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Abstract

In this paper we develop a testing and modelling procedure for describing the long-term volatility
movements over very long return series. For the purpose, we assume that volatility is multi-
plicatively decomposed into a conditional and an unconditional component as in Amado and
Teräsvirta (2011). The latter component is modelled by incorporating smooth changes so that
the unconditional variance is allowed to evolve slowly over time. Statistical inference is used for
specifying the parameterization of the time-varying component by applying a sequence of La-
grange multiplier tests. The model building procedure is illustrated with an application to daily
returns of the Dow Jones Industrial Average stock index covering a period of more than ninety
years. The main conclusions are as follows. First, the LM tests strongly reject the assumption of
constancy of the unconditional variance. Second, the results show that the long-memory prop-
erty in volatility may be explained by ignored changes in the unconditional variance of the long
series. Finally, based on a formal statistical test we find evidence of the superiority of volatility
forecast accuracy of the new model over the GJR-GARCH model at all horizons for a subset of
the long return series.

JEL classification: C12; C22; C51; C52; C53

Key words: Model specification; Conditional heteroskedasticity; Lagrange multiplier test; Time-
varying unconditional variance; Long financial time series; Volatility persistence.
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1 Introduction

The observation that deterministic shifts in long return series can generate long-memory be-
haviour has received much attention in recent years. Most of the work in this topic is related
with the study of the behaviour of standard statistical tools and model misspecification under
nonstationarity. Early studies include Diebold (1986) and Lamoureux and Lastrapes (1990) who
suggested that occasional level shifts in the intercept of the first-order GARCH model can bias
the estimation towards an integrated GARCH model. More recently, Mikosch and Stărică (2004)
argued that the so-called ‘integrated GARCH effect’ is caused by the nonstationary behaviour
of very long return series. They showed how the long-range dependence in volatility and the
IGARCH effect may be explained by neglected deterministic changes in the unconditional vari-
ance of the stochastic process. Moreover, Granger and Hyung (2004) claimed that occasional
breaks in a long time series of absolute stock returns can also explain the observed slow decay
of the autocorrelation functions of absolute returns in long return series.

In a standard first-order GARCH model of Bollerslev (1986) the decay rate of the autocor-
relation function of squared observations is exponential, which is often considered too rapid.
This has motivated the development of more flexible models to describe the observed depen-
dence structure in financial market volatility. One of these models is the Fractionally Integrated
GARCH model of Baillie, Bollerslev, and Mikkelsen (1996) which belongs to the class of long-
memory models. In these processes, the decay rate of the autocorrelations of squares is hyper-
bolic, which often appears more suitable for financial series than the exponential rate of the
GARCH model. Baillie and Morana (2009) recently proposed a generalization of the FIGARCH
model in which the intercept changes deterministically according to the flexible functional form
of Gallant (1984).

The question of explicitly modelling nonstationarity in stock market volatility has received
somewhat less attention. van Bellegem and von Sachs (2004) proposed decomposing the volatil-
ity process multiplicatively into a deterministic nonstationary (or the unconditional variance)
and a stochastic stationary (or the conditional variance) component. The deterministic compo-
nent in their model is estimated nonparametrically. Stărică and Granger (2005) introduced a
nonstationary approach in which the returns are modelled as nonstationary sequence of inde-
pendent random variables with time-varying unconditional variance but their model does not
allow for volatility clustering. More recently, Engle and Gonzalo Rangel (2008) and Brown-
lees and Gallo (2010) applied the same multiplicative decomposition as van Bellegem and von
Sachs (2004). The deterministic nonstationary component is in their approach described by an
exponential spline, and the stationary component follows a first-order GARCH process.

This paper addresses the issue of modelling deterministic changes in the unconditional vari-
ance of long return series. It is assumed that volatility is modelled by multiplicatively decompos-
ing the variance into a conditional and an unconditional component as in Amado and Teräsvirta
(2011). The conditional variance follows a GARCH process and describes the short-run dynamics
of volatility. The nonstationary component of volatility describes the long-volatility dynamics,
and it is represented by a linear combination of logistic transition functions. Statistical infer-
ence is used for specifying the parametric structure of the time-varying component by applying
a sequence of Lagrange multiplier tests.

Our modelling strategy is applied to describe the long-run properties of the long daily Dow
Jones Industrial Average (DJIA) return series from 1920 to 2011. One may expect that the
longer the observation period, the more likely the occurrence of structural changes or shifts in
the second unconditional moment of returns. The test results strongly support the time-variation
of the unconditional variance in the period under study. The estimation results indicate that
the strongest deterministic changes in the unconditional variance are associated with the largest
economic recessions. This in turn suggests that the unconditional variance behaviour may be
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related to the evolution of the deterministic conditions in the economy. Our findings also suggest
that the observed long-memory property in volatility may well be due to deterministic changes in
the unconditional variance of the return series. Moreover, the out-of-sample forecasting accuracy
of the proposed model is also studied over several forecasting horizons. Modelling the long-term
volatility movements over a long return series generates more accurate volatility forecasts than
the GJR-GARCH model for short-term horizons. However, the predictive ability of the new
model is strikingly improved across all horizons by dropping the old observations and merely
using the most recent observations.

The paper is organized as follows. The TV-GARCH model and the modelling strategy are
presented in Section 2. Details regarding the estimation of the model are discussed in Section
3. Section 4 contains the application and Section 5 concludes.

2 A model for the long-term volatility component

2.1 The time-varying GARCH framework

In this paper the tool for modelling an asset return series over a long period is a GARCH-type
model in which the unconditional variance is assumed to evolve smoothly over time. We begin
by focusing on the long-run properties of the GJR-GARCH(p, q) model of Glosten, Jagannathan,
and Runkle (1993). Let Ft−1 be the information set containing the historical information of the
series of interest available at time t− 1 and write the asset returns {yt} as

yt = E(yt|Ft−1) + εt (1)

εt = ζth
1/2
t (2)

where {ζt} ∼ nid(0, 1). Under this assumption the conditional distribution of the innovation
sequence {εt} is εt|Ft−1 ∼ N(0, ht). For simplicity, the conditional mean of the asset returns
is set equal to zero, i.e. E(yt|Ft−1) = 0. The component ht describes the dynamics of the
conditional variance of the asset returns. To allow positive and negative shocks to have an
asymmetric effect on the stock market volatility we choose the GJR-GARCH(p, q) model for ht.
It has the form

ht = ω +

q∑
i=1

αiε
2
t−i +

q∑
i=1

κiε
2
t−iIt−i(εt−i < 0) +

p∑
j=1

βjht−j . (3)

where the set of conditions for positivity and stationarity are imposed and where I(A) is the
indicator variable: I(A) = 1 when A is true, and zero otherwise. Re-writing the dynamic
structure of (3) in terms of the unconditional variance σ2 one obtains

ht = σ2 +

q∑
i=1

αi(ε
2
t−i − σ2) +

q∑
i=1

κi
(
ε2t−iIt−i (εt−i < 0)− σ2

)
+

p∑
j=1

βj(ht−j − σ2) (4)

where σ2 ≡ E(ε2t ) = ω/(1−
∑q

i=1 αi−
∑q

i=1 κi/2−
∑p

j=1 βj).When the persistence rate
∑q

i=1 αi+∑q
i=1 κi/2 +

∑p
j=1 βj < 1, then the conditional variance mean reverts to σ2 at the geometric

rate
∑q

i=1 αi +
∑q

i=1 κi/2 +
∑p

j=1 βj .
The assumption that the volatility process reverts to a constant level is very restrictive

especially when modelling asset returns over long periods. In order to account for changes in
the long-run volatility we shall consider a more flexible specification in which the unconditional
variance σ2 can be time-varying. We incorporate smooth changes in the unconditional variance
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of returns so that the variance evolves slowly over time. The variance is thus modelled using a
multiplicative decomposition of the variance as follows:

