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Abstract
Purpose – Desktop robots are suitable for production line systems in industrial applications. Despite their capabilities to meet diverse requirements, they
have to be programmed off-line using waypoints and path information. Misalignments in the workspace location during loading cause injuries in the
workpiece and tool. Further, in flexible industrial production, machinery must adapt to changing product demands, both to the simultaneous production of
different types of workpieces and to product styles with short life cycles. In this paper, visual data processing concepts on the basis of fuzzy logic are
applied to enable an industrial desktop robot to raise its flexibility and address these problems that limit the production rate of small industries.
Design/methodology/approach – In this paper, a desktop robot performing dispensing tasks is equipped with a computer vision system. Visual
information is used to autonomously change previously off-line stored robot programs for known workpieces or to call worker’s attention for unknown/
misclassified workpieces. A fuzzy inference classifier based on a fuzzy grammar, is used to describe/identify workpieces. Fuzzy rules are automatically
generated from features extracted from the workpiece under analysis.
Findings – Different types of workpieces were tested and a good rate performance, higher than 90 per cent, was achieved. The obtained results
illustrate both the flexibility and robustness of the proposed solution as well as its capabilities for good classification of workpieces.
Practical implications – The overall system is being implemented in an industrial environment.
Originality/value – The paper reports a piece of solid work which indicates clearly that the work is suitable for industrial utilization.
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Introduction

Desktop and Scara Robots are universal tools for various

industrial applications like dispensing, soldering, screw

tightening, pick’n place, welding or marking. This type of

robots is suitable for various production line systems (e.g. cell-

line, in-line), and can be adapted to meet diverse requirements.

They are easy to use, can be applied economically and,

nowadays, a complex programming in robot language is

unnecessary, thus reducing installation time and providing

added convenience. These robots are typically programmed off-

line by using waypoints and path information. However, the

coordinates and types of waypoints have to be entered manually

or taught. Typically, small workpieces with a high complexity of

linear paths raise programming efforts.
In an era when new product styles are being introduced with

ever-shortening life cycles, the cost of high preparation times for

automation equipment every time a new part or product must

be produced is becoming prohibitive, both in terms of time and

money. In modern flexible industrial production, the

capabilities of the machinery to adapt to changing production

demands are a key factor for success. Once a robot has been

programmed off-line for a workpiece, the system should be able

of identifying it and autonomously initiate the correct working

procedure. Further, a semi-automated system has to be capable

to autonomously deal with misalignments and compensate

small deviations during loading, which may result in a bad

execution of the robot off-line stored programs.
The ability of a system to sense its surroundings and perform

the task according to the existing conditions is an effective way

to reduce costs and raise flexibility. Highest precision and

minimum amount of programming time is the result.
In this paper, sensor data processing concepts on the basis of

fuzzy logic are applied, to enable a robot to deal autonomously

with typical uncertainties of an industrial working environment.

Specifically, the aim of this paper is to propose a flexible,

adaptive and low-cost solution to address some problems which

often limit the production rate of small industries.
As a case study, consider a desktop robot executing

dispensing applications on workpieces/fixtures. For each

workpiece, the robot is programmed off-line. In order to

improve the performance and flexibility of these industrial

systems, we equipped the robot with a CCD Camera. The

process is divided into two phases: a learning and an

execution phase. The system is capable of autonomously

starting a learning phase in case an unknown workpiece is

shown to the system, and robust to deal with common errors

such as a missing fixture. Alignments and offset values are

calculated fully automatically which allows the robot to ensure

accurate placement of tools. Workers stay busy loading and

unloading workpieces/fixtures while a desktop robot,
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equipped with a vision system, is performing precision

dispensing tasks. This significantly reduces development

time for these tedious processes. Further, reduces costs by

compensating misalignments in the workpiece location during

loading avoiding injuries both in the workpiece and tool.
The concept of sensing for robotics is essential for the

design of systems where the real time operation, flexibility and

robustness are major design goals. Thus, by additional

capabilities the robot can autonomously adapt to changing

production needs, compensate misalignments and avoid

injuries in the work tool and piece. As a result of this

approach is that computation grounded on information

derived from sensation enables the achievement of autonomy

by starting some conceptualisation process of high level.

