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Abstract 

A simple rigid-plastic homogenization model for the analysis of masonry structures subjected to 
out-of-plane impact loads is presented. The objective is to propose a model characterized by a few 
material parameters, numerically inexpensive and very stable. Bricks and mortar joints are assumed 
rigid perfectly plastic and obeying an associated flow rule. In order to take into account the effect of 
brickwork texture, out-of-plane anisotropic masonry failure surfaces are obtained by means of a 
limit analysis approach, in which the unit cell is subdivided into a fixed number of sub-domains and 
layers along the thickness. A polynomial representation of micro-stress tensor components is 
utilized inside each sub-domain, assuring both stress tensor admissibility on a regular grid of points 
and continuity of the stress vector at the interfaces between contiguous sub-domains. Limited 
strength (frictional failure with compressive cap and tension cutoff) of brick-mortar interfaces is 
also considered in the model, thus allowing the reproduction of elementary cell failures due to the 
possible insufficient resistance of the bond between units and joints. 
Triangular Kirchhoff-Love elements with linear interpolation of the displacement field and constant 
moment within each element are used at a structural level. In this framework, a simple quadratic 
programming problem is obtained to analyze entire walls subjected to impacts. 
In order to test the capabilities of the approach proposed, two examples of technical interest are 
discussed, namely a running bond masonry wall constrained at three edges and subjected to a point 
impact load and a masonry square plate constrained at four edges and subjected to a distributed 
dynamic pressure simulating an air-blast. Only for the first example, numerical and experimental 
data are available, whereas for the second example insufficient information is at disposal from the 
literature. Comparisons with standard elastic-plastic procedures conducted by means of commercial 
FE codes are also provided. Despite the obvious approximations and limitations connected to the 
utilization of a rigid-plastic model for masonry, the approach proposed seems able to provide results 
in agreement with alternative expensive numerical elasto-plastic approaches, but requiring only 
negligible processing time. Therefore, the proposed simple tool can be used (in addition to more 
sophisticated but expensive non-linear procedures) by practitioners to have a fast estimation of 
masonry behavior subjected to impact. 

Keywords: Masonry, out-of-plane loads, homogenization, dynamic rigid-plasticity, impact. 
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1 Introduction 

Structures and buildings are occasionally called upon to withstand exceptional dynamic loading 

regimes, caused by accidental events, such as for instance impacts from vehicles or gas / terrorist 

explosions. In order to take into account the effect induced on structures by exceptional loads, codes 

of practice of many countries, e.g. EN 1991-1-7:2006 (2006), require the safety assessment of 

buildings when subjected to ad-hoc equivalent static loads. Such loads are usually obtained through 

empirical coefficients and are aimed at mimicking the effect of quasi instantaneous dynamic 

actions.  

An alternative approach to the assumption of simplified static load distributions, usually based on 

simplifications and rules of thumb, is the utilization of finite element non-linear dynamic analyses 

(see e.g. Burnett et al. 2007 and Wu and Hao 2006 and 2008), almost always performed using 

commercial software available in the market. According to authors’ knowledge, commercial codes 

devoted exclusively to the non-linear dynamic analysis of brickwork are still lacking. Moreover, 

when dealing with impact on masonry structures, a non-linear standard dynamic finite element 

approach is usually only applicable to walls of small dimensions, basically for research purposes 

and requires considerable expertise. Still, the computational cost is usually prohibitive, due to the 

need of modeling separately mortar joints and units in the framework of a heterogeneous approach.  

Due to the above reasons, despite the importance of the problem and the growing interest in the 

scientific community related to the safety assessment of structures subjected to quasi instantaneous 

dynamic loads, only a few works dealing with this subject seem to exist (Mayrhofer 2002, Gilbert et 

al. 1998 and 2002a, Wu and Hao 2006 and 2008, Wang et al. 2009). 

Also, only a few laboratory experimental investigations devoted to the study of dynamic loads 

simulating vehicles impacts on parapets (Gilbert et al. 1998 and 2002a) and air-blasting, e.g. 

Mayrhofer 2002 and Astbury et al. 1970, are available. These experimental programs aim at 

providing simplified assessment formulas and design recommendations. 

In this framework, it is appealing to develop a simple FE numerical approach for masonry subjected 

to low and high velocity impacts that avoids independent modeling of bricks and mortar joints, that 

requires a very limited number of input parameters to set and that is able to reproduce failure 

mechanisms and displacements evolution at successive time steps.  

As a matter of fact, the response of masonry when loaded out-of-plane is strongly influenced by the 

anisotropic behavior of brickwork at failure (see, e.g. Gilbert et al. 2002a, Milani et al. 2006a). 

Furthermore, despite the fact that masonry behavior near failure when loaded out-of-plane is locally 

brittle, laboratory tests (see e.g. Southcombe et al. 1995) conducted on entire masonry walls in two-



 3 

way bending, have shown that failure takes place along a definite pattern of lines, with a relatively 

ductile response. This inspired the utilization of approximate analytical solutions based both on the 

yield line theory and on the fracture line theory (Sinha 1978), able to predict with sufficient 

accuracy the ultimate load bearing capacity of entire walls, see Figure 1. Up to now, the yield line 

approach seems the most suitable to apply in practice for the evaluation of masonry behavior, a 

statement corroborated by the adoption of this approach in many codes of practice, as for instance 

BS 5628 (1985) and EC6 (1995). 

In this framework, here, a homogenized rigid-plastic FE approach for dynamic analyses of masonry 

structures is presented. Bricks and mortar joints are assumed rigid perfectly plastic and obeying an 

associated flow rule. Out-of-plane anisotropic masonry failure surfaces are obtained by means of a 

limit analysis approach, in which the unit cell is subdivided into a fixed number of sub-domains and 

layers along the thickness. A polynomial representation of micro-stress tensor components is 

utilized inside each sub-domain, assuring stress tensor admissibility on a regular grid of points and 

continuity of the stress vector at the interfaces between contiguous sub-domains. Limited strength 

of bricks-mortar interfaces is also considered in the model, given by frictional failure with a 

compressive cap and tension cutoff, thus making the reproduction of elementary cell failures due to 

the insufficient resistance of the bond between units and joints possible. 

Triangular Kirchhoff-Love elements with linear interpolation of the displacement field and constant 

moment within each element are used at a structural level (Hellan 1967, Hermann 1967). With the 

aim of numerically evaluating nodal displacements and internal actions at successive time steps, the 

simple quadratic programming approach proposed in Capurso (1972a and 1972b) is adopted. 

Finally, in order to test the capabilities of the model proposed, two examples are treated, namely a 

running bond masonry wall constrained at three edges and subjected to a point impact load, and a 

masonry rectangular plate constrained at four edges and subjected to a distributed dynamic pressure 

simulating an air-blast. The results of the first example are compared with numerical and 

experimental data available from Gilbert et al. (1998, 2002a and 2002b) and Burnett et al. (2007), 

whereas, for the second example, only limited numerical results are available from Wu and Hao 

(2006 and 2008).  