εt = ζth
1/2
t g

1/2
t , εt|Ft−1 ∼ N(0, htgt) (5)

where gt is a bounded deterministic positive-valued function. In equation (5) the short-run
(or the stationary) component ht is modelled as the GJR-GARCH process as in (3), with the

exception that ε∗t = εt/g
1/2
t :

ht = ω +

q∑
i=1

αiε
∗2
t−i +

q∑
i=1

κiε
∗2
t−iIt−i(ε

∗
t−i < 0) +

p∑
j=1

βjht−j . (6)

The long-run (or the nonstationary) component gt is a slowly time-varying trend that functions
as a proxy for all factors that affect the unconditional variance. We follow Amado and Teräsvirta
(2011) and let the time-varying unconditional variance component be a linear combination of
bounded transition functions:

gt = δ0 +

r∑
l=1

δlGl(t/T ; γl, cl) (7)

where δl, l = 0, . . . , r, are parameters. More specifically, Gl(t/T ; γl, cl), l = 1, . . . , r, are general-
ized logistic transition functions:

Gl(t/T ; γl, cl) =

1 + exp

−γl

k∏
j=1

(t/T − clj)


−1

(8)

satisfying the identification restrictions γl > 0, l = 0, . . . , r, and cl1 ≤ cl2 ≤ . . . ≤ clk. The
transition functions allow the unconditional variance to change smoothly as a function of the
calendar time t/T. The parameters, clj and γl, determine the location and the speed of the
transition between different regimes. Equations (5)−(8) define the time-varying GJR-GARCH
(TV-GJR-GARCH) model. The unconditional variance in this model is time-varying and equals
Et(ε

2
t ) =E(ζ2t htgt) = gtEht. This way of introducing nonstationarity in the long run volatility

component is discussed in detail by Amado and Teräsvirta (2011).
Some special cases of the TV-GJR-GARCH model are of interest. Under δ1 = . . . = δr = 0,

the unconditional variance Et(ε
2
t ) becomes constant. When r = 1 and k = 1, gt increases

(decreases) monotonically over time from δ0 to δ0 + δ1 when δ1 > 0 (δ1 < 0), with the location
centred at t = c1T. The slope parameter γ1 in (8) controls the degree of smoothness of the
transition: the larger γ1, the faster the transition is between the extreme regimes. When γ1 →
∞, gt collapses into a step function. When δl ̸= 0, for values r > 1 and k > 1, equations (7)
and (8) form a very flexible parameterization capable of describing nonmonotonic deterministic
changes in the unconditional variance.

2.2 Model specification

Since the nonlinear model in (5)−(8) is our most general parameterization, a systematic mod-
elling strategy is required when a TV-GARCH type model is fitted to the data. The strategy
for building TV-GARCH models is based on statistical inference and it consists of the specifi-
cation, estimation and evaluation of the model. At the specification stage, one first models the
dynamics of the short-run component ht and, once that has been done, specifies the structure
of gt. In practice, the parametric structure of the unconditional variance component has to be
determined from the data, which involves two sets of decision problems. First, the number of
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transitions r in (7) has to be determined. Second, when r ≥ 1, the integer k for each transition
function has to be selected. This specification procedure is sequential and based on statistical
inference. We shall apply the procedure of Amado and Teräsvirta (2011) for selecting r and k.

An important feature of the modelling strategy in this paper is that, since we are modelling
very long return series, we shall divide the observation period into a number of subperiods.
To introduce notation, let r be the total number of transitions in the whole period and ri, i =
1, . . . , N, be the number of transitions in the subperiod i, so r =

∑N
i=1 ri. Define hit as the

conditional variance and git = 1 +
∑ri

l=1 δilGil(t/T ; γl, cl), i = 1, . . . , N, for each subperiod.
The sequence of LM tests for specifying a TV-GARCH model is as follows:

1. Divide the original time series into N non-overlapping subsamples. To facilitate specifica-
tion the borders of the subsamples should be located in tranquil periods.

2. For each i = 1, . . . , N, model the conditional variance hit under the assumption that
git ≡ 1. The deterministic functions git are determined thereafter by sequential testing.
This is done as follows. First, test the hypothesis of constant unconditional variance
H01 : γi1 = 0 against H11 : γi1 > 0 in

git = 1 + δi1Gi1(t/T ; γi1, ci1) (9)

at the significance level α(1). The standard test statistic has a non-standard asymptotic
distribution because δi1 and ci1. are unidentified nuisance parameters when H01 is true.
To circumvent this identification problem we follow Luukkonen, Saikkonen, and Teräsvirta
(1988) and approximate Gi1(t/T ; γi1, ci1) by its third-order Taylor expansion around γi1 =
0. After reparameterizing, we obtain

git = ω∗
i +

3∑
j=1

ϕij(t/T )
j +R3(t/T ; γi1, ci1) (10)

where ϕij = γji1δ̃
∗
ij , δ̃

∗
ij ̸= 0, andR3(t/T ; γi1, ci1) is the remainder. Furthermore, R3(t/T ; γi1, ci1) ≡

0 under H01, so the remainder of the Taylor expansion does not affect the asymptotic distri-
bution theory. The new null hypothesis based on this approximation becomes H

′
01 : ϕi1 =

ϕi2 = ϕi3 = 0. Under H
′
01, the standard LM statistic has an asymptotic χ2−distribution

with three degrees of freedom. See Amado and Teräsvirta (2011) for details on how to
compute the test statistic.

3. If H
′
01 is rejected, for each subperiod select the order k ≤ 3 in the exponent ofGi1(t/T ; γi1, ci1)

using a short sequence of tests within (10); for details see Amado and Teräsvirta (2011).
Next, estimate git with a single transition function and test H02 : γi2 = 0 against H12 :
γi2 > 0 in

git = 1 + δi1Gi1(t/T ; γi1, ci1) + δi2Gi2(t/T ; γi2, ci2) (11)

at the significance level α(2) = τα(1), where τ ∈ (0, 1). In our application we set τ = 0.5.
The significance level is reduced at each stage by a factor τ in order to favour parsimony.
Again, model (11) is not identified under the null hypothesis. To circumvent the problem
we proceed as before and express the logistic function Gi2(t/T ; γi2, ci2) by a third-order
Taylor approximation around γi2 = 0. After rearranging terms we have

git = ω∗
i + δi1Gi1(t/T ; γi1, ci1) +

3∑
j=1

φij(t/T )
j +R3(t/T ; γi2, ci2) (12)

where φij = γji2δ̃
∗
ij , δ̃

∗
ij ̸= 0 and R3(t/T ; γi2, ci2) is the remainder. The new null hypothesis

based on this approximation becomes H
′
02 : φi2 = φi2 = φi3 = 0. Again, this hypothesis
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can be tested using a LM test. If the null hypothesis is rejected, specify k for the second
transition and estimate git with two transition functions.

4. More generally, when git has been estimated with ri − 1 transition functions one tests for
another transition in git using the significance level α(ri) = τα(ri−1), j = 2, 3, ... Testing
continues until the first non-rejection of the null hypothesis.

In summary, we begin the model specification problem by first modelling the conditional
variance component ht as in (6) with p = q = 1. This may be preceded by testing the null
hypothesis of no ARCH. Thereafter, if the unconditional variance is time-varying, one has to
specify the unconditional variance component gt. At the evaluation stage the adequacy of the
estimated model is tested by means of LM-type misspecification tests, see Amado and Teräsvirta
(2011) for details.