The dispensing application

Normally, in a dispensing application the procedure is to

program off-line the robot such that it executes the work over

the workpiece. For each type of workpiece, a robot program is

stored. This is the learning phase. During the production

stage, the worker sets to run the program for the particular

type of workpiece, loads the workpiece, issues a command to

the robot which starts to run the dispensing application and,

finally, unloads the workpiece. These procedures (execution

phase) implement a full working cycle. However, two main

problems may arise. Firstly, misalignments during loading

may result in injuries both in the workpiece and tool.

Secondly, in case other known types of workpieces are

introduced in the production line, requires the worker to

identify the corresponding stored robot program and load it

onto the robot. This introduces delays and sometimes serious

injuries due to worker failure. Further, it requires a worker

able to directly interact with the robot. Such typical problems

limit the production rate of small manufacturing industries.
Herein, we propose a cheap solution which improves the

overall flexibility of a typical dispensing application and

minimizes the two problems discussed above. Similarly to the

procedure described, for each type of workpiece the robot is

firstly programmed off-line and the program is stored. The

main difference is that during the production stage, it is the

system that autonomously identifies the loaded workpieces

using visual information and a fuzzy inference classifier. In

order to do so, a CCD Camera has been mounted over the

robot.
In this study, a JR2000 Series Desktop robot from I&J

Fisnar Inc (Janome, 2004) with simultaneous control of three

axis is used as the test bed. The robot performs 3D linear and

arc interpolation to include compound arcs in a working area

of 150 £ 150 mm: The overall experimental set-up is shown in

Figure 1.
Despite the applied algorithm to improve light uniformity, a

fluorescent light was placed around the CCD Camera to

assure that the scene is well illuminated. We have chosen to

apply front lighting. The CCD Camera is a TRC TC5173

color camera with a resolution of 768 £ 576 pixels. Image

digitalization is done on a general purpose image acquisition

board, National Instruments PCI1411, mounted inside a

100 MHz Pentium III PC. The PC is connected to the robot

by a serial RS-232 C protocol.

System architecture

Figure 2 shows the architecture of the processing system, in

which two paths were specified: one for the learning phase

(P1) and another for the execution phase (P2).
The first two modules are identical for both P1 and P2 and

deal with object analysis. The Preprocessing module enhances

the image quality and extracts the blob objects of the image.

This module is necessary because the acquired images are not

perfect for analysis. The Feature Extraction module extracts

the feature vector that best characterizes each object.
P1 has a Fuzzy Grammar module which generates the fuzzy

rules that describe the objects. These rules are stored in a

database.
In the execution phase P2, the feature vectors extracted for

each object are submitted to a Parsing Procedure module

developed with the compilers yacc and lex (Appel, 1998;

Bumble-Bee, 1999). These vectors are submitted to each rule

stored in the database and a value is obtained for each of them.

Finally, the Classification module verifies which rule has a higher

value thus identifying the workpiece under analysis. A threshold

is specified such that an alarm sounds when an unknown or

misclassified workpiece is detected. Further, a learning phase is

automatically initiated and an appropriate fuzzy rule is generated

for that workpiece.

Preprocessing

To perform a robust industrial application, the following

aspects must be minimized:

. random noise in the acquisition process;

. lack of light uniformity, which depends of the illumination

technique; and

. image distortions due to the type of lenses.

Noise was reduced by calculating the final image to process as

an average of five consecutive acquired images.
A light calibration procedure was developed (Russ, 1995) and

employed to cope with the lack of light uniformity. A black and

white object, covering all the working area, are acquired. Each of

these images is divided in non-overlapping windows of

7 £ 7 pixels and the mean of the gray-levels within each of the

windows is calculated (Ncb and Ncw for the black and white

windows, respectively). The final histogram is calculated by the

histogram stretching of each window as shown in Figure 3.
Image distorting is solved by applying an image correction

using a well-known grid calibration procedure (Matrox, 1998).

