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Characterization of the role of sphingolipids in the modulation of
acetic acid-induced apoptosis

Abstract

The yeast Saccharomyces cerevisiae can undergo programmed cell death in

response to different stimuli. Exposure of yeast cells to acetic acid has been shown to

trigger a mitochondrial pathway displaying, as in mammalian cells, typical apoptotic

markers such as externalization of phosphatidylserine, DNA fragmentation, chromatin

condensation, mitochondrial dysfunction with cytochrome c release and production of

reactive oxygen species (ROS).

Sphingolipids are lipid second messengers generated in response to different

physiological signals and stress stimuli. They affect multiple aspects of cellular function,

including apoptosis. Changes in sphingolipid metabolism have been linked to apoptosis

and oxidative stress in both yeast and mammalian cells. The increase of ceramide and

sphingosine levels leads to cell growth arrest and apoptosis whereas the increase of

sphingosine-1-phosphate levels promotes proliferation and inhibits apoptosis. Moreover,

ceramides have been detected in mitochondria and accumulate upon stress treatments,

increasing the permeability of the mitochondria to cytochrome c and leading to the

generation of ROS.

Our working hypothesis was that acetic acid may elicit ceramide production and,

therefore, may trigger apoptosis by a signal transduction pathway modulated by ceramide.

For that reason, we aimed to characterize the relative contribution of biosynthesis versus

catabolism of ceramides to the apoptotic cell death induced by acetic acid in yeast. For our

studies, yeast cells lacking Lag1p, Lac1p (unable to generate ceramide by de novo

synthesis), Ydc1p and Ypc1p (unable to breakdown ceramide) and Isc1p (unable to

generate ceramide by degradation of inositolphosphosphingolipids), were generated by

homologous recombination.

Our results showed that lag1∆ and isc1∆ mutant cells exhibited a higher resistance

to acetic acid that was correlated with lower levels of ROS production and reduced

mitochondrial alterations. In comparison with the wild-type strain, lag1∆ and isc1∆ mutant

cells display, under acetic acid stress, lower levels of mitochondrial fragmentation and

degradation, and reduced alterations of the mitochondrial membrane potential. Associated

with these events, there was also less translocation of cytochrome c to the cytosol in

response to acetic acid than in the wild-type strain.

In conclusion, our results suggest that ceramide production contributes to cell death

induced by acetic acid, especially through the hydrolysis of complex lipids catalyzed by

Isc1p and through de novo synthesis catalyzed by Lag1p.
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Caracterização do papel dos esfingolípidos na modulação da
apoptose induzida por ácido acético

Resumo

A levedura Saccharomyces cerevisiae pode sofrer morte celular programada em

resposta a diferentes estímulos. O tratamento de células de levedura com ácido acético

tem sido descrito como capaz de ativar a via mitocondrial apresentando, exposição de

marcadores celulares típicos de apoptose de mamíferos tais como externalização de

fosfatidilserina, fragmentação de DNA, condensação da cromatina, disfunção mitocondrial,

incluindo a libertação de citocromo c, e produção de espécies reativas de oxigénio (ROS).

Os esfingolípidos são lipídos mensageiros gerados em resposta a diferentes sinais

fisiológicos e estímulos de stress. Alterações no metabolismo de esfingolípidos têm sido

associadas a apoptose e stress oxidativo tanto em leveduras como em células de

mamíferos. O aumento dos níveis de ceramidas e esfingosina promove a paragem do

crescimento celular e a apoptose, enquanto o aumento dos níveis de esfingosina-1-fosfato

promove a proliferação e inibe a apoptose. Adicionalmente, tem-se verificado a deteção e

acumulação de ceramidas nas mitocôndrias após tratamentos de stress, aumentando a

permeabilidade da mitocôndria ao citocromo c e levando à produção de ROS.

A hipótese de trabalho deste projeto consistiu na suposição de que o ácido acético

pode levar à produção de ceramidas e portanto, desencadear a apoptose por via de

transdução de sinal modulado por ceramida. Por essa razão, foi nosso objetivo

caracterizar a contribuição relativa da biossíntese e do catabolismo de ceramidas para a

morte celular por apoptose induzida por ácido acético na levedura. Mutantes de levedura

deficientes nas enzimas Lag1p e Lac1p (incapazes de gerar ceramidas pela síntese de

novo), Ydc1p e Ypc1p (incapazes de catabolizar ceramidas) e Isc1p (incapaz de gerar

ceramidas pela degradação da inositolfosfoesfingolípidos), foram gerados por

recombinação homóloga.

Os resultados mostraram que os mutantes lag1Δ e isc1Δ exibem uma maior

resistência ao ácido acético que se correlaciona com níveis baixos de produção de ROS e

alterações mitocondriais menos intensas. Em comparação com a estirpe selvagem, lag1Δ

e isc1Δ exibem, sob stress de ácido acético, menores níveis de fragmentação e

degradação mitocondrial e reduzidas alterações do potencial de membrana mitocondrial.

Associados a estes eventos, observou-se igualmente uma menor translocação de

citocromo c para o citosol do que na estirpe selvagem.

Em conclusão, os resultados sugerem que a produção de ceramidas contribui para

a morte celular induzida por ácido acético, especialmente através da hidrólise de lípidos

complexos catalisada por Isc1p e através de síntese de novo catalisada por Lag1p.
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1.1. Cell death

In the last decades, the understanding of cell death has attracted a lot of

attention, mostly because of its crucial role in tissue homeostasis and development of

multicellular organisms (Baehrecke, 2002). Cell death may occur through different

processes, some of which may have a physiological role. Classification of the types of

cell death and associated terminology has evolved since the 19th century. Initially,

isolated studies recognized that cell death occurs during metamorphosis and

embryogenesis, but studies on dying cells led Lockshin to introduce the concept of

programmed cell death (PCD) in 1965. PCD was categorized as a type of cell death

that was not accidental (Necrosis), but a genetically controlled sequence of steps that

lead to morphological and biochemical changes (Lockshin and Zakeri, 2001). Later, in

1972, Kerr and coworkers coined the term apoptosis to define a new pattern of cell

death genetically controlled, with specific morphological features (Kerr et al., 1972).

Apoptosis was later considered synonym of PCD and cell death classified into

apoptosis and necrosis. However, since it was later found that necrosis may also be

highly regulated (Ellis and Horvitz, 1986) and that exist other forms of cell death,

including autophagic cell death, this classification was abandoned (Debnath et al.,

2005).

Recently, the Nomenclature Committee on Cell Death proposed a unified

criterion for the definition of cell death, according to different morphological

characteristics. Cell death is now classified into three major pathways: apoptotic,

necrotic and autophagic (Kroemer et al., 2009).

1.2. Apoptosis

The term "apoptosis" derived from an ancient Greek word meaning "falling

petals of flowers" or "fall of leaves in autumn". It was the term chosen by John Kerr and

his coworkers Andrew Wyllie and Alastair Currie in 1972 to define a new type of death

(Kerr et al., 1972). Apoptosis is a type of cell death with morphological characteristics

distinct from those found in necrosis and autophagy (Figure 1).

In necrosis, the cell content is released in an uncontrolled manner, resulting in

damage to neighboring cells and a strong inflammatory response in the corresponding

tissue (Proskuryakov et al., 2003). In autophagy, the cells recycle their own damaged

intracellular components via the lysosome when the nutrients are scarce (Codogno and

Meijer, 2005). In apoptosis, cells undergo a series of morphological changes such as

exposure of phosphatidylserine from the inner leaflet to the external leaflet of the

plasma membrane, chromatin condensation, internucleosomal DNA fragmentation, cell
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volume decrease and finally formation of apoptotic bodies which are subsequently

removed by phagocytes without causing an inflammatory response (Saraste and

Pulkki, 2000; Lawen, 2003).

Figure 1. Molecular and morphological events associated with the different types of cell

death: apoptosis, autophagy and necrosis (Hotchkiss et al., 2009)

1.2.1. Caspases

Most of the alterations observed during apoptosis are caused by proteases

called caspases (Cysteine-dependent aspartate-specific proteases). Conserved

through evolution, caspases can be found in humans, insects, nematodes and hydra.

Caspases contain a cysteine residue in the active site that is critical for their proteolytic

activity and exhibit a high affinity for aspartate (Asp), cleaving their substrates after

these residues (Cohen, 1997). Close to one hundred caspase substrates have already

been identified, ranging from complex macromolecular complexes (e.g. actin network)

to single enzymes [e.g. polyADP-ribose polymerase (PARP-1)] (Fischer et al., 2003).

Caspases are synthesized as inactive zymogens, named procaspases.

Procaspases can be proteolytically cleaved between the large and small subunit by an

upstream caspase, resulting in the separation of these subunits and activation of
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procaspases, now known only as caspases (Figure 2). Caspases can also be activated

by induced proximity, where the low intrinsic protease activity of procaspases is

sufficient to allow them to mutually cleave and activate each other (Chowdhury et al.,

2008).

Figure 2. Schematic representation of caspase structure and processing. The active

site residues are represented by R, H and C (Chowdhury et al., 2008).

Caspases can be divided into initiators (caspases-2, -8, -9 and -10) and

executioners (caspases-3, -6, and -7). Executioner caspases have a small pro-domain,

while initiator caspases have a long pro-domain, and a Death Effector Domain (DED),

in the case of caspases -8 and -10, or a Caspase Recruitment Domain (CARD), in the

case of caspases -2 and -9 (Budihardjo et al., 1999).

1.2.2. The Bcl-2 family members

The gene encoding the protein Bcl-2 (B-cell lymphoma 2) was the first proto-

oncogene to be related to the regulation of cell cycle progression. However, its

oncogenic characteristic stems from its ability to prevent apoptosis rather than

promoting proliferation. Since then, several homologues of Bcl-2 have been identified

that can be defined by the presence of conserved domains (BH1-BH4) necessary for

their anti- or pro-apoptotic functions (Tsujimoto, 1998). Based on structural and
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functional similarities, the Bcl-2 family of proteins can be divided into four sub-families:

anti-apoptotic (A1, Bcl-2, Bcl-w, Bcl-xL and Mcl-1), effector proteins (Bax and Bak),

direct activator BH3-only proteins (Bid and Bim) and de-repressor/sensitizer BH3-only

proteins (Bad, Bik, Bmf, Hrk, Noxa and Puma) (Chipuk et al., 2010) (Figure 3). In viable

cells, pro-apoptotic proteins are antagonists of anti-apoptotic proteins, and the levels of

pro- and anti-apoptotic proteins determine susceptibility to apoptosis (Korsmeyer,

1995).

Figure 3. Schematic representation of a member of each Bcl-2 sub-family. The

conserved domains are underlined. Cylinders represent α helices (Chipuk et al., 2010).

1.2.3. Apoptotic pathways

Similarly to other signaling pathways, the events responsible for the apoptotic

death process are mediated by two classical pathways: the extrinsic and intrinsic

pathways, which are activated by the binding of ligands to death receptors and by

stress triggered by oncogenes, irradiation, reactive oxygen species (ROS) and

exposure to several drugs, respectively (Figure 4).

1.2.3.1. Extrinsic pathway

The extrinsic pathway is one of the best characterized apoptotic signaling

pathways. This pathway involves binding of specific extracellular ligands to their

cognate cell surface death receptors (DR) such as Tumor-Necrosis Factor Receptor

(TNF-R1), CD95 (also called as Apo-1 or Fas), TNF-related  Apoptosis-Inducing Ligand

Receptor (TRAIL-R1/2) and DR3/6 (Sartorius et al., 2001). Subsequent signaling is

mediated by the cytoplasmic domain of the DR, named Death Domain (DD). Adapter

proteins such as Fas-Associated Death Domain (FADD) or TNF-R-Associated Death

Domain (TRADD) have their own DD and are recruited to the DD of the activated death
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1.2.3. Apoptotic pathways

Similarly to other signaling pathways, the events responsible for the apoptotic

death process are mediated by two classical pathways: the extrinsic and intrinsic

pathways, which are activated by the binding of ligands to death receptors and by

stress triggered by oncogenes, irradiation, reactive oxygen species (ROS) and

exposure to several drugs, respectively (Figure 4).

1.2.3.1. Extrinsic pathway

The extrinsic pathway is one of the best characterized apoptotic signaling

pathways. This pathway involves binding of specific extracellular ligands to their

cognate cell surface death receptors (DR) such as Tumor-Necrosis Factor Receptor

(TNF-R1), CD95 (also called as Apo-1 or Fas), TNF-related  Apoptosis-Inducing Ligand

Receptor (TRAIL-R1/2) and DR3/6 (Sartorius et al., 2001). Subsequent signaling is

mediated by the cytoplasmic domain of the DR, named Death Domain (DD). Adapter

proteins such as Fas-Associated Death Domain (FADD) or TNF-R-Associated Death

Domain (TRADD) have their own DD and are recruited to the DD of the activated death
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receptors. These adapter proteins also have a death-effector domain (DED), with which

the DED of procaspase-8 can interact with to form the Death Inducing Signaling

Complex (DISC). Concentration of several pro-caspase-8 molecules within DISC leads

to autocatalytic cleavage, activation and release of active caspase-8, which initiates a

cascade of caspases by processing caspases -3, -6 and -7, which then cleave certain

substrates. This eventually leads to the morphological and biochemical features of

apoptosis. DISC signaling can be inhibited by expression of cellular-FLICE (FADD-like

IL-1β-converting enzyme)-inhibitory protein (c-FLIP), a caspase-8 inhibitor, leading to

inactivation of DISC (Hengartner, 2000; Lawen, 2003).

