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Abstract

A simple rigid-plastic homogenization model for thealysis of masonry structures subjected to
out-of-plane impact loads is presented. The objeas to propose a model characterized by a few
material parameters, numerically inexpensive amg s&ble. Bricks and mortar joints are assumed
rigid perfectly plastic and obeying an associated frule. In order to take into account the effett
brickwork texture, out-of-plane anisotropic masoijlure surfaces are obtained by means of a
limit analysis approach, in which the unit celbigdivided into a fixed number of sub-domains and
layers along the thickness. A polynomial repreg@naof micro-stress tensor components is
utilized inside each sub-domain, assuring botrssttensor admissibility on a regular grid of points
and continuity of the stress vector at the inteafabetween contiguous sub-domains. Limited
strength (frictional failure with compressive capdaension cutoff) of brick-mortar interfaces is
also considered in the model, thus allowing theagpction of elementary cell failures due to the
possible insufficient resistance of the bond betwests and joints.

Triangular Kirchhoff-Love elements with linear inpelation of the displacement field and constant
moment within each element are used at a struckewval. In this framework, a simple quadratic
programming problem is obtained to analyze entméisasubjected to impacts.

In order to test the capabilities of the approaobppsed, two examples of technical interest are
discussed, namely a running bond masonry wall caingd at three edges and subjected to a point
impact load and a masonry square plate constrahddur edges and subjected to a distributed
dynamic pressure simulating an air-blast. Onlytfar first example, numerical and experimental
data are available, whereas for the second exaimgUéficient information is at disposal from the
literature. Comparisons with standard elastic-pdgatocedures conducted by means of commercial
FE codes are also provided. Despite the obviousoappations and limitations connected to the
utilization of a rigid-plastic model for masonrizetapproach proposed seems able to provide results
in agreement with alternative expensive numerit¢aste-plastic approaches, but requiring only
negligible processing time. Therefore, the proposietple tool can be used (in addition to more
sophisticated but expensive non-linear procedubpgspractitioners to have a fast estimation of
masonry behavior subjected to impact.
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1 Introduction

Structures and buildings are occasionally callednup withstand exceptional dynamic loading
regimes, caused by accidental events, such asigtance impacts from vehicles or gas / terrorist
explosions. In order to take into account the efiieduced on structures by exceptional loads, codes
of practice of many countries, e.g. EN 1991-1-7&@R006), require the safety assessment of
buildings when subjected am-hoc equivalent static loads. Such loads are usuallgiodd through
empirical coefficients and are aimed at mimicking teffect of quasi instantaneous dynamic
actions.

An alternative approach to the assumption of simgglistatic load distributions, usually based on
simplifications and rules of thumb, is the utilipat of finite element non-linear dynamic analyses
(see e.g. Burnett et al. 2007 and Wu and Hao 20@62808), almost always performed using
commercial software available in the market. Acamydo authors’ knowledge, commercial codes
devoted exclusively to the non-linear dynamic asiglyf brickwork are still lacking. Moreover,
when dealing with impact on masonry structures,oa-lmear standard dynamic finite element
approach is usually only applicable to walls of Brdanensions, basically for research purposes
and requires considerable expertise. Still, the putational cost is usually prohibitive, due to the
need of modeling separately mortar joints and unitee framework of a heterogeneous approach.
Due to the above reasons, despite the importantleeoproblem and the growing interest in the
scientific community related to the safety assessgragstructures subjected to quasi instantaneous
dynamic loads, only a few works dealing with thibject seem to exist (Mayrhofer 2002, Gilbert et
al. 1998 and 2002a, Wu and Hao 2006 and 2008, Waalg 2009).

Also, only a few laboratory experimental investigas devoted to the study of dynamic loads
simulating vehicles impacts on parapets (Gilbertaket1998 and 2002a) and air-blasting, e.g.
Mayrhofer 2002 and Astbury et al. 1970, are avélafhese experimental programs aim at
providing simplified assessment formulas and destggommendations.

In this framework, it is appealing to develop agienFE numerical approach for masonry subjected
to low and high velocity impacts that avoids indegent modeling of bricks and mortar joints, that
requires a very limited number of input parameterset and that is able to reproduce failure
mechanisms and displacements evolution at suceessie steps.

As a matter of fact, the response of masonry whaddd out-of-plane is strongly influenced by the
anisotropic behavior of brickwork at failure (seeg. Gilbert et al. 2002a, Milani et al. 2006a).
Furthermore, despite the fact that masonry behangar failure when loaded out-of-plane is locally

brittle, laboratory tests (see e.g. Southcombé. 41985) conducted on entire masonry walls in two-



way bending, have shown that failure takes placagah definite pattern of lines, with a relatively
ductile response. This inspired the utilizatiorapproximate analytical solutions based both on the
yield line theory and on the fracture line theoBinha 1978), able to predict with sufficient
accuracy the ultimate load bearing capacity ofrentialls, see Figure 1. Up to now, the yield line
approach seems the most suitable to apply in peadtir the evaluation of masonry behavior, a
statement corroborated by the adoption of this @gugr in many codes of practice, as for instance
BS 5628 (1985) and EC6 (1995).

In this framework, here, a homogenized rigid-p@astt approach for dynamic analyses of masonry
structures is presented. Bricks and mortar joinésagasumed rigid perfectly plastic and obeying an
associated flow rule. Out-of-plane anisotropic nmagdailure surfaces are obtained by means of a
limit analysis approach, in which the unit celbigdivided into a fixed number of sub-domains and
layers along the thickness. A polynomial repreg@naof micro-stress tensor components is
utilized inside each sub-domain, assuring strassoteadmissibility on a regular grid of points and
continuity of the stress vector at the interfacesMeen contiguous sub-domains. Limited strength
of bricks-mortar interfaces is also considered he tmodel, given by frictional failure with a
compressive cap and tension cutoff, thus makingepeoduction of elementary cell failures due to
the insufficient resistance of the bond betweemsuand joints possible.

Triangular Kirchhoff-Love elements with linear inpelation of the displacement field and constant
moment within each element are used at a strudiewal (Hellan 1967, Hermann 1967). With the
aim of numerically evaluating nodal displacememtd enternal actions at successive time steps, the
simple quadratic programming approach proposedjpugso (1972a and 1972b) is adopted.
Finally, in order to test the capabilities of thedel proposed, two examples are treated, namely a
running bond masonry wall constrained at three edgel subjected to a point impact load, and a
masonry rectangular plate constrained at four edgdssubjected to a distributed dynamic pressure
simulating an air-blast. The results of the firstample are compared with numerical and
experimental data available from Gilbert et al.9892002a and 2002b) and Burnett et al. (2007),
whereas, for the second example, only limited nicakresults are available from Wu and Hao
(2006 and 2008).

