
A Framework for the Development of Tolerant Real Time Applications

Pedro Sousa <pns@uminho.pt>

Vasco Freitas <vf@uminho.pt>

Departamento de Informática
Universidade do Minho
P-4709 Braga, Portugal

Keywords: RTP, RTCP, WWW, Plug-ins, Best
effort services.

Abstract

This work presents a framework architecture for

the development of distributed real-time applica-

tions to be integrated into WWW clients. It as-

sumes a WWW environment over networks pro-

viding a best-effort delivery service like the inter-

nets based on the IP protocol.

The framework is that of an application pro-

gramming interface (API) providing the program

developer with the services needed by tolerant real-

time applications. Once developed, an application

is bundled together with the API to form a WWW

plug-in which can subsequently be called from a

WWW client interface or browser. The applica-

tion is then perceived as being integrated into the

WWW environment.

The design aims to provide real-time applica-

tions with a transport service layer assuring near

end-to-end isochronism despite the weak guar-

anties of the underlying network service. The im-

plementation of the mechanisms that allow multi-

stream real-time communications to adapt to the

operational conditions of these networks are dis-

cussed. In this work, the RTP and RTCP proto-

cols were also implemented as part of the API.

Experience with this framework reports the de-

velopment of a prototype real-time application for

multimedia group communication and the anal-

ysis of the behaviour of RTP sessions in a real

operational situation. The analysis uses protocol

state data logged during their operation.

1 Introduction

Many applications can be found nowadays in
network environments, some of which, by their
nature, try to draw quite heavily from the avail-
able network resources. Real-time applications
fall into this category as they often require high
data flow rates, end-to-end isochronism, limits
on delay and jitter, stream synchronisation and

so forth, leading to operational paradigms not
matched by the underlying networks. The IETF
(Internet Engineering Task Force) has produced
some work in this area [1, 4]. The main problem is
the nature of the IP protocol, which only provides
for a best-effort service although new ideas are be-
ing put forward namely the Resource Reservation
Protocol (RSVP) [2, 25]. In such networking en-
vironments it is up to the applications themselves
to devise and implement the mechanisms needed
to satisfy their requirements. This work, there-
fore, is concerned and proposes a programming
framework providing a developer of real-time ap-
plications with the support needed by the require-
ments of this class of applications. The follow-
ing section will briefly review some of the related
background. In section 3 the functionality of the
proposed framework is described. Section 4 re-
ports on the experience in developing a prototype
application and on the analysis of the behaviour
of RTP sessions in operational situations. Section
5 draws some conclusions and indicates further
directions that are being followed up.

2 Background

Classes of aplications. Two kinds of applica-
tions can be found in the Internet scenario, real-
time and elastic applications [1, 4]. Elastic appli-
cations, such as Telnet, FTP or E-Mail are not
delay sensitive which does not mean that users
will not suffer the consequences of a larger vari-
ability of delay or insufficient bandwith, resulting
in a poorer quality of service. Real time applica-
tions on the other hand are delay sensitive.

Real-time applications can be divided in two
diferent classes: rigid and tolerant. Rigid appli-
cations require a type of service that can assure
limited delay variation, packet loss, etc. Tolerant
applications must adapt their behaviour to the
operational conditions of the underlying networks
and protocols and have the ability to overcome
problematic network conditions. They assume a
network service with no performance figures.

1

Adequacy of protocols. In the case of the In-
ternet stack of protocols, TCP [5] is a connection
oriented protocol providing a reliable end-to-end
data transmission service. It is a complex proto-
col implementing various mechanisms to ensure
among other things that data is not lost. This
is an essential property in transactions data com-
munications but not in many others of the kind
of real-time conferencing communications where
TCP is not the most apropriate transport service.
On the other hand, UDP [15] although a non re-
liable datagram protocol adding very little to the
underlying IP network protocol, has the strong
feature of being well suited to multipoint com-
munications [7]. UDP has been the choice of the
transport service for the proposed framework.

Previous work. The quest for running real-
time audio over the Internet was perhaps the
main initial motivation behind the studies of
real-time applications over packet data networks
[13, 16]. Most of the work in the field is credited
to Schulzrinne [17, 18, 19]. The interest rapidly
spread to other media like real-time video or mov-
ing pictures. New protocol proposals have come
up [20, 21, 22, 12] which have been tested in some
applications. A well known case is the use of the
MBONE (Multicast backBONE) [23, 8] to run
multicast audio and video conferencing over the
wide area, having RTP as the underlying proto-
col.

