108.701 115.539 145.299

The main drawback of the parsers generated by the Perl Code Generator
when compared to the other solutions is the slightly larger use of memory, as
seen in Table 2. Since the generated LP generates or obtains plenty of infor-
mation about the grammar during the parsing process, it was obvious that it
would use a larger slice of memory than the other generated parsers. However,
the difference tends to stabilise as the input size increases.

6 Conclusion

This study made possible the implementation of a code generator for Perl that
was fully integrated with ANTLR. Some of its implementation strategies and
decisions were explained throughout this paper.

The Perl Code Generator main goal was to generate parsers in Perl, based on
attribute grammars, that prove to be more efficient than the solutions already
available for Perl, especially when dealing with large input streams. The tests
performed, as reported in subsection 5.2, show that the developed tool is slower
to parse small input streams (1 000 lines or less) but it reveals to be the best
for inputs of 100 000 or more lines, since the other tools lose efficiency as the
input size increases.

Based on the tests performed during this project, the Perl Code Generator is
the best solution, to our knowledge, from the LL-based parser generators, and
its generated parsers are faster than the LALR-based tested when dealing with
large blocks of data, which is something important to notice. Regarding the use

268

of memory, the Perl Code Generator was the tool that shown higher consumption,
mainly due to the fact that it generates a language processor instead of only a
parser, as happens with the other tools.

Although the AST it is not yet available for display and the debug facilities
are not totally usable, most of the features available on the other Perl parser gen-
erators are also available on the developed tool, mostly because ANTLR already
has native support for them.

The optimisations described in subsection 5.1 need to be extended to more
levels to improve the efficiency of the tool, to achieve better parsing times and
reduce the memory consumption. With these desired optimisations it would be
possible to make the Perl Code Generator a valid alternative to other language
solutions.

For a first version, the developed tool is already in a valid state to be consid-
ered a good solution for parser generation in Perl, mainly due to its performance
behaviour and the advantages of using ANTLR metalanguage to write the gram-
mars, especially attribute grammars.

On the overall, the developed tool is in an operational state and the generated
parsers behave as expected. Perl has now a valid LP generator with good results,
despite needing more improvements to become a strong alternative to other
solutions available.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Principles, Techniques and Tools.
Addison-Wesley, 1986.

2. Alfred V. Aho and Jeffrey D. Ullman. The theory of parsing, translation, and
compiling. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1972.

3. Hugo Areias, Alberto Simoes, Pedro Henriques, and Daniela da Cruz. Parser genera-
tion in perl: an overview and available tools. Luis S. Barbosa and Miguel P. Correia,
editors, INForum’2010 Simpdsio de Informdtica, pages 209—212, September 2010.

4. Daniela da Cruz and Pedro Rangel Henriques. Lavanda, an exercise with attribute
grammars and a case-study to compare ag-based compiler-generators. Cctc technical
report, Dep.Informética / Univ. do Minho, Dec. 2006.

5. Donald E. Knuth. Semantics of context-free languages. Mathematical Systems
Theory, 2(2):127-145, 1968.

6. Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific Lan-
guages. Pragmatic Programmers. Pragmatic Bookshelf, first edition, May 2007.

7. William M. Waite. Use of attribute grammars in compiler construction. In WAGA,
pages 255—265, 1990.

8. Larry Wall. Programming Perl. O'Reilly & Associates, Inc., Sebastopol, CA, USA,
2000.

269