It is stressed that insufficient experimental data available in the literature concerning masonry
out-of-plane loaded subjected to impacts. Gilbertale (1998, 2002a and 2002b) papers are
probably the only ones available giving a full dgs#ton of masonry response in terms of time-
displacement, deformed shapes at successive aesatimechanical characterization of the
constituent materials, etc. Thus, the model heopgsed is validated with standard elastic-plastic

procedures conducted by means of commercial FEscadd hand calculations, proposed for



instance in Gilbert et al. (2002b) and essentibthged on the assumption of perfect plasticity.

Despite the simplifications introduced by a rigidgtic assumption, the approach should be able to
give reasonable results, as it is also considerdtiea masonry codes for out-of-plane design (EN

1991-1-7:2006).

Apart from experimental validation, the homogerimatpproach here presented may be of interest
for practitioners and researchers involved in thalysis of masonry structures subjected to impact,
because the computational effort is minimal. Finadkensitivity analyses conducted with the model

proposed (almost impossible to carry on with conuiaércodes), may represent a further help in

the design phase, giving a large set of informatiompanels behavior at successive iterations.

2 Masonry out-of-plane failure surface

A masonry wallQ constituted by a periodic arrangement of brickd maortar with a running bond
texture (Figure 2) is considered. As shown by Stugua general framework (1983) and in other
recent masonry papers (Milani et al. 2006a, 2006¢ 2006c and Cecchi and Milani 2008),
homogenization techniques combined with limit aselycan be applied for the definition of the
out-of-plane brickwork strength domagi°™.

In particular, under the assumption of perfect tddy and associated flow rule for the constituent
materials and in the framework of the lower bouingtl analysis theorem, an estimation 8f°"

can be obtained by means of the following (nondmeptimization problem (see also Figure 2):
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s =4(M,N)]| dive =0 (©)
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where:

- N andM are the macroscopic in-plane (membrane forcespatidf-plane (bending moments)
tensors;

- 6 denotes the microscopic stress tensor;

- n is the outward versor afY, surface;
- dY, is defined in Figure;2

- [l6]] is the jump of micro-stresses across any discoityisurface of normah™ ;



- S™ and S denote respectively the strength domains of martarbricks;

- Y is the cross section of the 3D elementary celhwif = O (see Figure 2)|,Y| Is its area)V is

the elementary cellh represents the wall thickness apd (y1 Y, y3).

2.1 The micro-mechanical model proposed

A simple admissible and equilibrated micro-mechahimodel for the evaluation oB™" is
adopted, following the model originally presentadMilani et al. (2006a and 2006c¢). The unit cell
is subdivided into a fixed number of layers alotgythickness, as shown Kigure 3-a. For each

layer, out-of-plane components, (i =1, 2, 3) of the micro-stress tenser are set to zero, so that
only in-plane components; (i, j =1, 2) are considered active. Furthermogs, (i, j =1, 2) are
kept constant along tha,; thickness of each layer, i.e. in each lager=o;(y,,y,). For each

layer one-fourth of the REV is sub-divided into eigeometrical elementary entitiesi{-domains),
so that the entire cell is sub-divided into 36 slorains (Figure 3-b).

For each sub-domaifk and layer(i,_), simple polynomial distributions of degrém) in the
variables (yl,yz) are a priori assumed for the stress componentge3tresses are polynomial
expressions, the geneij’ component can be written as follows:

o =X(y)sir yoytw (2)
where:

XW)=R v v ¥ vy ¥

- S = [S,}"'“)‘l) SfeE - gllt)® gl )@ gl)or gl )Xo J is a vector representing the
unknown stress parameters of sub-don{&inof layer (i, );

- Y®) represents thid" sub-domain of layei, ).

The imposition of equilibrium (with zero body fos;eas usually considered in homogenization
procedures) inside each sub-domain, the contirafityhe stress vector on interfaces and the anti-

periodicity of en permit directly a strong reduction of the totalnher of independent stress

parameters.

Namely, the imposition of micro-stress equilibrigm, , =0 i =12) in each sub-domain yields:
2 .

> X(y); s =0 (3)

=1

If p is the degree of the polynomial expansim(np+1) equations can be written.



A further reduction of total unknowns is obtain@tpiosing a priori the continuity of the (micro)-
stress vector on internal interfaces()n™ +5“")n!™ =0 i=12) for every (k,i_) and (r,i,_)
contiguous sub-domains with a common interfaceoofnal n™ (Figure 3-c). Therefore, additional

2(p+1) equations in the stress coefficients can be wriibe each interface as follows:
(X i(jk,iL) (y)S(k,iL) + xi(jr,iL) (y)s(r,iL)T) nijnt =0 i=12 (4)
Finally, anti-periodicity ofen on oV requiresZ(p+1) additional equations per pair of external

faces(m,iL) and (n,iL) (Figure 3-c), i.e. it should be imposed that stnesctorsen are opposite on

opposite sides odV :
xi(jm,iL) (y)S(m,iL)nl‘j - _xi(jn,iL) (y)s(n,iL)nzyj (5)
wheren, andn, are oriented versors of the external faces ofptieed sub-domainém,iL) and

(ni.).
Some elementary assemblage operations on thevadables lead to the stress vector of layer

inside each sub-domain given by:

o) =X (y)Sh) Kk =1..., numberf sub-domainsi, =1...,numberf layers (6)

where S is the vector of unknown stress parameters ofrlgye

It is worth mentioning that equations ( 3 ), (4 B ) can be written in a compact formA$=0,
where S is the vector of total stress parameters And a matrix of geometrical coefficients with
n rows (expressing internal equilibrium in sub-donsaiinterface equilibrium between contiguous
sub-domains and anti-periodicity) ama columns (wherem is the total number of independent +
dependent unknowns). Moreover, not all the rowshaf system are linearly independent and the
linear dependence of some equations with respemthers can be easily handled automatically (for
instance by means of Symbolic Math ToolB%xchecking the rank of matri and progressively
eliminating linearly dependent rows.

Reliable results can be obtained if a third orddympomial expansion is chosen for the stress field.
For this reason, in all the examples treated reexdh approximation is adopted.