3 Estimation of parameters

After the number of transitions and their type in (7) have been determined, the parameters of
the TV-GARCH model are estimated by quasi-maximum likelihood (QML). For this purpose,
let θ = (θ′

1,θ
′
2)

′ be the parameter vector of the model. Let ht ≡ ht(θ1,θ2) and gt ≡ gt(θ2)
where θ1 = (ω,α′,κ′,β′) and θ2 = (δ0, δ

′, γ1, . . . , γr, c
′
1, . . . , c

′
r)

′ with α = (α1, . . . , αq)
′, κ =

(κ1, . . . , κq)
′, β = (β1, . . . , βp)

′, δ = (δ1, . . . , δr)
′. The model defined in (5)−(8) can be now

rewritten as follows:
εt = ζt {ht (θ1,θ2) gt (θ2)}1/2 . (13)

Assuming that {ζt} is a sequence of independent standard normal variables, the log-likelihood
function for observation t equals

ℓt(θ) = −(1/2) ln 2π − (1/2){lnht(θ1,θ2) + ln gt(θ2)} − (1/2)
ε2t

ht(θ1,θ2)gt(θ2)
(14)

The unconditional and the conditional variance components are estimated separately using max-
imization by parts. The iterative algorithm proceeds as follows:

Step 1: Maximize

LU
T (θ2) =

T∑
t=1

ℓUt (θ2) = −(1/2)

T∑
t=1

{ln gt(θ2) + ε̃2t /gt(θ2)}

with respect to θ2, assuming ε̃t = εt, that is, setting ht(θ1,θ2) ≡ 1. Let the estimator of

θ2 be θ̂
(1)

2 . Making use of θ̂
(1)

2 , maximize

LV
T (θ1, θ̂

(1)

2 ) =

T∑
t=1

ℓVt (θ1, θ̂
(1)

2 ) = −(1/2)

T∑
t=1

{
lnht(θ1, θ̂

(1)

2 ) + ε∗2t /ht(θ1, θ̂
(1)

2 )
}

with respect to θ1, where ε∗t = εt/{gt(θ̂
(1)

2 )}1/2. Denote the estimator as θ̂
(1)

1 .

Step 2: Maximize

LU
T (θ2) =

T∑
t=1

ℓUt (θ2) = −(1/2)

T∑
t=1

{ln gt(θ2) + ε̃2t /gt(θ2)}
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with respect to θ2, where ε̃t = εt/{ht(θ̂
(1)

1 , θ̂
(1)

2 )}1/2. Call this estimator θ̂
(2)

2 and maximize

LV
T (θ1, θ̂

(2)

2 ) =

T∑
t=1

ℓVt (θ1, θ̂
(2)

2 ) = −(1/2)

T∑
t=1

{
lnht(θ1, θ̂

(2)

2 ) + ε∗2t /ht(θ1, θ̂
(2)

2 )
}

with respect to θ1, where ε∗t = εt/{gt(θ̂
(2)

2 )}1/2. This yields θ̂
(2)

1 .

Iterate until convergence.

In the nth iteration, maximization is carried out in the usual way by solving the score
equations:

∂

∂θ2
LU
T (θ2) = (1/2)

T∑
t=1

(
ε̃2t

gt(θ2)
− 1

)
1

gt(θ2)

∂gt(θ2)

∂θ2
= 0

for θ2 with ε̃t = εt/{ht(θ̂
(n−1)

1 , θ̂
(n−1)

2 )}1/2, and

∂

∂θ1
LV
T (θ1) = (1/2)

T∑
t=1

(
ε∗2t

ht(θ1, θ̂
(n)

2 )
− 1

)
1

ht(θ1, θ̂
(n)

2 )

∂ht(θ1, θ̂
(n)

2 )

∂θ1
= 0

for θ1, where ε∗t = εt/{gt(θ̂
(n)

2 )}1/2. Letting Glt ≡ Gl(t/T ; γl, cl), l = 1, . . . , r, we have

∂gt(θ2)

∂θ2
= (1, G1t, G

(γ)
1t , G

(c)
1t , . . . , Grt, G

(γ)
rt , G

(c)
rt )

′

where, for k = 1 in (8),

G
(γ)
lt =

∂Glt

∂γl
= δlGlt(1−Glt)(t/T − cl)

G
(c)
lt =

∂Glt

∂cl
= −γlδlGlt(1−Glt)

and for k > 1

G
(γ)
lt =

∂Glt

∂γl
= δlGlt(1−Glt)

∏k

j=1
(t/T − clj)

G
(c)
ilt =

∂Gilt

∂cl
= −γlδlGlt(1−Glt)

∏k

j=1,j ̸=l
(t/T − clj)

where clj denotes the jth element in the parameter vector cl, l = 1, . . . , r, and

∂ht(θ1, θ̂
(n)

2 )

∂θ1
= (1, ε∗2t−1, . . . , ε

∗2
t−q, ε

∗2
t−1It−1(ε

∗
t−1 < 0), . . . , ε∗2t−qIt−q(ε

∗
t−q < 0),

ht−1(θ1, θ̂
(n)

2 ), . . . , ht−p(θ1, θ̂
(n)

2 ))′ +

p∑
j=1

βj
∂ht−j(θ1, θ̂

(n)

2 ))

∂θ1

This algorithm is computationally attractive in the present situation where direct maximiza-
tion of the log-likelihood function is difficult. Under certain regularity conditions, the resulting
estimator coincides with the ML estimator and becomes fully efficient upon convergence; see
Song, Fan, and Kalbfleisch (2005) for details. Throughout this paper, we assume that certain
regularity conditions are satisfied to ensure consistency and asymptotic normality of the QML
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estimator. The asymptotic properties of the maximum likelihood estimators of the TV-GJR-
GARCH model have been established in Amado and Teräsvirta (2011).

In this work, the long time series requires some modifications to the estimation algorithm.
Because the whole series is divided into non-overlapping subperiods, the different data segments
can have different “baseline” volatility levels. For this reason, the algorithm iterates from an
initial value which is estimated by “chain rule” to accommodate differences in the volatility levels.
This proceeds as follows. First, for the first subperiod, estimate the parameters of g1t = δ0 +∑r1

l=1 δ1lG1l(t/T ; γ1l, c1l) where r1 is the number of transitions for this period. The estimate ĝ1T
serves as the “intercept” in the nonstationary component of the next subperiod. Conditioning
on this value, carry out the estimation of the parameters for the next subperiod. More generally,

for the ith subperiod, estimate git = δ̂
(i−1)
0 +

∑ri
l=1 δilGil(t/T ; γil, cil) by conditioning on δ̂

(i−1)
0 ,

where δ̂
(i−1)
0 = δ̂0+

∑ri−1

l=1 δ̂lGl(t/T ; γ̂l, ĉl), such that t = T is the last observation of the (i−1)th
subperiod and ri−1 is the number of transitions in the same subperiod. The estimates ĉl are then
used as fixed values in the next iterations. This means that the estimation algorithm is carried
out without iterating ĉl, and therefore the parameters γ̂l and δl, l = 0, . . . , r, are estimated
conditionally on those estimates.

Another aspect that deserves attention in the estimation of the model is the selection of
starting-values of the time-varying parameters. Since the log-likelihood may contain several local
maxima, it is advisable to initiate the estimation from different sets of starting-values before
settling for the final parameter estimates. In addition, to improve the accuracy of the estimates
of the standard errors, we follow Fiorentini, Calzolari, and Panattoni (1996) and use analytic
first derivatives both in the estimation of the TV-GARCH models and in the computation of the
test statistics. All computations in this paper have been carried out using the Ox programming
language, version 6.10, see Doornik (2009).