Target applications. The programming inter-
face that has been developed and will be pre-
sented here is targeted at the following types of
candidate applications:

• Applications which generate traffic with spe-
cific real-time characteristics.

• Applications for group communications that
use multicast.

• Applications that are able to use trans-
port layer signalling to adapt themselves to
changing network conditions and strive for
optimal performance.

• Real-time applications that have been devel-
oped for the WWW.

3 Description of the framework

The framework is that of an application pro-
gramming interface (API) providing the program
developer with the services needed by tolerant
real-time applications, such as, remote unicast

and multicast connections, communication rate
adaptation, playout buffering, synchronisation of
real-time data streams, jitter control as well as
user interface control. The API implements the
Real Time Protocol (RTP) and its akin protocol,
the Real Time Control Protocol (RTCP), which
make use of the host system UDP transport ser-
vice to establish peer communications with repli-
cated versions of the application, eg, over IP net-
works. Once developed, an application is bun-
dled together with the API to form a WWW
plug-in which can subsequently be called from a
WWW client interface or browser. The applica-
tion is then perceived as being integrated into the
WWW environment.

The typical scenario envisaged in this work is
that of a WWW application for multimedia group
communication which is registered at some Web
server. Figure 1 depicts this setup. A remote

HTTP
server

HTTP
browser

HTTP
browser

HTTP
browser

HTTP

H
T

T
P

HTTP

Plug-in Plug-in Plug-in

(1)

(2)

(3)

(3)

(4) (4)
(3)

(2) (2)

(1)
(1)

RTP / RTCP channels

Fig 1: The operational scenario

user who wishes to join a session over this appli-
cation does so by selecting it on his WWW client,
figure 1 (1). A WWW plug-in, fig. 1 (4), will
then be activated on that user client which takes
over control of his participation in the session, fig-
ure 1 (2). It opens RTP and RTCP channels to
the other clients in the session, as shown in fig-
ure 1 (3), and from that moment on the user is
able to exchange multimedia data with the ses-
sion participants.

This work concerns the protocol layer that are
embeded in the plug-ins, which is made available
to the user in the form of an Application Pro-
gramming Interface (API). The following sections
discuss this protocol layer.

3.1 Architecture of plug-in

Protocol components of API. Figure 2
shows the underlying protocol components of the
API. It is assumed that IP is the network protocol
over which is used UDP as the transport protocol

2

Application Program Interface
Data management

RTP

UDP

IP

RTCP

unicast multicast

Fig 2: Protocol components of API

for the Real Time Protocol, RTP, and the asso-
ciated Real Time Control Protocol, RTCP. Over
this real time session layer sits the application in-
terface which uses the services specified for that
layer and provides applications with a set of spec-
ified programming functions.

Layer model of plug-in. Plug-ins comprise
the following five modules which are depicted in
figure 3:

WWW Browser

Application
Interface

Interface
Control

Protocol
Configuration

Module

RTP / RTCP
Protocols

Identification &
Synchronisation

Module

Application

Transmission-
Reception
Module

QoS
Control
Module

Unicast/Multicast

PLUG-IN

Fig 3: Layer model of plug-in

1. Interface management module.

2. Transmission and reception module.

3. QoS control module.

4. Identification and synchronization module.

5. Protocol configuration module.

Each of these components are discussed in the
following sections.

3.1.1 Interface management

As previously mentioned the aim is to inte-
grate the whole interface underlying the user ap-
plication into the WWW client. Hence, the in-
terface management module will allow the pro-
grammer to handle a given area of its client in-
terface. To achieve this, a capability of WWW
plug-ins was used together with the HTML com-
mand embed that allows to specify a given area
in the client interface which an application can
handle and becomes responsible for. In this case
the application is the plug-in proper that imple-
ments the application. The user application can
afterwards address that same area to perform any
operation involving, for example, text handling
and graphics.

3.1.2 Transmission and reception

This module performs all operations involv-
ing passing data (messages) to and receiving data
from the transport service layer, to be forwarded
to and arriving from the network concerning all
stations participating in the session. During re-
ception this module constantly updates the RTP
state variables, such as sequence numbers, jitter
values, packet loss, and so on, and passes the data
on to the application. In its reception rôle, the
module also implements a packet colection pro-
cedure similiar to the algorithm proposed in the
anexes to RFC1889 [20], which takes into account
the acceptable delays in receiving out of sequence
packets.