An image of a grid with size, di, is acquired. Image correction is

done according to the mapping between distorted, Pdiði ¼
0; 1; 2; 3Þ; and non-distorted, Pndiði ¼ 0; 1; 2; 3Þ; elements of the

grid (Figure 4). di is chosen such that the sides of the distorted

elements of the grid are straight lines and depends on the

magnitude of distortion.
The homogeneous coordinate transformation between

Pdi ¼ ðxdi; ydiÞ and Pndi ¼ ðxndi; yndiÞ; for i ¼ 0; 1; 2; 3; is

given by
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where

xndi ¼
a11xdi þ a12ydi þ a13

a31xdi þ a32ydi þ a33

ð2Þ

yndi ¼
a21xdi þ a22ydi þ a23

a31xdi þ a32ydi þ a33

ð3Þ

The extraction of the blobs that represent the objects is

accomplished through a binarization with a fixed threshold

and through a blob-coloring like algorithm (Ballard and

Brown, 1982). The segmentation of the image into regions

could be achieved applying line finding or region growing

techniques (Ballard and Brown, 1982). However, line finding

Figure 1 Experimental setup showing the desktop robot with the mounted CCD Camera, the fluorescent lamp and a mould

Figure 2 Architecture of the processing system Figure 3 Light calibration procedure

Figure 4 Mapping between a distorted ðPdiði ¼ 0; 1; 2; 3ÞÞ and a non-
distorted element ðPndiði ¼ 0; 1; 2; 3ÞÞ of the grid. These elements have
(x,y) coordinates
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techniques if followed by a floodfill procedure may produce

incorrect results in non-simple connected regions. Region

growing techniques commonly use only properties of local

groups of pixels (local techniques). Another possibility would

be split and merge techniques, however, these are more

complex and time consuming.
In case the image is highly contrasted and consists of dark

(or white) objects in a white (or black) background, as in our

case, simple local techniques can be used. In such conditions,

a blob-coloring like algorithm is time effective. In the final

result regions are geographically separated, meaning that each

blob can be addressed in an efficient manner.
Consider the sample object shown in Figure 5(a) and (b)

illustrates the corresponding extracted blob.

Feature extraction

After image segmentation, it is necessary to choose a

representation and a description scheme for the resulting

aggregate of segmented pixels in a form suitable for further

computer processing.
As pointed out by Williams (1999), although description of

a 2D shape is one of the foremost issues in pattern

recognition, a satisfactory general theory does not exist.

Ideally, the selected features must be invariant to the shape

scaling and rotation and should support clustering or

grouping; resulting in the generation of a robust

representation. Low order geometric moments are arguably

the most common features. Diameter features, like Feret

diameters and distance-versus-angle signatures, tend to lead

to topological and symmetry considerations and are more

robust to noise and small changes of shape (Ballard and

Brown, 1982; Williams, 1999; Micheli-Tzanakou, 2000;

Costa and Cesar, 2001; Gonzalez and Woods, 2002;

Kindratenko, 2004).

The perimeter, the first and second central moments and the
Feret diameter representations were tested in order to verify
those that allow maximum flexibility, meaning to allow the
coexistence of objects with different shapes in the same
database. The best results were obtained using the Feret
diameters (longest distance between any two points along the
object boundary) at different rotation angles, u, of the object,
and thus were chosen to build the feature vectors of the
representation scheme in our work.

Figure 6 shows some Feret diameters for object shown in
Figure 5(a).

By trial and error, we have chosen an increment between
rotation angles of 108.