Figure 4. Schematic representation of the two major apoptotic pathways in mammalian

cells: the extrinsic and intrinsic pathways (Hengartner, 2000).
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1.2.3.2. Intrinsic pathway

In the intrinsic pathway, mitochondria have a central role in the induction of

apoptosis. Mitochondria are able to propagate the death signals generated in the cells

and/or amplify the apoptotic signal from the extrinsic pathway through mitochondrial

outer membrane permeabilization (MOMP) and release of pro-apoptotic proteins. The

connection between the extrinsic and intrinsic pathways and amplification of death

signal is mediated by Bid, a pro-apoptotic Bcl-2 family member. Bid is cleaved by

caspase-8 and when the truncated form (tBid) is translocated into the mitochondria it

acts to induce MOMP and release of pro-apoptotic proteins (Luo et al., 1998).

MOMP occurs at the early stages of the intrinsic pathway, though the precise

mechanism has not been determined (Figure 5). According to one model, MOMP is

mediated by members of the pro-apoptotic Bcl-2 family, Bax and Bak, which interact

and form the mitochondrial apoptosis-induced channel (MAC), a pore that allows the

release of pro-apoptotic proteins. In fact, Mcdonnell proposed that cleavage of Bid

changes the conformation of the protein, leading to exposure of hydrophobic residues

that allows the insertion of tBid into the membrane and binding of its BH3 domain to

Bax and Bak to form pores (Mcdonnell et al., 1999). Moreover, it was observed that

Bcl-2 and Bcl-xL can directly induce changes in conformation of the proteins Bax and

Bak, preventing their activation and polymerization, and blocking the release of pro-

apoptotic mitochondrial factors that lead to apoptosis (Letai et al., 2002). Another

model suggests a permeability transition pore (PTP) is formed, which allows the

passage of solutes and water into the mitochondrial matrix, causing mitochondrial

depolarization, uncoupling of oxidative phosphorylation and osmotic swelling. This

leads to the rupture of the outer membrane and subsequently to the release of pro-

apoptotic proteins that circulate freely in the intermembrane space. The precise

localization and composition of PTP has not been fully determined, but it appears to be

localized at the site of contact between the inner and outer mitochondrial membranes

and to contain as main components the voltage-dependent anion channel (VDAC), the

adenine nucleotide translocator (ANT), hexokinase, creatine kinase (CK), the

peripheral benzodiazepine receptor (PBR), and the mitochondrial matrix cyclophilin D

(Cyp D) (Garrido et al., 2006).
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Figure 5. Molecular mechanisms of MOMP: (i) Bax/Bak pore formation and (ii) PTP

opening (Bouchier-Hayes et al., 2005).

The permeabilization of mitochondria results in the release of pro-apoptotic

proteins into the cytoplasm, such as cytochrome c, Apoptosis-inducing factor (AIF),

Endonuclease G (Endo G), Second Mitochondria-derived Activator of Caspases/Direct

Inhibitor of Apoptosis Protein (IAP)-Binding Protein With Low Pi (Smac/Diablo) and

High Temperature Requirement protein A2 (HtrA2/Omi) (Shimizu et al., 2001; Gulbins

et al., 2003).

The cytochrome c released from the intermembrane space of mitochondria

contributes to the formation of the apoptosome, together with Apoptotic Protease

Activating Factor-1 (Apaf-1) and deoxyadenosine triphosphate (dATP). The

apoptosome activates caspase-9, which further mediates the activation of the caspase

cascade and execution of apoptosis (Acehan et al., 2002). Smac/Diablo inhibits the

Inhibitors of Apoptosis Proteins (IAPs), which inhibit the activity of executing caspases.

When translocated into the nucleus, AIF induces deoxyribonucleic acid (DNA)

fragmentation and chromatin condensation, whereas Endo G induces internucleosomal

DNA fragmentation (van Loo et al., 2001). In addition to the mitochondrial factors

released, dissipation of the membrane potential also causes the loss of cell

homeostasis via generation of ROS that quickly saturate the antioxidant systems and,

consequently, led to cessation of ATP synthesis, Ca2+ release, oxidation of redox

molecules such as nicotinamide adenine dinucleotide reduced form (NADH),

nicotinamide adenine dinucleotide phosphate reduced form (NADPH) and glutathione,

and activation of stress response genes (Kroemer et al., 2007).
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1.3. Yeast apoptosis

It has become clear that the apoptotic program is not restricted to multicellular

organisms, but also occurs in unicellular organisms such as the budding yeast S.

cerevisiae. The physiological role of apoptosis in single-cell organisms was initially

questioned because there was no obvious reason for a unicellular organism to commit

suicide. However, yeast tends to cluster and form communities. It was hypothesized

that apoptosis may occur in yeast during chronological and replicative aging,

unsuccessful mating processes, and to remove virus-infected and damaged cells from

colonies. This altruistic cell death spares nutrients for younger cells and releases

nutrients that can be metabolized by younger cells, contributing to the viability and

reproductive success of healthier members of the community (Figure 6) (Büttner et al.,

2006).

Figure 6. Scenarios of yeast apoptosis (Büttner et al., 2006).

Several studies have shown the occurrence of cell death in yeast can display

with some characteristics of apoptosis similar to that of mammalian cells. The first

observation of apoptosis in yeast was made in a temperature-sensitive mutant of S.

cerevisiae (mutant Cdc48S565G). CDC48 is an essential gene that encodes an AAA-

ATPase localized in the endoplasmic reticulum and necessary for vesicle trafficking/

translocation of ubiquitinated proteins from the endoplasmic reticulum to the
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proteasome for degradation. Surprisingly, when incubated above the restrictive

temperature, Cdc48S565G cells showed an apoptotic phenotype characterized by

phosphatidylserine exposure, DNA damage, chromatin condensation and

fragmentation, release of cytochrome c and ROS production (Madeo et al., 1997;

Braun et al., 2006). Since then, several studies also identified yeast orthologs of

several members of the mammalian apoptotic machinery, including caspases (Madeo

et al., 2002), AIF (Wissing et al., 2004), Omi/HtrA2 (Fahrenkrog et al., 2004), IAP

(Walter et al., 2006) and Endo G (Büttner et al., 2007). In addition, apoptosis has often

been associated with scenarios involving apoptotic mitochondrial fragmentation

(Fannjiang et al., 2004) and cytochrome c release (Ludovico et al., 2002). Regulators

such as Apaf-1 and of most members of the Bcl-2 family proteins seem to be absent in

yeast. Until now, only a yeast BH3-only protein was identified. Ybh3p translocates to

the mitochondria and is capable of mediating the mitochondrial pathway of apoptosis

(Büttner et al., 2011). However, heterologous expression of Bax in yeast leads to

apoptotic cell death that can be prevented by heterologous expression of anti-apoptotic

Bcl-2 and Bcl-xL, suggesting the function of Bcl-2 family proteins is potentially

conserved in yeast (Hanada et al., 1995).

Several assays for apoptosis detection are routinely used in yeast. They include

determination of viability, ROS accumulation, DNA fragmentation [TUNEL (Terminal

dUTP nick-end labeling) assay], exposure of phosphatidylserine (Annexin-V staining),

chromatin condensation [DAPI (4,6-diamino-2-phenyl-indole dihydrochloride) staining]

and cell integrity [Propidium iodide (PI) staining] (Carmona-Gutierrez et al., 2010).

Using these assays, it was found that exposure of yeast cells to a variety of stimuli

such as acetic acid, sodium chloride, ethanol, hypochlorite, amiodarone, gallium

arsenide, pheromones, valproic acid, edelfosine, jasplakinolide, glucose or sorbitol, or

high concentrations of glucose in the absence of other nutrients can trigger the

apoptotic process (for a review see Pereira et al., 2008).

1.4. Acetic acid as an inducer of apoptosis

Acetic acid is a weak acid that can be formed as an end sub-product of

alcoholic fermentation by S. cerevisiae. This compound is mainly produced by yeast

strains in order to equilibrate the intracellular redox balance. In response to

hyperosmotic stress caused by high sugar concentrations, yeasts increase glycerol

production, oxidizing NADH to NAD+. In order to regenerate reducing equivalents,

yeasts increase the oxidation of ethanol to acetate, thus increasing the production of

acetic acid (Nissen et al., 2000).
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As all weak carboxylic acids, acetic acid is partially ionized in solution. It has a

pKa value of 4.75, and the extracellular pH determines the proportion between the

undissociated and anionic form (acetate) and the main mechanism of acetic acid

cellular uptake. Acetate can be transported by two different carriers: an acetate-

propionate-formate permease (Paiva et al., 1999) or an acetate-proton symport

enconded by JEN1 (Casal et al., 1999). In glucose-repressed yeast cells, acetic acid

enters the cell in the undissociated form by simple diffusion (Casal et al., 1996), but

also potentially by a Fps1p channel. Mollapour and Piper demonstrated that deletion of

FPS1, a gene that encodes an aquaglyceroporin channel, abolishes the accumulation

of undissociated acetic acid in the cell. Moreover, they correlated loss of Fps1p with

resistance to acetic acid and found that Fps1p is regulated by Hog1p signaling. Hog1p

directly phosphorylates Fps1p, targeting the channel for endocytosis and degradation

in the vacuole (Mollapour and Piper, 2007). After acetic acid entry, it dissociates (when

the intracellular pH is higher than the extracellular pH), compromising cell viability

(Pinto et al., 1989), leading to the intracellular acidification (Casal et al., 1996) and

induction of apoptosis (Ludovico et al., 2001).

Exposure of S. cerevisiae to low doses to acetic acid at pH 3.0 results in cell

death with features of mammalian apoptosis. Cells exposed to low doses of acetic acid

exhibit chromatin condensation, exposure of phosphatidylserine and DNA strand

breaks (Ludovico et al., 2001). Like in mammalian cells, yeast apoptosis induced by

acetic acid was linked to mitochondria. It was shown that acetic acid can lead to the

release of cytochrome c, ROS production, transient hyperpolarization of mitochondria

followed by depolarization, decrease of mitochondrial respiration associated with

decrease in cytochrome oxidase activity (Ludovico et al., 2002) and mitochondrial

ultrastructural changes, namely decrease of cristae number, formation of myelinic

bodies, and swelling (Ludovico et al., 2003). Acetic acid has been extensively used as

an inducer of apoptosis in namely in the study of the involvement of the yeast AIF1

(Wissing et al., 2004), mitochondrial fragmentation (Fannjiang et al., 2004), modulation

of mammalian protein kinase C (PKC) (Saraiva et al., 2006), involvement of

metacaspase YCA1 (Guaragnella et al., 2006), MOMP (Pereira et al., 2007) and Pep4p

involvement (Pereira et al., 2010).

1.5. Sphingolipids

Sphingolipids were considered for a long time simply structural molecules

residing in membranes. They are now known to be important in cell stress responses

and act as messengers in a variety of signaling pathways such as senescence,
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differentiation, apoptosis, cell-cycle arrest, proliferation, mitogenesis, inflammation,

migration, and angiogenesis (Hannun and Obeid, 2008), and are associated with

several human diseases such as sphingolipidoses, cancer,  neurodegenerative

diseases, and cardiovascular pathologies (Ozbayraktar and Ulgen, 2009).

Consequently, understanding how sphingolipid metabolism regulates these signaling

pathways and the mechanisms underlying these diseases is of utmost importance.

Sphingolipids were first named by Johann Thudichum in 1884 to describe the

enigmatic nature and properties of complex lipids present in brain tissue. Several

species of sphingolipids have been identified since then, and nowadays sphingolipids

are one of the major classes of membrane lipids with a structural role in the eukaryotic

lipid bilayer (Futerman and Hannun, 2004). As all membrane lipids, sphingolipids are

amphipathic molecules, i.e. molecules with both hydrophilic and hydrophobic

properties. The hydrophobic region is constituted by a sphingoid long-chain base

(LCB), which forms the backbone of sphingolipids, to which a fatty acid is attached by

an amide bond. The hydrophilic region is constituted by a polar head group (Figure 7).

The type of LCB, fatty acid, and polar head group determine the type of sphingolipid

(Dickson, 1998; Ozbayraktar and Ulgen, 2009).

Figure 7. General structure of sphingolipids. The LCB is linked to a fatty acid by an

amide bound and a polar head group, R (Fuller, 2010).