4 Application to the Dow Jones Industrial Average index

4.1 Data description

In this section we apply our modelling procedure of the TV-GARCH model to the daily returns
of the Dow Jones Industrial Average (DJIA) index. The entire sample covers the period between
January 2, 1920 and May 31, 2011, yielding 22986 observations. The daily returns are defined
as log differences of the closing prices of the index between two consecutive days. The closing
prices of the DJIA index have been obtained from the Wharton Research Data Services (WRDS)
provided by the Wharton School of the University of Pennsylvania. Descriptive statistics of the
return series can be found in Table 1. The coefficients of skewness and kurtosis seem to indicate
that the stock returns εt have a left skewed and a significantly fat-tailed distribution. To check
this conclusion, we also provide the robust measures of skewness and kurtosis as recommended

Table 1: Summary statistics of the daily DJIA return series: full sample

Series Min Max Mean S.D. Skew Ex.Kr. Rob.Sk. Rob.Kr.

εt -25.63 14.27 0.021 1.144 -0.591 23.82 -0.007 0.245

εt/ĝ
1/2
t -23.55 8.88 0.025 0.883 -1.092 26.44 -0.005 0.147

Notes: The table contains summary statistics for the DJIA return series. The sample period
starts in January 2, 1920 and ends in May 31, 2011 (22986 observations).

9



1920 1922 1924 1926 1928 1930 1932 1934 1936 1938

−10

0

10

1938 1940 1942 1944 1946 1948 1950 1952 1954 1956

−5

0

5

10

1958 1960 1962 1964 1966 1968 1970 1972 1974
−5

0

5

1976 1978 1980 1982 1984 1986 1988 1990 1992

−20
−10

0
10

1994 1996 1998 2000 2002 2004 2006 2008 2010
−10

0

10

Figure 1: The DJIA daily returns from January 2, 1920 until May 31, 2011. The vertical lines
represent the split dates.

by Kim and White (2004) in order to account for outliers. The robust measure for skewness
is practically zero whereas the robust kurtosis measure, not surprisingly, suggests that there
is excess kurtosis in the series. Figure 1 graphs the daily returns for the DJIA index for the
observation period. The period covers the Great Depression of 1929 and the early 1930’s, the
Second World War, the 1973 oil crisis, the stock market crash of October 1987, the dot-com
bubble, and the recent financial crisis. Because of the long observation period it is unlikely that
the series is stationary. We divide the long return series into ten non-overlapping subperiods
each comprising at least of 1500 observations. In most cases we report the findings for each of
the ten subperiods and the full sample. Summary statistics of the subperiods can be found in
Table 11.

4.2 Estimation results

The focus of the empirical analysis lies in the specification of the unconditional variance using the
modelling strategy described in Section 2.2. We begin by determining the number of transitions
for each subperiod separately. This is done using the sequence of specification tests. The initial
significance level of the sequence of tests is α(1) = 0.05. At each stage of the sequence we halve
the significance level of the test, i.e. τ = 0.5. The tests results appear in the second column of
Table 2.

We first test the hypothesis of constant unconditional variance against a smoothly time-
varying unconditional variance with one transition function. The null hypothesis is rejected for
all subperiods with two exceptions. The first one is subperiod 5, the post-World War II period
from the mid-1950’s until mid-1960’s, and the second one subperiod 8 covering the October 1987
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crash. The stock market volatility returned to normal levels very quickly after the crash, which
suggests that the unconditional variance remained stable during that period. These findings are
consistent with the hypothesis of Engle and Lee (1999) that the 1987 crash is more transient than
other big shocks. The null hypothesis of constant unconditional variance is, however, rejected
very strongly for the subperiods 2, 3, 6, 7, 9 and 10. The second period contains the Great
Depression, the third includes the Second World War, the seventh one the OPEC oil crisis, the
ninth the IT bubble, and the most recent one the financial crisis. The results indicate that the
strongest deterministic changes in the unconditional variance are associated with the largest
economic recessions in the period under study.

The results from the sequence of nested tests based on (10) to select k in (8) are given in
the last three columns of Table 2, see Amado and Teräsvirta (2011) for details. The strongest
rejection occurs when k = 1 for six out of eight periods, subperiods 1 and 7 being the only
exceptions. For subperiod 7, the specification test sequence suggests a third-order polynomial
for the transition function since k = 3. We choose k = 1, however, to simplify the specification
and the estimation of the model for this subsample. Post-estimation misspecification tests then
indicate the validity of this choice or reveal misspecification.

We first estimate a TV-GJR-GARCH model with a single transition and test against a double
transition model at α(2) = 0.025. We reject the hypothesis in four out of the eight subsamples
and select k = 1. Fitting the model with two transitions and testing for another transition
yields for these subsamples p-values larger than α(3) = 0.0125. Thus, we tentatively accept the
model with two transitions as the final parameterization for the second, seventh, ninth and
tenth subperiods. In particular, for subperiod 7 two transitions with k = 1 are an adequate
alternative, as could have been a single transition with k = 3.

The above results imply that twelve transition functions in total are needed to describe the
unconditional variance for the whole series. Estimation results for the TV-GJR-GARCH model
are reported in Table 3, Panel (a). The estimation results for each of the subperiods can be
found in Tables 12-13.

Estimation is carried out with the sequential quadratic programming optimisation algorithm
using analytical derivatives. The numbers in parenthesis below the parameter estimates are the
asymptotic standard error estimates and calculated using numerical second derivatives. The
standard errors of ci, i = 1, . . . , 12, are not available because the parameters δj , j = 0, and
γj , . . . , 12, are estimated conditionally on those parameters. In some subperiods we observe
that the transition between the extreme regimes of volatility is quite rapid. For these cases,
the maximum value of γj is constrained to 300. This is done to save computation time due to
slow convergence of the sequence of estimates for this parameter when γj is very large. This
approximation is adequate because the shape of the transition function changes very little after
γj exceeds 300.
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Table 2: p-values of sequences of Lagrange multiplier tests for the subsamples

Subsamples H0 H03 H02 H01

Single transition

Subsample 1 0.0058 0.1738 0.0166 0.0895
Subsample 2 9× 10−5 0.8545 0.0070 2× 10−4

Subsample 3 2× 10−4 0.4117 0.0111 5× 10−4

Subsample 4 0.0047 0.1943 0.0431 0.0073
Subsample 5 0.6093 0.5998 0.8956 0.2156
Subsample 6 1× 10−4 0.1148 0.0599 1× 10−4

Subsample 7 6× 10−5 4× 10−6 0.3551 0.6931
Subsample 8 0.3627 0.4535 0.4366 0.1545
Subsample 9 1× 10−6 0.0072 0.0028 2× 10−4

Subsample 10 2× 10−5 0.0086 0.0308 0.0034

Double transition
Subsample 1 0.0902 0.0150 0.8754 0.4586
Subsample 2 0.0090 0.1824 0.0812 0.0092
Subsample 3 0.3066 0.4731 0.9733 0.0785
Subsample 4 0.0841 0.0315 0.7371 0.1667
Subsample 5 − − − −
Subsample 6 0.1511 0.1998 0.5611 0.0683
Subsample 7 0.0063 0.0046 0.6733 0.0411
Subsample 8 − − − −
Subsample 9 0.0014 0.0102 0.0110 0.1077
Subsample 10 0.0106 0.0199 0.8747 0.0162