This type of external representation scheme is very useful in
the computation of descriptors and is very adequate because
the primary focus is on morphological features. However, this
feature vector is highly dependent on the object’s orientation,
which poses a difficulty in the identification process. To solve
this, we first orient the object by setting the axis of higher
inertia always in a predefined position. Further, the fuzzy
inference system implies that the magnitude of each element
of the feature vector must be in the interval (0,1) and thus a
normalization of the obtained feature vector is required.
Therefore, normalization is achieved simply by normalizing
the obtained curve to unit maximum value as given by

NFDðuÞ ¼ FDðuÞ
FDmax 2 FDmin

2
FDmin

FDmax 2 FDmin

ð4Þ

where, FD(u) is the Feret diameter at angle u and FDmax,
FDmin are the maximum and minimum value of the Feret
diameters for the feature vector, respectively. The normalized
Feret diameters for the objects shown in Figure 7 are
illustrated in Figure 8.

Equation (4) is also independent of the size factor. For this
particular application, this is a drawback since objects with

Figure 5 A sample object and the extracted blob
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different sizes require different robot programs. In order to

identify objects with the same shape but with different sizes,

we established a size dependent feature. We have introduced

the feature S, which classifies the object’s shape relatively to

its size and is given by the FDmax, normalized to the

maximum size allowed for an object.

Parsing

The parsing procedure was developed for the fuzzy grammar.

The inputs are the feature vectors extracted for an object from

the Feature Extraction module and the rules stored in the

database. The feature vectors are submitted to each rule of

the database. The output of the parsing procedure is a value

in the interval [0,1] reflecting the grade of membership of the

object for each class.
Consider as a simple example, the feature vectors (Table I)

that describe the objects shown in Figure 7.
If we consider a database only made with the objects’ rules

shown in Figure 7, the output results of the parsing procedure

are as in Table II.

Classification

This module uses the output of the parsing and verifies which

rule produces the higher value for the feature vector. If this

value is less than a defined threshold it is assumed that a new

type of object is present. In such case, the feature vector that

characterizes this new object is submitted to the fuzzy

grammar module in order to generate the new appropriated

fuzzy rule.

Fuzzy grammar

After the extraction of the feature vector that characterizes an

object, it is necessary to classify the object according to its

attributes. Specifically, our application deals with the

following constraints:
. to deal with a high diversity of objects;
. to recognize simultaneously several different type of

objects; and
. to autonomously detect a new type of objects during the

execution phase and thus initiate a learning phase, using

the intervention of the human operator only to program

the robot.

Figure 6 The Feret diameters for object depicted in Figure 5(a) at
angles 0, 45 and 908

Figure 7 Some objects used in the choice of external representation
type
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To accomplish these goals the learning phase of the

recognition process must be done with a unique sample of

each type of object.
Regarding the classifiers and recognizers, there are different

approaches based on statistical and artificial intelligence

methods (Bezdek and Pal, 1992; Kerre and Nachtegael, 2000;

Micheli-Tzanakou, 2000; Costa and Cesar, 2001; Looney,
2002). The most common solutions commercially available

use recognizers based on the calculus of metrics like
Euclidean, Minkowsky e Mahalanobis distance measures

(Williams, 1999). However, these recognizers, as well as the

ones based on neural, fuzzy logic and neurofuzzy networks,
demand a great amount of samples from the population to

perform learning. Despite the fact that these modern
technologies, are now firmly established as leading advanced

control techniques used in industry, they do not fulfil the
constraints of the dispensing application.

In this paper, a fuzzy system modelling approach was
developed in which a fuzzy inference system identifies the

fuzzy rules representing relationships among 2D shape
features. There are several approaches that generate these

fuzzy rules. The most often applied are based on statistics,
neural networks and genetic algorithms (Ivancic and

Malaviya, 1998; Peters et al., 1998; Looney, 2002).
However, none of these methods satisfy the needs of this

specific application. Therefore, we decided to apply a fuzzy
grammar approach. Fuzzy grammar is a pattern classification

syntactic model used to represent the structural relations of

patterns (Fu and Booth, 1986a, b; Bezdek and Pal, 1992;
Malaviya, 1996; Stanchev and Green, 2000) and describe the

syntax of the fuzzy languages that generate the fuzzy rules.
This inference system fulfils the project demands due to its

linguistic description approach, which keeps the number of
rules small, and due to its capability to generate a fuzzy rule

using only one sample of a pattern.
Herein, we briefly review some basic concepts of fuzzy

grammar (for a full discussion see Lee and Zadeh (1969), Pal
and Majumber (1986), Bezdek and Pal (1992) and Yager and

