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II. Abstract 

 

In recent years, conductive polymeric nanomaterials have received considerable attention 

because of the increasing demand of new technologies for the development of electronic devices, 

sensors, scaffolds, to be used in the most diverse research areas such as biology, tissue 

engineering, food industry, etc. 

In this context interest in polyaniline (PANI) has grown exponentially, being regarded as one of 

the most technologically capable electrical conducting polymers, due to its high electrical 

conductivity, easy synthesis, low cost, and stable electrical conductivity. Bacterial cellulose (BC) 

nanofibers appear as very promising support material for these conductive additives due to their 

high strength and stiffness associated to high purity, high porosity, and biocompatibility. The 

combination of these two materials opens a new field of potential applications for bacterial 

cellulose. 

This project aim was to develop an electrical conductive bacterial cellulose-graft-polyaniline 

composite by means of the oxidative-radical copolymerization using ammonium persulfate in 

acidic medium. The grafting conditions were studied by varying grafting parameters: monomer 

concentration and polymerization time. 

Different methods were studied for the producing of the conductive BC-graft-PANI composites: in 

situ direct polymerization of aniline in BC discs; surface modification of BC; and sulfonation of 

BC. The electrical conductivity increased from 7.5*10-11 S/cm to 2.26*10-4 S/cm by controlling 

the time of polymerization and the molar Ratio of CB:aniline. Under the assayed experimental 

conditions, the optimum grafting efficiency was find at a CB:aniline ratio of 1:10 and with a time 

reaction of 6 hours. 

The produced BC-graft-PANI composites were characterized using conductivity assays, scanning 

electron microscopy (SEM), fourier-transformed infrared spectroscopy (FTIR), thermogravimetric 

analysis (TGA), differential scanning calorimetry (DSC), and viability assay (MTS test) taking BC 

as reference.  
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III. Resumo 

 

Nos últimos anos, os polímeros condutores tem recebido especial atenção devido há crescente 

necessidade de novas tecnologias para o de envolvimento de dispositivos electrónicos, sensores, 

suportes porosos, que poderão ser usados nas mais diversas áreas como a biologia, a 

engenharia de tecidos, a industria alimentar, etc..  

Neste contexto, o interesse na polianilina (PANI) tem crescido exponencialmente, sendo 

considerada um dos polímeros condutores mais promissores, devido à sua elevada 

condutividade eléctrica, fácil síntese, baixo custo e estabilidade térmica. No que diz respeito às 

nanofibras de celulose bacteriana, estas surgem como um material de suporte muito 

interessante para este tipo de polímeros condutores devido às excelentes propriedades 

mecânicas, associadas á elevada pureza, elevada porosidade, e biocompatibilidade. Com a 

combinação destes dois materiais abre-se um novo campo de aplicações para a celulose 

bacteriana. 

Este projecto tem como objectivo o desenvolvimento de um material compósito condutor à base 

de celulose bacteriana e polianilina através da polimerização oxidativa in situ da anilina em meio 

acido e usando persulfato de amónia como agente oxidante. As condições de polimerização 

foram estudadas fazendo variar os parâmetros de reacção: concentração do monómero e tempo 

de polimerização.  

Para a produção dos compósitos BC/PANI foram estudados diferentes métodos: a polimerização 

directa in situ da anilina na celulose bacteriana em meio ácido; modificação da superfície da 

celulose bacteriana, através da activação inicial da superfície da CB e posterior polimerização 

oxidativa; e sulfonação da celulose bacteriana. A condutividade eléctrica aumentou de 7.5*10-11 

S/cm para 2.26*10-4 S/cm controlando o tempo de polimerização e a razão molar BC:anilina. 

Para as condições analisadas, os melhores resultados obtidos foram a razão molar CB:anilina de 

1:10 e um tempo de reacção de 6 horas. 

Os materiais obtidos foram caracterizados através de ensaios de condutividade, microscopia 

electrónica de varrimento (SEM), espectroscopia de infravermelho (FTIR), analise 

termogravimétrica (TGA), calorimetria diferencial de varrimento (DSC), e ensaios de viabilidade 

(teste MTS), usando a celulose bacteriana como referência.  
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1. Motivation and Aims 

 

Polyaniline (PANI), one of the most common conducting polymers, is prepared by the oxidation of 

aniline in an acidic aqueous medium. It bears good environmental, thermal and chemical 

stability, electrical and optical properties, facile redox and pH-switching behavior. It can be rapidly 

„switched‟ with the addition of acids (protonation) and bases (deprotonation).  

Polymer–polyaniline (PANI) conductive polymeric composites have been received considerable 

attention because of their potential applications in electrodes, biosensors, batteries, antistatic 

coatings, gas sensors, membranes, light emitting diodes and notability in neuronal tissue 

engineering, robotics and biomedical actuators. The rationale is based on the putative 

modulatory effect of the electrical stimulation on cell attachment, proliferation, migration and 

differentiation.  

Novel electro-conductive bacterial cellulose (BC) scaffolds could result from the combination of 

the electrical conductivity, chemical stability and thermal stability of PANI with the unique 

properties of BC: highly homogeneous structure, high moldability in situ, high water-holding 

capacity, biocompatibility and remarkable strength (Young‟s modulus of 15-30 GPa). 

BC is excreted by Gluconacetobacter xylinus, a strict aerobe Gram-negative bacterium. Under 

static culture, BC is organized as a 3D ultrafine network structure. BC is a naturally nano-

structured biopolymer, with fibers having less than 100nm wide and composed of elementary 

nanofibrils, aggregated in bundles with lateral size of 7-8nm. Further, nano-whiskers can easily 

be obtained by acid hydrolysis of BC, expanding the potential use of BC. The surface modification 

of BC whiskers has a wide and underexploited potential. Novel functionalized BC nanofibers with 

predetermined structures, surface-conductive and piezoelectric properties, may allow to improve 

the properties of materials currently in the marketplace and to create new markets for materials 

whose manufacture and processing conditions uniquely meet the targeted properties. Their 

surface modification could improve their stability and their compatibility with the matrices for the 

synthesis of bio-based nanocomposites. 

Due to BC unique properties a few biomedical applications have already reached the market: 

BASYC are BC cylindrical tubes used in the reconstructive microsurgery of blood vessels. Biofill is 

used in second and third degree burns, ulcers and as a temporary artificial skin. Gengiflex allows 

the recovering of periodontal tissues. Xylos Co. also produces BC-based materials for biomedical 

applications.  
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The main focus of this project is to explore the nanotechnological potential of surface-modified 

BC by covalently graft polyaniline onto the surface of BC, through oxidative-radical 

copolymerization using ammonium persulfate in acidic medium. The grafting conditions were 

studied by varying grafting parameters. 

The representative BC-graft-PANI composites were characterized using conductivity assays, 

Scanning Electron Microscopy (SEM), Fourier-transformed infrared spectroscopy (FTIR), 

Thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), and MTS assay 

taking BC as reference.  
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2. Context of the work  

 

The present work was developed within the interests of the FUNCARB (FUNctional 

CARBohydrates Nanobiotechnology) Research Group, at the Center of Biological Engineering 

(CEB) and in collaboration with the Department of Physics both from the University of Minho. The 

FUNCARB group belongs to the Associate Laboratory IBB – Institute for Biotechnology and 

Bioengineering. 

The FunCarb Research Group was established in 2010 and operates in the fields of 

Biotechnology and Biomedical Engineering. This group supports a multidisciplinary and highly 

skilled team which works at the interface of biotechnology, biology, pharmaceutics, biomedical 

engineering and materials science. The main goal of FunCarb is to develope tools and new 

biomaterials based on carbohydrates such as hydrogels, scaffolds, membranes and 

nano/microparticles, for biomedical application. The polysaccharides currently used in the group 

include dextrin, bacterial cellulose, hyaluronic acid, chitosan and mannan. The current research 

activities of the FunCarb Group contain the following topics: polyssacharide-based biomaterials 

including bacterial cellulose (to be used for biomedical devices, coatings for food products and 

composites with new properties), injectable hydrogels for tissue regeneration, and nanogels for 

the development of delivery systems; bioactive peptides and proteins; enzymatic technology. 
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3. Conductive Polymers  

 

Until Second World War, all carbon based polymers were rigidly regarded as insulators. The use 

of conductive polymers in materials‟ science began in 1977 when Chiang et al described the 

doping of polyacetylene (with conductivity (σ) values before and after doping of 10-5 S/cm and 102 

S/cm respectively) [1]. Upon realizing that polymers could have electrically conductive 

properties, researchers pursued new paths with the idea of having lightweight conductors 

capable of replacing metals in many areas. [2, 3]  

Conductive polymers, more commonly known as a “synthetic metals”, are a class of functional 

polymers that have alternating single and double carbon–carbon bonds along the polymeric 

chains. The series of alternating single and double bonds, which is generated by electron cloud 

overlap of p-orbitals to form π molecular orbital‟s, is referred to as a conjugated system [4]. The 

highly conjugated polymer chain can be assigned reversible chemical, electrochemical and 

physical properties controlled by a doping/de-doping process [5].  

Conductive polymers exhibit the unusual combination of the electrical, electronic, magnetic and 

optical properties of a metal while retaining the mechanical properties, solubility, processibility, 

etc., commonly associated with a conventional polymer [6]  

There is no singular method for synthesizing conductive polymers (Table 1). Conductive polymers 

may be synthesized by using any one of the following techniques: chemical polymerization, 

electrochemical polymerization; photochemical polymerization, metathesis polymerization, 

concentrated emulsion polymerization, inclusion polymerization, solid-state polymerization, 

plasma polymerization, pyrolysis and soluble precursor polymer preparation. Among these 

methods, chemical polymerization is the most useful for preparing large amounts of conductive 

polymers. Chemical polymerization (oxidative coupling) starts with the oxidation of monomers to 

a cation radical and their coupling to form dications. The repetition of this process generates a 

polymer. All the classes of conjugated polymers may be synthesized by this technique [7]. 
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Table 1 – List of some conductive polymers and corresponding common methods used for their syntheses. 

Polymer Method used References 

polycetylene Chemical polymerization [1] 

polyaniline 
Chemical polymerization  or 

Electrochemical polymerization 

[8, 9] 

[10] 

Polybutadiene Inclusion polymerization [11] 

Polypyrrole 
Chemical polymerization or [12] 

Electrochemical polymerization [13] 

polystyrene Concentrated emulsion polymerization [14] 

   

 

Moreover, conductive polymers show almost no conductivity in the neutral (uncharged/undoped) 

state but their conductivity can be increased several-fold by doping, which is the process of 

oxidizing (p-doping) or reducing (n-doping) a neutral polymer thus providing a counter anion or 

cation (i.e., dopant), respectively (Figure 1).  