It is stressed that insufficient experimental data are available in the literature concerning masonry 

out-of-plane loaded subjected to impacts. Gilbert et al. (1998, 2002a and 2002b) papers are 

probably the only ones available giving a full description of masonry response in terms of time-

displacement, deformed shapes at successive iterations, mechanical characterization of the 

constituent materials, etc. Thus, the model here proposed is validated with standard elastic-plastic 

procedures conducted by means of commercial FE codes and hand calculations, proposed for 
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instance in Gilbert et al. (2002b) and essentially based on the assumption of perfect plasticity. 

Despite the simplifications introduced by a rigid plastic assumption, the approach should be able to 

give reasonable results, as it is also considered in the masonry codes for out-of-plane design (EN 

1991-1-7:2006).  

Apart from experimental validation, the homogenization approach here presented may be of interest 

for practitioners and researchers involved in the analysis of masonry structures subjected to impact, 

because the computational effort is minimal. Finally, sensitivity analyses conducted with the model 

proposed (almost impossible to carry on with commercial codes), may represent a further help in 

the design phase, giving a large set of information on panels behavior at successive iterations. 

2 Masonry out-of-plane failure surface 

A masonry wall Ω  constituted by a periodic arrangement of bricks and mortar with a running bond 

texture (Figure 2) is considered. As shown by Suquet in a general framework (1983) and in other 

recent masonry papers (Milani et al. 2006a, 2006b and 2006c and Cecchi and Milani 2008), 

homogenization techniques combined with limit analysis can be applied for the definition of the 

out-of-plane brickwork strength domain homS . 

In particular, under the assumption of perfect plasticity and associated flow rule for the constituent 

materials and in the framework of the lower bound limit analysis theorem, an estimation of homS  

can be obtained by means of the following (non-linear) optimization problem (see also Figure 2): 

( )
[ ][ ]

( ) ( ) 



































































∈∀∈∈∀∈
∂

=
=

=

=

=
∫

∫

×

×

)(;

)(onperiodic-anti

)(

)(

)(
1

)(
1

|

int

3

hom

fYSYS

eY

d

cdiv

bdVy
Y

adV
Y

S

bbmm
l

hY

hY

yyσyyσ

σn

0nσ

0σ

σM

σN

NM,  

( 1 ) 

where: 

- N  and M  are the macroscopic in-plane (membrane forces) and out-of-plane (bending moments) 

tensors; 

- σ  denotes the microscopic stress tensor; 

- n  is the outward versor of lY∂  surface; 

- lY∂  is defined in Figure 2; 

- [ ][ ]σ  is the jump of micro-stresses across any discontinuity surface of normal intn ; 
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- mS  and bS  denote respectively the strength domains of mortar and bricks; 

- Y  is the cross section of the 3D elementary cell with 03 =y  (see Figure 2), Y  is its area, V  is 

the elementary cell, h  represents the wall thickness and ( )321 yyyy = . 

2.1 The micro-mechanical model proposed 

A simple admissible and equilibrated micro-mechanical model for the evaluation of homS  is 

adopted, following the model originally presented in Milani et al. (2006a and 2006c). The unit cell 

is subdivided into a fixed number of layers along its thickness, as shown in Figure 3-a. For each 

layer, out-of-plane components 3iσ  ( 3,2,1=i ) of the micro-stress tensor σ  are set to zero, so that 

only in-plane components ijσ  ( 2,1, =ji ) are considered active. Furthermore, ijσ  ( 2,1, =ji ) are 

kept constant along the 
Li

∆  thickness of each layer, i.e. in each layer ),( 21 yyijij σσ = . For each 

layer one-fourth of the REV is sub-divided into nine geometrical elementary entities (sub-domains), 

so that the entire cell is sub-divided into 36 sub-domains (Figure 3-b). 

For each sub-domain )(k  and layer )( Li , simple polynomial distributions of degree (m) in the 

variables ( )21, yy  are a priori assumed for the stress components. Since stresses are polynomial 

expressions, the generic ijth component can be written as follows: 

( ) ),(),(),( LLL ikTik
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ij Yσ ∈= ySyX  ( 2 ) 

where: 
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ij SSSSSS=S  is a vector representing the 

unknown stress parameters of sub-domain )(k  of layer )( Li ; 

- ),( LikY  represents the kth sub-domain of layer )( Li . 

The imposition of equilibrium (with zero body forces, as usually considered in homogenization 

procedures) inside each sub-domain, the continuity of the stress vector on interfaces and the anti-

periodicity of σn  permit directly a strong reduction of the total number of independent stress 

parameters. 

Namely, the imposition of micro-stress equilibrium ( 2,10, == ijijσ ) in each sub-domain yields: 

( ) 0SyX =∑
=
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j

Tik
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L  ( 3 ) 

If p  is the degree of the polynomial expansion, ( )1+pp  equations can be written. 
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A further reduction of total unknowns is obtained imposing a priori the continuity of the (micro)-

stress vector on internal interfaces ( 2,10int),(int),( ==+ inσnσ j
ir

ijj
ik

ij
LL ) for every ( )Lik,  and ( )Lir,  

contiguous sub-domains with a common interface of normal intn  (Figure 3-c). Therefore, additional 

( )12 +p  equations in the stress coefficients can be written for each interface as follows: 

( ) ( )( ) 2,10ˆˆˆˆ int),(),(),(),( ==+ in j
Tirir

ij
ikik

ij
LLLL SyXSyX  ( 4 ) 

Finally, anti-periodicity of σn on V∂  requires ( )12 +p  additional equations per pair of external 

faces ( )Lim,  and ( )Lin,  (Figure 3-c), i.e. it should be imposed that stress vectors σn are opposite on 

opposite sides of V∂ : 

( ) ( ) j
inin

ijj
imim

ij
LLLL

,2
),(),(

,1
),(),( ˆˆˆˆ nSyXnSyX −=  ( 5 ) 

where 1n  and 2n  are oriented versors of the external faces of the paired sub-domains ( )Lim,  and 

( )Lin, . 

Some elementary assemblage operations on the local variables lead to the stress vector of layer Li  

inside each sub-domain given by: 

( ) ( ) layersidomainssubk L
iikik LLL ofnumber,,1ofnumber,,1

~~~ ),(),(
KK =−== SyXσ  ( 6 ) 

where ( )LiS
~

 is the vector of unknown stress parameters of layer Li . 

It is worth mentioning that equations ( 3 ), ( 4 ), ( 5 ) can be written in a compact form as 0AS = , 

where S  is the vector of total stress parameters and A is a matrix of geometrical coefficients with 

n~  rows (expressing internal equilibrium in sub-domains, interface equilibrium between contiguous 

sub-domains and anti-periodicity) and m~  columns (where m~  is the total number of independent + 

dependent unknowns). Moreover, not all the rows of this system are linearly independent and the 

linear dependence of some equations with respect to others can be easily handled automatically (for 

instance by means of Symbolic Math ToolboxTM) checking the rank of matrix A  and progressively 

eliminating linearly dependent rows. 

Reliable results can be obtained if a third order polynomial expansion is chosen for the stress field. 

For this reason, in all the examples treated next, such approximation is adopted. 

It is stressed that, once the polynomial degree is fixed, the out-of-plane model presented requires a 

subdivision ( Ln ) of the wall thickness into several layers (Figure 3-a), with an a priori fixed 

constant thickness LL nh
i

/=∆  for each layer. In this way, the following simple (non) linear 

optimization problem is derived: 



 7 

{ }

( ) ( ) ( )
( ) ( ) ( )

( )














































=−=

∈∈

=

==











=














=

=

=

∫

∫

)(ofnumber,,1;ofnumber,,1

)(~

)(
~~~