1.5.1. Yeast sphingolipid metabolism

The study of sphingolipids is a recent field. Simple model organisms such as

the yeast S. cerevisiae have been used to uncover the pathways involved in

sphingolipid metabolism and function. All the genes that encode the enzymes involved

in yeast sphingolipid metabolism are known, the steps involved take place in the same

organelles as in mammals and most of the enzymes have orthologs in mammalian

cells. S. cerevisiae sphingolipid metabolism has ceramides as central molecules and

comprises a de novo biosynthesis pathway as well as sphingolipid turnover (Figure 8).
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Figure 8. Schematic overview of yeast sphingolipid metabolism displaying the

metabolic intermediates, genes involved and cellular locations of the enzymatic reactions.

1.5.2. De novo synthesis

Phytoceramide and dihydroceramide are assumed to be the yeast counterparts

of mammalian ceramides, and were found to mediate regulation of cell growth and

stress responses. As in all organisms, sphingolipid synthesis in yeast begins in the

endoplasmatic reticulum (ER) with the condensation of serine and palmitoyl-CoA by

serine palmitoyltransferase to yield 3–ketodihydrosphingosine and release of carbon

dioxide and Coenzime A (CoA) (Dickson and Lester, 1999). This membrane-bound

enzyme is composed of two homologous subunits encoded by LCB1 and LCB2,

required for its activity (Nagiec et al., 1994), and a third small subunit, encoded by

TSC3 (temperature-sensitive suppressor of calcium sensitivity), a post-translational

activator that is essential at high temperatures (Gable et al., 2000).

In the next step of the sphingolipid metabolism, 3–ketodihydrosphingosine is

reduced and converted to dihydrosphingosine (DHS) by the NADPH-dependent 3–

ketoreductase encoded by TSC10. Deletion of the TSC10 gene confers an unviable
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phenotype that can be rescued only when the medium is supplemented with DHS or

phytosphingosine (PHS) (Beeler, 1998). DHS can be hydroxylated at C-4 by

Sur2p/Syr2p hydroxylase to form PHS and both long chain bases, DHS and PHS, can

suffer phosphorylation and N-acylation. The Sur2p/Syr2p hydroxylase is not essential

for cell growth; however, deletion results in a mutant cell that has only DHS, whereas

wild-type cells have mostly PHS (Haak et al., 1997).

DHS and PHS can be phosphorylated by two LCB kinases, encoded by LCB4

and LCB5, forming DHS-1-phosphate and PHS-1-phosphate, respectively. Finally,

these phosphorylated products can either be dephosphorylated back to DHS and PHS

by the phosphatases Lcb3p/Ysr2p and Ysr3p or catabolized by dihydrosphingosine-1-

phosphate lyase (Dpl1p) to release palmitaldehyde and phosphoethanolamine (Sims et

al., 2004).

In the N-acylation step, C26 fatty acyl-CoA is added via an amide bond to DHS

and PHS to yield dihydroceramide and phytoceramide, respectively. N-acylation of both

long chain bases requires two ceramide synthases, encoded by LAG1 (longevity

assurance gene 1) and LAC1 (longevity assurance gene 1 cognate) (Guillas et al.,

2001). LAG1 was first identified by D’mello in 1994 as a gene involved in cell aging

whose expression is decreased in aged yeast cells and its deletion results in an

increased lifespan (D’mello et al., 1994). LAC1 was later identified as a homologue of

LAG1 (Jiang et al., 1998), and since then both genes have been implicated in acyl-

CoA-dependent ceramide synthesis (Schorling et al., 2001) and shown to play a role in

the transport of glycosylphosphatidylinositol-anchored proteins from the ER to the Golgi

(Barz and Walter, 1999). In addition, Lip1p forms a heteromeric complex with Lac1p

and Lag1p and is essential for ceramide synthase activity in vivo and in vitro (Vallée

and Riezman, 2005).

After generation of ceramides, they are transported to the Golgi for

incorporation into complex sphingolipids. Ceramides are first converted into inositol

phosphorylceramide (IPC) by transferring of a phosphorylinositol group from

phosphatidylinositol to ceramide with release of diacylglycerol. This step is catalyzed

by the IPC synthase encoded by AUR1, a essential gene whose deletion is lethal

(Nagiec et al., 1997). More recently, Kei1p was identified as a novel component of IPC

synthase. It was observed that Kei1p interacts with Aur1p and is essential for its

enzymatic activity and localization (Sato et al., 2009). The complex sphingolipid IPC

can further be mannosylated to form mannosylinositolphosphorylceramide (MIPC) via

three enzymes, encoded by CSG1, CSG2 and CSH1. The enzymes can form two

complexes, composed of Csg1p-Csg2p and Csh1p-Csg2p, that function as two

different IPC mannosyltransferases, which transfer the mannose from the nucleotide

sugar GDP-mannose to the inositol group in IPC (Uemura et al., 2003). The Ca2+-
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binding protein Csg2p functions as a regulatory subunit in the complex because it

regulates the transport and protein levels of the Csg1p and Csh1p (Uemura et al.,

2007).

The final step in sphingolipid synthesis is the synthesis of the most abundant

complex lipid in yeast, mannosyldiinositolphosphorylceramide (M(IP)2C). M(IP)2C is

synthesized by the addition of another inositol phosphate group to MIPC by

inositolphosphotransferase (Ipt1p) (Dickson et al., 1997).

1.5.3. Sphingolipid turnover

Yeast ceramides can be catabolized by two homologous alkaline ceramidases.

Dihydroceramidase (Ydc1p) and phytoceramidase (Ypc1p) are associated with the

deacylation of dihydroceramide and phytoceramide, respectively (Mao et al., 2000a;

Mao et al., 2000b).

Ceramides can also be produced through the turnover of complex sphingolipids.

This reaction is performed by inositol phosphosphingolipid phospholipase C (Isc1p),

which has phospholipase-C type activity and hydrolyses the polar head groups from

complex sphingolipids, releasing dihydroceramide and phytoceramide. Isc1p is

activated by phosphatidylserine, phosphatidylglycerol, and cardiolipin, and is

dependent on the presence of Mg2+ and inhibited by Mn2+. Isc1p overexpression results

in an increase of ceramide levels, whereas Isc1p knockout results in an accumulation

of complex lipids (Sawai et al., 2000). In the pre-diauxic phase, i.e. fermentation phase,

in which the cells preferentially metabolize the sugar, Isc1p is located in the ER

whereas in the post-diauxic phase, i.e. respiration phase, in which cells utilize the

ethanol produced during the fermentative phase, Isc1p is located in the mitochondria

(Vaena de Avalos et al., 2004). ISC1 deleted strains grow very slowly in media with

nonfermentable carbon sources such as glycerol, lactate, ethanol, or acetate (Vaena

de Avalos et al., 2005), and have an altered mitochondrial lipid profile (lower content of

α-hydroxylated phytoceramide) (Kitagaki et al., 2007). This suggests Isc1p has a

critical role in mitochondrial function and/or in the regulation of pre/post-diauxic shift,

because respiration and utilization of nonfermentable carbon sources require intact

mitochondrial function. In addition, ISC1 deletion has been associated with premature

aging and decreased cellular resistance to hydrogen peroxide (H2O2) (Almeida et al.,

2008), ethidium bromide (Kitagaki et al., 2007), genotoxic agents (methyl

methanesulfonate and hydroxyurea) (Matmati et al., 2009), and increased cellular

resistance to high concentrations of NaCl and LiCl (Betz et al., 2002).
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1.6. Sphingolipids and cell fate

Over the past years, sphingolipids have generated considerable interest, not

only due to their structural role but also as secondary signal effector molecules that can

control vital biological functions.

Ceramide, a central molecule in the sphingolipid pathway, can be generated by

de novo synthesis and by catabolism of complex lipids and has a number of metabolic

fates, including catabolism to sphingosine and sphingosine-1-phosphate. Cells

maintain a dynamic equilibrium of the levels of ceramide, sphingosine and sphingosine-

1-phosphate. The relative amounts of these different sphingolipids and lipid–protein

interactions determine cell fate. In mammalian cells, the increase of ceramide and

sphingosine levels leads to cell growth arrest and apoptosis, whereas the increase of

sphingosine-1-phosphate levels promotes proliferation and inhibits apoptosis

(Futerman and Hannun, 2004).

1.6.1. Ceramides

Cellular ceramide levels increase in response to a variety of stimuli either by de

novo synthesis, breakdown of complex sphingolipids, or inhibition of ceramidases. The

established idea that ceramide has a role as a bioactive lipid in apoptosis is based on

the identification of putative and direct targets for ceramide action (Pettus et al., 2002).

The effects of ceramide appear to be mediated by activation of protein kinases and

phosphatases, such as ceramide-activated protein kinase (CAPK), PKC, mitogen-

activated protein kinases (MAPK) and ceramide-activated protein phosphatases

(CAPPs), or through the interaction with caspases and mitochondria (Mathias et al.,

1998).

Kinase suppressor of Ras (KSR) is a direct target of ceramide. It was first

identified as a CAPK and required for both inflammatory responses and ceramide-

inducing stress (Zhang et al., 1997). Through phosphorylation, KSR activates Raf-1,

which phosphorylates MEK, activating MAPK (Yan and Polk, 2001) and promoting

apoptosis in cells expressing small amounts of the pro-apoptotic protein BAD (Basu et

al., 1998). Ceramide has also been directly associated with PKC ζ. Cells treated with

ceramide exhibit a high activation of PKC ζ, which promotes the activation of the

stress-activated protein kinase (SAPK) pathway and suppression of cell growth

(Bourbon et al., 2000). Moreover, activation of PKC ζ by ceramide seems to be

essential in the formation of a pro-apoptotic complex in differentiating stem cells (Wang

et al., 2005).
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Another target of ceramide is the CAPP: PP2A and PP1. Ceramide-activated

PP2A is able to mediate the apoptotic process by dephosphorylation and consequent

inactivation of pro-growth kinases such as PKC α (Lee et al., 1996) and Akt (Schubert

et al., 2000), and anti-apoptotic proteins such as Bcl-2 (Ruvolo et al., 1999) or

activation of pro-apoptotic proteins such as Bad (Xin and Deng, 2006). On the other

hand, PP1 was shown to be involved in ceramide-induced dephosphorylation of the

retinoblastoma product gene (Rb), interfering with cell cycle regulation (Kishikawa et

al., 1999).

Cathepsin D (endosomal acidic aspartate protease) was identified by Heinrich

in 1999 as a novel ceramide-binding protein. This interaction induces the autocatalytic

proteolysis of the pro-enzyme to the active form of cathepsin D (Heinrich et al., 1999).

Since then, cathepsin D has been implicated in apoptosis due its role in cleavage and

activation of Bid, Bax activation and translocation to the mitochondria, destabilization of

mitochondria, cytochrome c release and caspase activation (Guicciardi et al., 2004).

Several studies have demonstrated that ceramide has a role in mitochondria-

involving apoptosis. First, cellular ceramide levels increase prior to the activation of the

mitochondrial pathway of apoptosis (Rodriguez-Lafrasse et al., 2001). Second,

ceramide has been shown to interact with and inhibit components of the mitochondrial

respiratory chain in isolated mitochondria (Gudz et al., 1997), induce ROS production

in cells (France-Lanord et al., 1997) and isolated mitochondria (García-Ruiz et al.,

1997), mitochondrial depolarization and dysfunction (Hearps et al., 2002), and release

of pro-apoptotic proteins, such as cytochrome c and AIF (Di Paola et al., 2004; Zhang

et al., 2008). Third, the discovery that mitochondria contain the enzymes involved in

ceramide synthesis and the observation that several agents such as TNF, UV radiation

and Fas increase the levels of ceramide in isolated mitochondria confirmed that

apoptosis occurs via an increase in mitochondrial ceramide levels (Siskind, 2005).

Siskind and Colombini showed that ceramide can form large and stable

channels with an estimated diameter of about 10 nm (Samanta et al., 2011) (Figure 9)

that allows the release of proteins in the intermembrane space with a molecular weight

up to 60 kDa (Siskind et al., 2002) such as cytochrome c (12 kDa), AIF (57 kDa), Endo

G (28 kDa) and Smac/DIABLO (42 kDa). In addition, ceramide channels can be

disassembled by binding of anti-apoptotic proteins, such as Bcl-xL (Ganesan and

Colombini, 2010), and that Bax seems to be responsible for enlargement of the

ceramide channels, improving mitochondrial membrane permeability (Ganesan et al.,

2010). Furthermore, ceramide channels are specifically formed in mitochondrial

membranes at physiologically concentrations of ceramide. Indeed, at concentrations 20

times higher than those required for channel formation in mitochondrial, ceramide
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channel formation does not occur in the plasma membrane of erythrocytes (Siskind et

al., 2006).

Figure 9. Structure of ceramide pores. They are composed of a ring of a variable

number of columns each consisting of six ceramides interconnected by hydrogen bonds

between the amide linkage (Siskind and Colombini, 2000).