 

Figure 1 - Conductivity of electronic polymers. Conductivity increases with increased doping. [15]  

 

Doping is accomplished by chemical methods of direct exposure of the conjugated polymer to a 

charge transfer agent (dopant) in the gas or solution phase; or by electrochemical oxidation or 

reduction and is dependent on oxidation potential. The doping is usually quantitative and the 

carrier concentration is directly proportional to the dopant concentration. Doping of conductive 
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polymers involves random dispersion or aggregation of dopants in molar concentrations in the 

disordered structure of entangled chain and brils [4, 7]. Oxidation of the neutral polymer and 

following relaxation processes causes the generation of localized electronic states and a so-called 

polaron is formed. If now an additional electron is removed, it is energetically more favourable to 

remove the second electron from the polaron than from another part of the polymer chain. This 

leads to the formation of one bipolaron rather than two polarons. However, it is important to note 

that before bipolaron formation the entire chain would first become saturated with polarons [16]. 

Besides the increase in conductivity, doping in conductive polymers leads to some other 

interesting features which can be used in various technological applications (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Technologic applications of conductive polymers. Adapted from [7]. 

 

In the last few decades, given the unique combination of electrical, electrochemical and physical 

properties, the conducting polymers have received considerable attention due to their potential 

applications in electrodes, biosensors, batteries, antistatic coatings, gas sensors, membranes 

and light emitting diodes, transparent electrodes, electrical conductive, optical materials, 

biomedical applications, to name a few examples. [4, 17-19] 

In photographic film development, Bayer and Agfa, initiated the development of the Baytron 

series of products based on poly(ethylenedioxythiophene) (PEDOT) doped with poly(styrene 
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sulphonate) PSS [20]; polyacetylene, polythiophene, and an oligomer of thiophene were assayed 

for the development of thin-film organic field-effect transistors (OFETs) [20]. Another area that 

utilizes the optical and semi conductive properties of conductive polymers is solar-energy 

conversion, since they are strong absorbers of electromagnetic radiation over a wide frequency 

range [20]. Conductive polymers have been also considered for microelectronics applications, 

such as:  Electronics Company Philips is involved in the development of “plastic chip” technology 

using conductive polymers; Mitsubishi Rayon in Japan has been producing a water-soluble 

sulfonated methoxyaniline polymer for use in e-beam lithography; and the use of polyaniline 

coatings for electroless deposition of copper connectors [2, 20].   

In biomedical applications, the conducting polymers exhibit important advantages including 

biocompatibility, ability to entrap and controllably release biological molecules (i.e., reversible 

doping), ability to transfer charge from a biochemical reaction, and the potential to easily change 

the electrical, chemical, physical, and other properties of the conducting polymers to better suit 

the nature of the specific application. These unique characteristics are useful in many biomedical 

applications, such as biosensors, tissue-engineering scaffolds, neural probes, drug-delivery 

devices, and bio-actuators [4]. In recent times, studies involving the growth and control of 

biological cell cultures on conductive polymers for biotechnology applications have been 

described in the literature [21, 22]. It was envisaged that electrical and chemical stimuli can be 

used to address living cells in culture and thereby stimulate and regulate growth. Many studies 

have focused on nerve cells for neuroprostheses, bionic systems and neural repair devices, either 

in the peripheral nervous system or even for spinal chord regeneration [19, 23-25]. Conductive 

polymers have also been demonstrated to be very useful materials for tissue-engineering 

scaffolds and as actuators to operate as artificial muscles [26-28]. The electrical stimulation was 

found to promote favorable cell growth, including nerve cells, leading to the development of 

conductive polymers for a range of implant applications. [29-31]. Another application is in the 

area of biomedical monitoring. Here, a number of sensor fibers are built into garments and the 

sensor responses recorded, and in some scenarios automatically transmitted [2] 
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3.1. Polyaniline 

 

Polyaniline (PANI) and the polymers derived from aniline are regarded as one of the most 

promising electrical conductive polymers due to their unique properties such as: their chemical 

versatility, stability, processability and low cost as well as its electronic, biological, and optical 

properties. [18, 32-35] A large number of studies have been carried out on the synthesis, 

structure, properties and applications of PANI [32].  

PANI is one of the oldest conductive polymers known and was first synthesized by Letheby in 

1862 by anodic oxidation of aniline in sulphuric acid and described as existing in different 

oxidative states (Figure 3), directly affected by the reaction conditions. It is a phenylene-based 

polymer with an amine group –NH on a polymer chain with a phenylene ring of both sides. The 

protonation and deprotonation occurs precisely due to the presence of the –NH group [7, 36].  

The electrical conductivities of PANI range from 10−8 to 102 S/cm. Depending on the conditions of 

preparation, the polymers may be soluble in various organic solvents or insoluble in any solvent. 

PANI can be produced as nanogranular powders, nanotubes, nanowires, micromats or 

microspheres and the dimensions of all the structures are determined by the molecular weight of 

the PANI chains, which is proportional to their length. These morphologies can be obtained as 

precipitates during the oxidation, as colloidal dispersions, or as films and layers on a variety of 

supports [33].  

Besides the high conductivity, PANI has other interesting property, displays different colors when 

changing the conditions of pH or electrical potential. 

 

 

3.1.1 Structure and Properties of Polyaniline 

 

As mentioned above, PANI can occur in a variety of oxidation states that differ in chemical and 

physical properties. 

The main oxidation states of PANI are represented in Figure 3. Leucoemeraldine (yellow) and 

pernigraniline (purple) are under the fully reduced state (all the nitrogen atoms are amine), 

whereas the fully oxidized state (all the nitrogen atoms are imine) include emeraldine (salt-green 

or base-blue) with the ratio –N-/N= of  0.5 [36].  
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PANI can be doped by protonation without changing the number of electrons 

(oxidation/reduction) associated to the polymer chain. Thus the imine can be partially or fully 

protonated depending on the pH at which the polymer was exposed leading to the formation of 

doped PANI (conductive emeraldine salt). Upon further oxidation, a second redox process occurs, 

which yields a new insulating material, pernigraniline that also exists as a „salt‟ and a base. The 

protonated pernigraniline is an important polymerization intermediate; its blue colour should not 

be mistaken for that of the emeraldine base, which is of a different shade (absorption maxima at 

690 and 630 nm, respectively).  

The deprotonation is reversible by treating the conductive emeraldine salt in neutral or alkaline 

media. This guides to a decrease of conductivity by ten orders of magnitude leading to 

emeraldine base. [33, 37, 38] 

 

 

 

 

 

 

 

 

 

 

Figure 3 – Schematic representation of different oxidation states of PANI [16]. The colors are representative of the 

observable color of the polymer. 

 

According to Sapurina et al, (2008) a PANI with a conductivity >10−3 Scm−1 is produced only in 

strongly acidic media, pH < 2.5. The oxidation of aniline in mildly acidic, neutral or even alkaline 

media yields non-conductive oligomers as products or the major components of the products. 

The pH drifts to lower values during the oxidation of aniline and the oxidation mechanism 

changes correspondingly during the oxidation. The reaction may pass through all three acidity 

phases in a single experiment; the oxidation of aniline in water in the absence of added acid is a 

typical example [33]. 
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The most common methods used for preparation of PANI includes: dispersion polymerization of 

aniline in the presence of a matrix polymer in a disperse or continuous phase of a dispersion; 

Chemical in situ polymerization of aniline in a matrix or in a solution with a matrix polymer;   

Electrochemical polymerization of aniline in a matrix covering an anode; Polymer grafting to a 

PANI surface; Copolymerization of aniline with other monomers resulting in the formation of 

soluble aniline copolymers, which can be considered as a composite polymer [39].  

Among these methods, chemical polymerization is favorable if considering the large-scale 

production of PANI [4]. It can be done using a variety of chemical oxidants, such as ((NH4)2S2O8), 

MnO2, Cr2O4, H2O2, K2Cr2O7, KClO3, FeCl3) in an acidic aqueous medium (HCl, H2S04, HCl04) [32, 

40]. The main function of the oxidant agent is to remove a proton from a molecule of aniline, 

without forming a strong bond with both subtract intermediated or the final product. The oxidant 

agent should have a sufficient reduction potential for the oxidation of the monomer, but the 

amount to be used should be low enough to avoid the oxidative degradation of the produced 

polymer [33].  A common system for the production of PANI is the in situ chemical oxidation of 

aniline with ammonium peroxydisulfate (APS) in acid aqueous solution, this oxidation of aniline is 

exothermic and sulfuric acid and ammonium sulfate are by-products (Figure 4) [37]. 

 
Figure 4 - Stoichiometry of aniline oxidation with APS to polyaniline (emeraldine) hydrochloride [37]. 

 

There are many important parameters, involved in PANI production, that can affect directly the 

PANI morphology and chemical and electrical properties including: the chemical nature of the 

oxidant agent, the nature of the acid protonating the aniline and the reaction intermediates during 

the oxidation, the pH, the concentrations of the reactants (especially of aniline and oxidant) and 

their molar proportions, temperature, solvent components (e.g. the organic component), the 

presence of additives (e.g. colloidal stabilizers, surfactants), templates added to the reaction 

mixture, etc [33].  
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3.1.2 Applications of Polyaniline 

 

The combination of electrical properties, typical of semiconductors, with materials parameters 

characteristic of polymers, as been used for the development of “plastic” microelectronics, 

electrochromic devices, tailor-made composite systems, and “smart” fabrics [34, 37].  

PANI has also been explored in the field of microelectronics. The combination of tunable 

chemical properties with the electronic properties of conductive polymer has a remarkable 

impact on the development of new sensors.  

PANI membranes have been tested in pervaporation experiments, gas separation, metal recovery 

by electrodialysis, analytical ion-selective electrodes, pH sensors, enzyme immobilization, 

improvement of thermal stability, and trans-membrane redox reactions. Recent efforts in the 

design of PANI-modified or PPy-containing membranes have been aimed at applications in fuel 

cells [41]. 

Recently the demonstration of PANI‟s biocompatibility [42], aside from conductivity, has sparked 

interest in its use for biomedical applications, including the development of artificial muscles [43-

45], controlled drug release [46] or for the stimulation of nerve regeneration [19]. PANI was 

found to have good conductivity, low cytotoxicity and good biocompatibility allowing for the cell 

attachment and proliferation [47, 48].  
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4. Bacterial Cellulose 

 

Cellulose, the most important skeletal component in plants, is the most abundant biopolymer on 

earth representing about 1.5 *1012 tons of the total annual biomass production [49]. It is 

composed of the linear homopolymer of β(1- 4)-linked D-glucose units covalently linked through 

acetal functions between the equatorial OH group of C4 and the C1 carbon atom (b-1,4-glucan) 

and can be obtained by different means (Figure 5): insolation from plants (most common); 

biosynthesis by different types of microorganisms; enzymatic in vitro synthesis; and the 

chemosynthesis from glucose derivatives [50, 51]. It is crystalline due to the high number of 

hydrogen bonds from the hydroxyl groups which hold cellulose chains together [52].  

 

 

Figure 5 – Pathways to the cellulose [49]. 