Triple transition

Subsample 1 − − − −
Subsample 2 0.0147 0.3739 0.6801 0.0020
Subsample 3 − − − −
Subsample 4 − − − −
Subsample 5 − − − −
Subsample 6 − − − −
Subsample 7 0.2204 0.0411 0.7332 0.7265
Subsample 8 − − − −
Subsample 9 0.1681 0.6813 0.1199 0.1163
Subsample 10 0.0305 0.0289 0.0972 0.2368

Notes: The entries are the p-values of the LM-type tests of constant
unconditional variance against a time-varying GARCH model for
each subperiod of the DJIA stock index returns. The test sequence
starts at the significance level α = 0.05 and setting τ = 0.5. The
order k in (8) is chosen from the sequence of nested tests based on
(10). If H0i is rejected most strongly, measured by the p-value, of
the three hypotheses, one selects k = i. See Amado and Teräsvirta
(2011) for further details.
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Table 3: Estimation results for the DJIA returns: full sample

Panel (a): parameter estimates of the TV-GJR-GARCH(1,1) model

ht = 0.0324
(0.0051)

+ 0.0167
(0.0036)

ε∗2t−1 + 0.8882
(0.0128)

ht−1 + 0.1045
(0.0152)

I(ε∗t−1 < 0)ε∗2t−1

Log-Lik = −27861.9 α̂1 + β̂1 + κ̂1/2 = 0.957

gt = 1× 10−6

(0.404)
+ 1.433

(0.806)
(1 + exp{−16.62

(3.711)
(t/T − 0.019

(−)
)(t/T − 0.067

(−)
)})−1

+4.986
(0.263)

(1 + exp{−51.32
(5.012)

(t/T − 0.106
(−)

)})−1

−4.831
(0.281)

(1 + exp{−179.1
(27.02)

(t/T − 0.151
(−)

)})−1

−1.082
(0.185)

(1 + exp{−42.60
(12.82)

(t/T − 0.033
(−)

)})−1

−0.172
(0.030)

(1 + exp{−285.2
(47.05)

(t/T − 0.345
(−)

)})−1

+0.059
(0.016)

(1 + exp{−300
(−)

(t/T − 0.503
(−)

)})−1

+1.324
(0.117)

(1 + exp{−96.16
(16.73)

(t/T − 0.585
(−)

)})−1

−1.015
(0.116)

(1 + exp{−300
(−)

(t/T − 0.603
(−)

)})−1

+0.597
(0.049)

(1 + exp{−235.1
(39.64)

(t/T − 0.051
(−)

)})−1

−0.910
(0.051)

(1 + exp{−238.5
(16.62)

(t/T − 0.912
(−)

)})−1

+9.239
(0.799)

(1 + exp{−96.71
(7.111)

(t/T − 0.971
(−)

)})−1

−9.036
(0.804)

(1 + exp{−132.8
(15.29)

(t/T − 0.976
(−)

)})−1

Panel (b): parameter estimates of the GJR-GARCH(1,1) model

ht = 0.0120
(0.0020)

+ 0.0284
(0.0036)

ε2t−1 + 0.0824
(0.0079)

I(εt−1 < 0)ε2t−1 + 0.9201
(0.0116)

ht−1

Log-Lik = −29919.5 α̂1 + β̂1 + κ̂1/2 = 0.990

To see how the unconditional variance changes over time, the estimated component g
1/2
t is

plotted in the top panel of Figure 2. The estimated gt functions for each subperiod are shown
in Figure 6. It is seen that the largest deterministic changes in the unconditional variance occur
during recessions. In particular, the strongest movement in the long-run volatility is observed
during the Great Depression. This is in agreement with Mikosch and Stărică (2004) who find
that most of the recessions coincide with an increase in the unconditional variance of the series.
In their analysis of the S&P 500 returns, they identify the 1973 oil crisis as the major change
detected in the unconditional variance, but then their time series only covers the period from
January 2, 1953, to December 31, 1990.

For comparison, we also report the results of fitting the GJR-GARCH(1,1) model into the
complete series. They can be found in Panel (b) of Table 3. The results for each subperiod
appear in Table 14. We find that the subperiods characterized by the largest changes in the
unconditional variance have a stronger integrated GJR-GARCH effect. The stationary condition
for the full sample model is α1+β1+κ1/2 < 1. The estimated model is practically an integrated
GJR-GARCH model as the persistence indicator α̂1 + β̂1 + κ̂1/2 = 0.990. The autocorrelation
functions of |εt| plotted in Figure 3 (upper panel) lead to the same conclusion. The graph clearly
displays the long-memory property: relatively rapid decay at short lags followed by positive
autocorrelations around a stable level at long lags. On the contrary, the autocorrelations of

|εt| /ĝ1/2t , plotted in the lower panel of Figure 3, decay very quickly with the lag length and only
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Figure 2: First panel, shows the estimated function g
1/2
t (black curve) and the conditional

standard deviation from the GJR-GARCH(1,1) model (grey curve). Second panel, shows the
estimated conditional standard deviations from the GJR-GARCH(1,1) model (grey curve) and
from the TV-GJR-GARCH(1,1) (black curve) models.

the first 70 autocorrelation estimates or so are significantly different from zero judging from the
95% confidence bounds drawn under the assumption that the errors are normal and independent.
The decay rate is rapid in the beginning but does contain a ’plateau’ between, say, lags 75 and
200. The persistence indicator now equals 0.957. The results show that modelling the changes in
the unconditional variance strongly reduces the amount of evidence for long-memory. This can
also be seen from the Geweke and Porter-Hudak (1983) (GPH) estimates of the long-memory
parameter in Table 4. Of course, the GPH parameter estimates vary with the bandwidth but,
overall, the table indicates that the daily DJIA return series is either nonstationary (for the
bandwidth choices m = T 0.4 and m = T 0.5) or is very close to the nonstationary region (for
m = T 0.6). However, when the movements in the unconditional variance component are taken
into account the GPH estimates have the remarkable low values of 0.1004, 0.1686 and 0.2657 for
these three bandwidths.

Table 4: GPH estimates of the long-memory parameter: full sample

dGPH(m = T 0.4) dGPH(m = T 0.5) dGPH(m = T 0.6)

εt 0.7440
(0.0825)

0.5372
(0.0545)

0.4746
(0.0312)

εt/ĝ
1/2
t 0.1004

(0.1069)
0.1686
(0.0569)

0.2657
(0.0324)

Notes: The numbers in parentheses are the standard errors. The bandwidth
m equals Tα, α ∈ {0.4, 0.5, 0.6} where T is the number of observations.

A similar conclusion can be reached by looking at the estimated conditional at the estimated
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Figure 3: Top panel: the sample autocorrelation functions of the absolute values of the DJIA
daily returns. Bottom panel: the sample autocorrelation functions of the standardized variable

|εt| /ĝ1/2t . The horizontal line in both panels is the corresponding 95% confidence interval under
the iid normality assumption.

conditional standard deviations from the GJR-GARCH(1,1) model of εt and εt/ĝ
1/2
t . The bot-

tom panel of Figure 2 displays both series. The (almost) stationary behaviour of the conditional

standard deviation of εt/ĝ
1/2
t (black curve) contrasts with the nonstationary behaviour of the

conditional standard deviation of εt (grey curve). It shows that the conditional variance of

εt/ĝ
1/2
t is considerably smaller than that of εt from the GJR-GARCH(1,1) model. For illustra-

tion, we also show in Figure 7 the estimated conditional standard deviations generated from
both models separately for each subperiod.