Zadeh (1992)). Fuzzy grammar GF is a quintuple GF ¼
ðV N;V T;P ;S0;mÞ; in which VN and VT are finite disjoint sets

of non-terminal and terminal vocabulary, respectively, such
that V ¼ V N < V T is the total vocabulary of the grammar. P
is a finite set of production rules of the type a! b; with
a [ V N and b is a member of the set V * of all strings

(including the null string 1). S0 [ V N is the starting symbol.

Figure 8 Normalized Feret diameters for objects depicted in Figure 7. Solid, dash and dash-dot-dot traces represent objects 1, 2 and 3, respectively

Table I Feature vectors for the objects depicted in Figure 7

Angle (8) Object 1 Object 2 Object 3

0 0.00 0.00 0,17

10 0,06 0,33 0,27

20 0,28 0,61 0,32

30 0,48 0,83 0,33

40 0,65 0.97 0,60

50 0,79 1.00 0,80

60 0,89 0,97 0,93

70 0,97 0,80 1.00

80 1.00 0,58 0,98

90 0,98 0,30 0,91

100 0,94 0,58 0,75

110 0,90 0,80 0,54

120 0,84 0,94 0,46

130 0,73 1.00 0,40

140 0,60 0,94 0,32

150 0,43 0,8 0,18

160 0,25 0,61 0.00

170 0,04 0,33 0,02

Table II Results of parsing procedure

Rule object 1 Rule object 2 Rule object 3

Object 1 0.89 0.00 0.00

Object 2 0.00 0.9 0.00

Object 3 0.00 0.00 0.89
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m is the mapping of P ! ½0; 1�; such that m( p) denotes the

possibility of the current language sentence p [ P :
The syntax of the developed language L(GF) is shown in

Figure 9 and includes four different steps:
1 The codification of the features to primitives. In this

paper, the features are the Feret diameters (NFD(u))

and the size S, which are coded to the primitives FDu

and SN, respectively. When more than one sample of an

object is presented to the system the mean value of each

feature is used.
2 The definition of linguistic terms HistVar:#. This

setting is done according to Table III. The

membership function
Q

is shown in Figure 10 forQ
(x, b, c). The parameter c is chosen such that the

eleven membership functions cover the all universe of

discourse X and have disjoint maximums.

3 The definition of fuzzy modifiers (FM): “More than”,

“Less than” and “Between”. The FM “More than” LT
is defined by

mMTkLTl ¼
1 x $ L

Sðx;L 2 lb;L 2 lb=2;L x , L

(
ð5Þ

where L is a threshold value and lb is the bandwidth

value of the S membership function (Bezdek and Pal,
1992; Malaviya, 1996). The FM “Less than” LT is

given by

mLTkLTl ¼
1 x # L

1 2 Sðx;L;L þ lb=2;L þ lb x . L

(
ð6Þ

The FM “Between” LT1 e LT2, is given by

mBkTL1lkTL2l ¼
1 2 Sðx;w1;w1 þ lb=2;w1 þ lbÞ x . w1

1 w2 # x # w1

Sðx;w2 2 lb;w2 2 lb=2;w2Þ x , w2

8>><
>>:

where w1 and w2 are threshold values (Bezdek and Pal,

1992; Malaviya, 1996).
4 The definition of fuzzy operators (FO) which define the

relations between the linguistic terms and primitives.
We defined the following FO:
. &, representing the AND of two primitives. It is given

by the Yager intersection (Pal and Majumber, 1986).
. . , representing “More than” LT and is given by
mMTkLTl:

. , , means “Less than” LT and is given by the
function mLTkLTl:

. k, describes “Between two” LT and is given by
mBkLT1lkLT2l:

. #, means a “Separator between a” primitive and a LT.