 

The formation of cellulose by laboratory bacterial cultures is an interesting and attractive way to 

pure cellulose for both organic and polymer chemists. By selecting the substrates, cultivation 

conditions, additives, and finally the bacterial strain, it is possible to control the molar mass, its 

mass distribution, and the supra-molecular structure. Thus it is possible to control important 

cellulose properties, and also the course of biosynthesis (e.g. kinetics, yield, and other metabolic 

products) [50].  
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Both bacterial and vegetable celluloses have the same molecular formula being built up of 

β(1→4)–linked D-glucose units as referred above (Figure 6) but their physical and chemical 

features are quite different [53, 54]. Bacterial cellulose has developed into a field of study of its 

own (BC), as can be observed by the number of patents and publications worldwide (Figure 7) 

[53]. It is preferred over the plant cellulose as it can be obtained in higher purity free of lignin, 

pectin, hemicelluloses and other biogenic compounds (there is no need for chlorine chemical 

bleaching), and has higher polymer crystallinity [54, 55]. The degree of polymerization it is also 

different, about 13000-14000 for plants and 2000-6000 for bacterial cellulose [53]. It also has 

higher tensile strength and water holding capacity and the fibrils of bacterial cellulose are about 

100 times thinner than that of plant cellulose, making it a highly porous material [54]. 

 

 

Figure 6 - Molecular structure of cellulose as a carbohydrate polymer generated from repeating B-D-glucopyranose 

molecules. (n=degree of polymerization) 

 

 

Figure 7 – Publications and patents on bacterial cellulose [53] 
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Bacterial cellulose can be produced by various species of bacteria (Table 2), such as those of the 

genera Acetobacter, Agrobacterium, Psuedomonas, Rhizobium, and Sarcinathe. The  last one is 

the only genus of Gram-positive bacteria in the field [53]. Different strains producing microbial 

cellulose can be observed in Table 2 [54].  

 

Table 2 - Different strains producing microbial cellulose [54] 

Organisms (genus) Cellulose produced Biological role 

Acetobacter 
Extracellular pellicle To keep in aerobic  

environment Cellulose ribbons 

Achromobacter Cellulose fibrils Flocculation in wastewater 

Aerobacter Cellulose fibrils Flocculation in wastewater 

Agrobacterium Short fibrils Attach to plant tissues 

Alcaligenes Cellulose fibrils Flocculation in wastewater 

Pseudomonas No distinct fibrils Flocculation in wastewater 

Rhizobium Short fibrils Attach to most plants  

Sarcina Amorphous cellulose Unknown 

Zoogloea Not well defined Flocculation in wastewater 

 

Special attention has been given to the assembly of cellulose from Gluconacetobacter xylinus = 

Acetobacter xylinum, a Gram-negative, rod shaped bacteria. This is one of the best bacterial 

species for large-scale cellulose production [55] and it was first reported in 1886 by A.J. 

Brown.He observed that the resting cells of Acetobacter produced cellulose in the presence of 

oxygen and glucose [54]. 

The microfibrillar structure of BC was described by Mühlethaler in 1949. The author observed 

that the cellulose produced by Acetobacter xylinum occurs in the form of fibres. First, the bacteria 

secreted a structurally homogeneous slimy substance within which, after a short time, the 

cellulose fibers were formed. Acetobacter xylinum produces two forms of cellulose: (i) cellulose I, 

the ribbon-like polymer, and (ii) cellulose II, the thermodynamically more stable amorphous 

polymer [54]. 
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Further, Hestrin and Schramm [56], intensively investigated the biochemistry of BC production 

by G. xylinus. The pH of the medium is 6 and the optimum growth temperature is 30ºC. The 

static culture leads to the production of cellulose by the accumulation of a gelatinous membrane 

on the surface of the medium. In a culture medium aerated by shaking, bacteria grow faster, but 

less cellulose, presented as ball-shaped particles, is produced. When G. xylinus is cultured on 

solid medium, the colonies have a dry, rinkled appearance [53].  

The differences between stationary and agitated culture are not only in terms of macroscopic 

morphology but also at various structural levels. While the fibril network remains the same, there 

are some differences in the structure of the crystals and molecular chains. The crystallinity and 

cellulose I alpha content, as well as the degree of polymerization, is lower in agitated than in 

static culture [57]. 

In terms of bacterial cellulose biosynthesis, the cellulose synthase is considered the most 

important enzyme. The cellulose synthase operon codes protein complexes aligned along the 

long axis of the cell. Cellulose synthesizing complexes are present in the surface of the bacteria, 

next to the cell membrane pores where the cellulose fibrils are extruded through, associating with 

other fibrils and making up the ribbon of crystalline cellulose. Each bacterium synthesizes a 

cellulosic ribbon with a width ranging from 40 to 60 nm, parallel to the longitudinal axis of the 

bacterial cell. The ribbon of cellulose is composed of microfibrils with around 1.5nm thickness, 

secreted through extrusion sites in the outer membrane of the bacterium. Then, the microfibrils 

aggregate into 3 to 4 nm microfibrils via crystallization of adjacent glucan chains and finally, 

together, form the larger cellulosic ribbon [53]. 

Existing relevant aspects that affect the bacterial cellulose production are: the carbon (mainly the 

glucose) and nitrogen sources and concentration, the air/liquid interface of the culture medium, 

the pH and temperature, the surface area of the fermentation system, the membrane properties 

(in static or agitated cell culture) and differences in the bacterial strains that also play an 

important role in the microstructure and production rate. Figure 8 shows a membrane produced 

by ATCC 10245 G. Xylinus strain [53]. The choice of the medium technique depends of the final 

destination of the biopolymer. 
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Figure 8  - BC pellicle produced by ATCC10245 G. xylinus strain in static culture [53] 

 

In terms of properties BC is characterized by a tridimensioal (3D) ultrafine network structure 

[50]. When formed in static culture, the randomly assembled ribbon-shaped fibrils are less than 

100 nm wide and composed of elementary nanofibrils, aggregated in bundles with lateral size of 

7-8nm. The crystallinity degree of BC is in the range of 60-90% [53]. According to Iguchi [58], a 

BC pellicle obtained after 7 days of culture and air-dried at 20ºC and low pressure, presents a 

Young„s modulus of 16,9 GPa, tensile strength of 256 MPa and elongation of 1,7% . However, 

when the pellicle is dried through the heat-press method with an excess of pressure (490 – 1960 

kPa), the tensile strength and elongation tend to decrease, while the Young modulus remains 

constant. 

BC is highly porous (around 94%) with micro-channels of different size through which solute 

diffusion occurs and highly hydrophilic, holding over 100 times its weight in water.  The method 

of drying has been shown to affect the BC porosity. The freeze-drying technique has been 

reported as the most effective method to preserve the porous structure [49, 53]   

 

 

4.1 Applications of Bacterial Cellulose 

 

Due to its characteristic, an almost inexhaustible polymeric raw material, friendly to the 

environment, biocompatible, biodegradable, high water-holding capacity and with remarkable 

mechanical strength (Young‟s modulus of 15-30 GPa), this polysaccharide is a very useful natural 

material which has a lot of potential and it has been used in many applications in the most 

random areas [49, 50, 59, 60]. 
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Once BC is biocompatible and highly pure it has been studied extensively for biomedical 

applications, especially for use as scaffolds in tissue engineering including drug delivery, vascular 

grafts, cartilage, neural regeneration and wound dressing [53]. 

The Biofill (BioFill Produtos Biotecnológicos, Curitiba, PR, Brazil) membranes were the first 

bacterial cellulose membranes to be used in clinical trials, creating a new wound healing system.  

They also developed products such as Bioprocess used to treat cases of second and third degree 

burns, ulcers and as temporary substitute for human skin; and Gengiflex used for recovery of 

periondontal tissues, dental implants and guided bone regeneration, alone or in association with 

osteointegrated implants, proving a good alternative for guided tissue regeneration [53, 57]  

Svensson and colleagues [61] utilized native and chemically modified BC as a substrate for 

primary bovine and human chondrocytes culture, aiming at constructing a cartilage tissue with 

native mechanical properties.  The authors found that BC scaffolds support the growth of 

chondrocytes, allowing cell migration and ingrowth. 

Klemm et al., (2001) [49] investigated the application of patented BC tubes (BASYC - BActerial 

SYnthesized Cellulose) as microvessel endoprosthesis for end-to-end anastomosis procedure, 

using the carotid artery of a white rat and demonstrated that there was no rejection reaction.  

Putra et al., (2008) [62] described a simple technique that allows obtaining a tubular – BC gel 

with desired length, inner diameter and thickness, along with an oriented fibril structure. This 

technique requires a shorter cultivation time, as compared to the methodology described by 

Klemm et al.  

In the last few years BC has also been vastly explored for the food and electronics industries and 

for papermaking. In the food industry, BC is used in the production of coconut cream, low fat ice 

cream, snacks, sweets, thickener, stabilizer, texture modifier, and serum cholesterol-lowering 

[63]. Nata de Coco, obtained by the static fermentation of coconut wastewaters, became one of 

the first commercially available products of BC, gaining notable popularity [53]. 

In electronics, due to the demand of low-cost manufacturing techniques, BC has been tested for 

display devices, coatings, and audio components. Organic light emitting diodes (OLEDs) are an 

emerging technology based on the design of light-weight, flexible thin film devices that use 

electroluminescent organic materials (flexible displays). Several efforts have also been focused on 

achieving electronic display screens that combine the desired properties of paper, with the 

dynamic capability of digital screens [53]. 
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Along with the recognized advantages of their use in several consumer products, BC based 

flexible displays can be used to develop devices for therapeutic purposes such as photodynamic 

therapy, to treat skin cancer and other diseases.  

According to Yano et al, (2005) [64], BC exhibits a high optical transparency making it a suitable 

material for display devices, coatings and lenses. 

Also, the first audio speaker diaphragms using microbial cellulose were developed by the Sony 

Corporation. The excellent dimensional stability of microbial cellulose gives rise to a sound 

transducing membrane which maintains high sonic velocity over a wide frequency range. This 

makes it the best material to meet the high standards for optimum sound transduction [53].  