Table 5: p-values of the test of no ARCH in GARCH

Lag order

Model 1 2 3 4 5

GJR-GARCH(1,1) 0.398 0.368 0.559 0.721 0.810

TV-GJR-GARCH(1,1) 0.890 0.292 0.476 0.644 0.775

The adequacy of the estimated TV-GJR-GARCH(1,1) model is checked using the diagnostic
tests proposed by Amado and Teräsvirta (2011). We perform tests against remaining ARCH
in the standardized residuals, TV-GJR-GARCH(1,2) and TV-GJR-GARCH(2,1) models, and
ST-GJR-GARCH(1,1) model of order 1. The p-values of the tests are given in Tables 5 and
6. For comparison we also show the test results for the estimated GJR-GARCH(1,1) model.
The results indicate no evidence of remaining ARCH in the standardized residuals, nor can one
argue in favour of higher-order TV-GJR-GARCH models; see Tables 5 and 6. However, the TV-
GJR-GARCH(1,1) model is strongly rejected against ST-GJR-GARCH(1,1) model. This result
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suggests that the TV-GJR-GARCH(1,1) model is not yet an adequate parameterization, and a
nonlinear GARCH model instead of the GJR-GARCH variant could improve the specification.
Modelling the short-run dynamics of volatility of a long time series would thus need more work.
Nevertheless, because the focus of this paper is on the modelling of changes in the long-run
volatility component, refinements in the modelling of ht are left for further work.

Table 6: p-values of tests against models of higher orders and against a nonlinear structure

Alternative model

Model GJR(1,2) GJR(2,1) ST-GJR (k = 1)

GJR-GARCH(1,1) 0.0065 0.0118 4× 10−7

TV-GJR-GARCH(1,1) 0.7118 0.1407 0.0022

4.3 Forecasting comparison

To evaluate the forecasting performance of the estimated TV-GJR-GARCH model we compare
its out-of-sample forecasts with those of the GJR-GARCH model. The out-of-sample evaluation
sample spans the period from June 1, 2011 through November 30, 2011, which amounts to 128
observations. The post-sample forecast comparisons are carried out as follows. First, in order
to evaluate the predictive ability of the competing models, the daily squared returns are used as
a proxy for the latent volatility. Second, to evaluate the accuracy of the forecasts, the models
are re-estimated using both the full sample (T = 22986) and the eight subperiods with time-
varying unconditional variance. The in-sample and out-of-sample periods for each subsample
are presented in Table 16. Finally, we summarize the forecasting performance by computing the
Mean Absolute Forecast Error (MAFE) and Root Mean Squared Forecast Error (RMSFE) for
the competing models. To reduce the impact of outlying observations on forecasting evaluation,
we also consider the Median Squared Forecast Error (MedSFE).

Table 7: Out-of-sample prediction accuracy for the full sample

GJR-GARCH TV-GJR-GARCH
Horizons MedSFE MAFE RMSFE MedSFE MAFE RMSFE

h = 1 3.795 2.763 4.649 2.233 2.620 4.602
h = 5 3.436 2.908 5.154 1.999 2.719 5.110
h = 10 2.391 2.989 5.373 1.247 2.736 5.322
h = 20 3.347 3.117 5.585 1.343 2.912 5.589
h = 60 3.379 2.588 3.689 0.801 2.449 3.865
h = 90 0.934 2.476 3.925 0.565 2.495 4.050

Notes: The out-of-sample forecast evaluation statistics are the Median Squared
Forecast Error (MedSFE), Mean Absolute Forecast Error (MAFE) and the Root
Mean Squared Forecast Error (RMSFE) criteria.

Results are presented in Tables 7 and 9 for forecasting horizons from one to 90-days-ahead
forecasts. For the full sample, the results in Table 7 indicate that for short-term horizons
the TV-GJR-GARCH model outperforms the GJR-GARCH model based on the RMSE loss
function. For horizons longer than 60 days the GJR-GARCH model performs better than the
TV-GJR-GARCH model. If we instead consider MedSFE as a measure of predictive ability, the
forecasting accuracy of the TV-GJR-GARCH model is superior to that of the GJR-GARCH
model both for short-term and long-term forecasts. This suggests that the TV-GJR-GARCH
model may generate a number of exceptionally inaccurate forecasts that strongly affect the
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Figure 4: Out-of-sample forecasting comparison between GJR-GARCH e TV-GJR-GARCH
models for the full sample.

RMSFE. The situation is also illustrated in Figure 4 that contains MSFE ratios of these two
models for different forecast horizons. The ratio exceeds one, indicating superiority of the GJR-
GARCH model, at all horizons longer than 18 trading days. An obvious conclusion is that while
changing unconditional variance is nicely described by a set of deterministic transitions, the
assumption of a constant parameter conditional variance GARCH component over the whole
period is too inflexible and should be relaxed.

This is illustrated by re-estimating the model using just the last 1799 observations that
form subsample 10. The forecasts from that model are vastly superior to the corresponding
ones from the GJR-GARCH model estimated for the same period. This is seen from the last
three columns of Table 9. We repeat the same out-of-sample forecasting exercise with the same
number of forecasts for the other subsamples. Table 9 shows that the TV-GJR-GARCH model
generates more accurate forecasts than the GJR-GARCH model in all eight cases. The MSFE
ratios in Figure 5 illustrate this. The ratios lie only modestly below unity for subperiods 3
and 4, whereas the differences in precision are particularly dramatic in forecasting observations
following subperiod 2 that contains data from the Great Depression and subperiod 7 that covers
the 1973 oil crisis. This shows that taking care of the unconditional variance component is
important even in models based on relatively short time series. It should be added, however,
that what is being forecast is an ’after-crisis’ period and that different results may be obtained
in forecasting amidst a crisis of just before a beginning of a turbulent period.

Finally, we compute the out-of-sample F-type test statistic of McCracken (2007) which is
designed to compare the relative forecasting performance of two nested models. The null hy-
pothesis of the test is equal forecast accuracy. The OOS-F statistic for h-step ahead forecasts
is defined as

OOS-F = (P − h+ 1)
MSFE1 −MSFE2

MSFE2

where P is the number of out-of-sample observations, MSFE1 is the Mean Square Forecasting
Error of the restricted model and MSFE2 is the Mean Square Error of the unrestricted model.
If there is no difference in the forecast accuracy of the two models (the null hypothesis), the
OOS-F statistic should have a small value. The limiting distribution of the OOS-F test is
non–standard when the forecasts are nested under the null hypothesis. The asymptotic critical
values of the test are tabulated in McCracken (2007).
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(b) Subperiod 2
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(c) Subperiod 3

0 10 20 30 40 50 60 70 80 90
0.83

0.84

0.85

0.86

0.87

0.88

0.89

R
at

io
 M

S
F

E
(T

V
−

G
JR

−
G

A
R

C
H

)/
M

S
F

E
(G

JR
−

G
A

R
C

H
)

Forecasting horizon

(d) Subperiod 4
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(e) Subperiod 6
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(f) Subperiod 7
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(g) Subperiod 9
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(h) Subperiod 10

Figure 5: Out-of-sample forecasting comparison between GJR-GARCH and TV-GJR-GARCH
models for the eight subperiods.
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Results from the OOS-F test statistic are presented in Table 10. For the full sample, the
OOS-F test fails to reject the null hypothesis of equal forecast accuracy at all horizons. Never-
theless, by omitting the older observations and using solely the observations of the subsample
10, the test supports the superiority of the TV-GJR-GARCH over the GJR-GARCH model at
all horizons. Similarly, the null hypothesis of equal forecast accuracy is rejected at the 5 percent
level for the remaining seven subperiods. Accordingly, the TV-GJR-GARCH model improves
the accuracy of forecasts at all forecast horizons for forecasts from models based on the eight
subsamples.