1.6.2. Ceramides and its metabolites: Sphingosine and Sphingosine-1-
phosphate

Sphingosine and sphingosine-1-phosphate are sphingolipids derived from

ceramides that can also function as signaling molecules. Sphingosine has been shown

to play a role in the induction of apoptosis in several types of cells, such as HL-60 cells

(Sakakura et al., 1996), human neutrophils (Ohta et al., 1994), cardiac myocytes

(Krown et al., 1996), neurons and astrocytes (Kanno and Nishizaki, 2011), among

others. Sphingosine interacts with several signaling pathways, including activation of

JNK, p38 MAPK, sphingosine-dependent protein kinase (SDK1) and caspases,

stimulation of PARP-1 cleavage, induction of BID and BAX truncation and cytochrome

c release, inhibition of PKCα, Akt kinase, ERK1/ERK2 kinases, 14-3-3 chaperone

protein, β1 integrin and Ca2+/calmodulin-dependent protein kinase and reduction of the

expression of Bcl-2 and Bcl-xL (Figure 10). In addition, sphingosine is able to stimulate

the activation of Rb and promotes cell cycle arrest (Cuvillier, 2002, Taha et al., 2006).

On the other hand, sphingosine-1-phosphate functions as an antagonist of ceramide

and sphingosine and plays a crucial role in the promotion of survival, proliferation and

inhibition of apoptosis. Moreover, the fact that sphingolipids are interconvertible led to

the proposal of the so-called “sphingolipid rheostat” model, which postulates that the

relative levels of these lipids determine the cell fate (Spiegel and Milstien, 2003).

Indeed, it has been proposed that the sphingolipid signaling pathway is a target of

interest for cancer therapy (Cuvillier et al., 2010). Many external stimuli, namely growth

factors, cytokines and mitogens, were shown to activate the sphingosine kinase (SK1),
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leading to increased sphingosine-1-phosphate levels and decreased ceramide levels

(Alvarez et al., 2007). Once generated, sphingosine-1-phosphate can act either

extracellularly, by binding to G-protein-coupled receptors present on the cells, initiating

downstream G-protein-mediated signaling pathways, or intracellularly, by regulating the

calcium levels, activating pro-survival mediators like nitric oxide (NO), ERK, Akt, or by

inhibiting the mitochondrial pathway by blocking JNK or activating several

transcriptional factors such as AP-1 and NF-ĸB  (Spiegel and Milstien, 2003; Pitson,

2011).

Figure 10. Sphingosine (Sph) and sphingosine-1-phosphate (S1P) targets (Taha et al., 2006).

1.7. Sphingolipids and yeast apoptosis

Until now, few studies were performed in yeast to address the involvement of

sphingolipids in apoptosis. Siskind observed that expression of either recombinant Bcl-

xL or CED-9, homologues of Bcl-2 proteins, disassemble ceramide channels in isolated

mitochondria of yeast cells (Siskind et al., 2008). In another study, overexpression of

Ydc1p ceramidase triggered vacuolar and mitochondrial fragmentation and

dysfunction, shortened chronological lifespan and increased apoptosis (Aerts et al.,

2008). Moreover, Isc1p deletion is associated with up-regulation of the iron regulon and

leads to an overload of iron, which catalyzes the production of the highly reactive

hydroxyl radicals via the Fenton reaction, and increases apoptotic cell death caused by

exposure to hydrogen peroxide (Almeida et al., 2008). Recently, it was described that

Isc1p is an upstream regulator of Sit4p, the catalytic subunit of PP2A in yeast. Deletion

of the SIT4 gene in isc1∆ abolishes the premature ageing and oxidative stress

sensitivity of this strain by reversing the mitochondrial dysfunction of isc1∆ cells

(Barbosa et al., 2011).
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Nowadays, it is consensual that the yeast S. cerevisiae undergoes apoptosis in

a manner similar to that of mammalian cells. Several members of the mammalian

apoptotic machinery have already been identified, and implicated in scenarios of yeast

apoptosis. However, there are still numerous apoptotic regulators that remain to be

discovered, and others whose function and hierarchy in apoptotic cell death has not yet

been determined.

This work aimed to understand the role of ceramides in the mitochondrial

apoptotic pathway induced by acetic acid, by taking advantage of bakers´s yeast as a

powerful genetic system, and using the following approaches:

1. Construction of several mutants involved in sphingolipid metabolism;

2. Identification of the enzymes associated with sphingolipid metabolism that

involved in acetic acid-induced apoptosis;

3. Characterization of the involvement of these enzymes in oxidative stress

and mitochondrial apoptotic markers induced by acetic acid.



3. MATERIALS AND
METHODS
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3.1. Yeast strains

All Saccharomyces cerevisiae strains used in this study are listed in Table I. S.

cerevisiae strain CG379 was used as the wild-type. The lac1Δ, lag1Δ, ydc1Δ, ypc1Δ

and isc1Δ mutants were constructed in CG379 by homologous recombination with

disruption cassettes (KanMX4) amplified by Polymerase Chain Reaction (PCR), using

the oligonucleotides listed in Table II (numbers 1-10) and genomic DNA isolated (as

described below in 3.3) from the respective mutants of the yeast strain BY4741

(Euroscarf collection, Germany).

CG379 cells were transformed by electroporation (as described below in 3.4)

and transformants selected on rich medium [YPD; 1% (w/v) yeast extract, 2% (w/v)

bactopeptone, 2% (w/v) glucose] containing 200 μg/mL geneticin. The correct

integration of the disruption cassettes was confirmed by PCR using oligonucleotides

(numbers 11-20) that bind upstream and downstream of the insertion, plus an

additional oligonucleotide (number 21) binding within the kanamycin gene (Figure 11).

In addition, lag1∆ and isc1∆ were transformed by electroporation with pYES2-LAG1

and pYES2-ISC1 vectors, respectively. For mitochondrial studies, wild-type, lag1∆ and

isc1∆ strains were transformed with pYES2-mtGFP.

Table I. List of S. cerevisiae strains used in this study.

Strain Genotype Reference/Source

CG379 Matα, ade5, his2, leu2-112, trp1-289,
ura3-52

Yeast Genetic Stock
Center, University of

California, USA
CG379 pYES2 CG379 harboring pYES2 This study
CG379 pYES2-mtGFP CG379 harboring pYES2-mtGFP This study
lac1Δ CG379 lac1Δ :: KanMX4 This study
lag1Δ CG379 lag1Δ :: KanMX4 This study
lag1Δ pYES2 lag1Δ harboring pYES2 This study
lag1Δ pYES2-LAG1 lag1Δ harboring pYES2-LAG1 This study
lag1Δ pYES2-asLAC1 lag1Δ harboring pYES2-asLAC1 This study
lag1Δ pYES2-mtGFP lag1Δ harboring pYES2-mtGFP This study
ydc1Δ CG379 ydc1Δ :: KanMX4 This study
ypc1Δ CG379 ypc1Δ :: KanMX4 This study
ypc1Δ pYES2 ypc1Δ harboring pYES2 This study
ypc1Δ pYES2-asYDC1 ypc1Δ harboring pYES2-asYDC1 This study
isc1Δ CG379 isc1Δ :: KanMX4 This study
isc1Δ pYES2 isc1Δ harboring pYES2 This study
isc1Δ pYES2-ISC1 isc1Δ harboring pYES2-ISC1 This study
isc1Δ pYES2-mtGFP isc1Δ harboring pYES2-mtGFP This study
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Table II. List of oligonucleotides used in this study for the construction of yeast mutants.

Restriction sites are marked in bold in respective oligonucleotide sequence.

Number Name Oligonucleotide Sequence
1 Lac1Fw 5´- GGAGGGAGAAAGTATTGGAATCT – 3´
2 Lac1Rv 5´- GAAAGCACTAACATCAACATGGA – 3´
3 Lag1Fw 5´- CGTCATCTTCCATTTGAAATCC – 3´
4 Lag1Rv 5´- TCTTACTAGGAGTCTTGGCGAGA – 3´
5 Ydc1Fw 5´- TGTCCGATAGCGTACGCCA – 3´
6 Ydc1Rv 5´- GCCGGTTTTCCAAGCAG – 3´
7 Ypc1Fw 5´- CGCGAGACATCGGAAAATA – 3´
8 Ypc1Rv 5´- CATGTCCCGAATTAGCTAACAA – 3´
9 Isc1Fw 5´- AGGTCGACTGCCGTCTAGAT – 3´

10 Isc1Rv 5´- GCGGACTTCATTTTACTCCAGAC – 3´
11 Lac1KanFw 5´- TGGGCATTGTACCTGATCATG – 3´
12 Lac1KanRv 5´- GGCCTACTATGACAACGATAGCT – 3´
13 Lag1KanFw 5´- CCAGTCCGTCAAGACTAATATCG – 3´
14 Lag1KanRv 5´- CGATGATTCATTGAGATCTGTCA – 3´
15 Ydc1KanFw 5´- AAATCCCTCGTTCCCGG – 3´
16 Ydc1KanRv 5´- TATGTGCCGCCGACATG – 3´
17 Ypc1KanFw 5´- GGACGGATTATCACGCAAGT – 3´
18 Ypc1KanRv 5´- CAGAAGCCAAAATAGCATTCAA – 3´
19 Isc1KanFw 5´- TTGCAGCAGCGAGTCCA – 3´
20 Isc1KanRv 5´- CGAACGAGGCAGTAGTCATGTT – 3´
21 KanRv 5´- AATCGAATGCAACCGGC – 3´
22 LAG1_HindIII_Fw 5´- ACGACAAGCTTAACATGACATCAGCTACGGACAAAT - 3´
23 LAG1_XhoI_Rv 5´- AGATACTCGAGCGTTTATTCACACTTTTCCTTAGAT - 3´
24 asLAC1Fw 5´- TAAAAGCTTGCTTCATCGACAATAAGCCAAG - 3´
25 asLAC1Rv 5´- CACCTCGAGCCTATGAATATCCTTTTTCGTTGGAGTA - 3´
26 asYDC1Fw 5´- GAAAAGCTTCAATTACTGTTCAGCTGGCCTTATCCA - 3´
27 asYDC1Rv 5´- CAACTCGAGTCCATGGTTATTCTTTTTTGTTTCATCATC - 3´

Figure 11. General scheme of the strategy used for construction of yeast mutants. Step

1 represents the procedure used for generation of KanMX4 cassettes from the respective

mutants in strain BY4741, step 2 the homologous recombination mechanism, and step 3 the

confirmation of the correct integration of disruption cassettes in proper position of genome of

CG379 strain with the primers represented in step 2.
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The construction of double mutants was performed by silencing the YDC1 gene

in ypc1∆ mutants and the LAC1 gene in lag1∆ mutants using an antisense gene

expression vector. The ypc1∆ and lag1∆ mutants were transformed by electroporation

with pYES2-asYDC1 and pYES2-asLAC1, respectively (Figure 12).

Figure 12. General scheme of the strategy used for construction of double mutants.

When antisense mRNA from the plasmid is expressed in yeast cells, it hybridizes with the sense

mRNA from the nucleus, blocking synthesis of the protein.

3.2. Plasmids

All the plasmids used in this study are listed in Table III. For expression of

LAG1, pYES2-LAG1 was constructed. The LAG1 gene was amplified by PCR from

genomic DNA isolated from the CG379 strain using the oligonucleotides

LAG1_HindIII_Fw (number 22) and LAG1_XhoI_Rv (number 23), which introduce

HindIII and XhoI restriction sites in the flanks, and cloned into pYES2 using these

enzymes (Figure 13).

Table III. List of plasmids used in this study.

Plasmid Description Reference/Source
pYES2 URA3; AmpR Invitrogen
pYES2-LAG1 LAG1 inserted in pYES2 This study

pYES2-ISC1 ISC1 inserted in pYES2 Y. Hannun, Medical University of
South Carolina, Charleston, USA

pYES2-asLAC1 Antisense - LAC1 inserted in pYES2 This study
pYES2-asYDC1 Antisense - YDC1 inserted in pYES2 This study
pYES2-mtGFP mtGFP inserted in pYES2 Westermann and Neupert, 2000
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Figure 13. General scheme of the strategy used for construction of pYES2-LAG1.

The pYES2-asLAC1 and pYES2-asYDC1 vectors, used for silencing of LAC1

and YDC1 genes, were constructed by amplification of LAC1 and YDC1 genes from

genomic DNA by PCR, using a forward primer that introduces a stop codon and a

HindIII restriction site and a reverse primer that introduces a start codon and a XhoI

restriction site in the flanks (oligonucleotides number 24-27), and cloning into the

HindIII and XhoI sites of pYES2.

All plasmids were amplified in Escherichia coli DH5α by transformation using

standard procedures and selected on Luria Bertani medium [LB; 1% (w/v) Tryptone,

0.5% (w/v) Yeast extract, 1% (w/v) NaCl and 2% (w/v) Agar] supplemented with 100

μg/mL Ampicillin. Plasmids were then extracted from E. coli using the GenElute

Plasmid Miniprep kit (Sigma-Aldrich) and correct integration of the insert was confirmed

by restriction analysis.