In papermaking  Mormino and Bungay [65], in 2003, used a novel fermentation system to 

produce composites of BC and paper. Gostomski and Bungay [66], in 2002, described the 

production of BC using a horizontal bioreactor containing half-submerged, flat, circular disks 

mounted on a central shaft. Overall, the composites showed strengths more than ten times that 

of controls composed only of BC. The studied system was proposed to allow expanding the 

market for the recycled material and might be even more valuable as a low-cost strengthener or 

bulking agent for other applications of the cellulosic gel or dried sheets that may need the extra 

strength [66]. Companies such as Mitsubishi Paper Mills in Japan are also investing a lot of 

resources in developing microbial cellulose for paper products. [53] 

Thanks to the emerging of nanotechnology, recent studies of bio-based BC nanomaterials have 

been reported. Tailoring how cellulosic interfaces are constructed at the nanoscale may provide 

the opportunity to develop new and better materials and products. Also, the cellulose„s chemical 

characteristics provide it with a rich variety of options for chemistry and engineering for material 

applications. Its relative chemical purity, thus obviating the purifications steps and the nanometer 

range of the fiber, facilitate its exploitation. [53] 

Cristian et al, (2009) [67] developed a bio-inspired bottom-up process to produce bacterial 

cellulose–starch self-assembled nanocomposites. Potato and corn starch were added into the 

culture medium and partially gelatinized in order to allow the cellulose nanofibrils to grow in the 

presence of a starch phase. The BC-starch gels were hot pressed into sheets that had a BC 

volume fraction higher than 90%. During this step starch was forced to further penetrate the BC 

network. This process takes advantage of the way some bacteria extrude cellulose nanofibres and 

of the transport process that occurs during the gelatinization of starch. The self-assembled BC–

starch nanocomposites showed a coherent morphology; the crystallinity of BC was preserved in 



CHAPTER I. INTRODUCTION 

20 
 

spite of the presence of starch, hence the mechanical properties of the nanocomposites showed 

no significant decrease. This bottom-up technique seemed to be an adequate approach to 

manufacture BC nanocomposites allowing the preservation of the typical network of cellulose 

fibres as there was no need to disintegrate the BC gel in order to combine it with a second phase 

and [53, 67, 68] 

Won-Il Park et al, (2007) [69] incorporated cellulose whiskers into nanofibers of polyethylene 

oxide (PEO) by using electrospinning process. Electrospinning is a fast and simple process driven 

by the electrical forces on the surface of polymeric fluids, producing polymer filaments using an 

electrostatic force.  This electrospinning technique can serve various purposes, such as the fine 

control of the fiber diameters, the production of a defect-free or defect-controllable fiber surface, 

and the formation of continuous single nanofibers. Thus process yield to BC/PEO nanocomposite 

fibers with a diameter of less than 1 μm. The rod-like BC whiskers, prepared by the acid 

hydrolysis, were 420 nm long and 11 nm wide, with a height of 10 nm. The whiskers were well 

embedded and aligned inside the fibers, even though they were partially aggregated in some of 

the fibers. They suggest that the incorporation of the cellulose whiskers was efficient in 

enhancing the mechanical properties of the electrospun fibers [53, 69].  

The CB has also been proposed to be used for membrane fuel cell (hydrogen), electronic paper 

(e-paper) ultrafiltration, pervaporation and dialysis membranes and membranes for recovery of oil 

and mine [70].  
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1. Cellulose-based Conductive Materials 

 

Due its unique structure and properties in terms of its purity, ultrafine network, high mechanical 

stability and low density, many studies have been performed in order to achieve the ideal 

cellulose-based conductive materials. Most of them involve the „„in situ‟‟ chemical polymerization 

of aniline or pyrrole in the presence of cellulose or bacterial cellulose. In Table 3 is summarized 

some of that studies. 

 

Table 3 – Review of some studies on cellulose-based conductive materials. 

Matrix 
Oxidant 
agent 

Doping Medium 
Temperature 

(ºC) 
pH 

Conductivity 
(S/cm) 

Ref. 

Cellulose 
fibers 

PANI  
 

APS and 
FeCl3 

--- HCl Room temp. --- 

5.6*10-4 to 
6.0*10-4 

[71] 

Polypyrrole 
2.1*10-3 to 
2.6*10-1 

Chitosan PANI APS --- HCl 25 0 9.63*10-2 [34] 

Cellulose 
fibers 

PANI 
APS 

--- HCl 20 <3 0.41 [72] 

BC PANI APS --- HCL Room temp. <3 5*10-2 [9] 

Cellulose 
blends 

PANI 
--- 

DIOHP 
Destilled 

water 
160 --- 1*10-3 [73] 

BC PANI APS DBSA Ethanol/water  25 5.5 1.61*10-4 [74] 

BC PANI APS --- HCl Room temp. <3 3.0*10-2 [17] 

BC PANI APS p-TSA HCl Room temp. 3 1.3 [8] 

 

Laska et al, (1997) [73] evaluated the conductivity of different PANI blends doped with 

phosphoric acid diesters in convention polymers (PVC, polystyrene, poly(metylmethacrylate)) and 

in cellulose derivates. According to these authors the cellulose/Pani blends shows a conductivity 

of 1.0*10-3S/cm. The blends of PANI seem to be particularly attractive by combining relatively 

high conductivity with good mechanical properties. 

Li et al, (2002) [75] developed a method to prepare surface-conductive glass fibers. The method 

consisted on: (a) calcination of the fiber to remove the attached organic material; (b) activation of 

the fiber to generate a maximum density of silanol groups by immersion in a HCl aqueous 

solution; (c) formation of a stable silane monolayer through the reaction of 3-

bromopropyltrichlorosilane with the hydroxyl groups on the surface of the glass fiber; (d) the 



CHAPTER II. STATE OF THE ART  

23 
 

functionalization of the “self-assembly” monolayer through aniline substitution; and (e) the 

surface oxidative graft polymerization of aniline via the covalently immobilized aniline sites. The 

method produced a smooth, homogenous thin layer of PANI with strong adhesion on the surface 

of the glass fiber. The surface conductivity of the composite had a value of about 6.7 S/cm.  

Johnston et al, (2005) [12] prepared various composite conductive polymers by direct 

polymerization of polypyrrole and PANI on paper sheets using ferric chloride as the oxidant agent. 

They aimed to combine the paper sheets/products properties with the chemical and electrically 

conductive properties of the conductive polymers. Conductivities of up to 6 S/cm for paper-

polypyrrole composites and up to 2*10-3 S/cm for paper-PANI composites were obtained.  

There are a few publications focused on the combination of BC with carbon nanotubes. Yoon et 

al, (2006) [76] described a method to produce electrically conductive polymeric membranes, 

prepared by incorporating multiwalled carbon nanotubes (MWCNTs) in bacterial cellulose by 

dipping cellulose pellicles in a aqueous MWCNT dispersion containing a surfactant. The 

experiment showed that MWCNTs were strongly adhered to the surface of the bacterial. The 

electrical conductivity of pure MWCNTs was about 2.3*101 S/cm and the final conductivity of the 

cellulose/MWCNT composite was found to be approximately 1.4*10-1 S/cm.  The incorporation 

process reveals to be a useful method for dispersing MWCNTs in an ultrafine fibrous network 

structure and also for enhancing the electrical conductivity of the BC membranes [76].   

Van den Berg et al, (2007) [77] built a system consisting of a mixture of cellulose whiskers 

suspension with polyaniline (PANI) solution and a poly(p-phenylene ethynylene) (PPE) derivative 

with quaternary ammonium side chains. Cellulose whiskers with a typical average diameter of 20 

nm, an avarage length of 1–2 mm, were combined with the positively charged p-conjugated 

polymers to form stable dispersions in polar solvents such as formic acid. Thin films were 

produced by solution casting. These researchers obtained nanocomposites that combined the 

electronic characteristics of the conjugated polymers with the outstanding mechanical 

characteristics of the cellulose scaffold [77].  

Kelly et al, (2007) [71] produced polypyrrole and polyaniline conductive polymer composites in 

which individual Kraft paper pulp fibres have been fully encapsulated with polypyrrole and 

polyaniline by direct polymerisation of the respective monomers using ferric chloride and 

ammonium persulfate as the oxidants. The electrical conductivity of the prepared hybrid 

materials ranged from 5.6*10–4 S/cm to 6.0*10–4 S/cm for PANI composites and 2.1*10–3 S/cm 

to 2.6*10–1 S/cm for polypyrrole composites.  
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Tiwari and colleagues (2007) [34] used chitosan to fabricate an anisotropic graft conductive 

copolymer synthesized by grafting of polyaniline on to chitosan using APS as an initiator in acidic 

medium. The electrical conductivity of the composite was shown to increase with the extent of 

grafting onto the chitosan backbone and with the decrease of pH, reaching a conductivity of 

9.63*10–2 S/cm at a pH=0. According to these authors this biopolymer could be exploited for 

chemical and biosensor applications due to its good processability, improved solubility, high 

mechanical strength and controlled electrical properties. With conductivities as high as 4.03*10–3 

S/cm, the optimum grafting efficiency was found at [(NH4)2S2O8] 12.5*10-2 g/l, [aniline] 1.5*10-2 

g/l, [hydro-chloric acid] 0.5 g/l, [chitosan] 1.0 g/l, temperature 25±0.2°C [34].   

Stejskal and co-workers (2008) [72] coated cellulose fibers with protonated polyaniline (PANI) 

during the oxidation of aniline hydrochloride with APS in an aqueous medium. The conductivity 

increased from 4.0*10−14 S/cm to 0.41 S/cm after coating the fibers with PANI. The subsequent 

reaction with silver nitrate results in the decoration of PANI-coated cellulose fibers with silver 

nanoparticles of about 50 nm average size. The emeraldine coating changed to the pernigraniline 

state during the latter process and, consequently, the conductivity of the composite decreased 

from 0.41 S/cm to 4.1×10−4 S/cm, despite the presence of silver. These composites are also 

intended for applications outside the field of conducting materials.  

Zun-li Mo et al, (2009) [17] investigated a series of cellulose–PANI conductive composites 

prepared by chemical oxidative polymerization of aniline with native cellulose activated by various 

di-basic and monobasic acids. In that study, the composites prepared using the di-basic acids 

exhibited more favorable conductivity than the composites prepared using the monobasic acids. 

Moreover, the content of PANI and consequently the conductivity increased with increasing of 

activation time, however, for activation time higher than 50 min, the conductivity decreased 

because of the formation of aggregated PANI particles. Both the PANI content and the electrical 

conductivity increased with an increase of the amount of aniline, and reached the maximum 

values 3.0*10-2 S/cm at the 0.5 g aniline, respectively. The acids were able to successfully 

activate cellulose and lead to the improvement of the accessibility and reactivity of the O–H 

groups. Results from thermal analysis assays indicated that the composites were highly stable 

compared to pure cellulose [17]. 

Qian et al, (2010) [78] prepared PANI-coated conductive paper. Different pulps were used to 

evaluate the influence of pulp type on the conductivity of PANI-coated paper. The amounts of 

PANI coat on chemical pulps were higher than those coated on high yield pulps. The conductivity 
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presented a significant positive linear correlation with the amount of coated PANI.  Also, the 

beating degree of the pulp seemed to have an insignificant effect on the conductivity of PANI 

coated conductive paper.   

Nystrom et al, 2010 [79] analyzed the coating of individual fibers of wood-based nanocellulose 

with polypyrrole using in situ chemical polymerization. The results revealed that it is possible to 

manufacture an electronically conductive high-surface area composite material composed of 

microfibrillated cellulose and polypyrrole by direct chemical polymerization of pyrrole onto wood-

derived nanofibers in hydrogels without the need for sophisticated and time-consuming drying 

techniques such as solvent-exchange drying or lyophilization. The dry composite has a specific 

surface area of 89 m2/g; a conductivity of 1.5 S/cm; is electrochemically active; and exhibits an 

ion-exchange capacity for chloride ions of 289 C/g. These results give rise to new possibilities 

regarding the large-scale production of inexpensive paper-based materials for energy storage as 

well as electrochemically controlled extraction and separation of biologically interesting 

compounds [79].  
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2. Overview on Electrical Conductive Bacterial Cellulose-graft-Polyaniline  

 

Despite the previously described advantages of the use of PANI for the development of 

conductive materials, this polymer has known limitations in solubility and mechanical properties. 