)(]2/;0[]2;0[

)(
cossinsin

sincoscos

)(~

)(~
max

),(),(

),(),(

,

),(
3

,

),(

glayersidomainssubk

fSS

e

d

c
MM

MM

bdVy

adV

thatsuch

L

IIikik

ikik

yyxy

xyxx

ik

ik

ik

ik

LL

LL

L

L

L

L

KK

σσ

SyXσ

M

σM

σN

πθπψ
ϑψϑ

ϑϑψ
λ

λ

 ( 7 ) 

where: 

- ψ  and ϑ  are spherical cooridinates in xyyyxx MMM −− , given by ( ) ( )22
tan

yyxx

xy

MM

M

+
=ϑ , 

( )
xx

yy

M

M
=ψtan ; 

- ),( LikS  denotes the (non-linear) strength domain of the constituent material (mortar or brick) 

corresponding to the thk  sub-domain and thLi  layer. 

- IS  represents the bricks-mortar interfaces strength domain, see Figure 4 and Figure 3-c. As 

experimental evidences show, cracks usually occur at the joints, therefore it appears particularly 

suitable to assume a limited strength for brick-mortar interfaces. Basic failure modes for masonry 

with weak mortar are a mixing of sliding along the brick-mortar interface, direct tensile cracking of 

the interface and compressive crushing. Thus, a linearized Lourenço and Rots (1997) failure 

criterion seems particularly suited for the analysis near failure of bricks-mortar interfaces, merging 

in a unique criterion frictional failure (Mohr-Coulomb), a tension cut-off tf  and a compressive cap 

described by parameters cf  and 2Φ , see Figure 4. 

- [ ]TIII τσ=σ  is the micro-stress vector acting on the interfaces, being Iσ  the stress component 

acting perpendicularly to the interface and Iτ  the tangential stress component. 

- S
~

 collects all the unknown polynomial coefficients (of each sub-domain, of each layer). 

- λ  is the direction of the ultimate bending moment in the xyyyxx MMM −−  space (see Figure 5); 

It is worth underlining here that: 

- membrane actions are kept, for the sake of simplicity, constant and independent from load 

multiplier. Hence, for the analysis at collapse of panels reported next, in-plane actions affect 
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optimization only in the evaluation of xyyyxx MMM ,, strength domains. This assumption is 

usually acceptable since a fixed in-plane compressive load (regarded as permanent load) 

0NN yy −=  exists, the wall thickness is small and the collapse is obtained at relatively small out-

of-plane displacements. 

- Condition ( )f  of equation ( 7 ) is enforced, in each sub-domain, in correspondence of a rxq  

rectangular regular grid of “nodal points”. The authors shown that reliable solutions can be 

obtained with a minimum of 33x  grids (see Milani et al. 2006c). 

The non linearity of the terms ),(),(~ LL ikik S∈σ , due to the (possible) non-linearity of the strength 

functions of the components is easily avoided by means of a piecewise linear approximation of 

constituent materials strength domains (see e.g. Anderheggen and Knopfel 1972). On the other 

hand, it is worth noting that recent trends in limit analysis have demonstrated that the linearization 

of the strength domain can be circumvented using conic/semidefinite programming (e.g. 

Makrodimopoulos and Martin (2006), Krabbenhoft et al. 2007 and 2008). It has been demonstrated 

that, in terms of processing time, this tool is better than classic linear programming (LP). Both free 

(e.g. SeDuMi, http://sedumi.mcmaster.ca/) and commercial (e.g. www.mosek.com) standalone tools 

are nowadays available; nonetheless, since the aim of this paper is mainly concentrated on the 

structural aspects, the classic interior point LP routine available in MATLAB® is used for the sake 

of simplicity. 

Finally, some limitations of the model are worth noting. The approach proposed is a multilayer 

procedure with no interaction between the layers. This is of course the simplest way to obtain a 

lower bound plate model, but raises questions on the fact that the solid medium behaves in the 

similar manner. Furthermore, it is suited only for running bond masonry, whereas there is no 

possibility to utilize the suggested approach for double wythes structures. A 3D equilibrated model 

(with the same subdivision into parallelepiped sub-domains) is under investigation by the authors, 

with the aim of applying it to multi-leaf structures subject to impacts. 

3 The quadratic programming problem at a structural level 

In the field of steel structures, basic theorems concerning rigid-plastic dynamics, as well as models 

devoted to the evaluation of the effect of impacts (including one degree of freedom so called “mode 

solutions”) are well known, e.g. Martin (1964), Martin and Symonds (1965), Tamuzh (1962) and 

many others. The main hypotheses of such models are the following (see Capurso 1972a and 1972b, 

Cannarozzi and Laudiero 1976, and a more recent paper by Kim and Huh 2006): 

1. rigid-perfectly plastic behavior of the material; 

2. strain rate insensitivity of the yield stress; 



 9 

3. negligible changes of the geometry during deformation. 

These requirements are somewhat contradictory, since large energy inputs will tend to cause large 

displacements and high velocities sensibly affect the value of yield stress. In order to circumvent 

these limitations, extensions to rate dependent materials and large deformations problems were 

attempted in the first applications (Capurso 1972b and Martin 1972).  

It has been shown in classic literature that rigid-plastic approaches perform well for ductile 

structural elements subjected to impact and that experimental data available can be fitted with 

sufficient accuracy (e.g. Bodner and Symonds 1962). As a consequence, rigid-perfect plasticity has 

been used by many authors in design practice to obtain a fast estimate (Martin and Symonds 1965, 

Komarov and Nemirovskii 1985) of deformations induced by dynamic loads. 

For masonry structures subjected to static loads, following the pioneering work by Heyman (1969), 

limit analysis has been extensively utilized (e.g. Orduña and Lourenço 2005, Milani et al. 2006b), 

certainly representing the faster tool of analysis for complex structures (Milani et al. 2008).  

In analogy to the static case, a rigid-plastic assumption for bricks and mortar joints is attempted 

here, with the aim of analyzing, with a simple and efficient tool, full walls subjected to impact. 

When dealing with discretized structures by FEs, the analysis of rigid-plastic structures subjected to 

impulsive loading can be studied in the framework of a quadratic programming approach. In 

particular, within the class of all internal actions and accelerations that are dynamically and 

plastically admissible (i.e. obeying dynamic equilibrium and belonging to the class of internal 

actions connected with initial velocities, so representing a static formulation, see Martin 1964), the 

actual set minimizes, following the original definition given in Capurso (1972a), the second order 

kinetic energy of the structure, i.e.: 
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where: 

- u&&  is the vector of nodal accelerations. Following this notation, u&  and u  will indicate in the 

following respectively velocities and displacements nodal vectors. 