3.1.3 QoS control

The main rôle of the QoS module is to monitor
the status of RTP connections and, from observed
parameters, to provide the application with the
means to adapt itself to the short term forth-
coming (expected) conditions. The application is
then able to react to packet loss, jitter and other
network loading effects. The techniques used in-
volve the handling of damping buffers.

Packet delay and jitter. A factor of cru-
cial importance in real time applications is de-
lay. More important still is jitter, the time vari-
ation in delay, as applications need to maintain
end-to-end isochronism. For each transmitting
protocol entity, each receiving entity keeps an es-
timate of jitter from past observed values. The
expected jitter is computed from the single expo-
nential smoothing forecast1 [11]

Jn = αXn + (1− α) Jn−1 (1)

1A property of single exponential smoothing is that
the weight of previous values decreases exponentially.

3

where Jn is the current forecast value of jitter, Xn

is the current measured jitter value, Jn−1 is the
previous forecast jitter value and α ∈ [0, 1] is a
real constant, whose value is chosen according to
the desired influence of the new measured value
on the forecast. The measurement of Xn is made
indirectly from the timestamps on the RTP data
packets. Let τn be the timestamp imposed upon
packet n at the moment it leaves the sender and
tn the timestamp for the same packet recorded
at the moment it reaches the receiver on a given
RTP channel. The transit time of packet n com-
puted from

δn = tn − τn (2)

is taken as the channel delay2 at time tn and it is
a measure of network delay at this instant. The
current measured jitter in formula (1) is taken as

Xn = δn − δn−1 (3)

Transmmitter and receiver clocks need not be
synchronised.

Playout buffering. Playout buffering has been
used to smooth out delay and thus reduce jitter.
A playout buffer is a damping memory used to
hold packets for a variable but controlled amount
of time before the destination application actually
use them. Most real time applications allow for
a certain amount of delay without a noticeable
loss of quality. Up to one hundred miliseconds
delay in interactive speech and video is still quite
acceptable. To compensate for jitter, therefore,
the application should know the maximum delay
value of any packet within a session. Let ∆ be
this value. Then, for each packet arriving with a
computed delay of δi, the application would only
play the packet after ∆ − δi units of time have
elapsed, during which time it would remain in
the playout buffer. As ∆ cannot be known in
advance, a local value is derived from a sample
of the delays of the first m arriving packets (for
which no compensation is performed). Let

δn−m, δn−m+1, δn−m+2, · · · , δn−2, δn−1 (4)

be the sequence of the delays of the m packets
that have arrived immediately before tn and δIk
the kth larger value in sequence (4). If a func-
tion ∆(m, k) of differences in delay is defined as
follows

∆(m, k) = δIk+1 − δIm (5)

then the value ∆(m, 0) is taken as an estimate of
∆ for ti ≥ tn and is passed on to the application.
∆ is recalculated and updated periodically. Ad-
ditionally, it can be seen that playout buffering
implicitely performs packet ordering.

2it is a mean value over a time interval of δn units of
time ending at instant tn.

Packet loss. Receivers periodically report to
transmitters about packet loss thus allowing
transmitters to compute the current packet loss
rate. Upper and lower loss rate thresholds are
defined at the transmitters so that whenever the
actual loss rate either exceeds the upper threshold
or goes below the lower threshold, the transmitter
either falls back or raises up to a more appropri-
ate transmission rate in an attempt to maintain
the quality of the transmission. The actual loss
rate value used is a filtered version of the loss rate
computed at each instant. The filtering function
used is, again, the single exponential smoothing
forecast filter as in equation (1)

FLn = λLn + (1− λ)FLn−1 (6)

where FLn is the current filtered loss rate value,
Ln is the current loss rate value computed from
the reported packets lost, FLn−1 is the previous
filtered loss rate value and λ ∈ [0, 1] is a real
constant suitably chosen. Figure 4 displays ac-
tual values from our experiments, collected from
a unicast RTP channel, showing channel through-
put increasing initially as the (filtered) packet
loss rate lies below the lower threshold, which
has been set at 10%, then reaching a value such
that the loss rate overshoots the upper threshold,
which has been set at 15%, thereby forcing the
transmission rate to decrease until the loss rate
returns to within limits. Figure 4 also shows that

Fig 4: Transmitter adapts to network conditions

in this particular situation the controlled variable
(loss rate), swings between above and below the
locking zone defined by the threshold limits. Al-
though this is the expected behaviour of this con-
trol system, it may eventually become unstable,
in that oscillations may indefinitely increase in
amplitude with time and possibly contribute to
periodically driving the network to a congestion
state. Parameter λ is the tunning knob on the
feedback path of this system and its value must
be carefully chosen as the system is non-linear

4

and certainly a time-variant one as the underly-
ing network is being loaded by other independent
and variable traffic flows.