To compensate these weak properties, the PANI is normal incorporated in other materials. Thus, 

in general, grafting of PANI into a flexible matrix, such as bacterial cellulose, could result in a 

material with good processability, good mechanical properties, biocompatility and good/stable 

electrical conductivity. 

A literature review shows that only this year (2011), four independent published reports focusing 

on the preparation of electrically conducting blends of bacterial cellulose as the polymer matrix, 

and intrinsically conducting polymer as the conductive filler were found. Marins et al (2011) [74] 

prepared conductive composite membranes of bacterial cellulose (BC) and polyaniline doped 

with dodecylbenzene sulfonic acid (PANI.DBSA) by means of in situ chemical polymerization of 

aniline in the presence of hydrated BC. The polymerization was performed with ammonium 

peroxydisulfate as the oxidant agent and different amounts of DBSA. The experiment showed that 

the highest electrical conductivity value 1.88*10-4 S/cm was achieved by using a DBSA/aniline 

molar ratio of 1.5 (because this condition provided a better penetration of PAni.DBSA chains 

inside the hydrated BC sheet). Higher amount of DBSA resulted in a DBSA layer at the BC 

surface, which avoid the penetration of the polyaniline chains inside inside the hydrated BC 

sheet. This behavior resulted in a decrease of the bulk electrical conductivity.  The in situ 

polymerization gives rise to conductive membranes with the surface constituted by different 

degree roughness confirmed by SEM micrographs and Small angle X-ray scattering (SAXS) 

measurements.  

Weili Hu et al (2011) [9] synthesized polyaniline/bacterial cellulose (PANI/BC) conductive 

nanocomposite membranes by in situ oxidative polymerization of aniline using ammonium 

persulfate as an oxidant and BC as a template (Figure 9). The authors found that PANI 

nanoparticles deposited on the surface of BC to form a continuous nanosheath by taking along 

the BC template, which greatly increases the thermal stability of BC. The content of PANI and the 

electrical conductivity of composites increased with increasing reaction time from 30 to 90 min. 

However, prolonged reaction times lead to a decreasing in conductivity because of the 

aggregation of PANI particle. The results also indicated that BC is successfully activated by acids, 

and the intermolecular hydrogen bands are broken, which helps to form the uniform dispersion 



CHAPTER II. STATE OF THE ART  

27 
 

of PANI in the nanofibrous membrane. The electrical conductivity of the membranes can achieve 

the value of 5.0*10-2 S/cm and the Young‟s modulus the value of 5.6 GPa and tensile strength of 

95.7 MPa. Moreover, the electrical conductivity of the membrane is sensitive to the strain. 

 

 

Figure 9 – FE-SEM images of a) pure BC and the PANI/BC composites produced with different polymerization 

time: b) 30 min, c) 60 min, d) 90 min, e) 120min and f) 180 min [9].   

 

Byoung-Ho Lee et al (2011) [8] produced polyaniline conductive polymeric nanocomposite films 

with bacterial cellulose fibers by means of chemical oxidative polymerization of aniline. APS was 

used as oxidant and p-TSA as dopant. The experiment showed that in nanocomposite film, the 

bacterial cellulose was fully encapsulated with polyaniline spherical spheres by direct 

polymerization of the respective monomers using the oxidant and dopant. These nanocomposite 

films exhibited the inherent properties of both components.  The oxidant and dopant had a 

significant effect on the electrical conductivity and thermal stability of the nanocomposite films. 

The results revealed the fine globular structure of the polyaniline on the nanocomposite films with 

average grain sizes ranging from 100 to 200 nm. X-ray photoelectron spectroscopy (XPS) 

revealed a higher doping level of the nanocomposite films doped with p-TSA dopant. The PAni 

obtained was thermodynamically stable. The calculated electrical conductivities were 1.3 S/cm 

for the BC/PANI using p-TSA dopant and 0.8 S/cm for BC/PANI not doped. Therefore, the 

doping level affects the electrical conductivity  

 

http://en.wikipedia.org/wiki/Photoelectron
http://en.wikipedia.org/wiki/Spectroscopy
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1. Material and Methods 

 

The most important features of polyaniline are its good environmental, thermal and chemical 

stability, high electronic conductivity, redox and ion-exchange properties, and ease of preparation 

from common chemicals [33]. These characteristics, in conjunction with bacterial cellulose fibre 

properties (highly homogeneous structure, high moldability in situ, high water-holding capacity, 

biocompatibility and remarkable strength) allows the formation of a BC conductive composite that 

can guide to many applications. For neuronal tissue engineering, a suitable biomaterial should 

provide or support initial mechanical stability, cell distribution and good tissue biocompatibility. A 

electro-conductive bacterial cellulose composite which is expected to show conductivity and 

biocompatibility together with sufficient mechanical strength, has been the subject of study. 

 

 

1.1. Materials 

 

Gluconacetobacter xylinus (ATCC 53582), glucose, peptone, yeast extract, hydrated sodium 

phosphate dibasic (Na2HPO4.H2O), Citric acid mono hydratated, sodium hydroxide (NaOH) and 

hydrogen chloride (HCl) were used to prepare the bacterial cellulose. Epycloridrine was 

purchased from Fluka and was used in this work as initiator in the CB modification process.  

Aniline and aniline hydrochloride, used to modify the surface of BC, were purchased from Sigma-

Aldrich. Absolute ethanol and N-methylpyrrolidinone (NMP) was used to remove the free aniline 

on the BC. Ammonium peroxodisulfate of Sigma-Aldrich and Iron (III) chloride of Panreac were 

used as catalyst on the polymerization step.  Sodium (meta)periodate, purchased from Sigma-

Aldrich, and Sodium bisulfate from Acros, were used for the sulfonation of the BC.  

All reagents and chemicals were of analytical grade and were used as received, excluding aniline 

which was distilled before use. All aqueous solutions were prepared using distilled water. 
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1.2. Methods 

 

1.2.1. Synthesis and Preparations of Bacterial Cellulose 

 

All BC was produced using the strain ATCC 53582 of Gluconacetobacter xylinus in static culture 

at 30ºC for a period of two weeks. The culture media used was Hestrin Schramm [56], which 

consisted in the dissolution 20 g glucose, 5 g peptone, 5 g yeast extract, 3.38 g Na2HPO4.H2O 

and 1.5 g citric acid mono hydrated, in 1000 ml of distilled water. The pH of the solution was 

adjusted to pH 5 using HCl. G. Xylinus grown in these Hestrin–Schramm medium with a pH 5.0.  

The BC discs were obtained using a 6-well Cell Culture Plate. When the BC discs reached the 

maximum thickness they were removed from the plates, rinsed with distilled water and immersed 

in NaOH 4% solution overnight. This step assured the destruction of the G. xylinus cells and the 

removal of the remaining culture media still present in the BC. Afterwards the processed BC was 

washed until it reached the pH of distilled water (5.5). After washing, part of BC was freeze-dryed 

and kept in desiccators at room temperature and the other part was stored in distilled water until 

further use [80]. 

 

 

1.2.2. Preparation of Polyaniline 

 

Polyaniline in the esmeraldine salt form was synthesized according to the method described by 

Stejskal et al [37]. Distilled aniline 0.2 M was oxidized with 0.25 M ammonium peroxydisulfate 

(APS) in aqueous medium. For that two solutions were prepared: 50 ml solution of aniline 

dissolved in acidic aqueous media (0.1 M HCl); and 50ml of solution of APS also dissolved in 

acidic aqueous media (0.1 M HCl). Both solutions were kept at room temperature for 1hour, then 

mixed in a beaker, briefly stirred, and left at rest to polymerize. In the next day, the PANI 

precipitate was collected on a filter washed with three 100 ml portions of 0.2 M HCl and similarly 

with acetone. Polyaniline powder was dried in air and then in oven at 60ºC. Then, the PANI was 

kept in desiccators at room temperature. 
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1.2.3. Bacterial Cellulose Modification 

 

In this stage, three different methods were studied (Figure 10): direct polymerization of CB using 

aniline; polymerization by initial modification of the BC surface; and the sulfonation of BC. 

 

 

 

 

Figure 10 - Flowchart of the different approaches used for the production of BC-graft-PANI. 

 

 

1.2.3.1. Direct Polymerization  

 

In the direct polymerization, CB-graft-PANI was synthesized by oxidative polymerization of aniline 

in the presence of hydrated BC (Figure 11) [17]. For that, distilled aniline was dissolved in 50 ml 

aqueous HCl solution containing 100 mg of BC. After the BC was stirred for 1 hour, 50 ml of 

oxidant solution APS (0.125 M) was added dropwise under magnetic stirring. The reaction 

mixture was kept under continuous stirring for different polymerization times. In the preparation 

of the solutions, HCl 0.1 M was used. The polymerization of aniline was carried out at room 

temperature and using different ratios (BC:ANI) and different times in order to acquire the 

optimum conditions for grafting PANI onto the BC [34]. At the end of each reaction, the obtained 

products were washed with distilled water to remove the byproducts and remaining reagents. The 

samples were stored in desiccators after freeze-drying. 

 

                     

Figure 11 – Schematic representation of the process of the formation of CB-graft-PANI composite [9]. 

 

 

Aniline APS 

HCL 0.1 M 
Tamb. 

BC BC + Aniline CB-graft-PANI 

Direct Polymerization 

Methodologies 

Surface Modification of CB Sulfonation of BC 
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Table 4 - Designation and composition of the different BC produced by in situ chemical polymerization. 

Designation CB:ANI 
Polymerization 

Time (h) 

1:1 (6h) 1M:1M 6 

1:5 (3h) 

1M:5M 

3 

1:5 (6h) 6 

1:5 (9h) 9 

1:5 (12h) 12 

1:5 (24h) 24 

1:10 (3h) 

1M:10M 

3 

1:10 (6h) 6 

1:10 (9h) 9 

1:10 (12h) 12 

1:10 (24h) 24 

 

 

1.2.3.2. Surface Modification of Bacterial Cellulose 

 

This method was used to covalently attach the PANI to the surface of the BC nanofibers.  

First, the surface of the BC nanofibers was decorated with epoxy functional groups via reaction 

with epichlorohydrin (Figure 12). For that, 100 mg of BC was hydrated with 132 ml of NaOH 

overnight. The solution was heated to 60ºC and 960 l of epichlorohydrin was added to the 

solution and stirred gently during 2 hours. Then, the BC was washed until it reached the pH of 

distilled water. After washing, the pH of BC was increased to 12 using NaOH (50% (w/v)) in 132 

ml of distilled water. The blend was heated again to 60ºC and 5ml of ammonia hydroxide (25%) 

was added and then stirred during 2 hours. After the modification step the BC was washed 

repeatedly to the pH of distilled water (modification step) [81].  