It is stressed that, once the polynomial degrdixésl, the out-of-plane model presented requires a

subdivision f, ) of the wall thickness into several layers (Figd@), with an a priori fixed
constant thicknessd, =h/n_ for each layer. In this way, the following simp{eon) linear

optimization problem is derived:



max{A}

N= [g*dv (@)

K,
M = j y,6“dv (b)
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suchthat M, M, sin(¥)  sin(y)cody) (7)

W =1[0,2mn] 6=I[0; /2] (d)
E(kvil.) - )’Z(kvil_)(y)é (e)
s v oskv &' 08 ()
k=1..., numberof sub—domains, i, =1...,numberof layers (g)

where:

M
] . - . _ _ : - X
¢ and J are spherical cooridinates iM,, -M —-M, , given by tar‘(:?) \/W)
xx Wy

M
tar((//):M—W i

XX

- s denotes the (non-linear) strength domain of thestituent material (mortar or brick)

corresponding to th&"™ sub-domain and” layer.

- S' represents the bricks-mortar interfaces strengtmain, see Figure 4 and Figure 3-c. As
experimental evidences show, cracks usually octuhe joints, therefore it appears particularly
suitable to assume a limited strength for bricktaomterfaces. Basic failure modes for masonry
with weak mortar are a mixing of sliding along thrick-mortar interface, direct tensile cracking of
the interface and compressive crushing. Thus, ealined Lourengco and Rots (1997) failure
criterion seems particularly suited for the anaysear failure of bricks-mortar interfaces, merging

in a unique criterion frictional failure (Mohr-Cauhb), a tension cut-off, and a compressive cap

described by parameteffs and @, , see Figure 4.

-¢' = [a" r']T is the micro-stress vector acting on the integat®ingo' the stress component
acting perpendicularly to the interface aridthe tangential stress component.

- S collects all the unknown polynomial coefficients €ach sub-domain, of each layer).
- A is the direction of the ultimate bending momentheM, -M  -M, space (seEigure 5);
It is worth underlining here that:

- membrane actions are kept, for the sake of simplidonstant and independent from load

multiplier. Hence, for the analysis at collapsepaihels reported next, in-plane actions affect



optimization only in the evaluation oM ,,M ,M, strength domains. This assumption is

usually acceptable since a fixed in-plane compvessoad (regarded as permanent load)

N,, = =N, exists, the wall thickness is small and the cakajs obtained at relatively small out-

of-plane displacements.
- Condition (f) of equation ( 7 ) is enforced, in each sub-domairgorrespondence of exq

rectangular regular grid of “nodal points”. The e shown that reliable solutions can be

obtained with a minimum o8x grids (see Milani et al. 2006c).

The non linearity of the terms™" 0 S*", due to the (possible) non-linearity of the stténg
functions of the components is easily avoided byamseof a piecewise linear approximation of
constituent materials strength domains (see e.gleAreggen and Knopfel 1972). On the other
hand, it is worth noting that recent trends in tismalysis have demonstrated that the linearization
of the strength domain can be circumvented usingictgemidefinite programming (e.g.
Makrodimopoulos and Martin (2006), Krabbenhoft le2807 and 2008). It has been demonstrated
that, in terms of processing time, this tool istéethan classic linear programming (LP). Both free

(e.g. SeDuMi, http://sedumi.mcmaster.ca/) and coroiale(e.g.www.mosek.costandalone tools

are nowadays available; nonetheless, since theoéithis paper is mainly concentrated on the
structural aspects, the classic interior point b&tine available in MATLAB® is used for the sake

of simplicity.

Finally, some limitations of the model are worthting. The approach proposed is a multilayer
procedure with no interaction between the layefis Ts of course the simplest way to obtain a
lower bound plate model, but raises questions enfaiet that the solid medium behaves in the
similar manner. Furthermore, it is suited only fonning bond masonry, whereas there is no
possibility to utilize the suggested approach foullle wythes structures. A 3D equilibrated model
(with the same subdivision into parallelepiped sioibaains) is under investigation by the authors,
with the aim of applying it to multi-leaf struct@wesubject to impacts.

3 The quadratic programming problem at a structural level

In the field of steel structures, basic theoremsceoning rigid-plastic dynamics, as well as models
devoted to the evaluation of the effect of impdutsluding one degree of freedom so called “mode
solutions”) are well known, e.g. Martin (1964), Marand Symonds (1965), Tamuzh (1962) and
many others. The main hypotheses of such modekhar®llowing (see Capurso 1972a and 1972b,
Cannarozzi and Laudiero 1976, and a more recemr gapKim and Huh 2006):

1. rigid-perfectly plastic behavior of the material;

2. strain rate insensitivity of the yield stress;

8



3. negligible changes of the geometry during deforamati
These requirements are somewhat contradictorye darge energy inputs will tend to cause large
displacements and high velocities sensibly affeet\talue of yield stress. In order to circumvent
these limitations, extensions to rate dependenemadt and large deformations problems were
attempted in the first applications (Capurso 19d2t Martin 1972).
It has been shown in classic literature that rggj@stic approaches perform well for ductile
structural elements subjected to impact and thaemxental data available can be fitted with
sufficient accuracy (e.g. Bodner and Symonds 198&)a consequence, rigid-perfect plasticity has
been used by many authors in design practice tirohtfast estimate (Martin and Symonds 1965,
Komarov and Nemirovskii 1985) of deformations indddy dynamic loads.
For masonry structures subjected to static loadkwing the pioneering work by Heyman (1969),
limit analysis has been extensively utilized (€Ogdufia and Lourenco 2005, Milani et al. 2006b),
certainly representing the faster tool of analjsiscomplex structures (Milani et al. 2008).
In analogy to the static case, a rigid-plastic agsion for bricks and mortar joints is attempted
here, with the aim of analyzing, with a simple a&fiicient tool, full walls subjected to impact.
When dealing with discretized structures by FEs,ahalysis of rigid-plastic structures subjected to
impulsive loading can be studied in the framewofkaoquadratic programming approach. In
particular, within the class of all internal act®oomnd accelerations that are dynamically and
plastically admissible (i.e. obeying dynamic edurilim and belonging to the class of internal
actions connected with initial velocities, so reganeting a static formulation, see Martin 1964), the
actual set minimizes, following the original defion given in Capurso (1972a), the second order

kinetic energy of the structure, i.e.:

min{Q(u)} = min{%uTm[j}
B"Z =F(t)-mu (a) (8)
subjecttos A®¥X =b* (b)
A"E<b™ (o)
where:

- U is the vector of nodal accelerations. Followings thotation,u and u will indicate in the

following respectively velocities and displacememtsial vectors.

¥ is the assembled vector of elements internal Astio

F(t) is the external forces vector, generally dependpaoh the time step under consideration;

m is the square matrix of masses, which typicaleylamped at each nodal point;

B is a matrix of coefficients that depends only e sind shape of finite elements utilized.