A transmitter classifies each receiver as being
in one of three states: congested, normal or min-
imal loss according to whether the value of its
filtered packet loss rate lies above, between or be-
low thresholds (b) and (a) shown in figure 5. In a

Filter

congested

normal

minimal loss

100%

0%

(b)

(a)

Packet loss
reported by
receivers

Fig 5: Receiver classification dynamic [3]

multicast situation receivers may be in different
states and therefore a decision as to whether to
increase, maintain or decrease the transmission
rate is not so simple to take as in unicast. The
approach suggested by Busse et al [3] was adopted
whereby, basically, if the number of receivers in
the congested state does not exceed a very small
proportion Pd of the total number of receivers,
the transmitter maintains the current transmis-
sion rate and it only increases the rate if, addi-
tionally, the number of receivers in the minimal
loss state are in excess of a reasonable proportion
Pm. Transmission rate is only decreased if the
number of congested receivers raises beyond Pd.
Let Nc and Nn be the number of receivers in the
congested state and in the normal state, respec-
tively. If Nt is the total number of receivers in
the multicast session, then

if
Nc

Nt
≥ Pd then decision ← decrease

elseif
Nn

Nt
≥ Pm then decision ← maintain

else decision ← increase

3.1.4 Identification & synchronisation

Identification. This module enables applica-
tions to access high level information associated
with each of the session participants. Each partic-
ipant makes available through the RTCP channel
metainformation on itself.

Synchronisation. When a session involves the
transmission of more than one medium in sepa-
rate channels, such as in a video-phone session
with two RTP channels, one for video and the

other for voice, these need to be synchronised, ie,
aligned in time, as they may be subject to differ-
ent delays. Applications dealing with multimedia
streams are kept informed on the status of syn-
chronism of the various media, ie, whether one
stream is ahead of another and for how much so
that the application can take the necessary mea-
sures to bring them to alignment, eg, by dropping
out packets from the other stream and shorten its
delay in the playout buffer as depicted in figure
6. This functionality uses information exchanged

Medium A

Medium B

.

.

. .

{

dropped out
packets

synchronisation pointSender Receiver

playout buffer

Fig 6: Alignment of multimedia streams

through the RTCP channels namely the transmit-
ter timestamps for each of the media streams.

3.1.5 Protocol configuration

This module takes care of the necessary pa-
rameter setting before a multicast session may
begin. There are two types of such parameters:
network and application. The former concern for
example multicast addresses, protocol ports and
so on. The latter relate to the initialisation of
values of constants and variables in the programs
that implement the functionalities refered to pre-
viously, eg, constants for filters, threshold values
for the QoS controller and for the receiver classi-
fier, etc.

3.2 Programming API

The protocols in the plug-in API were devel-
oped in C++. A hierarchy of objects was defined
which implements the functionalities of the RTP
and RTCP protocols. The programming interface
at the disposal of an application developer takes
the form of a programming object (App Session)
which includes a set of methods to which the
programmer has access. Within this object, one
or more RTP/RTCP sessions may coexist which
have been started and may be killed by the pro-
grammer. Figure 7 depicts the struture of this
object. By way of example, some methods within
this object are the following:

App Session(), ∼App Session() Class constructor
and destructor.

Add Session(sess param,func param,ident param,
adjust param)Method to add a new RTP session.

5

RTP
session

RTP
session

RTP
session

Application

Internal
Architecture

........

........

........

id1 id2 id3

App_SessionApplication
Program
Interface

Fig 7: Struture of object App Session

Takes the protocol configuration structures as pa-
rameters.

Session number() A function returning the num-
ber of active RTP sessions.

Get decision(id) A function that examines the
states of all receivers and returns the decision
value to be taken as to the transmission rate of
the transmitter.