Table 10: Values of the OOS-F test statistic of predictive accuracy

Horizons
Subsamples h = 1 h = 5 h = 10 h = 20 h = 60 h = 90

Full sample 2.66 2.14 2.31 −0.17 −6.14 −2.35
Subsample 1 91.96 76.42 68.12 61.36 43.10 14.44
Subsample 2 542.84 551.35 557.13 557.96 324.69 424.08
Subsample 3 10.78 16.49 24.12 40.81 102.97 84.37
Subsample 4 15.52 17.18 18.19 18.34 12.79 5.85
Subsample 6 552.60 503.60 508.62 455.65 253.78 143.66
Subsample 7 129.23 127.62 123.27 116.57 129.40 82.30
Subsample 9 86.90 90.70 93.97 106.73 95.33 115.46
Subsample 10 285.20 276.41 267.94 243.76 145.07 86.46

Notes: The OOS-F test statistics are computed for h-step ahead forecasts from
the estimated GJR-GARCH and TV-GJR-GARCH models. The asymptotic
critical values are tabulated in McCracken (2007). The numbers in boldface
indicate a non-rejection of the null hypothesis of equal forecast accuracy at 5
percent level.

5 Conclusions

In this paper we develop a testing and modelling procedure for describing the long-term move-
ments in daily stock market returns over excessively long time periods. This is done by multi-
plicatively decomposing the variance of a GARCH model into a conditional and an unconditional
component, in which the unconditional variance is allowed to change smoothly over time. The
proposed model is the Time-Varying GARCH model as in Amado and Teräsvirta (2011). The
model building strategy relies on statistical inference, making use of a sequence of Lagrange-
multiplier type specification tests. Because of the length of the observation period, the time
series is divided into non-overlapping subperiods with the aim of alleviating the model building
procedure. This makes it quite easy to model very long return series using techniques that have
already been successfully applied to considerably shorter series.

An empirical example applied to the long daily DJIA return series shows how the technique
works in practice. Our results suggest that the dependence structure of the series is well ex-
plained by deterministic changes in the unconditional variance, whereas the standard hypothesis
of constant unconditional variance turns out to be inappropriate. Based on the diagnostic tests,
we claim that the nonstationary TV-GJR-GARCH model should be preferred to the stationary
model in applications to long financial time series.

Out-of-sample forecasts suggest that forecasting accuracy can be improved by using the
TV-GJR-GARCH model instead of the GJR-GARCH model for short-term horizons. The TV-
GJR-GARCH model provides reasonably accurate short-term forecasts due to the flexible un-
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conditional variance component. Omitting the old observations and using solely the most recent
observations to specify and estimate the model show that forecasts from the TV-GJR-GARCH
model are superior to ones from the GJR-GARCH model at all forecast horizons.

Finally, the results indicate that the first-order GJR-GARCH model inadequately describes
the short-run volatility dynamics in long return series, and that another type of nonlinear model
should be considered. Further improvements in the modelling of the conditional variance over
long time series are called for, but this problem is left for further research.

22



References
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Figure 6: Estimated gt functions for the eight subperiods.
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Figure 7: Conditional standard deviations of the GJR-GARCH(1,1) and the TV-GJR-
GARCH(1,1) model for the ten subperiods.
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Table 11: Summary statistics of the subperiod return series

Subperiod Min Max Mean S.D. Skew Ex.Kr. Rob.Sk. Rob.Kr.

Subperiod 1: T = 1752

εt -4.524 5.365 0.021 1.001 -0.446 1.979 -0.023 0.124

εt/ĝ
1/2
t -3.772 4.291 0.026 0.902 -0.466 1.480 -0.021 0.097

Subperiod 2 : T = 1799

εt -14.47 14.27 -0.026 2.308 0.100 5.302 -0.105 0.307

εt/ĝ
1/2
t -14.47 11.64 -0.007 1.505 -0.918 12.65 -0.013 0.195

Subperiod 3 : T = 2599

εt -7.469 9.090 0.015 1.158 -0.495 6.204 0.011 0.325

εt/ĝ
1/2
t -7.043 5.829 0.008 0.830 -0.746 8.038 0.024 0.239

Subperiod 4 : T = 2346

εt -5.716 3.517 0.028 0.735 -0.993 6.201 0.044 0.169

εt/ĝ
1/2
t -3.945 2.428 0.021 0.540 -0.934 5.189 0.037 0.124

Subperiod 5: T = 2517

εt -6.766 4.579 0.040 0.708 -0.512 7.683 -0.004 0.108

Subperiod 6 : T = 1991

εt -3.193 4.952 0.008 0.664 0.298 3.258 -0.040 0.096

εt/ĝ
1/2
t -2.101 3.258 0.008 0.474 0.166 2.351 -0.038 0.065

Subperiod 7 : T = 1696

εt -3.567 4.603 -0.002 0.965 0.232 1.289 0.019 6× 10−5

εt/ĝ
1/2
t -1.932 2.493 0.002 0.640 0.184 0.150 0.045 -0.052

Subperiod 8 : T = 3357

εt -25.63 9.666 0.039 1.103 -3.760 91.62 -0.004 0.147

Subperiod 9 : T = 3130

εt -7.455 6.155 0.038 1.038 -0.262 4.718 0.032 0.221

εt/ĝ
1/2
t -4.171 3.443 0.033 0.683 -0.249 2.442 0.041 0.132

Subperiod 10 : T = 1799

εt -8.201 10.51 0.010 1.253 0.012 11.34 -0.024 0.460

εt/ĝ
1/2
t -3.453 4.425 0.016 0.795 -0.191 2.522 -0.037 0.325

Notes: The table contains summary statistics for each of the subperiod series. The sample
periods are indicated in parentheses. The statistic ‘S.D.’ is the standard deviation, ‘Skew’ is
the coefficient of skewness and the statistic ‘Ex.Kr’ is the value of the excess kurtosis. ‘Rob.Sk.’
denotes the robust measure for skewness and ‘Rob.Kr.’ denotes the robust centred coefficient
for kurtosis. ‘Rob.Sk.’ is computed as SK = (Q3 + Q1 − 2Q2)/(Q3 −Q1) where Qi is the i th
quartile of the returns and ‘Rob.Kr.’ is computed as KR = (E7−E5+E3−E1)/(E6−E2)−1.23
where Ei is the i th octile (see Kim and White (2004) for details).
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Table 12: Estimation results of the TV-GJR-GARCH(1,1) model: subperiods

Subperiod δ̂1 γ̂1 ĉ11 ĉ12 δ̂2 γ̂2 ĉ21
Subperiod 1 0.5634

(0.0866)
300
(−)

0.2463
(0.0017)

0.8720
(0.0035)

− − −

Subperiod 2 5.1922
(0.3353)

300
(−)

0.5704
(0.0008)

− −3.9244
(0.4721)

300
(−)

0.9466
(0.0026)

Subperiod 3 −0.6493
(0.0142)

300
(−)

0.5301
(0.0008)

− − − −

Subperiod 4 −0.5242
(0.0334)

11.325
(4.7980)

0.7413
(0.0161)

− − −

Subperiod 6 1.3103
(0.0870)

300
(−)

0.2957
(0.0009)

− − − −

Subperiod 7 2.4090
(0.1833)

300
(−)

0.1627
(0.0005)

− −1.9841
(0.1979)

300
(−)

0.5701
(0.0023)

Subperiod 9 2.1948
(0.1109)

300
(−)

0.4125
(0.0011)

− −1.9239
(0.1780)

300
(−)

0.9440
(0.0025)

Subperiod 10 4.6399
(0.4526)

300
(−)

0.5484
(0.0011)

− −3.8683
(0.4663)

300
(−)

0.7206
(0.0013)

Notes: The table contains the parameter estimates of the git component from the TV-GJR-GARCH(1,1)
model for each of the subperiods of the DJIA daily returns from January 2, 1920 until May 31,
2011. The estimated model has the form git = 1 +

∑r
l=1 δilGil(t/T ; γil, cil), where Gil(t/T ; γil, cil) is

defined in (8) for all i. The numbers in parentheses are the standard errors.