. ( ), imposes a hierarchy in the rule.

Consider as an example object 2 is shown in Figure 7.
Figure 11 shows the primitive FD20, obtained from the Feret

diameter feature, NFD(u) ¼ 0.6, when u ¼ 208. This
primitive has non-zero degrees of membership for LT

HistVar: 6, LT HistVar: 7 and LT HistVar: 8 (Figure 11).
The highest fuzzy value is obtained using LT HistVar: 7.

Thus, HistVar: 7#FD20 is part of the fuzzy rule which
characterizes object 2. Finally, the rule created by the fuzzy

grammar is:
HistVar:1#FD0&HistVar:4#FD10&HistVar:7#FD20&#

HistVar:9#FD30&HistVar:11#FD40&HistVar:1#FD50&

HistVar:11#FD60&HistVar:9#FD70&HistVar:7#FD80&

Figure 9 Syntax of the developed fuzzy language L(GF)

Table III Linguistic terms

Designation Function

HistVar:1
Q

(x, 0.2, 0.0)

HistVar:2
Q

(x, 0.2, 0.1)

HistVar:3
Q

(x, 0.2, 0.2)

HistVar:4
Q

(x, 0.2, 0.3)

HistVar:5
Q

(x, 0.2, 0.4)

HistVar:6
Q

(x, 0.2, 0.5)

HistVar:7
Q

(x, 0.2, 0.6)

HistVar:8
Q

(x, 0.2, 0.7)

HistVar:9
Q

(x, 0.2, 0.8)

HistVar:10
Q

(x, 0.2, 0.9)

HistVar:11
Q

(x, 0.2, 1.0)

Figure 10 Membership function PI
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HistVar:4#FD90&#HistVar:7#FD100&HistVar:9#FD110&
. HistVar:10#FD120&HistVar:11#FD130& . HistVar:
10#FD140&HistVar:9#FD150&HistVar:7#FD160&

HistVar:4#FD170&HistVar:2#SN.
If more than one linguistic term gives a fuzzy value superior

to 0.75; we apply fuzzy modifiers like “More than”, “Less

than” and “Between”, to combine the obtained results.
Figure 12 shows the procedure for fuzzy modifier “More
than” HistVar:10 for the primitive FD140. The final fuzzy

value results from the combination of LT HistVar: 10 and LT
HistVar:11. Similar procedures apply for fuzzy modifiers
“Less than” (Figure 13) and “Between” (Figure 14).

Experimental results

In order to increase the processing speed and reduce the
development time, we used the commercial software,

LabView 6.1 with IMAQ 6.0. This was a requirement from
the company that supports the development of the dispensing
application. The fuzzy grammar was developed in Cþþ .

Figure 15 shows three different panels of the developed
application.

The robot program that the robot performs over the

workpiece, is sent to the robot via rs232 protocol under the
control of the JR software (trademark). However, the formats
of the file that contains both the robot program and the

information send to the rs232 port are not known. This
constraint was overcome through the development of a DLL

that establishes the communication between Labview and the

JR software. This DLL sends Microsoft Windows messages to

the JR software, providing the appropriate commands to

change the robot software. Finally, a message with the start

command is sent to the JR software in order to initiate the

robot program. JR software must be running during learning

and execution phases. This development enables the robot to

be controlled by the computer vision software.