Number entities(id) A function returning the
number of participants in a RTP session.

Send(id,apt,tam,marker) A function that sends a
RTP packet to the specified session.

Get max buffer(id,ssrc) A function returning an
estimate of the playout buffer size to be used for
the specified source within the specified session.

Synchronise(id1,id2,name) The specified channels
are to be synchronised.

Get reception state(id,ssrc) For the specified ses-
sion and source, returns a structure containing
statistics on how packets are being received from
that source up to the current moment.

Get source id(id,ssrc) For the specified session
and source, returns a structure containing high
level information about the source.

List entities(id) For the specified session returns
a list of the participants identifiers.

4 Experience

A prototype application of a generic platform for
multimedia group communication has been devel-
oped under this framework. The implementation
includes tools for state data collection enabling
the runtime behaviour of real time applications
and the underlying mechanisms to be analysed.
These tools are quite useful in that they allow to

monitor and evaluate the effects of different net-
work loads on the system performance.

4.1 An application for multimedia group

communication

The implementation consists of an experimen-
tal cooperative application which makes use of
the API and the underlying system whose compo-
nents have been described in the preceeding sec-
tions. It has the following features:

• An image transmission channel which may
be accessed by all prospective participants.

• A cursor-position transmission channel for
all participants.

• A message transmission channel (IRC3).

• A directory-board channel identifying all
current participants.

• A channels-status area displaying the status
of all active channels.

• It constitutes a fully integrated plug-in to a
WWW client and uses the set of layered pro-
tocols described.

Figure 8 shows a WWW client (browser) interface
displaying on the large (white background) win-
dow a session of cooperative work with two partic-
ipants using this application. On the upper right
hand corner of this window is the directory-board
display identifying the two participants by their
name and e-mail. The upper left hand corner
displays the shared image and the cursors from
all participants, from their respective channels.
On the full width middle strip area of this win-
dow is located the shared IRC message display
area with one sub-area dedicated to each partici-
pant and finally on the full width bottom area lies
the channels status display area showing, in this
case, raw parameter values for channels cursor-
position, IRC-message and image.

These channels correspond to autonomous
RTP sessions which participants join when they
initiate their application thus joining the over-
all cooperative session. Control information of
each of those (sub)sessions flow in the associ-
ated RTCP channels. All participants are identi-
fied by some metainformation on the directory-
board channel which is derived from the data
they plublicise in the matching RTCP channel,
namely, in the source description packets4.

3Internet Remote Chat
4SDES packets

6

Fig 8: A session of multimedia cooperative work

The image channel: session RTP 1. In the
image channel flow streams of coded still or mov-
ing images to all participants. It is a prototype
of a channel where video data sourced at one
or more participants flows in real-time to all the
other participants. In this prototype GIF89a [6]
was used for coding images. This format is mainly
used for still images although it may easily be
adapted to coding of moving images [24] despite
its low performance as compared to MPEG and
other compressors.

The cursor channel: session RTP 2. Re-
mote signalling of cursor position of a participant
is implemented by a call to a routine whenever his
pointing device moves. This routine has access to
the cursor coordinates which are then transmit-
ted over this channel to all participants.

The messages channel: session RTP 3.
This is a discussion channel in writen message
medium and it is an approach to a communica-
tion channel using IRC. The medium is broadcast
to all participant interfaces and displayed in sep-
arate and identified display areas.

4.2 Analysis of application runtime behaviour

Tools in the programming interface have been
used to collect performance data on the runtime
behaviour of real time applications and the un-
derlying framework. The API and the protocol

software developed may be run in debug mode in
which specified timestamped state variable values
are logged onto a file. Log data may then be cross
checked against logs of the other participants and
analysed.

A case study. Two simultaneous RTP sessions
were setup on each of the three hosts, A, B and
C which were connected to a 10BASE2 ethernet
LAN. In a first scenario each participant host gen-
erated 1 Kbyte packets per RTP session at ap-
proximately 40 ms intervals (25 packets/s), ie, an
average agregate load on the LAN of 1.2 Mbps.
In a second scenario the load was doubled to ap-
proximately 2.4 Mbps by halving the interpacket
times generated by each RTP session at each host
(50 packets/s).

For each of the two scenarios, values of re-
ported packet loss and packet buffering time for
all three participants were recorded. Figures 9
and 11 plot four consecutive values of these two
variables for each participant after approximately
12 seconds had elapsed, when transmissions had
stabilized.