 

 

 

Figure 12 – Bonding of BC with epichlorohydrin. Adapted from [81]. 

 

BC BC BC 
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The modified BC was placed in a solution of aniline hydrochloride (with 80 mg of aniline 50 ml 

distilled water) at room temperature and stirred during 2 hours (activation step).  The resultant 

BC was washed with 50 ml of N-metilpirrolidone (NMP) overnight. Then BC was washed with 

ethanol for 2 hours and after repeatedly with distilled water.  

Ultimately, the polymerization step, BC was submerged in 50 ml of aniline hydrochloride solution 

(80 mg in 50 ml of distilled water), under constant stirring and slowly adding the 50ml of 

ammonium persulfate (176 mg in 50 ml of distilled water). The solution was left to react while 

stirring at room temperature during different periods of time and in the end, the BC was washed 

several times with distilled water [34]. Different activation and polymerization times were used.  

 

Table 5 - Composition of the different BC produced by surface modification method. 

Designation 
Activation time 

(h) 

Polymerization time  

(h) 

A2hP2h 

2 

2 

A2hP6h 6 

A2hP12h 12 

A2hP24h 24 

A4hP2h 

4 

2 

A4hP6h 6 

A4hP12h 12 

A4hP24h 24 

 

To allow a better visualization, a flowchart representative of the methods is presented in Figure 

13. 
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Figure 13 - Flowchart of the production of electrical conducting bacterial cellulose-graft-polyaniline by means of 

surface modification method 

 

 

1.2.3.3. Sulfonation of Bacterial Celullose 

 

The first step consist of the sodium periodate oxidation of CB. The CB discs were treated with 

NaIO4, both with the same molecular ratio, in 75 mL of experimental volume in a 100 mL flask. 

The solution was stirred at 50ºC in the dark, during different times to attain different degrees of 

oxidation. The resultant product is then washed with distilled water to remove the spent oxidant. 

Samples were heated 1 hour before the assay (before the addition of (NaIO4). In the second step, 

corresponding to the sulfonation of 2,3-dialdehyde CB, the oxidized CB react with sodium 

bisulfate (NaHSO3) and stirred during 6 h and 24 h at room temperature (Ratio CB : NaHSO3    →  

1 : 2.3) [82]. The first and second steps were done in the same day avoiding the degradation of 

CB. 

BC 100mg Hydratated with NaOH (1%v/v) 

 
Stirring over night 

 

960l Epycloridrine  

 

Heating at 60ºC 

 

Stirring for 2h and washing until pH=5.5 

 bring the pH to 12 using NaOH (50% 

(w/v)) 

 

 

Heat again to 60ºC, add 5ml of ammonia hydroxide (25%) with stirring during 2h 

Wash with distilled water 

Submerge the modified BC in a solution of aniline at room temperature with stirring 2h (Activation step) 

Washed with NMP overnight then with ethanol during 2h and finally repeatedly with distilled water. 

 

Stored in desiccators 

 

 

Activated BC was emerged in aniline solution while stirring and slowly dropping the APS solution (Polymerization step) 
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The modification of BC by periodate oxidation followed by sulfonation is represented in Figure 14. 

 

Figure 14 – Oxidation and sulfonation of CB [83]. 

 

The third step was the polymerization of sulfonated CB using FeCl3 (Figure 15). To a volume of 

100 ml at a pH of 4, using HCl and sulfonated CB: a) iron (III) chloride (Ratio-1 mol BC:10 mol 

aniline:20 mol FeCl3) was added and the solution was stirred during 1 hour and after that aniline 

was added and stirring during 6h. The final BC was washed with distilled water and at the end 

with HCl 0.1M; or b) iron (III) chloride (ratio - 1aniline:2molFeCl3) was added to the solution with 

BC, stirring for 1 hour. Then BC was washed with HCl 0.1 M. Finally aniline was added and 

stirred for 6 h.  

 

                               

Figure 15 - Schematic illustration of the possible polymerization mechanism on modified CB using FeCl3 [84]. 

 

 

2. Characterization of Electrical Conductive Bacterial Cellulose-graft-Polyaniline 

 

With the aim of achieving the ideal method for synthesizing this composite and attain the aniline 

necessary for an efficient polymerization reaction the study of electrical behavior of the different 

samples was performed.  

Sulfonated CB 

+ 
FeCL3 

CB 

HCL, pH=4.0 

Stirring 1 h 

Aniline 
Monomer 

 

 

B
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To complement this study, Fourier-transformed infrared (FTIR) spectroscopy was used in order to 

confirm the presence of specific chemical changes of functional groups that occurred in the 

structure, indicating that polymerization reaction occurred on the BC matrix.  

The obtained electrical conducting bacterial cellulose-graft-polyaniline with optimized conditions 

was then characterized in terms of morphology by scanning electron microscopy (SEM), 

differential scanning calorimetry (DSC), thermalgravimetric analysis (TGA) and MTS assay. 

 

 

2.1. Conductivity 

 

Conductivity is a measure of electrical conduction and thus a measure of the ability of a material 

to pass a current. [4] 

Electrical conductivity (σ) is defined as the inverse of the resistivity (). This means a high 

resistivity is the same as a low conductivity, and a low resistivity is the same as a high 

conductivity:  

           [85] 

Surface resistance, Rs, is defined in literature as the ratio of a DC voltage U to the current, I  

flowing between two electrodes of specified configuration that are in contact with the same side 

of a material under test: 

[86] 

The conductivities of the samples were calculated based on the following equations: 

Superficial resistivity s, in Ohm per square (Ω/sq), is determined through the following 

expression: 

[86] 

Where R is the resistivity (Ω), D is the width of electrodes (cm) and L is the length between 

electrodes (cm). 

Volumetric resistivity v, in Ohm per cm (Ω/cm), was achieved by the following equation:  
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[87] 

Where R is the resistivity (Ω), A is the electrodes area (cm2) and L is the distance between 

electrodes (cm), corresponding to the thickness of the sample. The thickness of the sample was 

measured using a micrometer from Fischer. 

The electrical conductivity of the samples was measured at room temperature using a Keithley 

487 Picoammeter/Voltage source. To minimize the effects of electric fields from neighborhood 

the samples were introduced in a Faraday cage (Figure 16). Two different apparatuses were 

used: one for measuring superficial conductivity (Figure 16 a)) and other one for the volumetric 

conductivity (Figure 16 b)). A voltage source was connected to the electrodes, applying a voltage 

across the sample. The amount of current flowing through the sample was measured by a 

picoammeter. For all the samples, the conductivity was measured in three different points of the 

sample. 

 

   

Figure 16 – Apparatus for measure electrical conductivity: a) superficial conductivity and b) volumetric 

conductivity. 

a) b) 
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2.2. Fourier-Transformed Infrared Spectroscopy  

 

In order to complement the characterization studies the Fourier-transformed infrared (FTIR) 

spectroscopy was employed to confirm the presence of PANI on the BC discs, reflecting the 

effectiveness of polymerization reaction. 

Fourier transformed infrared spectrometer-attenuated total reflectance (FTIR-ATR) spectra for the 

BC discs were recorded with a Perkin-Elmer Spectrum One IR spectrometer, within the range 

between 4000 and 750 cm-1. 

All spectra were recorded at room temperature at the resolution of 8 cm−1 and 32 times 

scanning. The software used for the data acquisition was IRSolution 1.20 Shimadzu, Japan. 

 

 

2.3. Morphological Characterization 

 

Stereo Microscope and SEM were used to study the morphology of the surface of the BC 

composites. 

For microscopic image acquisition of cross section of BC and the BC-graft-PANI composite was 

used a Stereo Microscope Olympus (Model SZ-CT) and a monochromatic camera SONY (Model 

CCD). 

The developed BC-grafted-PANI discs were also characterized using scanning electron 

microscopy of Ultra high resolution, EDAX- Pegasus X4M (Figure 17). The software used for the 

data acquisition was XT Microscope Server Control, version 1.3.3 (FEI company). For SEM 

studies, the samples were mounted on metal stubs using double-sided adhesive tape and pre-

coated with gold using a sputter coater. 

The working principle of scanning electron microscopy (SEM) consists of examining the structure 

by bombarding the specimen with a scanning beam of electrons and then collecting slow moving 

secondary electrons that the specimen generates. SEM is typically used to examine the external 

structure of objects that are as varied as biological specimens, rocks, metals, ceramics and 

almost anything that can be observed in a dissecting light microscope.  
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Figure17 - Scanning Electron Microscope of ultra high resolution. 

 

 

2.4. Thermal Analysis 

 

Thermal gravimetric analysis (TGA) was performed using a thermalgravimetric analyzer 

(Shimadzu, TGA-50) on about 5 mg samples. The samples were heated in open alumina pans 

over 25ºC -500ºC at a heating rate of 5ºC/min under air flow. 

Differential scanning calorimetry (DSC) measurements of the conductive polymer samples were 

carried out using Shimadzu DCS-50 at temperatures ranging from 25ºC to 500ºC at a heating 

rate of 5ºC/min.  

Acquisition of the results was done by TA-50WS software (version 1.14). For the assays, 5 mg 

were weighted (the exact masses were recorded) into aluminium pans (from Izasa, S.A., 

Portugal). Open pans were used for the assays.  

 

 

2.5. Viability Assay - MTS Test 

 

The fibroblast cell line (3T3) was cultured in Dulbecco‟s Modified Eagles‟s Medium (DMEM) 

supplemented with 10% calf serum and 1% penicillin/streptomycin and maintained at 37ºC in a 

humidified incubator containing 5% CO2. They were fed every 2 days and sub-cultured once they 

reached 70-90% confluence, by treatment with a trypsin/EDTA solution. 

http://www.semat.lab.uminho.pt/Equipamento_1.htm
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On the day of the experiment, cells were seeded (2×105 cells/ml) on the top of polyaniline-treated 

or non-treated bacterial discs previously placed on the bottom of 96-well plates. The effect of the 

different treatments on cell viability was assessed after 24, 48 and 96 h by using the Cell Titer 

96®Aqueous ONE Solution Reagent (MTS [3-(4,5- dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium] colorimetric assay (Promega, Madison, 

EUA), according to the instructions provided by the manufacturer. Briefly, 100 µl from each well 

was transferred to clean wells and the absorbance read at 490 nm. Results were expressed 

relative to t = 0h, which was considered 100% of cell proliferation. 
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3. Results and Discussion 

 

3.1. Production of Bacterial Cellulose-graft-Polianiline Composites 

 

The nanoporous BC membranes/discs, used to producee the BC-graft-PANI composite were 

successfully synthesized by fermentation of G. xylinus in HS medium. Figure 18 presents images 

of the obtained BC. The dry and hydrated BC discs had a thickness of 1mm and 5mm, 

respectively.  