9



Considering a FE discretization of the body andiassg a piecewise linear yield surface for an
element E, the set of admissible internal actions states lmarexpressed by the set of linear
inequalities:
[-axe+b] o] (9)

>
where
-A =[Aeq; A"‘] is the matrix assembling the components of thevard unit normals to the

linearized masonry failure surface hyperplanes.
-b= [beq; bi“]T represents the vector of the distance of eachrpige from the origin.

- XF is the vector of elemerf internal actions.

In equation ( 8 ), the superscript indicates assembled matrices and vectors corrdsppn
respectively to local elements matrices and vectfbnge set of equationgéa ip the optimization
problem ( 8 ) represents dynamic equilibrium candit The principle of virtual work yields to the
corresponding compatibility condition:

Bu-%, =0 (10)
where Epl is the assembled plastic strain rate vector.

It is interesting to notice that in equation ( & )partition of matrixA and vectorb into equalities
and inequality constraints is imposed. In particudguality constraints represent points yielded in
the previous time step, whereas inequalities stanthe points in which yielding can occur.
A so called “kinematic” formulation is also availabCapurso (1972a). In particular, within the
class of all accelerations and plastic multiplies that are kinematically admissible and obeying
an associated flow rule (i.e. which comply with gaatibility and with outward normal rule for the
set of planes not activated by the initial vel@s)i the actual set minimizes the sum of the second
order kinetic energy and the residual dissipataie of the structure, i.e.:
minf=(u,3)} = min{%UTmU -F(t) u+ B'TX}
B'u=A'Y (a)

(11)
subject to x:[x§ XI]T (b)

L, 20 (0
where:

- ) is the vector of second derivatives of plastictipliers (in the present case plastic multipliers

are referred to each interfac&.:[ﬂ LI]T is the partitioned) vector, where indexy

10



indicates that the correspondidg # 0, whereas index indicates that at the previous iteration
A =0;
- The superscriptl indicates quantities (i.e. vectors and matrices@¢rred to interfaces. It is

worth noting that the procedure outlined by Kralimgh et al. (2005), was adopted to obtain
homogenized masonry strength domains (and henderseand matrices in the rotated frame of

reference) for an interface with generic orienta#t with respect to horizontal axis.
More in detail, if the vectoi.® =[/11E A5 .. /],E]T represents plastic multipliers of an elemdnt
(or an interfacd ), the associated flow rule is expressed for etmnent as:
g5 = ATA" (12)
Whereé';, is the plastic strain rate vector of eleméntin the framework of rigid-perfect plasticity,

equation ( 12 ) is subjected to the following egyand inequality constraints:

AE >0
{(xE)T(—Az+b)=o (1)

u with its derivatives with respect to time is adtion of time,éﬁ, andAF are also time dependent
functions. Thus, differentiation of equation ( 1&ijh respect to time yields:

5 =ATLE (14)
ElementE (or an interface ), which is governed by plastic flow law (12 1§ ) and ( 14 ), at a
given instantt, is in one of the following four cases:

1. if the internal actions vectaZ® is inside the failure surface, theﬁ =0, implying that:

)'\’E — XE - O ( 15 )
with an undetermined state for the internal actismase.

2. if the internal actions vector is a regular poihthe linearized failure surface (say belonging to

the j th hyperplane), bui(t,) = 0, one has:

L°=0
120 (16)
A5 =0

i
3. if the internal actions vector is a regular poihtle linearized failure surface belonging to the

j th hyperplane) and.®(t,) # 0, one has:

11



A5 >0

AL =0
)'l'.EJ free (17)
JE =0

iz
4. if the internal actions vector is a singular pahtthe linearized failure surface common o
hyperplanes, one has:
AL =0 if AS=0
OaOfL... m} . (18)
A- freeif AC >0
In cases 2 and 3 the internal action vector isesgmted by any point of theth hyperplane,
whereas for case 4 the internal action state iguaty determined.

The assembly of all elements transfers the quiaitddehavior of a single element (or an interface)

to the overall discretized structure. Hence, theembled stress staf® is constant during finite
time intervals. If the vector of external loadsagsumed constant during finite time intervalsait ¢
be shown (Cannarozzi and Laudiero 1976) that thst meneral motion of a rigid plastic structure
is a sequence of uniformly accelerated motionsimfef time interval. The interchange of two
consecutive mechanisms is characterized by a discaty of the acceleration fields.

Therefore, the set of active yield planes of edement at a given timg, is known. For a time step
of durationAt we have:
2o (19)
where the subscripy (r) denotes the vector collecting all the non-zemrd} plastic multiplier
rates in the structure, indicating if a yieldingnddgion for a certain element has (has not) been
reached. From the previous considerations, difteagon of equation ( 19 ) yields:

A free

Y

A, 20 (20)

Finally, the following assembled equation repreisgnthe first derivative associated flow rule

condition is obtained:

- i~ o~ 1k

'i_ipl _[AeqT AInT]{NY}:O (21)
A

r

where the aforementioned partition of matfixis introduced. Exploiting equation ( 10 ), a riglat
between accelerations and second derivatives sfiplaultipliers is obtained in the form:

12



BT_[~eqT A inT ;“y —
G-|a<m A ™Y =0 (22)
A

with corresponding static conditions:
AL =p™
A"E <b" (23)
i, (AE-5")=0
Previous conditions ( 12 )-( 21 ), from well knowannections between linear complementarity
problems and quadratic programming lead to the dtattion reported in ( 8 ).

4 The FE thin plate triangular formulation

In order to solve low velocity impact problems faut-of-plane loaded masonry structures, a FE
thin plate triangular formulation based on the elaending element proposed independently by
Hellan (1967) and Herrmann (1967) is used. Thangular element has been preferred to more
accurate elements present in the literature (Knalbk and Damkilde 2002, Krenk et al. 1994), due
to its simplicity and the low number of unknownsoived in the optimization.