3.3. Genomic DNA isolation

Cells from a 10 mL overnight culture were pelleted, washed with sterile water

and suspended in 100 μL of Lysis Buffer [2% (v/v) Triton X-100, 1% (v/v) SDS, 100 mM

NaCl, 10 mM Tris-HCl (pH 8.0) and 1 mM EDTA (pH 8.0)]. About 100 μL of glass

beads, 50 L phenol and 50 L chloroform/isoamyl alcohol [48:2 (v/v)] were added to

the cells and the tubes vortexed for 3 min and centrifuged for 5 min at 4000 rpm. The

upper phase was transferred to a new tube, and 100 L chloroform and 100 μL TE [10
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mM Tris and 1 mM EDTA (pH 8.0)] were added. The tubes were vortexed and

centrifuged for 5 min at 14000 rpm. The new upper phase was transferred to a new

tube containing 100% ethanol and centrifuged for 3 min at 14000 rpm. The pellet was

suspended in 400 μL TE and 30 μL 1 mg/mL RNase A. The samples were incubated

for 5 min at 37ºC and then 10 L 4 M ammonium acetate and 1 mL ethanol 100% were

added. After centrifuging 3 min at 14000 rpm, the DNA pellets were washed twice with

ice-cold 70% (v/v) ethanol, air-dried, and resuspended in water.

3.4. Yeast electroporation

Cells grown to exponential phase on 50 mL of YPD medium were pelleted at

4°C and resuspended in 5 mL of TE and 5 mL of 0.1 M lithium acetate (pH 7.5). After

shaking 45 min at 30°C, 250 μL of 1 M dithiothreitol (DTT) was added to the

suspension and samples incubated an additional 15 min at 30ºC with shaking. Next,

the suspension was sequentially washed with 50 mL of sterile water, 25 mL of ice-cold

sterile water, 2 mL of ice-cold 1 M sorbitol and resuspended in 50 µL of 1 M sorbitol. 40

μL of electrocompetent cells were then mixed with 5 μL of DNA (approximately 0.1 μg),

incubated for 5 min on ice, and transferred to a sterile 0.2 cm electroporation cuvette.

An electric pulse [1.5 kV (E0=7.5 kV/cm), 25 μ F, 200 Ω in parallel (τ =5 msec)] was

applied using a Pulse Controller (Bio-Rad). YPD medium containing 1 M of sorbitol was

immediately added into the cuvette and the cells recovered by incubation at 26°C for 1

h. After recovery, cells were plated on selective medium with the appropriate antibiotic

or lacking the appropriate selective markers for selection, and grown at 26°C for 3-5

days.

3.5. Growth conditions and treatments

Strains were grown in Synthetic Complete Galactose medium [SC Gal; 2% (w/v)

Galactose, 0.67% (w/v) Yeast nitrogen base without aminoacids, 0.14% (w/v) Drop-out

mixture lacking histidine, leucine, tryptophan and uracil, 0.008% (w/v) Histidine, 0.04%

(w/v) Leucine, 0.008% (w/v) Tryptophan and 0.008% (w/v) Uracil] to early exponential

phase (OD600 = 0.5 - 0.6) at 26°C in an orbital shaker at 140 rpm, with a ratio of flask

volume/medium of 5:1. Strains transformed with plasmids were grown in the same

medium lacking the appropriate amino acids. Solid media were prepared by adding 2%

(w/v) agar. For acetic acid treatment, strains were cultured under the condition

described above, harvested and suspended in the treatment medium consisting of SC

Gal at pH 3.0 (set with HCl) containing 180 mM of acetic acid and incubated for 200



Characterization of the role of sphingolipids in the modulation of acetic acid-induced apoptosis

31

min at 26°C, in an orbital shaker at 140 rpm. Cell viability was measured as a

percentage of colony forming units (c.f.u.) on YPD medium.

3.6. Analysis of oxidative stress and apoptotic markers

3.6.1. Assessment of plasma membrane integrity/PI staining

Plasma membrane integrity was assessed by flow cytometry using propidium

iodide (PI) (Sigma-Aldrich) staining. PI was added to yeast cell suspensions (106

cells/mL) to a final concentration of 5 μg/mL and incubated for 10 min at room

temperature. Cells with red fluorescence [FL-3 channel (488/620 nm)] were considered

to contain plasma membrane disruption.

3.6.2. ROS

Intracellular superoxide anion and mitochondrial ROS were detected by flow

cytometry using Dihydroethidium (DHE) and MitoTracker Red CM-H2XRos (Molecular

Probes, Eugene, U.S.A.) as probes, respectively. For DHE staining, untreated or acetic

acid-treated cells (180 mM) of wild-type and mutant cells were harvested by

centrifugation, resuspended in 500 μL PBS [80 mM Na2HPO4, 20 mM NaH2PO4 and

100 mM NaCl)] and incubated with 5 μg/mL DHE for 30 min in the dark. For

MitoTracker Red CM-H2XRos staining, untreated or acetic acid treated cells (180 mM)

of wild-type and mutant cells were harvested, resuspended in PBS and incubated with

0.4 µg/mL MitoTracker Red CM-H2XRos at 37°C for 20 min in the dark. Cells with red

fluorescence [FL-3 channel (488/620 nm)] were considered to contain superoxide

anion or mitochondrial ROS.

3.6.3. Protein carbonylation

Protein oxidation was measured in wild-type and mutant cells by

immunodetection of protein carbonyls, using an anti-dinitrophenyl (DNP) antibody,

following modification of protein carbonyls with 2,4-dinitrophenylhydrazine (DNPH)

(Figure 14).
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Figure 14. General scheme of the strategy used for detection of protein carbonyls. First

the proteins are derivatized to incorporate the DNPH group and later identified by

immunodetection using an anti-DNP antibody.

3.6.3.1. Preparation of protein extracts

For detection of protein oxidation by Western blot of total cellular extracts, 25

mL of untreated or acetic acid treated cells (180 mM) of wild-type and mutant cells

were harvested, resuspended in 100 µL of Phosphate Buffer [50 mM Na2HPO4 and 0.1

mM EDTA (pH 7.0)] supplemented with 5 µL of Complete Mini protease inhibitor

cocktail (Roche, Mannheim, Germany) and lysed with glass beads by vortexing (5

cycles of 1 min). After centrifugation at 14000 rpm for 15 min, the supernatant was

collected and protein concentration estimated by the Lowry method using bovine serum

albumin (BSA) as a standard (Lowry et al., 1951).

3.6.3.2. Derivatization

For derivatization, 40 µg of total protein from each cellular extract were mixed

with one volume of 12% (v/v) Sodium Dodecyl Sulfate (SDS) and two volumes of 20

mM DNPH and 10% (v/v) Trifluoroacetic acid. After incubation for 30 min in the dark,

samples were neutralized with 1.5 volumes of Neutralizing Solution [2 M Tris, 30% (v/v)

Glycerol and 19% (v/v) β-mercaptoethanol].

3.6.3.3. SDS gel electrophoresis/Western blot

Proteins (12 μg) were separated by SDS gel electrophoresis on a 12.5% SDS-

poly-acrylamide gel at 16 mA and transferred to a Hybond-P Polyvinylidene Difluoride

Membrane (PVDF) (Hybond-ECL, GE Healthcare) at 0.8 mA/cm2 during 1 h.

Membranes were blocked for 1 h in PBS-T [PBS with 0.05% (v/v) Tween-20] containing
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5 % (w/v) non-fat dry milk, washed in PBS-T and then incubated for 2 h with the

primary antibody rabbit IgG anti-DNP (1:1500; Sigma Aldrich). After washing twice with

PBS-T for 15 min, membranes were incubated with the secondary antibody anti-rabbit

IgG-peroxidase (1:5000; Sigma Aldrich) and washed twice, with PBS-T and PBS, for

15 min. Immunodetection of bands was revealed by chemiluminescence (ECL, GE

Healthcare).

3.6.3.4. Silver staining

After SDS electrophoresis, a replica gel was fixed in 30% (v/v) ethanol and 10%

(v/v) acetic acid for 30 min, and then washed twice with 20% (v/v) ethanol and twice

with deionized water for 10 min (each wash). The gels were then soaked in 0.2 g/L

sodium thiosulfate for 1 min, washed with deionized water and incubated with 2 g/L

silver nitrate for 30 min. After rinsing with deionized water, gels were transferred to

Developer Solution [0.026% (v/v) Formaldehyde, 3% (v/v) Sodium carbonate and

0.001% (v/v) Sodium thiosulfate]. When an adequate degree of staining was achieved,

gels were transferred to Stop Solution [50 g/L Tris and 2.5% (v/v) Glacial acetic acid]

for 30 min and washed twice in deionized water for 30 min.

3.6.4. Mitochondrial fragmentation and degradation

Mitochondrial morphology changes were observed using cells transformed with

a plasmid expressing of mitochondrial GFP (pYES2-mtGFP). After exposure to acetic

acid, images of the mitochondrial network were acquired in an Olympus BX61

microscope equipped with a confocal Olympus FLUOVIEW microscope with an

Olympus PLAPON 60X/oil objective with a numerical aperture of 1.42, and using the

Olympus FLUOVIEW software. Mitochondria degradation was also determined in these

cells by assessing the percentage of cells that still exhibit mtGFP fluorescence after

acetic acid exposure, using an Epics® XL™ (Beckman Coulter) flow cytometer. The

percentage of cells that exhibit GFP fluorescence was determined in biparametric

histograms [ratio (FL-1 area (log) / FS (log)) x GFP fluorescence (FL-1 Peak)] to

eliminate variations in fluorescence due to cell size and to discriminate between the

cells with intense spots of mitochondrial-GFP and cytosolic-GFP resultant from

mitochondrial degradation.
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3.6.5. Mitochondrial membrane potential

Mitochondrial membrane potential was measured by flow cytometry, using cells

labeled with 3,3′-Dihexyloxacarbocyanine iodide (DiOC6). Cells were collected and

suspended in Suspension Buffer [10 mM 2-(N-morpholino)ethanesulfonic acid (MES),

0.1 mM MgCl2 and 2% (w/v) Glucose, pH 6.0 (set with Ca(OH)2)]. After addition of 1 nM

DiOC6, cells were incubated at 30°C for 30 min in the dark. For double staining, cells

were subsequently incubated with PI as described above. Detection of DiOC6

fluorescence was determined using the monoparametric histograms [ratio (FL-1 area

(log) / FS (log)] to eliminate variations in fluorescence due to cell size in cells which

preserved plasma membrane integrity, i.e. without PI fluorescence [FL-3 channel

(488/620 nm)].

3.6.6. Cytochrome c detection

3.6.6.1. Subcellular fractionation/preparation of yeast mitochondria

One liter of cells were grown and treated under the same conditions as

described above, harvested at the end of exponential phase (OD600 = 1.4 - 1.6) and

resuspended in 15 mL of Suspension Buffer [60% (v/v) 2 M Sorbitol, 6% (v/v) 1 M

Sodium phosphate (pH 7.5) and 2% (v/v) 0.5 M EDTA]. Cells were then digested with

50 mg Zymolyase 20T (ImmunO, MP Biomedicals) to obtain spheroplasts, washed

twice with 1.2 M sorbitol, and suspended in Lysis Buffer [0.5 M Sorbitol, 20 mM

Tris/HCl (pH 7.5) and 1 mM EDTA]. Spheroplasts were lysed with a few strokes in a

glass Dounce homogenizer (tight fitting piston) with care to avoid mitochondrial lysis.

Homogenates were centrifuged at 2500 rpm for 10 min and the supernatant then

centrifuged at 15000 rpm for 15 min. The supernatant constitutes the cytosolic fraction.

The pellet, containing the mitochondrial fraction, was suspended in Lysis Buffer and

both fractions frozen in liquid nitrogen and stored at -80ºC. Estimation of the protein

concentration of the fractions was determined by the Bradford method using BSA as

standard (Bradford, 1976).

3.6.6.2. Mitochondrial integrity

The integrity of mitochondria during the procedure was evaluated by measuring

citrate synthase activity. Citrate synthase is an enzyme of the Krebs cycle exclusively

localized in the mitochondrial matrix that catalyzes the reaction of acetyl-CoA with

oxaloacetate to form citrate and regenerating CoA. Detection of citrate synthase activity
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in the cytosolic fraction reflects rupture of the inner mitochondrial membrane. Citrate

synthase activity was measured by following the formation of CoA, which reacts with

5,5′-dithiobis (2-nitrobenzoic acid) (DNTB) and forms the absorbing substance

thionitrobenzoic acid with absorption at 412 nm.  Briefly, 10 μL of protein samples were

mixed with 150 μL of water, 20 μL 1 mM DTNB, 5 μL 12.2 mM acetyl-CoA, 5 μL 10%

(v/v) Triton X-100 and 10 μL 10 mM oxaloacetate, and the citrate synthase activity

determined by following the absorbance of samples for 3 min at 412 nm in a Secomam

S1000 spectrophotometer.

3.6.6.3. SDS gel electrophoresis/Western blot

Mitochondrial and cytosolic fractions were separated electrophoretically on a

12.5% SDS-poly-acrylamide gel and transferred to PVDF as describe above.