 

 

Figure 18 – Bacterial Cellulose: a) in the medium culture; b) wet BC discs and c) freeze-dried BC discs. 

 

Standard PANI, used as control, was produced and obtained in the form of a dark green powder 

(Figure 19). PANI was kept in desiccators at room temperature. 

 

 

Figure 19 – PANI powder and PANI disc (obtained after compressing). 

 

 

c) a) b) 

a) b) 
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3.1.1. Direct Polymerization Method 

 

On this method,  the in situ polymerization of aniline in the presence of hydrated BC discs in 

acidic aqueous media was performed using ammonium peroxydisulfate (APS) as oxidant and CB-

graft-PANI was obtained as the protonated emeraldine salt form (conducting PANI) (Figure 20). 

 

 

Figure 20 – BC discs a) before and b) after aniline polymerization. 

 

It was expected that the hydroxyl groups of BC would interact with amine groups of aniline to 

form the hydrogen bands which ensure the uniform distribution of aniline on the surface of BC 

nanofibers and then, after adding the oxidant solution, the aniline monomer would polymerize in 

the BC network [9]. 

Comparing both pictures, Figure 20 a) and b), the composite discs showed a dark green color 

which suggests the PANI formation at the surface of the BC nanofibers. 

Figure 21 shows the microscopic images of cross section of BC and the BC-graft-PANI composite 

(1:10 (6h)). As can be observed in figure 21 b) the polymerization occurs mainly at outer regions 

of BC, forming a gradient along the BC network, with lower amount of PANI diffused within the 

disc. This can be explained as follows: once the polymerization starts at the surface of the BC 

(noticeable by the formation of green points on the BC at the beginning of polymerization), it 

hinders the spread of PANI inside the BC matrix, forming a gradient along the BC. 

 

 

a) b) 
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Figure 21 – Microscopic images of a) native BC and b) BC-graft-PANI composites. 

 

Figure 22 show different samples produced by this method. Varying the monomer concentration 

and the polymerization time produces different shades of green, becoming darker with the 

increase in these two parameters. With high concentration of aniline the differences in color 

samples after 6 hours of polymerization is not significant. 

 

 

 

Figure 22 - Standard BC discs and CB-graft-PANI discs after a polymerization time of 6 hours: b) 1:1; c) 1:5 and d) 

1:10 

 

 

3.1.2. Surface Modification Method 

 

Figure 23 shows some samples produced by this method. The samples do not display the dark 

green color typical of conductive PANI.  

a) b) c) d) 

a) b) 

a) b) 
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Figure 23 – BC membranes: a) A2hP12h, b) A2hP24h, c) A4hP12h and d) A4hP12h. 

 

 

3.1.3. Sulfonation Method 

 

Figure 24 shows the different samples produced by oxidation and further sulfonation of BC discs. 

In method a (Figure 24 a) there is some dark green coloration although much lower when 

compared with the direct polymerization method. Using method b the color of the samples 

suggests that there is no formation of conductive PANI (emeraldine salt) in the surface of BC 

discs. 

 

Figure 24 – Results of BC discs by means of the sulfonation method: a) 3rd step without washing (a)) and b) 3rd step 

with washing (b)). 

 

 

 

 

c) d) 

a) c) 
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3.2. Weight Loss Measurements 

 

In table 6 shows the efficiency (%) of polymerized BC discs by means of in situ oxidative 

polymerization. An increase of the monomer concentration leads to an increase in the weight of 

the sample, which in turn suggests the successful incorporation of PANI in BC discs. 

 

Table 6 – Efficiency of BC-graft-PANI samples by means of in situ direct polymerization. 

Ratio 
CB:Aniline 

Polymerization 
time (h) 

Weight loss 
(%) 

Weight 
increase (%) 

1:1 6 3.6 - 

1:5 
 

3 2.18 - 

6  8.8 

9  26.29 

12  2.44 

24  10.24 

1:10 
 

3  46.85 

6  104.55 

9  42.75 

12  33.44 

24  31.02 

 

 

The study of efficiency of BC-graft-PANI produced by surface modification method can be seen in 

Table 7. 

 
Table 7 – Efficiency of BC composites for the different activation and polymerization times. 

Activation time 
(hours) 

Polymerization 
time (hours) 

Weight loss (%) 

2 

2 29.20 

6 51.05 

12 42.15 

24 22.61 

4 

2 60.89 

6 59.37 

12 33.30 

24 32.77 

 

The considerable weight loss can be explained by the use of membranes instead of discs. These 

membranes were cut into pieces (Figure 23), which after stirring resulted in loss of material to 

the solution (formation of small fragments), leading to a decrease in final sample weight. 

The direct polymerization method proved to be more efficient when comparing to the surface 

modification method as shown in Figure 25. 



CHAPTER III. SYNTHESIS AND CHARACTERIZATION OF ELECTRICAL CONDUCTIVE BACTERIAL CELLULOSE-GRAFT-POLYANILINE 

46 
 

 

Figure 25 – Efficiency of polymerization (%) of BC discs produced by means of direct polymerization and by the 

surface modification method. 

 

The weight loss of the samples produced by means of the sulfonation method was in the range of 

42-64%. The oxidation and sulfonation of BC discs represents a higher weight loss. This occurs 

mainly in the oxidation step, where there was a sharp reduction in size of the discs. 

This method proved to be ineffective, due the fact that it´s time consuming and results in high 

weight loss, together with the weak coloration of the produced samples, suggesting the low PANI 

formation on BC discs and consequently weak conductivity.  

 

 

3.3. Electrical Behavior 

 

Conductivity is a measure of electrical conduction and thus a measure of the ability of a material 

to pass a current. Generally, materials with conductivities less than 10-8 S/cm are considered 

insulators, materials with conductivities between 10-8 and 103 S/cm are considered similar to 

semiconductors, and materials with conductivities higher than 103 S/cm are considered 

conductors [4].  

The electrical conductivity measurements were carried out on CB-graft-PANI by applying a voltage 

across the sample, causing a current flowing through the sample measured by an ammeter. The 

calculated electrical conductivity for BC, was 7.5*10-11 S/cm. For standard PANI the best result 

was 2.84*10-3 S/cm as shown in Figure 26. 
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Figure 26 – Superficial/Volumetric conductivity of different PANI. 

The increase in electrical conductivity of CB discs produced by means of the direct in situ 

polymerization method is considerable and can be observed in Figures 27-31. These values of 

electrical conductivity are in the range of values for a semiconductive material (10-8 and 103 

S/cm) [4]. 

As mentioned above, the electrical conductivity of PANI depends on several issues and monomer 

concentration is one of them, which can be demonstrated in Figure 27. An increase in the 

amount of aniline in the polymerization reaction leads to an increase in conductivity of the 

samples. 

 

 

Figure 27 – Superficial and volumetric conductivity for different ratios of CB:Aniline for a polymerization time of 

6hours. 

 

Figure 28, 29 shows the effects of reaction times on the electrical conductivity of BC-graft-PANI 

composites.  Figure 28 illustrates the conductivity for a CB:aniline ratio of 1:5.  The best results 
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were obtained at 6 hours, 2.25*10-5 S/sq and 9.6*10-5 S/cm, and 12 hours with an electrical 

conductivity of 2.25*10-5 S/sq and 9.2*10-5 S/cm. 

  

Figure 28– Effects of polymerization time on superficial and volumetric electrical conductivity of BC-graft –PANI for 

a CB:aniline ratio of 1:5. 

 

For the ratio 1:10, the best conductivity was found at 6 hours and 12 hours for superficial 

conductivity 4.5*10e-5 S/sq and 6.7*10e-5 S/sq respectively; and for volumetric conductivity the 

best results were 2.26*10e-4 S/cm for 6 hours and 1.56*10e-4 S/cm for 9 hours (Figure 29). 

 

  

Figure 29– Effects of polymerization time on superficial and volumetric electrical conductivity of BC-graft –PANI for 

a CB:aniline ratio of 1:10. 

 

The results suggested that the time of polymerization does not have a pronounce role in terms of 

conductivity.  It was observed with increasing reaction time, there is an increase in the amount of 

PANI deposited on the surface of BC (3 hours to 6 hours of time reaction). This initial increase 

can be justified as a result of the fact that disconnected PANI nanoparticules gradually grow into 

a continuous nano-coating, covering the BC disc. However, excessive polymerization times, lead 
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to the precipitating or aggregating of PANI particles and excessive oxidation of the monomer with 

the fracture of the PANI conjugated chain, as suggested by Hu et al [9], causing a decrease in 

electrical conductivity. 

 

Figure 30 – Superficial and volumetric conductivity:  balance between 1:5 and 1:10 CB:aniline ratio for different 

polymerization times. 

 

One more time comparing both 1:5 and 1:10 for different times of polymerization (Figure 30), 

leads to the conclusion that, as expected, more concentration of aniline monomer results in 

higher conductivities  

The obtained results are in concordance with values found in literature (Table 3). However, in 

some papers is possible to find higher values of conductivity. This can be related with the use of 

higher  concentrations of aniline and, as reported by Mo et al [17], PANI content increased with 

the amount of aniline. 

Therefore, the BC-graft-PANI composites produced by means of the direct in situ polymerization 

method have been successfully synthesized and the best electrical conductivities results were for 

a monomer concentration ratio of 1:10 and a polymerization time of 6 hours, 2.26*10-4 S/cm. 

For evaluating the electrical behavior of the BC-graft-PANI composites produced by means of 

sulfonation method only the samples that were expected to have more conductivity were 

measured. The measured conductivity showed that the samples prepared by this method are 

insulators having very low electrical conductivity in the range of 1.33*10-09 to 2.50*10-09. This may 

have happened because, despite the use of aniline hydrochloride, as the reaction occurred in a 

distilled water medium, the pH of the reaction probably was not sufficiently low for the formation 

of PANI emeraldine. 
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Since the BC composites produced by surface modification and sulfonation methods had a much 

less dark green color, typical from conducting PANI. Consequently, lower electrical conductivities, 

together with large weight loss, it can be concluded that the direct in situ polymerization process 

was the most simple and effective. 

The characterization of cellulose-graft-polyaniline discs focused on the best conditions obtained 

by means of the in situ chemical oxidation of aniline in BC hydrated discs. 

 

 

3.4. Fourier-Transformed Infrared Spectra 

 

The vibrational spectrum of a molecule is considered to be a unique physical property and is 

characteristic of the molecule. The infrared spectrum is formed as a consequence of the 

absorption of electromagnetic radiation at frequencies that correlate to the vibration of specific 

sets of chemical bonds from within a molecule. The fundamental requirement for infrared 

activity, leading to absorption of infrared radiation, is that there must be a net change in dipole 

moment during the vibration for the molecule or the functional group under study. While it was 

stated that the fundamental infrared absorption frequencies are not the only component to be 

evaluated in a spectral interpretation, they are the essence and foundation of the art [88]. 