A constant moment field is assumed inside eachesiéf, so that three moment unknowns per
element are introduced. The unknowns are the hw@to vertical and torsion moments

(ME,ME ME) or alternatively three bending momends® , M2, M & along the edges of the
XX yy xy

triangle (Figure 6-a).
For what concerns the displacement field, the eterhens out to be analogous to the Munro and
Da Fonseca (1978) triangle. In particular, the ldispment field is assumed linear inside each

element and nodal displacements are taken as a@ptiom variables. Denoting by
We = [vviE w; wkE]T the elementE nodal displacements and oy = [z9iE I° ﬂkE]T the side
normal rotationsP. andw_ are linked by the compatibility equation (Figura and —b):

0. =B.w, (24)

where:

bb +cc bibj +G¢, bb, +cc,
l, l, |

1 |bb +cc; bbb, +cic

2A |

j
b.b +c.c

, Wwith b =y, -y, ¢ =x —x; and A is

j
bkbj +C.C; bbb, +c.c,

i e e

the element area.
13



Therefore, plastic dissipation occurs only at thterfacel between two adjacent trianglés and
K or on a boundary sidB of an elementQ (seeFigure 7-c). Continuity oM ° bending moments
Kj

is imposed for each internal interface between adjacent element® and K (i.e. M® =M1,

seeFigure 6-b), whereas no constraints are imposeth&torsion moment and the shear force.
Due to the constant assumption for the moment djeldternal equilibrium for each element is
ensured in integral form. By means of the applaratlement by element of the principle of virtual

work, three equilibrium equations for each triangle obtained:
RE-'-B-llél\/IE=F)E+|\/IV\./E (25)
where

-R: = [R R, Rk]T are nodal (unknown) reactions, $egure 6-c;

1 : a a &
- P, :KT;j[l x y] p(xy)dA (TZ =|b b, b |.a =Xy, —xyYy,) Itis interesting to
g G ¢ G

notice that vectolP. can be regarded as a lumped load equivalent teethdtant action associated
to p(x,y).

- the termMw . includes the contribution of inertia forces to theerall equilibrium. MatrixM is
the matrix of equivalent lumped masses and is obthianalogously to vectoP. assuming a
constant density inside each triangular element.

In order to find the duratiodt of the time interval to discretize equation ( 2% )s worth noting
that:

i () =35(0) + 5t t,)
A =17(t-to) (26)
where subscript O refers to quantities calculatethé previous iteration. Since each component of

vectoriy,, has to be non-negative, the duratiinof the interval chosen is therefore:

At:min{(t—to)suchhati‘;‘ (t)+49) (t—to):O} (27)

where the subscrift indicates a generic element of the vecto}sand 4. .

Further equality constraints have to be imposedrder to ensure nodal equilibrium, i.e. for each

(not-constrained) node the following equation has to be satisfied:
$ E
YR =0 (28)
r=1
where RF is referred to elemerE and p is the number of elements with one vertex in
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Since moment fields are kept constant for each e, only one set of admissibility conditions

E

in the linearized formAM . <b’is required, whereA is a mx 3 coefficients matrix of the

linearization planes of the strength domain,is the number of the planes in the linearizatiof,

collects the right hand sides of these planesMnd= [MXEX M, MxEy]T is the vector of element

moment unknowns.

It is interesting to notice that assembled equatipr25 ) and ( 28 ) correspond to equilibrium
equation ( 8 )-(a), whereas moments admissibitiyaeh time step corresponds to constraints ( 8 )-
(b) and (c).

The algorithm used to numerically solve the quadrptogramming problem ( 8 )-( 11 ) is a
modification of the revised simplex method, appliedhe LCP problem obtained from ( 8 ), by
means of the application of Kuhn-Tucker conditioB®tails of the algorithm can be found in
Jensen and Bard (2003).

5 Numerical simulations

Two examples are presented, in order to assessdpabilities of the model proposed when
compared to alternative numerical results obtalmecheans of standard commercial non-linear FE
codes and, where available, to experimental rebolts the literature.

It is noted that the topic has been under-invesajaboth from an experimental and numerical
point of view. Therefore, the main goal of the pr#spaper is to provide structural comparisons
with approaches that may be utilized by practitrsne design.

As a secondary result, comparisons with experimemtsen available, have been attempted,
obviously considering that a rigid-plastic model able to perform well in presence of low
mechanical properties for the constituent matewalby assuming an “equivalent” reduced tensile
strength.

The first example is a masonry parapet arrangeduiming bond texture experimentally and
numerically tested by Gilbert et al. (1998, 2008d 2002b) and Burnett et al. (2007). The wall is
subjected to a low velocity impact simulating tmest of a car on a masonry parapet. Comparisons
with experimental data available (Gilbert et al989 numerical simulations by Burnett et al.
(2007) and 2D/3D elastic-plastic heterogeneousridlyaes conducted by means of the commercial
software Strand 7.2 (2004) are reported, in ordeshiow that reliable results can be obtained with
the model proposed.

Since experimentally determined mortar tensilengfite is, in this case, relatively high, numerical
rigid-plastic time-displacement response may bepamed with experimental data only assuming
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an ad-hoc reduced value fdy . With this aim, a sensitivity analysis is conduct®y varying f,

in a wide range. Thanks to the very small CPU tiggpuired for the rigid-plastic simulations, multi-
parameters sensitivity analyses are possible.

The second example is a square plate constraindduatedges, subject to a dynamic load
simulating an air-blast (Wu and Hao 2006 and 20B&perimental data are missing in this case, as
well as precise time-displacement curves from nigaksimulations. A similar simulation with
time-displacement curves available (at least famuh estimation of the performance of the present
simple model with respect to complex non linearygses) may be found in Wang et al. (2009). For
this reason, similarly to the previous case, thed+plastic model is compared with heterogeneous
2D and 3D elastic-plastic Strand 7.2 models.

For both examples, maximum displacement-time dragrshow that reliable results (in comparison
with standard 2D/3D FE approaches) can be obtawmgdthe homogenized model proposed. On
the other hand, a proper experimental validatiothefapproach presented is not possible, due to
the lack of experimentation in this field, espdgiah presence of mortar with low mechanical

properties.

5.1 Masonry parapet subjected to point low velocity impact

The performance of brickwork parapets subjected tow velocity impact simulating a car crash
was numerically and experimentally evaluated resypedg by Burnett et al. (2007) and Gilbert et
al. (2002a). Analytical simplified approaches adsoavailable from Gilbert et al. (2002b). Several
parapets differing in length and bricks dispositi@tretcher, English and English Garden bond)
were tested (see Burnett et al. 2007, Gilbert.e1@$8, 2002a and 2002b for details). Here, for the
sake of conciseness, only the running bond cordigur (two replicates labeled as C6 and C7 by
Gilbert et al. 2002a) is considered. In particulaslls C6 and C7 are identical stretcher bond
parapets with dimensions 9150x1130x215 mm (lengthedght x thickness) built with highly
resistant concrete blocks of dimensions 440x215x21H (length x height x thickness) and
approximately 10 mm thick joints, see Figure 8. Plaeapet was subjected to an out-of-plane car
like impact, applied by means of a square stedepb@sitioned in correspondence of the mid-
length. Two stiff concrete abutments were positibae the extremes of the wall, thus precluding
the rotation of the vertical edges. The first romMblmcks was directly positioned in correspondence
of a stiff steel floor, thus allowing (at leastpninciple) a free rotation of the horizontal edge.