Fig 9: Reported packet loss in the two scenarios

The values for each participant are identified
as A, B and C. For each scenario a second run
was performed under the same conditions giving
values identified as A2, B2 and C2 on the plots.

Packet loss. In both scenarios packet loss rate
was very small except for that reported by par-
ticipant C in the increased load scenario where it
early started to increase as shown by the first two
values of both C and C2 in figure 9. This event
was explained by the fact that machine C had the
poorer hardware of all three, ie, less resources and
of a lower performance.

Rate adaptation. At some instant when
packet loss rate reported by C exceeded the upper

7

threshold, loss rate control started to act at hosts
A and B which decreased their transmission rate
on the reported channel. Its effect can be seen
in the third and fourth values of both C and C2
in figure 9 where loss rate decreases back to a
value near zero. The effect can also be seen in
figure 10 which plots total packet loss from host
A observed at host C, on the same channel. Total

Fig 10: Packets lost from A observed at C

packet loss increases initially but it stabilises at
a near constant value some ∆ t seconds after the
control action has started.

Playout buffering. Queueing time at the play-
out buffers become more variable in the second
scenario as shown in figure 11. One explana-

Fig 11: Packet buffering time in the two scenarios

tion for this phenomenon is that a higher load
caused not only by higher transmission rates but
also because stations increase the rate almost syn-
chronously, are likely to increase jitter as a conse-
quence of harsher conditions in packet admission
into the network where increased contention may
introduce more variable delays at the physical in-
terface.

Stream alignment. The two RTP streams are
to be synchronised. Figure 12 plots the higher

load scenario shifts in alignment (synchronisa-
tion) between the two streams, as recorded at
host B, relative to their transmission from A.
Alignment is lost quite frequently and its shift

Fig 12: Shift in stream alignment at B

is clearly seen to oscillate around zero or there-
about, thus indicating that it is being success-
fully controlled. At the lower load scenario, both
streams stay well aligned. Shifts are rare and
barely noticed amounting to no more than one
packet.

5 Conclusions and further work

The concept of developing tolerant real-time mul-
timedia applications as plug-ins for the WWW
client interface seems to be a reasonably good in-
tegrating concept. The proposed framework is
that of an API layer providing the programmer of
this class of applications with the type of services
they need when the underlying network only as-
sures a best-effort connectionless service, namely:

• user interface control

• remote unicast and multicast connections

• communication rate adaptation

• playout buffering

• alignment of real-time streams

• jitter control

This conclusion is backed up by experience
where a complete prototype distributed applica-
tion for multimedia group communication over a
local network was developed and run on a work-
ing LAN. The behaviour of the application and
the mechanisms that provide the services were
checked from operational logs, which the sys-
tem also provides, and proved to perform reliably
and reasonably well as far as could be expected

8

from the available resources and the somewhat
demanding conditions of the application.

Some aspects of this system are currently be-
ing tackled which will eventually lead to a more
robust and efficient platform. They are:

• Compression of RTP headers. As in certain
uses of the TCP/IP protocols [10], there have
been proposals for compressing RTP headers
[14].

• Interoperability with multicast notification
and management mechanisms, and session
register and announcement [9].

• Consideration of the use of mixers.

• Coexistence of adaptive and resource reser-
vation protocols such as RSVP [2, 25]

Acknowledgment

The first author was sponsored by scholarship
BM/6667 from PRAXIS XXI.

References

[1] R. Branden, D. Clark and S. Shenker. Inte-
grated Services in the Internet Architecture:
an Overview. RFC1633, Jul 1994.

[2] R. Braden, L. Zhang et al. Resource Reser-
vation Protocol (RSVP) - Version 1: Func-
tional Description. Internet draft, IETF,
Nov 1996.

[3] I. Busse, B. Deffner and H. Schulzrinne. Dy-
namic QoS Control of Multimedia Applica-
tions based on RTP, May 1995.
gaia.cs.umass.edu/pub/Buss9601/Dynamic.ps.gz

[4] D. D. Clark, S. Shenker and L. Zhang. Sup-
porting Real-Time Applications in an Inte-
grated Services Packet Network: Architec-
ture and Mechanism. Internet draft, IETF,
Oct 1996.