In order characterize the chemical structure of CB-graft-PANI composites, Fourier transform 

infrared (FTIR) spectroscopy was used and FTIR spectra are shown in Figures 31-33. 

The infrared spectrum of natural BC and standard PANI, used as control, are shown in Figure 31. 
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Figure 31 - FTIR spectra of (a) CB discs and (b) standard PANI. 

 

The FTIR spectrum of pure CB displays a strong peak around 3350 cm -1, corresponding to the 

stretching vibration of hydroxyl groups. The peak at approximately 1350 cm-1 is attributed to the 

O-H bending. The absorption band, at approximately at 2900 and 1650 cm-1 were assigned to the 

C-H stretching in pyranoid ring and the H-OH bending of the absorbed water, respectively. The 

peak at approximately 1116 cm-1 arises from the C-O bond`s asymmetric bridge stretching. The 

main peak in the spectrum, at 1055 cm-1, corresponds to the C-O-C pyranose ring skeletal 

vibration.  

The typical feature of PAN FTIR-ATR spectroscopy is well known in literature [89]. The PANI 

spectrum (Figure 31) is characterized by peaks at approximately 1550 and 1449 cm-1 due to the 

quinine and benzene ring stretching vibration, respectively. The band at about 1680 cm-1  can be 

assigned to the C=O stretching of carbonyl group of the ring. The absorption bands around 1250 

and 1150 cm-1 are assigned to stretching vibration of the C-N band and to the aromatic C-H 

stretching vibration. The band at 870 cm-1 corresponds to the out-of-plane bending vibration of 

the C-H band of 1,4 - disubstituted benzene ring. 

In Figure 32 the variation of molar ratio (CB:aniline) for 6 hours of polymerization can be 

observed.  
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Figure 32 - FTIR spectra obtained after 6 hours of polymerization and varying the aniline monomer concentration. 

 

The successful incorporation of PANI in BC nanofibers was confirmed by FTIR. The spectra of CB-

graft-PANI composites display the main characteristic absorptions of BC and PANI. However, 

some particularities can be observed. Comparing them with the spectrum of pure BC, it was 

found that the typical absorption peak of stretching vibration of OH group at 3350 cm-1  was 

shifted to approximately 3340 cm-1 and the peak almost disappear. According to Hu et al [9], this 

suggests that the BC composites were successfully produced and the intermolecular hydrogen 

bands are broken and more hydrogen groups became accessible which helps to form the 

uniform dispersion of PANI in the BC discs. Moreover, the bands at approximately 1310 and 

1250 cm-1 characteristics of conducting proponated PANI, are well distinguished in the spectrum 

of BC composites.  

Figure 33 shows the effect of the reaction time on the amount of PANI in the CB-graft-PANI discs. 
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Figure 33 – FTIR spectrum of CB-graft-PANI composites with a ratio 1:10 and different times of polymerization 

reaction. 

 

The peak`s intensity became stronger with increasing reaction time and consequently the 

content of PANI on the BC discs. This effect is especial noticeable from 3 hours to 6 hours of 

time reaction. After this polymerization time, the changes are not significant. 

Thus, the similarity between CB-grafted-PANI and pure PANI powder suggests, one more time, 

that BC nanofibers were successfully coated with PANI, as already reveled by the conductivity 

results. However to confirm the grafting of PANI on BC, further analysis should be performed, 

such as NMR or mass spectroscopy.  

 

 

3.5. Morphological Characterization 

 

Scanning electron microscopy (SEM) enabled the characterization of the morphology of the 

prepared BC-graft-PANI in terms of shape, matrix and roughness. Typical SEM micrographs of 

the BC are shown in Figure 34. 
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Figure 34 - SEM micrographs of BC discs used as control. 

 

The SEM micrographs allow visualization of the ultrafine network structure of BC disc, consisting 

of nanofibers with a diameter ranging from 40nm to 70nm. The BC nanofibers present near-

cylindrical shape and a smooth surface. 

The typical morphology of the developed BC-graft-PANI composite is shown in Figure 35, 36. 

 

 

 

Figure 35 - SEM micrographs of a) 1:1 (6h), b) 1:5 (6h) and c) 1:10 (6h). 
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In CB composite micrographs, it is possible to observe PANI in the matrix conferring different 

degrees of roughness (Figure 35), increasing with the amount of PANI on the surface.  

As shown in Figure 35, the PANI on the surface of BC shows a similar nano-granular morphology 

for all the samples, typically of PANI coatings [90]. In Figure 35 (a) is also possible to observe 

some PANI islands, whereas in figure 35 (c) the surface of BC was completely covered with PANI. 

Thus, comparing the polymerized discs with different monomer concentrations (1:1, 1:5, 1:10) 

showed that the increase of this parameter leads to differences in the morphology of the 

samples. The higher amount of aniline in 1:10 discs, leads to a higher adhesion of PANI in the 

BC, than in the 1:5 and 1:1. This is also true when increasing of polymerization time, as more 

PANI is incorporated on BC discs (Figure 36).  

 

 

 

Figure 36 - SEM micrographs of a) 1:5 (12h) and b) 1:10 (12h); and c) 1:10 (12h). 

 

The 1:10 (12h) reaction conditions present the highest amount of PANI at the surface of BC 

discs. 
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As shown in the SEM microphotographs (Figures 35, 36), many pores with a diameter of about 

200 nm were observed on the surface of all the samples. For higher polymerization reaction time 

(12hours) this porosity started to decrease. For high polymerization times, the PANI nano-

granular particles aggregated to the BC fibbers, merged to form a continuous nano-layer along 

the BC surface (Figure 36 c).  

Therefore, the prepared samples seem to be structures with very good electrical conductivity due 

to the high amount of PANI presented on the surface of BC. This results are in concordance with 

others found in literature [8, 9, 12, 71, 74].  

However, the processing methodologies should be improved in order to increase the porosity, the 

pores interconnectivity and pores size, to be more favorable for cell attachment for new nerve 

tissue in growth.  

 

 

3.6. Thermal Analysis  

 

The thermogravimetric analysis (TGA) measures the mass change of a substance as function of 

temperature, while the substance is subjected to a controlled temperature programme and 

differential scanning calorimetry (DSC) provides information about thermal changes that do not 

involve a change in sample mass.  

To assess some of the physicochemical properties changes and thermal stability, the thermal 

properties of BC-graft-PANI were investigated and are shown in Figures 37, 38. The TG and DSC 

curves of pure BC and PANI are also shown for comparison.   
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Figure 37 - TGA Thermogram of BC, PANI and BC-graft PANI. 

 

As can be observed in Figure 37 the TG curve of BC-graft-PANI (1:10 12h) shows that weight loss 

occurred in three different stages. During the initial stage from room temperature to 100ºC there 

is a weight loss assigned to the evaporation of the water present in the composite. From 210º to 

340ºC the samples undergo a strong weight loss, which can be explained by the burning of BC 

composite. The final step in weight loss from 340 to 500ºC can be attributed to the thermal-

oxidative degradation of PANI.  

When comparing with the TG of pure CB, it can be seen that BC also experiences a similar 

weight loss process, although there are some differences. The onset temperature of the thermo-

oxidative degradation of BC discs is lower on pure BC than on BC-graft-PANI and a more gradual 

weight loss over the wide temperature range of the composite, indicating that the thermal 

stability of the composites is larger than that of BC. Moreover, the highest weight loss of the BC 

happens at higher temperatures than in CB-graft-PANI and in CB discs a small weight loss is 

noticeable even at temperatures exceeding 450ºC, which can be associated with the weakened 

inter and intramolecular hydrogen bonding of BC in the CB-graft-PANI discs and the absence of 

intermolecular hydrogen bands of CB, respectively. 

The thermal stability of BC is increased by the incorporation of PANI and increased by increasing 

the polymerization time. This thermal behavior is in concordance with results obtained by Mo et 

al. [17], Stejskal et al. [72] and Hu et al. [9]. 
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Figure 38 - DCS curves of BC, PANI and BC-graft PANI. 

 

Figure 38 (c) shows DCS termograms of BC-graft-PANI composites, and it revealed an 

endothermic peak from 0 to 100ºC attributed to the removal of the loosely bound water 

molecules present in the composite matrix. The exothermic peak at approximately 312ºC can be 

assigned to interchain crosslink and thermally effected morphology changes [8]. This exothermic 

peak is larger in CB than in the composite which confirms the thermal stability of the resulting 

CB-grat-PANI. The thermogram confirms also the absence of glass transition (Tg) and melting 

temperature (Tm) for all analysis 
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3.7. MTS Assays 

 

In order to evaluate the cell viability, MTS test was performed. For that, 3T3 cells were used. 

 

 

Figure 39 – Cell proliferation assessed by MTS assay. *** p < 0.001, relative to non-treated BC, for the same 

timepoint. 

 

As can be observed from Figure 39, none of the treatments were toxic to the cells, as none of 

them resulted in a decrease of cell viability to values below the initial ones (considered as 100%). 

Moreover, none of the PANI-treated discs affected cell proliferation up to 48h. However, at 96h, 

only the 1:1 (6h) sample did not affect cell proliferation. All the others induced a statistically 

significant decrease of this parameter. 
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Conclusions and Future Work 

 

Conductive BC-graft-PANI composites materials have been successfully produced in situ by 

oxidative polymerization of aniline using hydrated BC as the template. 

The electrical conductivity increased from 7.5*10-11 S/cm to 2.26*10-4 S/cm by controlling the 

time of polymerization and the molar Ratio of CB:aniline. Under the assayed experimental 

conditions, the optimum grafting efficiency was find at a CB:aniline ratio of 1:10 and with a time 

reaction of 6 hours. 

FTIR spectra indicated that BC nanofibers were successfully coated with PANI. In addition, SEM 

shows that this process produced electrically conductive BC films containing well-dispersed PANI, 

with a granular structure with grain sizes ranging from 100 to 200nm. After 12h of 

polymerization, the PANI particles deposited on the surface of BC, merged to form a continuous 

nano-layer by taking along the BC template. The modified nanocellulose showed increased 

thermal stability and according to MTS test none of the optimized samples were toxic to the cells. 

Based on the above observations, the CB-graft-PANI biopolymer combines good processability 

with improved electrical properties, higher thermal stability and biocompatibility which could be 

applied in chemical and biosensors, optical and electrical displays and for biomedical 

applications. 

Future work will, mandatorily, lead to the study and optimization of other reaction parameters, 

which could interfere in the mechanism of the BC-graft-PANI, such as: temperature, pH, use of 

different oxidant agents, and the use of higher amounts of aniline.  

Other very important issue is the characterization of the mechanical properties of conducting BC. 

For biomedical applications, necessary improvement of the processing methodologies is 

required, in order to increase the porosity, the pores interconnectivity and pores size, to be more 

favourable for cell attachment for nerve tissue in growth. Also, the study of the ability of these 

materials in promoting cell adhesion and ingrowth is essential, in order to confirm their potential 

for tissue nerve regeneration. 
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