Table 13: Estimation results of the TV-GJR-GARCH(1,1) model: subperiods

Subperiod ω α1 κ1 β1 Log-Lik α1 + κ1/2 + β1
Subperiod 1 0.0724

(0.0294)
− 0.1247

(0.0356)
0.8444
(0.0513)

−2246.1 0.907

Subperiod 2 0.0876
(0.0270)

0.0301
(0.0149)

0.1686
(0.0395)

0.8374
(0.0281)

−2933.9 0.952

Subperiod 3 0.0238
(0.0108)

0.0219
(0.0118)

0.1142
(0.0398)

0.8839
(0.0377)

−2912.1 0.963

Subperiod 4 0.0179
(0.0111)

− 0.1253
(0.0610)

0.8729
(0.0652)

−1736.3 0.936

Subperiod 6 0.0065
(0.0020)

− 0.1025
(0.0172)

0.9197
(0.0157)

−1197.6 0.971

Subperiod 7 0.0086
(0.0032)

0.0243
(0.0079)

0.0279
(0.0134)

0.9411
(0.0107)

−1616.5 0.979

Subperiod 9 0.0291
(0.0074)

− 0.1337
(0.0282)

0.8730
(0.0254)

−3105.8 0.940

Subperiod 10 0.0181
(0.0051)

− 0.1478
(0.0214)

0.8944
(0.0147)

−1943.1 0.968

Notes: The table contains the parameter estimates from the TV-GJR-GARCH(1,1) model
for each of the subperiods of the DJIA daily returns from January 2, 1920 until May
31, 2011. The estimated model has the form of the equations (5)-(8). The numbers in
parentheses are the standard errors.
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Table 14: Estimation results of the GJR-GARCH(1,1) model: subperiods

Subperiod ω α1 κ1 β1 Log-Lik α1 + κ1/2 + β1
Subperiod 1 0.0560

(0.0181)
− 0.1145

(0.0261)
0.8811
(0.0292)

−2397.2 0.938

Subperiod 2 0.0407
(0.0137)

0.0576
(0.0127)

0.1373
(0.0316)

0.8740
(0.0159)

−3621.4 1.000

Subperiod 3 0.0186
(0.0085)

0.0281
(0.0123)

0.1036
(0.0337)

0.9072
(0.0259)

−3655.2 0.987

Subperiod 4 0.0170
(0.0115)

− 0.0992
(0.0487)

0.9164
(0.0435)

−2421.9 0.966

Subperiod 5 0.0810
(0.0317)

− 0.2353
(0.0543)

0.7175
(0.0736)

−2511.8 0.835

Subperiod 6 0.0045
(0.0015)

− 0.0949
(0.0140)

0.9440
(0.0089)

−1801.4 0.991

Subperiod 7 0.0043
(0.0026)

0.0232
(0.0091)

0.0403
(0.0121)

0.9526
(0.0102)

−2177.7 0.996

Subperiod 8 0.0519
(0.0328)

0.0262
(0.0106)

0.0922
(0.0652)

0.8823
(0.0574)

−4648.7 0.955

Subperiod 9 0.0142
(0.0045)

0.0145
(0.0087)

0.1092
(0.0272)

0.9199
(0.0156)

−4129.8 0.989

Subperiod 10 0.0151
(0.0049)

− 0.1442
(0.0235)

0.9119
(0.0140)

−2367.3 0.984

Notes: The table contains the parameter estimates from the GJR(1,1) model for each of
the subperiods of the DJIA daily returns from January 2, 1920 until May 31, 2011. The
estimated model has the form hit = ωi + αi1ε

2
it−1 + βi1hit−1 + κi1Iit−1(εit−1)ε

2
it−1, where

Iit(εit) = 1 if εit < 0 (and 0 otherwise) for all i. The numbers in parentheses are the
Bollerslev-Wooldridge robust standard errors.

Table 15: GPH estimates of the long-memory parameter

dGPH(m = T 0.4) dGPH(m = T 0.5) dGPH(m = T 0.6)

Subperiods εt εt/ĝ
1/2
t εt εt/ĝ

1/2
t εt εt/ĝ

1/2
t

Subperiod 1 0.0545
(0.1987)

−0.3363
(0.1924)

0.2600
(0.1204)

0.0624
(0.1363)

0.2009
(0.0744)

0.0975
(0.0821)

Subperiod 2 0.5077
(0.1838)

0.2889
(0.1402)

0.4264
(0.1195)

0.4062
(0.0890)

0.3220
(0.0662)

0.4332
(0.0651)

Subperiod 3 0.5333
(0.1271)

0.3768
(0.1375)

0.5282
(0.0911)

0.3206
(0.0871)

0.5199
(0.0593)

0.4426
(0.0588)

Subperiod 4 0.3233
(0.2113)

0.2179
(0.1987)

0.3934
(0.11134)

0.3335
(0.1080)

0.3417
(0.0670)

0.3196
(0.0669)

Subperiod 5 −0.3827
(0.2110)

−0.3827
(0.2110)

0.1667
(0.1362)

0.1667
(0.1362)

0.2356
(0.0745)

0.2356
(0.0745)

Subperiod 6 0.3945
(0.1558)

−0.0204
(0.2681)

0.4545
(0.0913)

0.1970
(0.1303)

0.4245
(0.0645)

0.2676
(0.0801)

Subperiod 7 0.4273
(0.1404)

0.2513
(0.1045)

0.7126
(0.1022)

0.5462
(0.1157)

0.5407
(0.0770)

0.4452
(0.0763)

Subperiod 8 0.2233
(0.1052)

0.2233
(0.10515)

0.4350
(0.0715)

0.4350
(0.0715)

0.2978
(0.0497)

0.2978
(0.0497)

Subperiod 9 0.5211
(0.1812)

0.1831
(0.2001)

0.4464
(0.1063)

0.2329
(0.1091)

0.4137
(0.0656)

0.2374
(0.0630)

Subperiod 10 0.6490
(0.0923)

0.3541
(0.1882)

0.8670
(0.1116)

0.4839
(0.1191)

0.7908
(0.0810)

0.5307
(0.0816)

Notes: The numbers in parentheses are the standard errors. The bandwidth m equals
Tα, α ∈ {0.4, 0.5, 0.6} where T is the number of observations.
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Table 16: In-sample and out-of sample periods for the subsamples

In-sample Out-of-sample
Subsamples Period T Period T
Subsample 1 02/01/1920− 31/12/1926 1752 03/01/1927− 30/06/1927 125
Subsample 2 03/01/1927− 21/03/1934 1799 22/03/1934− 21/09/1934 128
Subsample 3 22/03/1934− 04/08/1944 2599 07/08/1944− 06/02/1945 126
Subsample 4 07/08/1944− 31/12/1953 2346 04/01/1954− 30/06/1954 125
Subsample 6 02/01/1964− 31/12/1971 1991 03/01/1972− 30/06/1972 127
Subsample 7 03/01/1972− 20/09/1978 1696 21/09/1978− 20/03/1979 125
Subsample 9 02/01/1992− 06/04/2004 3130 07/04/2004− 06/10/2004 126
Subsample 10 07/04/2004− 31/05/2011 1799 01/06/2011− 30/11/2011 128
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