For the numerical simulations, a triangular timaedistribution was assumed, with a peak value
equal to 110 kN reached at 25msec, see FigurepBox@mating the experimentally registered load

applied.
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In the numerical simulations conducted by Burnétale (2007), a heterogeneous approach with
joints reduced to interfaces with frictional bet@avand elliptic tensile cap failure criterion, with
bricks assumed as linear elastic, was adopted. g@ast joints behavior was found with a marked
softening branch, whereas for the initial tensild ahear strength, relatively high values (0.45 MPa
and 0.63 MPa respectively) were used. If such & kigjue of tensile strength is adopted in the
rigid-plastic approach here proposed, dissipatioouning in joints is obviously overestimated,
with a consequent underestimation of displacemanhtBicreasing time steps. This behavior is
typical for a rigid-perfectly plastic approach, wdt is not possible to model the well known
softening behavior in tension of the mortar joints.

As discussed above, the model proposed may appatximell experimental data in presence of
joints with poor mechanical properties or assumengeduced tensile strength for mortar, thus
simulating masonry behavior after initial crackioigjoints (see the numerical simulations reported
in Hamad and Rabinovitch 2008).

In order to have a better insight into the globahdwior of the parapet using the model proposed,
two different sets of mechanical properties focksimortar interface tensile and shear strength are
assumed, as summarizedTiable I. As it is possible to notice from the taliensile strength values
adopted are lower with respect to Gilbert et alO@a). The goal of the simulations is, indeed, to
show that, when cracking of joints has occurre@, blehavior of the walls can be satisfactorily
reproduced with the model proposed, provided tlaatiqular care is utilized in the evaluation of
input mechanical properties. In order to cover figantly large range of cases, a relatively low
tensile strength is assumed for CASE A (approxingata scarcely tensile resistant material),
whereas for CASE B the simulations are repeateghaipg a higher strength for brick-mortar
interfaces (typically ranging between 1/2 and 1ff$he initial strength). For bricks and joints sub-
domains, a classic Mohr-Coulomb failure criterionplane stress is adopted (bricks cohesion is 2
MPa, bricks friction angle isb =45°, mortar cohesion is= 088Pa, and mortar friction angle is

@ =38° [data collected from Burnett et al. 2007]).

At structural level, both a shell (hereafter naras®.5D) and a 3D FE heterogeneous elastic-plastic
dynamic analysis have been conducted, in ordeat@ ladequate insight into the problem and to
collect results to compare with those providedh®ypresent rigid-plastic approach.

The two different heterogeneous meshes utilizeithén2.5 and 3D case are depicted in Figure 9-b
and -c respectively, together with the homogeninedh adopted, shown in Figure 9-a. Models will
be denoted hereafter respectively with labels WD2ahd WI3D for the sake of simplicity.

For both WI2.5D and WI3D models, the commercialtwafe Strand 7.2 (2004) was utilized to

perform the dynamic non-linear analyses. As shawRigure 9, a relatively refined discretization
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was adopted for WI2.5D and WI3D, in order to avqidssible inaccuracies due to mesh
dependence. A Mohr-Coulomb failure criterion wasdufor bricks (with the same properties of the
rigid plastic model proposed), whereas for jointdl@r-Coulomb failure criterion with the tensile
strength and friction angle of bricks-mortar ingeés used in the homogenized approach was
adopted. It is worth noting that, for model WI2.5Blastic-plastic eight-noded quadrilateral
elements were used in order to prevent possiblesnaat inaccuracies due to locking phenomenon
in bending. For WI3D model, eight-noded brick el@tsewere utilized both for joints and bricks,
with a double row of elements along wall thickness.

A comparison among the deformed shapes at t=100 oigained with the present model, WI2.5D
and WI3D is schematically depicted in Figure 10 8EAA results are shown). As it is possible to
notice, all models give almost the same responseerms of deformed shape for the particular
instant time inspected (100 msec), except for tkegnce of a slight out-of-plane sliding at theebas
of the wall (particularly evident in the model WIBDRwhich obviously cannot be reproduced with
simple Kirchhoff-Love approaches as the one preskimt this paper.

It is worth noting that the homogenized rigid piastnodel required only 252 seconds to be
performed on a standard PC Intel Celeron 1.40 Giigpped with 1Gb RAM, a processing time
around 100 and 200 faster than WI2.5D and WI3D eetsgely. Due to the very limited
computational effort required, full sensitivity dyses are possible even for complex structures.

In Figure 11 and Figure 12, the response of thedyamized rigid-plastic model when subjected to
the aforementioned impact load is reported for CASEnd CASE B respectively. In particular,
maximum out-of-plane displacements at increasinge tisteps as well as the evolution of the
deformation at successive instants are represgnagdhically.

A full comparison among maximum out-of-plane digglaent at the mid-length top point of the
wall at increasing time obtained with the differembdels previously described is reported in Figure
13. Results obtained adopting a simplified modedeldaon the a-priori assumption of rigid body
motion with dissipation on interfaces between apmius bodies (Gilbert et al. 2002b) are also
represented. It is interesting to notice that wlalflormation depends significantly on cohesion and
tensile strength of bricks-mortar interfaces, aoniing that the selection of mechanical propertes i
a key issue. In any case, if compared with stanétastic-plastic procedures, the model adopted
seems to provide quite accurate results, at aidraadf the time of non-linear dynamic FE
simulations.

Finally, in Figure 14, sensitivity analysis resute reported ranging tensile strength from 0.0.%
MPa. In particular, the maximum out-of-plane disgiaent (at the end of the simulations, i.e. 200

msec) obtained with the model proposed at incrgadinis depicted. As expected, maximum

18



displacement decreases significantly when higmgtremortar is adopted. Furthermore, from the

sensitivity analysis shown, a value df around 0.2 MPa provides optimal experimental data

fitting. From the results reported in Figure 14 amginembering previous considerations and
limitations, it can be stated that a rigid plastiodel can be adopted to analyze masonry structures
subjected to low velocity impacts, giving interagtiinformation on displacement-time curves,
provided that a careful analysis of input mechdnicaperties is done (i.e. in the range of the low

values suggested by codes of practice).