[5] D. E. Comer. Internetworking With
TCP/IP, Volume I: Principles, Protocols,
and Architecture. Prentice-Hall, 2nd ed.

[6] Compuserve Incorporated. Graphics Inter-
change Format(sm), version 89a, Jul 1990.

[7] C. Diot, W. Dabbous and J. Crowcroft. Mul-
tipoint communications: A survey of Pro-
tocols, Functions, and Mechanisms. IEEE
Journal on Selected Areas in Communica-
tion, (15)3, Apr 1997.

[8] H. Eriksson. MBONE: The Multicast Back-
Bone. Comm of the ACM, (37)8, Aug 1994.

[9] M. Handley and Van Jacobson. SDP: Session
Description Protocol. Internet draft, IETF,
Nov 1995.

[10] V. Jacobson. Compressing TCP/IP Headers
for Low-Speed Serial Links. RFC1144, Feb
1990

[11] S. Makidrakis, S WeelWrigth, V. McGee.
Forecasting methods and applications. John
Wiley & Sons, pp 84-111, 1983.

[12] NACSE, Northwest Alliance for Computa-
tional Science and Engineering. Concep-
tional and Historical Background of Real
Time Protocols. Dec 1996.
//www.cs.orst.edu/˜kleinro/nacse/rtp

[13] W. E. Naylor and L. Kleinrock. Stream
Traffic Communication in Packet Switched
Networks: Destination Buffering Consider-
ations. IEEE Trans on Communications,
(COM-30)12, pp 2534, 1982.

[14] S. Petrack. Compression of Headers in RTP
Streams. Internet draft, IETF, Dec 1996

[15] J. Postel. User Datagram Protocol. RFC768,
Aug 1980.

[16] L. Press. Net.Speech: Desktop Audio Comes
to the Net. Comm of the ACM, (38)10, pp
25-31, Oct 1995.

[17] H. Schulzrinne. When can we unplug the ra-
dio and telephone?. NOSSDAV 95, 5th Int
Workshop on Network and Operating Sys-
tems Support for Digital Audio and Video.
Apr 1995.
//gaia.cs.umass.edu/pub/schu9504/when.ps.gz

[18] H. Schulzrinne. Internet Services: from elec-
tronic mail to real-time multimedia. Proc of
KIVS (Kommunication in Verteilten Syste-
men), pp 21-34, Feb 1995.

[19] H. Schulzrinne. QoS for Real-time services:
playout delay and application control. Proc
of the 46th RACE Concertation Meeting
(RCM), Mar 1995.

[20] H. Schulzrinne, S. Casner, R. Frederick and
V. Jacobson. RTP: A Transport Protocol for
Real-Time Applications. RFC1889, 75 pp,
GMD,..., XEROX, LBN Lab, Jan 1996.

[21] H. Schulzrinne. RTP Profile for Audio
and Video Conference with Minimal Control.
RFC1890, Jan 1996.

[22] H. Schulzrinne. Some Frequently Asked
Questions about RTP. Sep 1996.
//www.cs.columbia.edu/˜hgs/rtp

9

[23] A. S. Thyagarajan, S. L. Casner and
S. E. Deering. Making the MBONE Real.
INET’95, May 1995.
//www.ee.udel.edu/˜ajit/inet95.dir/inet.html

[24] K. H. Wolf. Web Video - Interactive Video
in the World Wide Web. Proc 7th Joint Eu-
ropean Networking Conf - JENC7, pp 1131-
1137, Terena, Budapest, May 13-16, 1996.

[25] J. Wroclawski. The Use of RSVP with IETF
Integrated Services. Internet draft, IETF,
Oct 1996.

Vitæ

Pedro Sousa graduated in Systems and Infor-
matics Engineering at the University of Minho,
Portugal, in 1995 and was awarded a Masters de-
gree in Informatics in 1997. He joined the Com-
puter Communications group of the Department
of Informatics in 1996 and has since collaborated
in projects involving protocol development for
real time networked applications.

Vasco Freitas is Associate Professor of Com-
puter Communications at the University of
Minho, Portugal. He graduated in electronic and
telecommunications engineering in 1972 at the
University of Lourenço Marques and received his
M.Sc. and Ph.D. degrees from the University of
Manchester (UK) in 1977 and 1980 respectively.
From 1989 until 1994, he was in charge of the es-
tablishment and management of the Portuguese
R&D Network (RCCN).

10