Membranes were cut into strips and incubated with the primary antibodies mouse

monoclonal anti-yeast phosphoglycerate kinase (PGK1) antibody (1:5000, Molecular

Probes), mouse monoclonal anti-yeast porin (POR1) antibody (1:5000, Molecular

Probes) and rabbit polyclonal anti-yeast cytochrome c (CYC1) antibody (1:1000,

custom-made by Millegen), followed by incubation with secondary antibodies against

mouse or rabbit IgG-peroxidase (1:5000; Sigma  Aldrich). Pgk1p and Por1p were used

as loading control for cytosolic and mitochondrial fractions, respectively.

Immunodetection of bands was revealed by chemiluminescence (ECL, GE Healthcare).

3.7. Flow cytometric assays

All the flow cytometric assays were performed in an Epics® XL™ (Beckman

Coulter) flow cytometer, equipped with an argon-ion laser emitting a 488-nm beam at

15mW. The population of cells with high homogeneity and frequency was gated in a

histogram of Side Scatter (SS) x Forward Scatter (FS). Twenty thousand cells per

sample were analyzed. The resulting data were analyzed with WinMDI 2.8 software.

3.8. Reproducibility and statistic analysis of the results

The results obtained are represented by mean and standard deviation (SD)

values of at least three independent experiments. Statistical analyses were carried out

using GraphPad Prism Software v5.00 (GraphPad Software, California, USA). P-values

lower than 0.05 were assumed to represent a significant difference.
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4.1. Acetic acid stress response

Changes in sphingolipid metabolism have been linked to apoptosis and

oxidative stress in both yeast and mammalian cells. It has been reported that an

increase of ceramide and sphingosine levels leads to apoptosis, whereas an increase

of sphingosine-1-phosphate levels delays/abrogates cell death (Futerman and Hannun,

2004). Since exposure of S. cerevisiae cells to acetic acid results in mitochondria-

dependent apoptosis with features of mammalian apoptosis, we aimed to determine

the involvement of ceramide pathways in this cell death process.

In order to characterize the relative contribution of de novo biosynthesis versus

catabolism of sphingolipids to acetic acid-induced apoptotic cell death, yeast strains

lacking Lag1p, Lac1p (unable to generate ceramides by de novo synthesis), Isc1p

(unable to generate ceramides by degradation of inositolphosphosphingolipids), Ydc1p

and Ypc1p (unable to breakdown ceramides) were constructed in the CG379

background by homologous recombination. Strains were grown in SC Gal medium,

exposed to 180 mM acetic acid, pH 3.0, for 200 min and the cell viability determined. In

Figure 15, these results are expressed as the percentage of colony forming units

(c.f.u).

Figure 15. Survival of the indicated S. cerevisiae strains exposed to 180 mM acetic acid, pH 3.0,

for 200 min. Cell viability was determined by standard dilution plate counts and expressed as a percentage

of c.f.u on YPD plates. Values are mean + SD of at least three independent experiments. Values

significantly different from CG379 strain: *** P<0.001, One-way ANOVA and Turkey Test.

It had previously been shown that 180 mM of acetic acid compromises yeast

viability and promotes apoptosis (Ludovico et al., 2002). In accordance with these

studies, exposure of wild-type cells to acetic acid under the conditions referred above

resulted in cell death, and only 6.3 ± 3.6 % of wild-type cells remained viable. The

lac1Δ, ydc1Δ and ypc1Δ mutant strains exhibited a similar percentage of viability.

However, 33.9 ± 5.2 % of lag1Δ and 47.5 ± 7.4 % of isc1Δ cells were viable under the
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same conditions, indicating that deletion of the LAG1 or ISC1 genes increases

resistance to acetic acid stress. In addition, acetic acid-induced cell death in the

different strains was not associated with significant loss of plasma membrane integrity

as measured by propidium iodide (PI) staining, indicating that yeast strains die by

apoptosis (Figure 16). After 200 min of acetic acid-treatment, more than 95% of cells in

all strains are PI-negative.

Figure 16. Percentage of PI-negative cells of the indicated S. cerevisiae strains exposed to 180

mM acetic acid, pH 3.0, for 200 min. PI fluorescence was determined by flow cytometry. Values are mean

+ SD of at least three independent experiments.

Correct integration of the different KanMX4 deletion cassettes in the genome of

the CG379 strain had been confirmed by PCR (described in Materials and Methods).

However, in order to confirm the acetic acid resistance observed in lag1Δ and isc1Δ

cells was not due to secondary mutations generated in the process of strain

construction, lag1Δ and isc1Δ strains were transformed with plasmids expressing the

respective wild-type genes, and treated under the conditions described above (Figure

17).

Figure 17. Survival of lag1∆ and isc1∆ mutants transformed with pYES2-LAG1 and pYES2-ISC1,

respectively, or with pYES2 (empty vector) after exposure to 180 mM acetic acid, pH 3.0, for 200 min. Cell

viability was determined by standard dilution plate counts and expressed as a percentage of c.f.u. on YPD

plates. Values are mean + SD of at least three independent experiments. Values significantly different from

CG379 pYES2 strain: *** P<0.001, One-way ANOVA and Turkey Test.
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As expected, expression of the empty vector had no effect on cell viability. On

the other hand, expression of LAG1 and ISC1 (pYES2-LAG1 and pYES2-ISC1)

suppressed the acetic acid resistance of lag1Δ (7.5 ± 3.3 %) and isc1Δ (10.2 ± 2.7 %)

cells, confirming the observed phenotype is due to disruption of these genes.

In sphingolipid metabolism, there are several enzymes involved in the same

step of the pathway. This is the case for Lag1p and Lac1p, two ceramide synthases

responsible for the conversion of DHS and PHS to ceramide, and for Ydc1p and

Ypc1p, two alkaline ceramidases involved in ceramide turnover. Therefore, double

mutants were constructed in order to determine whether deletion of both genes

involved in these two steps increased resistance to acetic acid. Silencing of the YDC1

gene in ypc1∆ and of the LAC1 gene in lag1∆ mutants was performed using the

antisense vectors pYES2-asYDC1 and pYES2-asLAC1, respectively. The antisense

mRNA of the genes expressed in these vectors hybridizes with the sense mRNA of the

genes expressed from the genomic DNA, blocking gene expression and thus silencing

the genes.

Figure 18. Survival of lag1∆ and ypc1∆ mutants transformed with pYES2-asLAC1 and pYES2-

asYDC1, respectively, or with pYES2 (empty vector) after exposure to 180 mM acetic acid, pH 3.0, for 200

min. Cell viability was determined by standard dilution plate counts and expressed as a percentage of

c.f.u. on YPD plates. Values are mean + SD of at least three independent experiments. Values significantly

different from CG379 pYES2 strain: * P<0.05 and *** P<0.001, One-way ANOVA and Turkey Test.

As seen in Figure 18, neither double mutant strain was more resistant to acetic

acid than the single mutants lag1∆ or ydc1∆. Indeed, simultaneous depletion of LAC1

and LAG1 (lag1Δ pYES2-asLAC1 strain) decreased acetic acid resistance of lag1∆

(13.4 ± 3.0 %), whereas depletion of YDC1 and YPC1 (ypc1Δ pYES2-asYDC1 strain)

did not alter the phenotype of the individual mutants (5.7 ± 3.8 %), which was
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comparable to that of wild-type cells. In fact, previous studies have shown that cells

become very sick or nonviable when both LAC1 and LAG1 genes are deleted,

depending on the genetic background (Guillas et al., 2003), and that ceramides and

complex lipids are drastically reduced to levels that could compromise cell viability

under stress conditions (Guillas et al., 2001). This could also be the reason for the

decrease in resistance observed in this study for the lag1Δ pYES2-asLAC1 strain. The

results obtained with the depletion of both YDC1 and YPC1 suggest that ceramidases

are not important for acetic acid resistance. Previous studies have shown that deletion

of both genes does not affect cell growth, suggesting they are not essential to the cell

(Mao, 2000).

4.2. Oxidative markers

Apoptosis is in many cases associated with the production of ROS in a wide

variety of organisms, including yeast (Madeo et al., 1999). These include the

superoxide anion, which is mainly generated in mitochondria, hydroxyl radicals and

hydrogen peroxide. When the levels of ROS exceed the antioxidant capacity of the

cells, homeostasis is disrupted and molecules such as lipids, proteins and nucleic acids

are oxidized and compromise survival (Finkel and Holbrook, 2000). For that reason, we

determined the involvement of sphingolipid metabolism in the production of ROS

produced in response to acetic acid treatment.

4.2.1. Intracellular ROS

To determine the levels of ROS, untreated and cells treated with acetic acid

were labeled with MitoTracker Red CM-H2XRos and Dihydroethidium (DHE). The

MitoTracker Red CM-H2XRos probe is a rosamine derivative used to detect

mitochondrial free radicals. The reduced version of MitoTracker Red CM-H2XRos does

not fluoresce until entering an actively respiring cell, where it is oxidized by ROS to a

red fluorescent compound, which is sequestered in the mitochondria. Dihydroethidium

is a neutral probe capable of penetrating the membrane of living cells and intercalate

into DNA after it is dehydrogenated (oxidized by superoxide anions generated in

mitochondria) to ethidium. Intracellular ROS were assessed by flow cytometry using

both ROS-sensitive probes, and results expressed as percentage of ROS-positive cells

(Figure 19).

When MitoTracker Red CM-H2XRos was used as a probe, the percentage of

wild-type ROS-positive cells after acetic acid treatment was 77.0 ± 10.9 %. The lac1Δ,
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lag1Δ, ydc1Δ and ypc1Δ mutants also showed a similar production of mitochondrial

ROS. On the other hand, the isc1∆ mutant had a lower percentage of cells with

mitochondrial ROS, only 55.5 ± 3.8 % when compared to wild-type, in agreement with

its resistance phenotype.  When DHE was used as a probe, the superoxide anion was

detected in 50.0 ± 8.7 % of wild-type cells after 200 min of treatment. Again, in

agreement with their resistance phenotypes, lag1Δ and isc1Δ mutants displayed lower

levels of superoxide anion, 28.8 ± 1.1 % and 12.8 ± 3.6 %, respectively. The results

obtained confirm the involvement of ROS in cell death and suggest sphingolipids play a

role in ROS production, since the mutants most resistant to acetic acid had lower levels

of ROS.

Figure 19. Levels of mitochondrial ROS (A) and superoxide anion (B) in the indicated S.

cerevisiae strains exposed to 180 mM acetic acid, pH 3.0, for 200 min, using MitoTracker Red CM-H2XRos

and DHE, respectively. Values are mean + SD of at least three independent experiments. Values

significantly different from CG379: * P<0.05, ** P<0.01 and *** P<0.001, One-way ANOVA and Turkey

Test.

4.2.2. Protein oxidation

In order to explore whether the acetic acid phenotypes observed above were

associated with oxidative damage, protein carbonylation was analyzed in wild-type and

mutant cells by immunodetection (Figure 20A).
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Figure 20. Protein oxidation of the indicated S. cerevisiae strains before (-) and after (+) exposure

to 180 mM acetic acid, pH 3.0,  for 200 min. (A)  Immunodetection of protein carbonyls; (B) Silver staining.

C+, CG379 cells treated with 1.5mM H2O2 for 200 min. A representative experiment of at least two

independent experiments with similar results is shown.

The levels of protein carbonylation in untreated and acetic acid-treated cells

were similar, and much lower than those observed in cells treated with H2O2. Hydrogen

peroxide was used as positive control, since there is a correlation between H2O2-

induced apoptosis and accumulation of carbonylated proteins (Mohammed et al.,

2005). However, cells treated with H2O2 had the same protein profile as untreated cells,

whereas cells treated with acetic acid did not. In the latter case, there was enrichment

in three protein bands, while others were greatly decreased or disappeared altogether

(Figure 20B). One explanation may come from a previous report indicating transient

proteosome activation is required for acetic acid-induced cell death (Valentini et al.,

2008). In summary, the results indicate that acetic acid-induced cell death was not

associated with protein oxidation in any of the strains tested.

4.3. Mitochondrial dynamics

Mitochondria are essential organelles that exist in dynamic networks, and often

change their localization and shape during stress conditions (Karbowski and Youle,

2003). In past years, it has been shown acetic acid triggers a mitochondria-dependent

apoptotic pathway in yeast, associated with typical mitochondrial markers such as

mitochondrial fragmentation, degradation, hyperpolarization and release of cytochrome

c to the cytosol (Ludovico et al., 2002). Since the lag1Δ and isc1Δ mutants were more



Results

44

resistant to acetic acid than wild-type cells, we assessed whether they still exhibited

these apoptotic markers.

4.3.1. Mitochondrial fragmentation

During apoptosis, the typical mitochondrial morphology, normally providing an

efficient form to deliver energy to all areas of cell, changes from the tubular network to

a punctuate pattern, a process called mitochondrial fragmentation. This process had

previously been described for acetic acid-induced apoptosis, and we thus set out to

characterize the relative contribution of sphingolipids to this process. Mitochondrial

morphological changes were observed through confocal microscopy using cells

transformed with pYES2-mtGFP, a vector that expresses GFP fused to a mitochondrial

presequence of the ATPase subunit 9 that targets GFP to mitochondria (Figure 21).