- Σ
~

 is the assembled vector of elements internal actions; 

- ( )tF  is the external forces vector, generally dependent upon the time step under consideration; 

- m  is the square matrix of masses, which typically are lumped at each nodal point; 

- B
~

 is a matrix of coefficients that depends only on size and shape of finite elements utilized. 
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Considering a FE discretization of the body and assuming a piecewise linear yield surface for an 

element E , the set of admissible internal actions states can be expressed by the set of linear 

inequalities: 

[ ] [ ]0bAΣ












≥

=
+− E  ( 9 ) 

where  

- [ ]ineq AAA ;=  is the matrix assembling the components of the outward unit normals to the 

linearized masonry failure surface hyperplanes.  

- [ ]Tineq bbb ;=  represents the vector of the distance of each hyperplane from the origin. 

- E
Σ  is the vector of element E  internal actions. 

In equation ( 8 ), the superscript .~  indicates assembled matrices and vectors corresponding 

respectively to local elements matrices and vectors. The set of equations )(a  in the optimization 

problem ( 8 ) represents dynamic equilibrium condition. The principle of virtual work yields to the 

corresponding compatibility condition: 

0εuB =− pl

~~
&&  ( 10 ) 

where plε
~
&  is the assembled plastic strain rate vector. 

It is interesting to notice that in equation ( 8 ), a partition of matrix A  and vector b  into equalities 

and inequality constraints is imposed. In particular, equality constraints represent points yielded in 

the previous time step, whereas inequalities stand for the points in which yielding can occur.  

A so called “kinematic” formulation is also available Capurso (1972a). In particular, within the 

class of all accelerations and plastic multiplier rates that are kinematically admissible and obeying 

an associated flow rule (i.e. which comply with compatibility and with outward normal rule for the 

set of planes not activated by the initial velocities), the actual set minimizes the sum of the second 

order kinetic energy and the residual dissipation rate of the structure, i.e.: 
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where: 

- λ&&  is the vector of second derivatives of plastic multipliers (in the present case plastic multipliers 

are referred to each interface). [ ]TT
r

T
y λλλ &&&&&& =  is the partitioned λ&&  vector, where index y  
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indicates that the corresponding 0≠yλ& , whereas index r  indicates that at the previous iteration 

0=rλ& ; 

- The superscript I  indicates quantities (i.e. vectors and matrices) referred to interfaces. It is 

worth noting that the procedure outlined by Krabbenhoft et al. (2005), was adopted to obtain 

homogenized masonry strength domains (and hence vectors and matrices in the rotated frame of 

reference) for an interface with generic orientation Iϑ  with respect to horizontal axis. 

More in detail, if the vector [ ]TE
n

EEE λλλ K21=λ  represents plastic multipliers of an element E  

(or an interface I ), the associated flow rule is expressed for each element as: 

ETE
pl λAε &

& =  ( 12 ) 

where E
plε&  is the plastic strain rate vector of element E . In the framework of rigid-perfect plasticity, 

equation ( 12 ) is subjected to the following equality and inequality constraints: 
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u  with its derivatives with respect to time is a function of time, E
plε&  and E

λ&  are also time dependent 

functions. Thus, differentiation of equation ( 12 ) with respect to time yields: 

ETE
pl λAε &&

&& =  ( 14 ) 

Element E  (or an interface I ), which is governed by plastic flow law ( 12 ), ( 13 ) and ( 14 ), at a 

given instant 0t  is in one of the following four cases: 

1. if the internal actions vector EΣ  is inside the failure surface, then 0ε =E
pl& , implying that: 

0λλ == EE
&&&  ( 15 ) 

with an undetermined state for the internal actions state. 

2. if the internal actions vector is a regular point of the linearized failure surface (say belonging to 

the j th hyperplane), but ( ) 0λ =0t
E

& , one has: 


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λ
λ
&&

&&

& 0λ

 ( 16 ) 

3. if the internal actions vector is a regular point of the linearized failure surface belonging to the 

j th hyperplane) and ( ) 0λ ≠0t
E

& , one has: 
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4. if the internal actions vector is a singular point of the linearized failure surface common to m  

hyperplanes, one has: 

[ ]






>

=≥
∈∀

0free

00
1

EE

EE

if

if
m

αα

αα

λλ

λλ
α

&&&

&&&

K  ( 18 ) 

In cases 2 and 3 the internal action vector is represented by any point of the j th hyperplane, 

whereas for case 4 the internal action state is uniquely determined. 

The assembly of all elements transfers the qualitative behavior of a single element (or an interface) 

to the overall discretized structure. Hence, the assembled stress state Σ
~

 is constant during finite 

time intervals. If the vector of external loads is assumed constant during finite time intervals, it can 

be shown (Cannarozzi and Laudiero 1976) that the most general motion of a rigid plastic structure 

is a sequence of uniformly accelerated motions of finite time interval. The interchange of two 

consecutive mechanisms is characterized by a discontinuity of the acceleration fields. 

Therefore, the set of active yield planes of each element at a given time 0t  is known. For a time step 

of duration t∆  we have: 

0λ

0λ

=
>

r

y
&

&

 ( 19 ) 

where the subscript y  ( r ) denotes the vector collecting all the non-zero (zero) plastic multiplier 

rates in the structure, indicating if a yielding condition for a certain element has (has not) been 

reached. From the previous considerations, differentiation of equation ( 19 ) yields: 

0λ

λ

≥r

y
&&

&& free
 ( 20 ) 

Finally, the following assembled equation representing the first derivative associated flow rule 

condition is obtained: 

[ ] 0
~~~ =














−

r

yinTeqT
pl

λ

λ

AAε
&&

&&

&&  ( 21 ) 

where the aforementioned partition of matrix A
~

 is introduced. Exploiting equation ( 10 ), a relation 

between accelerations and second derivatives of plastic multipliers is obtained in the form: 
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with corresponding static conditions: 
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
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~~~

~~~

inin
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inin
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&&

 ( 23 ) 

Previous conditions ( 12 )-( 21 ), from well known connections between linear complementarity 

problems and quadratic programming lead to the formulation reported in ( 8 ). 

4 The FE thin plate triangular formulation 

In order to solve low velocity impact problems for out-of-plane loaded masonry structures, a FE 

thin plate triangular formulation based on the plate bending element proposed independently by 

Hellan (1967) and Herrmann (1967) is used. This triangular element has been preferred to more 

accurate elements present in the literature (Krabbenhoft and Damkilde 2002, Krenk et al. 1994), due 

to its simplicity and the low number of unknowns involved in the optimization. 

A constant moment field is assumed inside each element E , so that three moment unknowns per 

element are introduced. The unknowns are the horizontal, vertical and torsion moments 

( E
xxM , E

yyM , E
xyM ) or alternatively three bending moments Ei

nnM , Ej
nnM , Ek

nnM  along the edges of the 

triangle (Figure 6-a).  