5.2 Square masonry plate subjected to air-blast load

A simply supported masonry plate of dimensions 20A80 cm (lengthx height), built with
hollow concrete units of dimensions 390x190x190 (fength x height x thickness) and subjected
to an air-blast load is here considered as a seexahple. A similar example has been numerically
analyzed by Wu and Hao in (2008), where a deepsgsson on aspects related to masonry cracking
during air-blast was reported. No information oe thaximum displacement at successive time
steps to compare to present FE results is at dasgosm Wu and Hao (2008), therefore the
example here treated is aimed at testing the chippedof the model proposed when compared with
FE standard codes only (i.e. without specific refiee to Wu and Hao 2006 and 2008).
Furthermore, no experimental data are availabléhén technical literature for this example. A
similar example with time-maximum displacement nupa diagrams on a square masonry plate
subjected to blast is discussed in Wang et al. YeA@agnitude of maximum displacement at the
end of the simulations as well as displacementin@easing time steps result in very good
agreement with simulations presented in this secfeven if only a qualitative comparison is
possible in this case), confirming the capabiliteésthe model proposed (for further details the
reader is referred to Wang et al. 2009).

In order to collect numerical results and with thien of assessing the data provided by the
homogenization model proposed, analogously to teeigus example, two different heterogeneous
FE dynamic elastic-plastic analyses have been peeid by means of the commercial code Strand
7.2. As in the previous case, a 2D and a 3D apprdaereafter labeled as WI12.5D and WII3D,
have been adopted. Mesh WII2.5D is constituted umdglateral plates, whereas WII3D by solid
brick elements. Figure 16 shows the discretizadidopted for the simulations.

Again, for model WI12.5D, elastic-plastic eight-remti elements were used, whereas for WII3D a
double row of eight-noded brick elements was disdasdong wall thickness in order to reproduce

out-of-plane bending. WII3D constraints have begpliad at the boundary nodes belonging to the
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intrados, in order to avoid a fictitious extra-stance of mortar joints caused by the possible
presence of membrane compressive stresses atddéerurface.

Wu and Hao (20083assumed for mortar joints and bricks a tensilengtte equal to 1 MPa and 2.6
MPa respectively. As in the previous example, pimitial tensile strength is rather high.
Furthermore, in Wu and Hao (2008), a marked safteiranch in tension is assumed, with the

consequent reduction of, almost to zero immediately after first crackingtioé joint. Obviously,

such behavior cannot be reproduced with the maglel proposed.

In order to circumvent this drawback, a sensitiahalysis is performed next, assuming for bricks-
joints interfaces two different tensile strengthlues, hereafter denoted as CASE A and B,
respectively equal to 0.2 and 0.5 MPa (typically dnd %2 of initial strength).

For all the cases analyzed and for all the simutaticonducted, a Rankine failure criterion is

adopted for bricks with tensile and compressiversjth equal to 2.6 MPa and 52 MPa, whereas for

mortar sub-domains a Mohr-Coulomb failure criterisnassumed withf, =1 MPa and® =30°

(data collected from Wu and Hao 2008). When dealinth the rigid-plastic homogenization
model, a linearization of the failure criterionginally proposed in Lourenco and Rots (1997), see
Figure 3, is assumed for brick-joint interfacesg Jable Il for a synopsis of all the mechanical
properties adopted. On the other hand, two diffea@alyses on WII12.5D and WIII3D models have
been conducted, assuming a Mohr-Coulomb failuretereon with decreasing cohesion

c=f, tan(®) for mortar, f, values as in Table Il ang = 30° .

In Figure 17, a comparison among deformed shapésl@msec provided by the present model,
WI12D and WII3D in Case A is reported. As it is gdde to notice, all models give almost the
same response in terms of deformed shape for thiEyar instant time inspected. No sensible
differences among all models were found varyindghlimhe and mortar mechanical properties.
Analogously to the previous example, processingetiraquired for the present rigid-plastic
simulations was at least 180 times faster when eoetp with standard commercial code,
confirming that reliable results can be obtainethwi fraction of the computational effort.

In Figure 18 and Figure 19, the deformation evolutat different time steps and the maximum-
displacement-time diagram up to 0.06 sec from tlgd-plastic analysis are represented
respectively for CASE A and CASE B.

A final synopsis of all time-central point displacent diagrams obtained by means of the different
FE approaches presented previously and assumirfgrefif mechanical properties for the
constituent materials is reported in Figure 20,ryeag out the simulations to 100 msec.
Furthermore, in Figure 20, results obtained adgpansimplified model based on a yield line

solution and originally proposed by Komarov and Newnskii (1985) are also represented. Such

20



approach is based essentially on rigid-plasticragsions for the material, thus it is expected that

provides results in relative agreement with the bgemized model proposed. As already pointed
out, no information is at disposal from the literat with respect to numerical displacements at the
centre of the plate at successive time steps, apérienental data are missing. In any case,
comparisons with standard FE elastic-plastic apgres conducted via a commercial software and
hand calculations clearly show that very reasonabselts may be obtained by means of the

homogenization rigid plastic model proposed.

6 Conclusions

A homogenized rigid-plastic plate model for the lgsia of masonry plates subjected to impacts
and air-blasting has been presented. Bricks andamguints have been assumed obeying an
associated flow rule with rigid perfectly plastiedavior. Out-of-plane anisotropic masonry failure
surfaces have been obtained by means of a statit dnalysis approach recently presented in
Milani et al. (2006c), in which the unit cell iskzlivided into a fixed number of sub-domains and
layers along the thickness. A limited strengthctfanal failure with compressive cap and tension
cutoff) of brick-mortar interfaces has been alde@tainto account, thus making the reproduction of
elementary cell failures due to the insufficiensiseance of the bond between units and joints
possible.

Triangular Kirchhoff-Love elements with linear inp@lation of the displacements field and
constant moment within each element have been atsadstructural level, leading to a discretized
guadratic programming formulation at each time stepthe analysis of entire walls subjected to
impacts.

Two examples have been treated, namely a runnind bwasonry wall constrained at three edges
and subjected to a point impact load and a massguare plate constrained at four edges and
subjected to a distributed dynamic pressure.

While for the first example some experimental data available, the second analysis may be
compared only with alternative numerical procedumssducted with commercial software
available in the market stock.

Comparisons with experiments (where available) tayattempted only taking into account that
rigid-plastic models perform well if softening i®tncrucial, i.e. in presence of low mechanical
properties for the constituent materials, or akékely after joints first cracking, i.e. assumiag
“equivalent” reduced tensile strength for mortar.