Figure 21. Mitochondrial morphology changes observed in S. cerevisiae strains CG379, lag1Δ

and isc1Δ expressing mitochondrial GFP before (control) and after exposure to 180mM acetic acid, pH

3.0, for 200 min. A representative experiment is shown. Bar, 5μm.

As expected, under normal conditions, the mitochondrial morphology of the

wild-type strain consists of perfect mitochondrial networks. After acetic acid treatment,

mitochondrial networks are destabilized, leading to the formation of the typical

punctuate pattern that is normally observed in apoptotic cell death. On the other hand,

untreated lag1∆ and isc1∆ mutants exhibit a mitochondrial morphology distinct from
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that observed in the wild-type strain: in these mutant strains, mitochondria form

aggregates under normal conditions, more visible in the isc1∆ strain, which were not

destabilized by exposure to acetic acid, suggesting that deletion of these genes may

hinder mitochondrial fragmentation. Sphingolipid metabolism had previously been

associated with mitochondrial morphology. Overexpression of YDC1 results in a

decrease of ceramide levels and mitochondrial fragmentation (Aerts et al., 2008). Isc1p

is localized in mitochondria and has a role in the generation of ceramide in

mitochondria, and its deletion increases the levels of α-hydroxylated phytoceramides

(Kitagaki et al., 2007). Thus, the morphologic alterations we observed confirm the

contribution of ceramide to the normal morphology of mitochondria.

4.3.2. Mitochondrial degradation

Mitochondrial degradation has previously been described in yeast cells exposed

to apoptotic stimuli such as acetic acid (Pereira et al., 2010). In order to address

whether deletion of LAG1 or ISC1 affected mitochondrial degradation, cells were

transformed with pYES2-mtGFP and the loss of mtGFP fluorescence, representative of

the loss of mitochondrial mass, was monitored by flow cytometry during 240 min of

exposure to acetic acid (Figure 22).

Figure 22. Mitochondrial degradation, measured by loss of mtGFP fluorescence in S. cerevisiae

strains CG379, isc1Δ and lag1Δ expressing pYES2-mtGFP after exposure to 180 mM acetic acid, pH 3.0,

during 240 min. Values are mean ± SD of at least three independent experiments. Values significantly

different from CG379 pYES2-mtGFP strain: * P<0.05, One-way ANOVA and Turkey Test.

Up to 180 min of treatment, about 90% of cells of all strains still exhibited GFP

fluorescence, indicating the levels of mitochondria degradation are low. However, after

240 min of acetic acid treatment, only 54.34 ± 4.5 % of wild-type cells exhibited GFP



Results

46

fluorescence, whereas GFP fluorescence was still present in 81.85 ± 4.7 % and 88.74

± 2.9 % of lag1Δ and isc1Δ mutant cells, respectively. These results suggest that

deletion of ISC1 or LAG1 delays mitochondrial degradation in response to acetic acid.

4.3.3. Mitochondrial membrane potential

Mitochondrial membrane potential is an important aspect of mitochondria

function. It is responsible for the generation of ATP and is generated by the electron

transport chain. Some studies in yeast apoptosis reported a transient hyperpolarization

followed by a depolarization of mitochondria after acetic acid stimuli, a process

associated with the release of cytochrome c from mitochondria to the cytosol (Ludovico

et al., 2002; Pereira et al., 2010). We therefore investigated the role of sphingolipids on

the mitochondrial potential. Variations in mitochondrial potential were analyzed using

the membrane potential-sensitive probe DiOC6, which accumulates in the mitochondria

as a function of its membrane potential. Mitochondrial potential was assessed by the

ratio between the mean of green fluorescence intensity (FL-3 channel) and the mean of

the FS (both measured as log values) of the subpopulation which preserved plasma

membrane integrity (gated for PI-negative cells) (Figure 23). The changes of

mitochondrial potential were expressed in relative values comparatively with time zero.

Figure 23. Mitochondrial membrane potential (relative fluorescence) assessed by flow cytometry

using the probe DiOC6 in S. cerevisiae strain CG379, isc1Δ and lag1Δ expressing mitochondrial GFP after

exposure to 180 mM acetic acid, pH 3.0, for 120 min. Values are mean ± SD of at least three independent

experiments. Values significantly different from CG379 strain: * P<0.05, One-way ANOVA and Turkey

Test.
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Under our experimental conditions, acetic acid treatment led to an increase of

mitochondrial membrane potential in both wild-type and lag1∆ mutant strains, while in

isc1∆ mutant the mitochondrial membrane potential was not affected along 120 min.

4.3.4. Cytochrome c release

As described above, a crucial event in yeast apoptosis induced by acetic acid is

the translocation of cytochrome c from mitochondria to the cytosol. Since we found

isc1Δ and lag1Δ mutant strains were more resistant to acetic acid, we next determined

whether acetic acid still triggered release of cytochrome c in these strains. Cytosolic

and mitochondrial fractions were isolated by differential centrifugation. The integrity of

the inner mitochondrial membrane after the procedure was assessed through

determination of the activity of citrate synthase, a protein exclusively localized in the

mitochondrial matrix. Western blot was then performed in order to detect the levels of

cytochrome c in the different fractions (Figure 24).

Figure 24. Western blot analysis of cytochrome c in S. cerevisiae strains CG379, isc1Δ and lag1Δ

before (-) and after (+) exposure to 180 mM acetic acid, pH 3.0, for 200 min, in both mitochondrial and

cytosolic fractions. Cytosolic phosphoglycerate kinase (Pgk1p) and mitochondrial porin (Por1p) levels were

used as loading control of cytosolic and mitochondrial fractions, respectively. A representative experiment

is shown of at least two independent experiments with similar results.

Western blot analysis revealed that, under normal conditions, cytochrome c is

exclusively localized in the mitochondria of all strains. Treatment of the wild-type strain

with acetic acid resulted in a decrease of the cytochrome c content in mitochondria,

and consequent detection in the cytosol. On the other hand, and in correlation with the

phenotype of acetic acid resistance, the lag1∆ mutant exhibited less translocation of

cytochrome c and isc1∆ cells did not exhibit cytochrome c release to the cytosol.

Western blot analysis also revealed that isc1∆ cells have a lower overall content of

cytochrome c when compared with the other strains.
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Figure 24. Western blot analysis of cytochrome c in S. cerevisiae strains CG379, isc1Δ and lag1Δ

before (-) and after (+) exposure to 180 mM acetic acid, pH 3.0, for 200 min, in both mitochondrial and

cytosolic fractions. Cytosolic phosphoglycerate kinase (Pgk1p) and mitochondrial porin (Por1p) levels were

used as loading control of cytosolic and mitochondrial fractions, respectively. A representative experiment

is shown of at least two independent experiments with similar results.

Western blot analysis revealed that, under normal conditions, cytochrome c is

exclusively localized in the mitochondria of all strains. Treatment of the wild-type strain

with acetic acid resulted in a decrease of the cytochrome c content in mitochondria,

and consequent detection in the cytosol. On the other hand, and in correlation with the

phenotype of acetic acid resistance, the lag1∆ mutant exhibited less translocation of

cytochrome c and isc1∆ cells did not exhibit cytochrome c release to the cytosol.

Western blot analysis also revealed that isc1∆ cells have a lower overall content of

cytochrome c when compared with the other strains.
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Sphingolipids are lipid second messengers generated in response to different

physiological signals and stress stimuli. They affect multiple aspects of cellular

function, including apoptosis (Hannun and Obeid, 2008). In mammalian cells, an

increase of ceramide and sphingosine levels promotes apoptosis, whereas an increase

of sphingosine-1-phosphate levels inhibits apoptosis (Futerman and Hannun, 2004).

Apoptosis is an evolutionary conserved type of cell death that is crucial for normal

tissue homeostasis and development. Deregulation of apoptosis contributes to the

pathogenesis of several diseases, including cancer (unwanted cell proliferation),

autoimmune diseases (failure to eliminate aberrant cells) and neurodegenerative

disorders (excessive loss of cells) (Fischer and Schulze-Osthoff, 2005). Given the

important role of sphingolipids in regulation of apoptosis and survival, the study of the

sphingolipid metabolism has a considerable impact in resolution of several diseases

and development of therapies.

The yeast S. cerevisiae is an excellent model system for research. It is a

genetically tractable organism amenable to modifications, and its entire genome

sequence has already been sequenced (Mager and Winderickx, 2005). Since it

possesses an endogenous apoptotic machinery, and sphingolipid metabolism is similar

to its mammalian counterpart, we aimed to characterize the role of sphingolipids in the

yeast mitochondrial apoptotic pathway. Acetic acid-induced cell death has been

extensively characterized in the yeast S. cerevisiae. In previous studies, it has been

shown that acetic acid triggers a mitochondria-mediated apoptotic pathway associated

with mitochondrial ROS accumulation, decrease in cytochrome c oxidase (COX)

activity and subsequent release of cytochrome c (Ludovico et al., 2002). Additionally,

other studies implicated the ADP/ATP carrier in the mitochondrial outer membrane

permeabilization and cytochrome c release (Pereira et al., 2007) and the vacuolar

protease Pep4p in mitochondrial degradation (Pereira et al., 2010).

For the first time, this study shows that the sphingolipid pathway plays a role in

the mitochondrial yeast apoptotic pathway induced by acetic acid. Absence of LAG1,

ortholog of mammalian longevity assurance gene (LASS1) or ISC1, ortholog of

mammalian neutral sphingomyelinases, enhanced the cell survival of yeast cells

exposed to acetic acid. Characterization of the phenotype of a lag1∆isc1∆ double

mutant would be necessary to ascertain whether Isc1p and Lag1p act through the

same pathway or independently.

Several studies have shown that ROS are key signaling molecules in

mammalian cells (D’Autréaux and Toledano, 2007). In comparison with wild-type cells,

lag1Δ and isc1Δ mutant strains accumulated fewer ROS in response to acetic acid.

Accumulation of ROS is directly related with mitochondrial dysfunction and promotion

of yeast apoptosis (Madeo et al., 1999; Perrone et al., 2008). Accordingly, lag1Δ and
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isc1Δ mutant strains exhibited lower levels of ROS and less mitochondrial dysfunction.

Our results also showed that the increase of ROS production was not sufficient to

cause protein oxidation. In the future, it would be interesting to investigate the role of

Isc1p and Lag1p in oxidative stress elicited during acetic acid treatment. The levels of

lipid peroxidation and antioxidant defenses such as glutathione, superoxide dismutase

and catalase activities may be correlated with the viability of the wild type and lag1Δ

and isc1Δ strains. A previous study showed that exposure to acetic acid did not alter

catalase or superoxide dismutase activity in wild-type cells. However, acetic acid cell

death decreased in cells overexpressing catalase T and increased when Cu,Zn-

superoxide dismutase is overexpressed, suggesting that hydrogen peroxide contributes

to acetic acid induced cell death (Guaragnella et al., 2008).

Ceramides play a role in ROS production and MOMP in mammalian cells, as

ceramides increased ROS production by directly inhibiting the mitochondrial complex III

(Gudz et al., 1997) and increased the permeability of mitochondrial membranes to

cytochrome c through the formation of pores (Siskind, 2005). Notably, previous studies

showed that acetic acid elicits similar mitochondrial dysfunctions affecting specifically

mitochondrial complex III activity (Ludovico et al., 2002) and triggering MOMP (Pereira

et al., 2007). Indeed, in the wild-type strain, we detect high levels of intracellular ROS

and cytochrome c release into the cytosol. However, in lag1Δ and isc1Δ mutants,

which we presume contain lower levels of certain ceramides or cannot increase the

levels at same rate as the wild-type strain under acetic acid stress, the levels of ROS

and cytochrome c in the cytosol were much lower than those observed in the wild-type

strain. Cytochrome c release is directly related to the promotion of apoptosis in

mammalian cells due to its involvement in the formation of the apoptosome (Acehan et

al., 2002) and also occurs in acetic-acid yeast apoptosis (Ludovico et al., 2002). The

results obtained suggest that, as described in mammalian cells, ceramide has an active

role in cytochrome c release in yeast apoptosis, possibly through the formation of

ceramide pores.

It has been suggested that mitochondrial fragmentation is required for MOMP

and cytochrome c release. Drp1p and Fis1p, proteins involved in mitochondrial fission,

have been implicated in ceramide-induced apoptosis in cardiomyocytes. Parra and

coworkers have shown that ceramide increases the mitochondrial content of Drp1p and

Fis1p and promotes fragmentation of the mitochondrial network (Parra et al., 2008).

The yeast ortholog of human Drp1p promotes mitochondrial fragmentation/degradation

and cell death following treatment with several death stimuli, namely acetic acid

(Fannjiang et al., 2004). In accordance with this previous work, we observed that acetic

acid leads to mitochondrial fragmentation in wild-type cells. However this was not

observed in the lag1∆ and in isc1∆ strains. These results suggest that ceramide
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generated by Isc1p and Lag1p is implicated in mitochondrial fragmentation and

consequently in cytochrome c release to cytosol. In fact, ISC1 deletion leads to the

formation of mitochondrial aggregates, which are resistant to mitochondrial

fragmentation and it does not exhibit cytochrome c release. We therefore hypothesize

that acetic acid induces mitochondria fragmentation through an increase of ceramide

and activation/recruitment of Drp1p and Fis1p to mitochondria. To test this hypothesis,

the levels and distribution of Drp1p and Fis1p should be determined by Western blot

and immunofluorescence, respectively.