For what concerns the displacement field, the element turns out to be analogous to the Munro and 

Da Fonseca (1978) triangle. In particular, the displacement field is assumed linear inside each 

element and nodal displacements are taken as optimization variables. Denoting by 

[ ]TE
k

E
j

E
iE www=w  the element E  nodal displacements and by [ ]TE

k
E
j

E
iE ϑϑϑ=θ  the side 

normal rotations, Eθ  and Ew  are linked by the compatibility equation (Figure 7-a and –b): 

EEE wBθ =  ( 24 ) 

where: 
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the element area. 
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Therefore, plastic dissipation occurs only at the interface I  between two adjacent triangles R  and 

K or on a boundary side B  of an element Q  (see Figure 7-c). Continuity of E
nnM  bending moments 

is imposed for each internal interface between two adjacent elements R  and K  (i.e. Kj
nn

Ri
nn MM = , 

see Figure 6-b), whereas no constraints are imposed for the torsion moment and the shear force. 

Due to the constant assumption for the moment fields, internal equilibrium for each element is 

ensured in integral form. By means of the application element by element of the principle of virtual 

work, three equilibrium equations for each triangle are obtained: 

EEE
T
EE wMPMBR &&+=+  ( 25 ) 

where 

- [ ]TkjiE RRR=R  are nodal (unknown) reactions, see Figure 6-c; 

- [ ] ( )dAyxpyx
A

T

E

T
E

E
E ,1

2

1
∫= TP  (










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



=

kji

kji

kji
T
E

ccc

bbb

aaa

T , jkkji yxyxa −= ). It is interesting to 

notice that vector EP  can be regarded as a lumped load equivalent to the resultant action associated 

to ( )yxp , . 

- the term EwM &&  includes the contribution of inertia forces to the overall equilibrium. Matrix M  is 

the matrix of equivalent lumped masses and is obtained analogously to vector EP  assuming a 

constant density ρ  inside each triangular element. 

In order to find the duration t∆  of the time interval to discretize equation ( 25 ), it is worth noting 

that: 

( ) ( ) ( )
( )0

0

0
0

0
0

tt

tttt

rr

yyy

−=

−+=

λλ

λλλ

&&&

&&&&

 
( 26 ) 

where subscript 0 refers to quantities calculated in the previous iteration. Since each component of 

vector ry ,λ
&  has to be non-negative, the duration t∆  of the interval chosen is therefore: 

( ) ( ) ( ){ }0that suchmin 0
0

0
0

0 =−+−=∆ tttttt
iyiy λλ &&&  ( 27 ) 

where the subscript i  indicates a generic element of the vectors 0
yλ

&  and 0
yλ
&& . 

Further equality constraints have to be imposed in order to ensure nodal equilibrium, i.e. for each 

(not-constrained) node i  the following equation has to be satisfied: 

∑
=

=
p

r

E
iR

1

0  ( 28 ) 

where E
iR  is referred to element E  and p  is the number of elements with one vertex in i . 
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Since moment fields are kept constant for each element E , only one set of admissibility conditions 

in the linearized form E
inE

in
E bMA ≤ is required, where in

EA  is a 3mx  coefficients matrix of the 

linearization planes of the strength domain, m  is the number of the planes in the linearization, E
inb  

collects the right hand sides of these planes and [ ]TE
xy

E
yy

E
xxE MMM=M  is the vector of element 

moment unknowns. 

It is interesting to notice that assembled equations ( 25 ) and ( 28 ) correspond to equilibrium 

equation ( 8 )-(a), whereas moments admissibility at each time step corresponds to constraints ( 8 )-

(b) and (c). 

The algorithm used to numerically solve the quadratic programming problem ( 8 )-( 11 ) is a 

modification of the revised simplex method, applied to the LCP problem obtained from ( 8 ), by 

means of the application of Kuhn-Tucker conditions. Details of the algorithm can be found in 

Jensen and Bard (2003). 

5 Numerical simulations 

Two examples are presented, in order to assess the capabilities of the model proposed when 

compared to alternative numerical results obtained by means of standard commercial non-linear FE 

codes and, where available, to experimental results from the literature. 

It is noted that the topic has been under-investigated, both from an experimental and numerical 

point of view. Therefore, the main goal of the present paper is to provide structural comparisons 

with approaches that may be utilized by practitioners in design. 

As a secondary result, comparisons with experiments, when available, have been attempted, 

obviously considering that a rigid-plastic model is able to perform well in presence of low 

mechanical properties for the constituent materials or by assuming an “equivalent” reduced tensile 

strength.  

The first example is a masonry parapet arranged in running bond texture experimentally and 

numerically tested by Gilbert et al. (1998, 2002a and 2002b) and Burnett et al. (2007). The wall is 

subjected to a low velocity impact simulating the crush of a car on a masonry parapet. Comparisons 

with experimental data available (Gilbert et al. 1998), numerical simulations by Burnett et al. 

(2007) and 2D/3D elastic-plastic heterogeneous FE analyses conducted by means of the commercial 

software Strand 7.2 (2004) are reported, in order to show that reliable results can be obtained with 

the model proposed. 

Since experimentally determined mortar tensile strength is, in this case, relatively high, numerical 

rigid-plastic time-displacement response may be compared with experimental data only assuming 
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an ad-hoc reduced value for tf . With this aim, a sensitivity analysis is conducted by varying tf  

in a wide range. Thanks to the very small CPU time required for the rigid-plastic simulations, multi-

parameters sensitivity analyses are possible. 

The second example is a square plate constrained at four edges, subject to a dynamic load 

simulating an air-blast (Wu and Hao 2006 and 2008). Experimental data are missing in this case, as 

well as precise time-displacement curves from numerical simulations. A similar simulation with 

time-displacement curves available (at least for a rough estimation of the performance of the present 

simple model with respect to complex non linear analyses) may be found in Wang et al. (2009). For 

this reason, similarly to the previous case, the rigid-plastic model is compared with heterogeneous 

2D and 3D elastic-plastic Strand 7.2 models.  

For both examples, maximum displacement-time diagrams show that reliable results (in comparison 

with standard 2D/3D FE approaches) can be obtained with the homogenized model proposed. On 

the other hand, a proper experimental validation of the approach presented is not possible, due to 

the lack of experimentation in this field, especially in presence of mortar with low mechanical 

properties. 