A complete cycle

The feasibility and efficiency of the used approach have been

studied by performing a set of experiments using 10 different

types of objects (Figure 16).
During the learning phase, for each object, the used robot

program, the generated fuzzy rule, the orientation and the

position are stored together in the database. On the execution

phase, these workpieces are presented to the system having

different positions and orientations relatively to the learning

phase. The developed approach was able to identify each

workpiece. Rotations, R, alignments and offset values in x, y

were calculated, the robot’s stored programs were adjusted

accordingly and sent to the robot. Finally, the robot executed

the changed program over each workpiece. The minimum

offset that the system was able to calculate was as small as

0.2 mm. The minimum rotation was 38.
Second column of Table IV shows the generated linguistics

terms for each primitive in the learning phase for object 10 of

Figure 11 The highest fuzzy value for LV FD20 is obtained using LT
HistVar:7

Figure 12 Linguistic term for the primitive FD140 – Fuzzy Modifier
“More than” HistVar:10

Figure 13 Fuzzy Modifier “Less than” HistVar:2

Figure 14 Fuzzy Modifier “Between” HistVar:3 and HistVar:4
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Figure 16. An identical object but rotated of 408 and with an

offset in position of ðx; yÞ ¼ ð10; 15Þmm was processed during

the execution phase. Third and fourth column of Table IV

show the obtained primitives and Linguistic terms,

respectively. The classification result for the object 10 rule is

0.90, whereas for the other objects is 0.0. The calculated

offset and orientation was of (10.0, 15.1) mm and 39.38,

respectively.
Table V shows the percentage of good classifications when

each object is placed with 20 different locations and

orientations. In some cases, objects were classified as not

available in database (NAD).
As we can see from the above results, the developed

approach can be applied when objects have different locations

and orientations and only one sample was used during the

learning phase. The advantage is that a high percentage of

type of objects (.90 per cent), when submitted to rules of

objects of other types, gives zero as a result. This means that

the system creates disjoints rules and assures a good

classification.

Figure 15 Different panels of the developed application. A selection
must be done among: learning, execution phase and a statistical option
for showing statistical data

Figure 16 Objects used in final experiments

Table IV Example of execution data for object 10 from Figure 16

Primitive

LT

(learning phase)

Primitive value

(execution phase)

LT value

(execution phase)

FD0 HistVar:1 0.00 1.00

FD10 HistVar:2 0.13 0.92

FD20 HistVar:5 0.38 0.99

FD30 HistVar:7 0.60 1.00

FD40 HistVar:9 0.75 0.90

FD50 HistVar:10 0.91 0.98

FD60 HistVar:11 1.00 1.00

FD70 HistVar:11 1.00 1.00

FD80 HistVar:10 0.93 0.92

FD90 HistVar:9 0.84 0.90

FD100 HistVar:10 0.85 0.90

FD110 HistVar:10 0.94 0.90

FD120 HistVar:11 0.96 0,94

FD130 HistVar:10 0.91 0.98

FD140 HistVar:9 0.78 0.99

FD150 HistVar:7 0.59 0.99

FD160 HistVar:5 0.35 0.90

FD170 HistVar:3 0.17 0.96

SN HistVar:5 0.36 0.91
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Conclusion

In this paper, we presented an adaptive, flexible, low-cost

solution to maximize efficiencies in dispensing applications.

We have used sensing technology to endow an industrial

Desktop robot with a greater degree of flexibility in dealing

with its environment. Concretely, a CCD Camera was

mounted over the robot and the visual information was used

to autonomously change a previously off-line stored robot

program to each workpiece.
The results illustrate the flexibility and robustness of the

overall application. Further, the employed approach assures a

good classification of workpieces and a minimum offset and

rotation values of 0.2 mm and 38, respectively.
We are currently implementing this solution in a real

industrial environment.
We intend to further improve the classification procedure

introducing new features in the rules and experiment other

methods than fuzzy logic. Further, we intend to automatize

the overall application such that the robot’s program is also

automatically generated through the extraction of the relevant

waypoints and path information. The solution proposed in

this paper can easily be extended to other type of machinery

applications, as well as to other categories of machine vision

applications. For instance, to quality control inspection

including: dimensional measurement and gagging,

verification of the presence of components, hole location

and type of holes, detection of surface flaws and defects.
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Table V Classifications of objects (IN per cent)

Object 1 2 3 4 5 6 7 8 9 10 NAD

1 95 5

2 100 0

3 100 0

4 95 5

5 5 90 5

6 95 5

7 90 5 5

8 95 5

9 100

10 95 5
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