For these reasons, the primary aim of the apprpagposed is to provide structural comparisons

with alternative commercial FE non linear softwarsyally available in common design.
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For all the simulations performed, the model pregbsequired a negligible processing time if
compared with standard FE incremental procedusege@esented in Table I, where a synopsis of
CPU times required and maximum displacements agrldeof the simulations for both examples is
reported. As one can note from maximum displacesnegorted in Table 1ll, good agreement has
been found, for all the cases analyzed, both wéhdard elastic-plastic FE procedures and at hand
calculations. Finally, Table IIl results indicateat the proposed simple tool can be used by
practitioners (parallely to alternative sophistzhapproaches) for the safety assessment of out-of-
plane loaded masonry panels subjected to impact,vary small fraction of the time used for

conventional finite element analysis.
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8 Figures
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Figure 1: Typical relatively ductile behavior ofnaasonry wall in two-way bending and out-of-

plane loaded (data from Southcombe et al. 1995enigal simulations from Milani et al. 2006c).
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1 2 1 .
i 4
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Mortar [__] Brick Yi
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T5) %% 146 57 S

18] 17 149 8 < 7
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-a -b -C
Figure 3: The micro-mechanical model proposedsuadivision in layers along the thickness. —b:
subdivision of each layer in sub-domains. —c: Iiiesal strength domain for bricks and joints sub-
domains, with Mohr-Coulomb failure criteria, andr foricks-joints interfaces, with a Mohr-
Coulomb failure criterion with compression lineaazcap and tension cutoff.
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Mortar-brick interfaces
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Horizontal interfaces [/ | Vertical interfaces
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: friction angle

, : compression linearized cap
: compression strength
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: cohesion
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Mohr Coulomb with compression cap and  Classic Mohr Coulomb failure criterion.
tension cut off failure criterion.
-a -b
Figure 4: Piecewise linear approximation of théufa criterion adopted for mortar-bricks
interfaces. -a: Mohr-Coulomb failure criterion wtdmsion cut-off and linearized compression

cap. —b: classic Mohr-Coulomb failure criterion.

28



homogenized strength domain

M

XX

Figure 5: Meaning ol multiplier in the optimization

problem andy and?d angles.
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nn
e /0

Figure 6: Bending moment acting at the edges ofrtaegular plate element used for the FE
rigid-plastic analysis (-a), continuity of the bémglmoment on interfaces (-b), integral

equilibrium (-c).
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Figure 7: Rotations at the edges of the triangplate element used for the FE rigid-plastic
analysis (-a), mutual rotation along an interfaeéneen adjacent triangles (-b), discretization
of the 2D domain (-c).
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Figure 8: Stretcher bond masonry parapet subjeldwovelocity impact. Geometry of the wall
and typology of dynamic load applied.

30



I
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Figure 9: Stretcher bond masonry parapet subjedovovelocity impact.—a: FE limit analysis

discretization. —b: elastic-plastic 2.5D model déization (WI12.5D). —c: elastic-plastic 3D model

discretization (WI3D). Only %2 of the wall is anaégzfor symmetry.
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Figure 10: Stretcher bond masonry parapet subgelow velocity impact. Comparison among
deformed shapes at t=100 msec —a: Homogenized dinaitysis approach. —b: heterogeneous
2.5D elastic-plastic FE approach. —c: heterogen8uslastic-plastic FE approach. Only %2 of

the wall is analyzed due to symmetry.
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Figure 11: Stretcher bond masonry parapet subgeldw velocity impact. Results from the rigid-

—b: perspective view of

plastic model, CASE A. —a: maximum displacementtimiagram.

deformed shape evolution.
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Figure 12: Stretcher bond masonry parapet subgeltvw velocity impact. Results from the rigid-

plastic model, CASE B.

—b: perspective view of

—a: maximum displacemenetighagram.

deformed shape evolution.
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Figure 13: Stretcher bond masonry parapet subgedbw velocity impact. Overview of time-

maximum out-of-plane displacement diagrams.
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Figure 14: Maximum out-of-plane displacement (&t¢nd of the simulations, 200 msec) at

increasing mortar tensile strength.
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Figure 15: Masonry panel constrained at four edgelssubjected to air-blast load.
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Figure 16: Masonry panel constrained at four ed@gessubjected to air-blast load.—a: FE limit
analysis discretization. —b: elastic-plastic 2.5@del discretization (WII2.5D). —c: elastic-
plastic 3D model discretization (WII3D).
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Figure 17: Masonry panel constrained at four ed@esnparison among deformed shapes at
t=10 msec —a: Homogenized limit analysis approabhheterogeneous 2.5D elastic-plastic FE
approach. —c: heterogeneous 3D elastic-plasticgpEoach.
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Figure 18: Masonry panel constrained at four e@dgelssubjected to air-blast
load, CASE A. —a: maximum displacement-time diagraim perspective

view of deformed shape evolution (1/2 of plate)
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Figure 19: Masonry panel constrained at four edges
subjected to air-blast load, CASE B. -a: maximum
displacement-time diagram. —b: perspective viewdeformed
shape evolution (1/2 of plate)
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Figure 20: Masonry panel constrained at four edged subjected to air-blast load. Time-

maximum out-of-plane displacement diagrams.
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9 Tables

Table I. Stretcher bond masonry parapet subjectoto velocity impact. Mechanical

characteristics assumed for bricks-mortar joinfs: (tension cut-off,c : cohesion, ®:

friction angle,f_: compressive strengtld®, : shape of the linearized compressive cap).

f, MPa c P f. MPa ®,

CASE A 0.10 1.2 f, 30° 20 f, 30°

CASE B 0.25 1.2 f, 30° 20 f, 30°
Table 1l Masonry panel constrained at four edgesl aubjected to air-blast load.

Mechanical characteristics assumed for brick-montaerfaces (,:tension cut-off, c :

cohesion, ®: friction angle,f,: compressive strength®,: shape of the linearized

compressive cap).

f, MPa c{ NZ} P f. MPa P,

mm
CASE A 0.2 1.2f, 30° 5 30°
CASE B 0.5 1.2f, 30° 5 30°
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Table IIl: CPU time required for the simulationgdanaximum displacement at the end of the simulatiQomparison between present numeri

approach and standard FE heterogeneous procedures.

CASE CPU time [h:m:sec] Maximum displacement [mm]
Homogenized 2.5D 3D Homogenized 2.5D 3D
rigid-plastic FEM FEM rigid-plastic | FEM FEM
Example 1 A 0:4:12 9:11:01 17:45:21 1%5 152@ 1749
B 0:3:56 12:27:44 21:09:51 462 479 48"
Example 2 A 0:3:23 10:11:01 19:54:00 d30 | 1050®@ 1200®@
650© 720@ 770®
B 0:2:49 11:38:19 20:51:47 6250
Legend

@ maximum displacement calculated at 200 msec

@’ maximum displacement calculated at 100 msec

® at hand calculation based on the yield line theory
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