5.1 Masonry parapet subjected to point low velocity impact 

The performance of brickwork parapets subjected to a low velocity impact simulating a car crash 

was numerically and experimentally evaluated respectively by Burnett et al. (2007) and Gilbert et 

al. (2002a). Analytical simplified approaches are also available from Gilbert et al. (2002b). Several 

parapets differing in length and bricks disposition (stretcher, English and English Garden bond) 

were tested (see Burnett et al. 2007, Gilbert et al. 1998, 2002a and 2002b for details). Here, for the 

sake of conciseness, only the running bond configuration (two replicates labeled as C6 and C7 by 

Gilbert et al. 2002a) is considered. In particular, walls C6 and C7 are identical stretcher bond 

parapets with dimensions 9150×1130×215 mm (length × height × thickness) built with highly 

resistant concrete blocks of dimensions 440×215×215 mm (length × height × thickness) and 

approximately 10 mm thick joints, see Figure 8. The parapet was subjected to an out-of-plane car 

like impact, applied by means of a square steel plate positioned in correspondence of the mid-

length. Two stiff concrete abutments were positioned at the extremes of the wall, thus precluding 

the rotation of the vertical edges. The first row of blocks was directly positioned in correspondence 

of a stiff steel floor, thus allowing (at least in principle) a free rotation of the horizontal edge.  

For the numerical simulations, a triangular time-load distribution was assumed, with a peak value 

equal to 110 kN reached at 25msec, see Figure 8, approximating the experimentally registered load 

applied. 
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In the numerical simulations conducted by Burnett et al. (2007), a heterogeneous approach with 

joints reduced to interfaces with frictional behavior and elliptic tensile cap failure criterion, with 

bricks assumed as linear elastic, was adopted. Post peak joints behavior was found with a marked 

softening branch, whereas for the initial tensile and shear strength, relatively high values (0.45 MPa 

and 0.63 MPa respectively) were used. If such a high value of tensile strength is adopted in the 

rigid-plastic approach here proposed, dissipation occurring in joints is obviously overestimated, 

with a consequent underestimation of displacements at increasing time steps. This behavior is 

typical for a rigid-perfectly plastic approach, where it is not possible to model the well known 

softening behavior in tension of the mortar joints. 

As discussed above, the model proposed may approximate well experimental data in presence of 

joints with poor mechanical properties or assuming a reduced tensile strength for mortar, thus 

simulating masonry behavior after initial cracking of joints (see the numerical simulations reported 

in Hamad and Rabinovitch 2008). 

In order to have a better insight into the global behavior of the parapet using the model proposed, 

two different sets of mechanical properties for bricks-mortar interface tensile and shear strength are 

assumed, as summarized in Table I. As it is possible to notice from the table, tensile strength values 

adopted are lower with respect to Gilbert et al. (2002a). The goal of the simulations is, indeed, to 

show that, when cracking of joints has occurred, the behavior of the walls can be satisfactorily 

reproduced with the model proposed, provided that particular care is utilized in the evaluation of 

input mechanical properties. In order to cover a sufficiently large range of cases, a relatively low 

tensile strength is assumed for CASE A (approximating a scarcely tensile resistant material), 

whereas for CASE B the simulations are repeated supposing a higher strength for brick-mortar 

interfaces (typically ranging between 1/2 and 1/5 of the initial strength). For bricks and joints sub-

domains, a classic Mohr-Coulomb failure criterion in plane stress is adopted (bricks cohesion is 2 

MPa, bricks friction angle is Φ =45°, mortar cohesion is 63.0=c  MPa, and mortar friction angle is 

Φ =38° [data collected from Burnett et al. 2007]). 

At structural level, both a shell (hereafter named as 2.5D) and a 3D FE heterogeneous elastic-plastic 

dynamic analysis have been conducted, in order to have adequate insight into the problem and to 

collect results to compare with those provided by the present rigid-plastic approach.  

The two different heterogeneous meshes utilized in the 2.5 and 3D case are depicted in Figure 9-b 

and -c respectively, together with the homogenized mesh adopted, shown in Figure 9-a. Models will 

be denoted hereafter respectively with labels WI2.5D and WI3D for the sake of simplicity.  

For both WI2.5D and WI3D models, the commercial software Strand 7.2 (2004) was utilized to 

perform the dynamic non-linear analyses. As shown in Figure 9, a relatively refined discretization 
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was adopted for WI2.5D and WI3D, in order to avoid possible inaccuracies due to mesh 

dependence. A Mohr-Coulomb failure criterion was used for bricks (with the same properties of the 

rigid plastic model proposed), whereas for joints a Mohr-Coulomb failure criterion with the tensile 

strength and friction angle of bricks-mortar interfaces used in the homogenized approach was 

adopted. It is worth noting that, for model WI2.5D, elastic-plastic eight-noded quadrilateral 

elements were used in order to prevent possible numerical inaccuracies due to locking phenomenon 

in bending. For WI3D model, eight-noded brick elements were utilized both for joints and bricks, 

with a double row of elements along wall thickness.  

A comparison among the deformed shapes at t=100 msec obtained with the present model, WI2.5D 

and WI3D is schematically depicted in Figure 10 (CASE A results are shown). As it is possible to 

notice, all models give almost the same response in terms of deformed shape for the particular 

instant time inspected (100 msec), except for the presence of a slight out-of-plane sliding at the base 

of the wall (particularly evident in the model WI3D), which obviously cannot be reproduced with 

simple Kirchhoff-Love approaches as the one presented in this paper. 

It is worth noting that the homogenized rigid plastic model required only 252 seconds to be 

performed on a standard PC Intel Celeron 1.40 GHz equipped with 1Gb RAM, a processing time 

around 100 and 200 faster than WI2.5D and WI3D respectively. Due to the very limited 

computational effort required, full sensitivity analyses are possible even for complex structures. 

In Figure 11 and Figure 12, the response of the homogenized rigid-plastic model when subjected to 

the aforementioned impact load is reported for CASE A and CASE B respectively. In particular, 

maximum out-of-plane displacements at increasing time steps as well as the evolution of the 

deformation at successive instants are represented graphically.   

A full comparison among maximum out-of-plane displacement at the mid-length top point of the 

wall at increasing time obtained with the different models previously described is reported in Figure 

13. Results obtained adopting a simplified model based on the a-priori assumption of rigid body 

motion with dissipation on interfaces between contiguous bodies (Gilbert et al. 2002b) are also 

represented. It is interesting to notice that wall deformation depends significantly on cohesion and 

tensile strength of bricks-mortar interfaces, confirming that the selection of mechanical properties is 

a key issue. In any case, if compared with standard elastic-plastic procedures, the model adopted 

seems to provide quite accurate results, at a fraction of the time of non-linear dynamic FE 

simulations.  

Finally, in Figure 14, sensitivity analysis results are reported ranging tensile strength from 0.1 to 0.3 

MPa. In particular, the maximum out-of-plane displacement (at the end of the simulations, i.e. 200 

msec) obtained with the model proposed at increasing tf  is depicted. As expected, maximum 
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displacement decreases significantly when high strength mortar is adopted. Furthermore, from the 

sensitivity analysis shown, a value of tf  around 0.2 MPa provides optimal experimental data 

fitting. From the results reported in Figure 14 and remembering previous considerations and 

limitations, it can be stated that a rigid plastic model can be adopted to analyze masonry structures 

subjected to low velocity impacts, giving interesting information on displacement-time curves, 

provided that a careful analysis of input mechanical properties is done (i.e. in the range of the low 

values suggested by codes of practice). 

5.2 Square masonry plate subjected to air-blast load 

A simply supported masonry plate of dimensions 200 ×  180 cm (length ×  height), built with 

hollow concrete units of dimensions 390×190×190 mm (length × height × thickness) and subjected 

to an air-blast load is here considered as a second example. A similar example has been numerically 

analyzed by Wu and Hao in (2008), where a deep discussion on aspects related to masonry cracking 

during air-blast was reported. No information on the maximum displacement at successive time 

steps to compare to present FE results is at disposal from Wu and Hao (2008), therefore the 

example here treated is aimed at testing the capabilities of the model proposed when compared with 

FE standard codes only (i.e. without specific reference to Wu and Hao 2006 and 2008). 

Furthermore, no experimental data are available in the technical literature for this example. A 

similar example with time-maximum displacement numerical diagrams on a square masonry plate 

subjected to blast is discussed in Wang et al. (2009). Magnitude of maximum displacement at the 

end of the simulations as well as displacements at increasing time steps result in very good 

agreement with simulations presented in this section (even if only a qualitative comparison is 

possible in this case), confirming the capabilities of the model proposed (for further details the 

reader is referred to Wang et al. 2009).  

In order to collect numerical results and with the aim of assessing the data provided by the 

homogenization model proposed, analogously to the previous example, two different heterogeneous 

FE dynamic elastic-plastic analyses have been performed by means of the commercial code Strand 

7.2. As in the previous case, a 2D and a 3D approach, hereafter labeled as WII2.5D and WII3D, 

have been adopted. Mesh WII2.5D is constituted by quadrilateral plates, whereas WII3D by solid 

brick elements. Figure 16 shows the discretization adopted for the simulations. 

Again, for model WII2.5D, elastic-plastic eight-noded elements were used, whereas for WII3D a 

double row of eight-noded brick elements was disposed along wall thickness in order to reproduce 

out-of-plane bending. WII3D constraints have been applied at the boundary nodes belonging to the 
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intrados, in order to avoid a fictitious extra-resistance of mortar joints caused by the possible 

presence of membrane compressive stresses at the middle surface. 

Wu and Hao (2008) assumed for mortar joints and bricks a tensile strength equal to 1 MPa and 2.6 

MPa respectively. As in the previous example, joints initial tensile strength is rather high. 

Furthermore, in Wu and Hao (2008), a marked softening branch in tension is assumed, with the 

consequent reduction of tf  almost to zero immediately after first cracking of the joint. Obviously, 

such behavior cannot be reproduced with the model here proposed. 

In order to circumvent this drawback, a sensitivity analysis is performed next, assuming for bricks-

joints interfaces two different tensile strength values, hereafter denoted as CASE A and B, 

respectively equal to 0.2 and 0.5 MPa (typically 1/5 and ½ of initial strength).  

For all the cases analyzed and for all the simulations conducted, a Rankine failure criterion is 

adopted for bricks with tensile and compressive strength equal to 2.6 MPa and 52 MPa, whereas for 

mortar sub-domains a Mohr-Coulomb failure criterion is assumed with tf =1 MPa and Φ =30° 

(data collected from Wu and Hao 2008). When dealing with the rigid-plastic homogenization 

model, a linearization of the failure criterion originally proposed in Lourenço and Rots (1997), see 

Figure 3, is assumed for brick-joint interfaces, see Table II for a synopsis of all the mechanical 

properties adopted. On the other hand, two different analyses on WII2.5D and WIII3D models have 

been conducted, assuming a Mohr-Coulomb failure criterion with decreasing cohesion 

c = ( )Φtanff  for mortar, tf  values as in Table II and °=Φ 30 . 

In Figure 17, a comparison among deformed shapes at t=10msec provided by the present model, 

WII2D and WII3D in Case A is reported. As it is possible to notice, all models give almost the 

same response in terms of deformed shape for the particular instant time inspected. No sensible 

differences among all models were found varying both time and mortar mechanical properties.  

Analogously to the previous example, processing time required for the present rigid-plastic 

simulations was at least 180 times faster when compared with standard commercial code, 

confirming that reliable results can be obtained with a fraction of the computational effort. 

In Figure 18 and Figure 19, the deformation evolution at different time steps and the maximum-

displacement-time diagram up to 0.06 sec from the rigid-plastic analysis are represented 

respectively for CASE A and CASE B. 

A final synopsis of all time-central point displacement diagrams obtained by means of the different 

FE approaches presented previously and assuming different mechanical properties for the 

constituent materials is reported in Figure 20, carrying out the simulations to 100 msec. 

Furthermore, in Figure 20, results obtained adopting a simplified model based on a yield line 

solution and originally proposed by Komarov and Nemirovskii (1985) are also represented. Such 
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approach is based essentially on rigid-plastic assumptions for the material, thus it is expected that it 

provides results in relative agreement with the homogenized model proposed. As already pointed 

out, no information is at disposal from the literature with respect to numerical displacements at the 

centre of the plate at successive time steps, and experimental data are missing. In any case, 

comparisons with standard FE elastic-plastic approaches conducted via a commercial software and 

hand calculations clearly show that very reasonable results may be obtained by means of the 

homogenization rigid plastic model proposed.  

6 Conclusions 

A homogenized rigid-plastic plate model for the analysis of masonry plates subjected to impacts 

and air-blasting has been presented. Bricks and mortar joints have been assumed obeying an 

associated flow rule with rigid perfectly plastic behavior. Out-of-plane anisotropic masonry failure 

surfaces have been obtained by means of a static limit analysis approach recently presented in 

Milani et al. (2006c), in which the unit cell is subdivided into a fixed number of sub-domains and 

layers along the thickness. A limited strength (frictional failure with compressive cap and tension 

cutoff) of brick-mortar interfaces has been also taken into account, thus making the reproduction of 

elementary cell failures due to the insufficient resistance of the bond between units and joints 

possible. 

Triangular Kirchhoff-Love elements with linear interpolation of the displacements field and 

constant moment within each element have been used at a structural level, leading to a discretized 

quadratic programming formulation at each time step for the analysis of entire walls subjected to 

impacts. 

Two examples have been treated, namely a running bond masonry wall constrained at three edges 

and subjected to a point impact load and a masonry square plate constrained at four edges and 

subjected to a distributed dynamic pressure.  

While for the first example some experimental data are available, the second analysis may be 

compared only with alternative numerical procedures conducted with commercial software 

available in the market stock. 

Comparisons with experiments (where available) may be attempted only taking into account that 

rigid-plastic models perform well if softening is not crucial, i.e. in presence of low mechanical 

properties for the constituent materials, or alternatively after joints first cracking, i.e. assuming an 

“equivalent” reduced tensile strength for mortar.  

For these reasons, the primary aim of the approach proposed is to provide structural comparisons 

with alternative commercial FE non linear software, usually available in common design. 
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For all the simulations performed, the model proposed required a negligible processing time if 

compared with standard FE incremental procedures, as represented in Table III, where a synopsis of 

CPU times required and maximum displacements at the end of the simulations for both examples is 

reported. As one can note from maximum displacements reported in Table III, good agreement has 

been found, for all the cases analyzed, both with standard elastic-plastic FE procedures and at hand 

calculations. Finally, Table III results indicate that the proposed simple tool can be used by 

practitioners (parallely to alternative sophisticated approaches) for the safety assessment of out-of-

plane loaded masonry panels subjected to impacts, at a very small fraction of the time used for 

conventional finite element analysis.  
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Figure 1: Typical relatively ductile behavior of a masonry wall in two-way bending and out-of-

plane loaded (data from Southcombe et al. 1995, numerical simulations from Milani et al. 2006c). 
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Figure 2: Periodic structure ( 21 XX − : macroscopic frame of reference) and elementary cell 

( 321 yyy −− : local frame of reference). 
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Figure 3: The micro-mechanical model proposed. -a: subdivision in layers along the thickness. –b: 

subdivision of each layer in sub-domains. –c: linearized strength domain for bricks and joints sub-

domains, with Mohr-Coulomb failure criteria, and for bricks-joints interfaces, with a Mohr-

Coulomb failure criterion with compression linearized cap and tension cutoff. 

 

 



 28 

11

2

c

t

c  : cohesion

f   : tensile strength

: compression linearized cap
: friction angle

f   : compression strength

c

12

2
t
f

c
f

22 11

c

12

22

22

12

11

12

Mortar-brick interfaces

Horizontal interfaces Vertical interfaces

22

 

Mohr Coulomb with compression cap and 

tension cut off failure criterion. 

Classic Mohr Coulomb failure criterion. 

-a -b 
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problem and ψ  and ϑ  angles. 

 

y

x

i
j

k
Mnn

Ej

Mnn
Ek

Mnn
Ei

M xx

M xy

M xy

M yy

p(x,y)
Element E constant M

ij

k

Rk
E

Ri
E

R j
E

y

x

i
j

k

Mnn
Ek

k

Mnn
Ej

j

i

y

x

E

E

E

E

E

Mnn

 

-a -b -c 

Figure 6: Bending moment acting at the edges of the triangular plate element used for the FE 

rigid-plastic analysis (-a), continuity of the bending moment on interfaces (-b), integral 

equilibrium (-c). 
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Figure 7: Rotations at the edges of the triangular plate element used for the FE rigid-plastic 

analysis (-a), mutual rotation along an interface between adjacent triangles (-b), discretization 

of the 2D domain (-c). 
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Figure 8: Stretcher bond masonry parapet subject to low velocity impact. Geometry of the wall 

and typology of dynamic load applied. 
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Figure 9: Stretcher bond masonry parapet subject to low velocity impact.–a: FE limit analysis 

discretization. –b: elastic-plastic 2.5D model discretization (WI2.5D). –c: elastic-plastic 3D model 

discretization (WI3D). Only ½ of the wall is analyzed for symmetry. 
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Figure 10: Stretcher bond masonry parapet subject to low velocity impact. Comparison among 

deformed shapes at t=100 msec –a: Homogenized limit analysis approach. –b: heterogeneous 

2.5D elastic-plastic FE approach. –c: heterogeneous 3D elastic-plastic FE approach. Only ½ of 

the wall is analyzed due to symmetry.  
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Figure 11: Stretcher bond masonry parapet subject to low velocity impact. Results from the rigid-

plastic model, CASE A. –a: maximum displacement-time diagram. –b: perspective view of 

deformed shape evolution. 
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Figure 12: Stretcher bond masonry parapet subject to low velocity impact. Results from the rigid-

plastic model, CASE B. –a: maximum displacement-time diagram. –b: perspective view of 

deformed shape evolution. 
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Figure 13: Stretcher bond masonry parapet subject to low velocity impact. Overview of time-

maximum out-of-plane displacement diagrams. 
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Figure 14: Maximum out-of-plane displacement (at the end of the simulations, 200 msec) at 

increasing mortar tensile strength. 
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Figure 15: Masonry panel constrained at four edges and subjected to air-blast load. 
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Figure 16: Masonry panel constrained at four edges and subjected to air-blast load.–a: FE limit 

analysis discretization. –b: elastic-plastic 2.5D model discretization (WII2.5D). –c: elastic-

plastic 3D model discretization (WII3D).  
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Figure 17: Masonry panel constrained at four edges. Comparison among deformed shapes at 

t=10 msec –a: Homogenized limit analysis approach. –b: heterogeneous 2.5D elastic-plastic FE 

approach. –c: heterogeneous 3D elastic-plastic FE approach.  
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Figure 18: Masonry panel constrained at four edges and subjected to air-blast 

load, CASE A. –a: maximum displacement-time diagram. –b: perspective 

view of deformed shape evolution (1/2 of plate) 
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Figure 19: Masonry panel constrained at four edges and 

subjected to air-blast load, CASE B. –a: maximum 

displacement-time diagram. –b: perspective view of deformed 

shape evolution (1/2 of plate) 
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Figure 20: Masonry panel constrained at four edges and subjected to air-blast load. Time-

maximum out-of-plane displacement diagrams. 
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9 Tables 

Table I: Stretcher bond masonry parapet subject to low velocity impact. Mechanical 

characteristics assumed for bricks-mortar joints (tf : tension cut-off, c : cohesion, Φ : 

friction angle, cf : compressive strength, 2Φ : shape of the linearized compressive cap). 

 

 
tf  MPa c  Φ  cf  MPa 2Φ  

CASE A 0.10 1.2 tf  30° 20 tf  30° 

CASE B 0.25 1.2 tf  30° 20 tf  30° 

 

 

Table II: Masonry panel constrained at four edges and subjected to air-blast load. 

Mechanical characteristics assumed for brick-mortar interfaces ( tf :tension cut-off, c : 

cohesion, Φ : friction angle, cf : compressive strength, 2Φ : shape of the linearized 

compressive cap). 

 tf  MPa 





2mm

N
c  Φ  cf  MPa 2Φ  

CASE A 0.2 1.2 tf  30° 5 30° 

CASE B 0.5 1.2 tf  30° 5 30° 
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Table III: CPU time required for the simulations and maximum displacement at the end of the simulations. Comparison between present numerical 

approach and standard FE heterogeneous procedures. 

 CASE  CPU time [h:m:sec] Maximum displacement [mm] 

  
Homogenized 

rigid-plastic 

2.5D 

FEM 

3D 

FEM 

Homogenized 

rigid-plastic 

2.5D 

FEM 

3D 

FEM 

Example 1 A 0:4:12 9:11:01 17:45:21 145 (1) 152 (1) 174 (1) 

 B 0:3:56 12:27:44 21:09:51 46.2 (1) 47 (1) 48 (1) 

Example 2 A 0:3:23 10:11:01 19:54:00 930 (2) 1050 (2) 1200 (2) 

 B 0:2:49 11:38:19 20:51:47 
650 (2) 

625 (3) 

720 (2) 770 (2) 

Legend 
(1) maximum displacement calculated at 200 msec 
(2) maximum displacement calculated at 100 msec 
(3) at hand calculation based on the yield line theory 

 