In mammalian cells, ceramides specifically bind to and activate the endossomal

acidic aspartate protease cathepsin D. This interaction induces the autocatalytic

proteolysis of the pro-enzyme to the active form of cathepsin D and depends on acid

sphingomyelinase, indicating that CatD is a target of ceramide (Heinrich et al., 1999).

The yeast Pep4p, with homology to CatD, translocates from the vacuole to the cytosol

in response to several stress conditions; it is essential for the removal of oxidized

proteins after oxidative damage induced by H2O2 and in chronological ageing (Marques

et al., 2006), and is involved in mitochondrial degradation in acetic acid-induced

apoptosis (Pereira et al., 2010). Absence of PEP4 results in a cell survival sensitive

phenotype in response to acetic acid that apparently is not due to an accumulation of

oxidized proteins. We found that lag1Δ and isc1Δ cells, which are more resistant to

acetic acid, have less mitochondrial degradation than the wild-type strain. We therefore

hypothesize that these mutants have less release/activation of Pep4p by ceramides,

and therefore exhibit lower levels of mitochondrial degradation. In the future, it would

be interesting to assess whether the acetic acid resistance phenotype of lag1Δ and

isc1Δ mutant cells correlates with alterations in Pep4p cellular re-localization/activation

in response to acetic acid. Release and localization of EGFP-Pep4p and Pep4p activity

in cells undergoing acetic acid-induced death should be determined. Finally, and in

order to determine whether Lag1p, Isc1p and Pep4p act independently or in the same

pathway, lag1∆pep4∆ and isc1∆pep4∆ mutants should be constructed and

characterized regarding acetic acid-induced apoptosis.

Collapse of the mitochondrial membrane potential is often considered an event

of apoptosis that precedes the release of pro-apoptotic proteins such as cytochrome c.

Opening of the mitochondrial PTP results in loss of the mitochondrial membrane

potential, uncoupling of oxidative phosphorylation, ATP depletion, and apoptosis

(Kroemer et al., 2007). In previous studies, it was shown that acetic acid induces a

transient hyperpolarization of mitochondrial membrane potential that precedes

cytochrome c release (Ludovico et al., 2002). However, we could not reproduce these

results under our experimental conditions. This may be explained by the growth phase

and differences in mitochondrial mass of the cells before exposure to acetic acid that
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influence signal/background fluorescence of the probes used for mitochondrial potential

measurements, such as DiOC6. Indeed we reproduce the previous reported transient

hyperpolarization followed by depolarization in late exponential phase cells but not in

exponential cells. Acetic acid treatment increased the mitochondrial membrane

potential of wild-type and lag1∆ mutant strains, while in isc1∆ mutant the mitochondrial

membrane potential was not affected. Mitochondrial hyperpolarization has already

been observed in other studies. For instance, heterologous expression of BAX in yeast

induces hyperpolarization of mitochondria, production of ROS and cell death (Gross et

al., 2000). Since hyperpolarization is related to uncoupling of oxidative phosphorylation

and ROS production, the results obtained are in agreement with the literature. Indeed,

the strains with lower intracellular ROS levels had less variation in mitochondrial

potential and lower levels of cytochrome c release. It has been suggested that Isc1p

plays a role in mitochondrial function, since it localizes to mitochondria in the

fermentative phase and ISC1-deleted strains are defective in aerobic respiration due to

an inability to up-regulate genes required for  growth in non-fermentable carbon

sources (Kitagaki et al., 2009). It has been shown that respiratory-deficient mutants are

more resistant to acetic acid-induced apoptosis (Ludovico et al., 2002). This is

consistent with the observed resistant phenotype of isc1∆ cells to acetic acid-induced

apoptosis. However, it is not clear whether deleting Isc1p renders cells more resistant

to acetic acid-induced apoptosis because cells have increased mitochondrial

deficiency. To address this issue, a respiratory deficient mutant should be constructed

in the isc1∆ strain and the double mutant characterized regarding acetic acid-induced

apoptosis.

It is possible that the acetic acid resistance and fewer mitochondrial

dysfunctions observed in lag1∆ and isc1∆ mutant cells result from higher activation of

Hog1p and destabilization of Fps1p in the plasma membrane. Mollapour and Piper

demonstrated that Hog1p directly phosphorylates Fps1p, targeting the channel for

endocytosis and degradation in the vacuole. In addition, they observed that deletion of

FPS1 abolishes the accumulation of undissociated acetic acid in the cell (Mollapour

and Piper, 2007). Different approaches may be used to test this hypothesis, namely: i)

determination of the uptake and accumulation of acetic acid (radiolabeled) in wild-type

and mutant cells grown at pH 3.0 and 6.8 (at this pH most of the acetic acid is

dissociated and will be used as a control); ii) determination of the activity of the HOG1

pathway in control and acetic acid-treated cells in both strains by Western blot using

antibodies specific for dually phosphorylated Hog1p (anti-phospho-p38 MAPK); iii)

visualization of changes in plasma membrane Fps1p by epifluorescence microscopy,

using wild-type and mutant cells transformed with pUG23-FPS1-GFP.
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Our preliminary results indicate the lag1Δ and isc1Δ mutants may have lower

levels of the ceramides necessary to signal acetic acid-induced apoptosis. Adding

exogenous C2-phytoceramide to acetic acid-treated cells suppressed the resistance

phenotype observed when lag1Δ and isc1Δ mutants were treated with only acetic acid

(preliminary results, not shown). However, these results need further confirmation, as

well as validation through a lipidomic analysis to assess changes in bioactive

sphingolipids (long chain sphingoid bases and its phosphates, dihydroceramides,

phytoceramides and –hydroxylated-phytoceramides) during acetic acid stress.

In conclusion, our results indicate acetic acid elicits production of ceramides,

especially through hydrolysis of complex lipids and de novo synthesis catalyzed by

Isc1p and Lag1p, respectively, leading to mitochondrial dysfunction and consequently

apoptosis.



6. References





References

57

Acehan D, Jiang X, Morgan DG, Heuser JE,
Wang X, Akey CW. (2002) Three-
dimensional structure of the apoptosome:
implications for assembly, procaspase-9
binding, and activation. Molecular Cell,
9(2): 423-32.

Aerts AM, Zabrocki P, François IEJA, Carmona-
Gutierrez D, Govaert G, Mao C, Smets B,
Madeo F, Winderickx J, Cammue BPA,
Thevissen K. (2008) Ydc1p ceramidase
triggers organelle fragmentation, apoptosis
and accelerated ageing in yeast. Cellular
and Molecular Life Sciences, 65(12):
1933-42.

Almeida T, Marques M, Mojzita D, Amorim MA,
Silva RD, Almeida B, Rodrigues P,
Ludovico P, Hohmann S, Moradas-
Ferreira P, Côrte-Real M, Costa V. (2008)
Isc1p plays a key role in hydrogen
peroxide resistance and chronological
lifespan through modulation of iron levels
and apoptosis. Molecular Biology of the
Cell, 19(3): 865-76

Alvarez SE, Milstien S, Spiegel S. (2007)
Autocrine and paracrine roles of
sphingosine-1-phosphate. Trends in
Endocrinology and Metabolism, 18(8):300-
7

Baehrecke EH. (2002) How death shapes life
during development. Nature reviews.
Molecular Cell Biology, 3(10): 779-87.

Barbosa AD, Osório H, Sims KJ, Almeida T,
Alves M, Bielawski J, Amorim MA,
Moradas-Ferreira P, Hannun YA, Costa V.
(2011) Role for Sit4p-dependent
mitochondrial dysfunction in mediating the
shortened chronological lifespan and
oxidative stress sensitivity of Isc1p-
deficient cells. Molecular Microbiology,
81(2): 515-27.

Barz WP, Walter P. (1999) Two endoplasmic
reticulum (ER) membrane proteins that
facilitate ER-to-Golgi transport of
glycosylphosphatidylinositol-anchored
proteins. Molecular Biology of the Cell,
10(4): 1043-59.

Basu S, Bayoumy S, Zhang Y, Lozano J,
Kolesnick R. (1998) BAD enables
ceramide to signal apoptosis via Ras and
Raf-1. The Journal of Biological
Chemistry, 273(46): 30419-26.

Beeler T. (1998) the Saccharomyces cerevisiae
Tsc10/Ybr265w gene encoding 3-
ketosphinganine reductase is identified in
a screen for temperature-sensitive
suppressors of the Ca2+-sensitive
csg2delta mutant. Journal of Biological
Chemistry, 273(46): 30688-94.

Betz C, Zajonc D, Moll M, Schweizer E. (2002)
ISC1-encoded inositol
phosphosphingolipid phospholipase C is
involved in Na+/Li+ halotolerance of
Saccharomyces cerevisiae. European
Journal of Biochemistry / FEBS, 269(16):
4033-9.

Bouchier-Hayes L, Lartigue L, Newmeyer DD.
(2005) Mitochondria: Pharmacological

manipulation of cell death. The Journal of
Clinical Investigation, 115(10):2640-7.

Bourbon NA, Yun J, Kester M. (2000) Ceramide
directly activates protein kinase C zeta to
regulate a stress-activated protein kinase
signaling complex. The Journal of
Biological Chemistry, 275(45): 35617-23.

Braun RJ, Zischka H, Madeo F, Eisenberg T,
Wissing S, Büttner S, Engelhardt SM,
Büringer D, Ueffing M. (2006) Crucial
mitochondrial impairment upon CDC48
mutation in apoptotic yeast. The Journal of
Biological Chemistry, 281(35): 25757-67.

Budihardjo I, Oliver H, Lutter M, Luo X, Wang X.
(1999) Biochemical pathways of caspase
activation during apoptosis. Annual
Review of Cell and Developmental
Biology, 15: 269-90.

Büttner S, Eisenberg T, Carmona-Gutierrez D,
Ruli D, Knauer H, Ruckenstuhl C, Sigrist
C, Wissing S, Kollroser M, Fröhlich KU,
Sigrist S, Madeo F. (2007) Endonuclease
G regulates budding yeast life and death.
Molecular Cell, 25(2): 233-46.

Büttner S, Eisenberg T, Herker E, Carmona-
Gutierrez D, Kroemer G, Madeo F. (2006)
Why yeast cells can undergo apoptosis:
death in times of peace, love, and war.
The Journal of Cell Biology, 175(4): 521-5.

Büttner S, Ruli D, Vögtle FN, Galluzzi L, Moitzi
B, Eisenberg T, Kepp O, Habernig L,
Carmona-Gutierrez D, Rockenfeller P,
Laun P, Breitenbach M, Khoury C,
Fröhlich KU, Rechberger G, Meisinger C,
Kroemer G, Madeo F. (2011) A yeast
BH3-only protein mediates the
mitochondrial pathway of apoptosis. The
EMBO Journal, 30(14): 2779-92.

Carmona-Gutierrez D, Eisenberg T, Büttner S,
Meisinger C, Kroemer G, Madeo F. (2010)
Apoptosis in yeast: triggers, pathways,
subroutines. Cell Death and
Differentiation, 17(5): 763-73.

Casal M, Cardoso H, Leão C. (1996)
Mechanisms regulating the transport of
acetic acid in Saccharomyces cerevisiae.
Microbiology (Reading, England), 142 (Pt
6): 1385-90.

Casal M, Paiva S, Andrade R, Gancedo C, Leão
C. (1999) The lactate-proton symport of
Saccharomyces cerevisiae is encoded by
JEN1. Journal of Bacteriology, 181(8):
2620-3.

Chipuk JE, Moldoveanu T, Llambi F, Parsons
MJ, Green DR. (2010) The BCL-2 family
reunion. Molecular Cell, 37(3): 299-310.

Chowdhury I, Tharakan B, Bhat GK. (2008)
Caspases - an update. Comparative
Biochemistry and Physiology. Part B,
Biochemistry & Molecular Biology, 151(1):
10-27.

Codogno P, Meijer AJ. (2005). Autophagy and
signaling: their role in cell survival and cell
death. Cell Death and Differentiation, 12
Suppl 2: 1509-18.



Characterization of the role of sphingolipids in the modulation of acetic acid-induced apoptosis

58

Cohen GM. (1997) Caspases: the executioners
of apoptosis. The Biochemical Journal,
326 (Pt 1): 1-16.

Cuvillier O, Ader I, Bouquerel P, Brizuela L,
Malavaud B, Mazerolles C, Rischmann P.
(2010) Activation of Sphingosine kinase-1
in cancer: Implications for therapeutic
targeting. Current Molecular
Pharmacology, 3(2): 53-65.

Cuvillier O. (2002) Sphingosine in apoptosis
signaling. Biochimica et Biophysica Acta,
1585(2-3): 153-62.

D’Autréaux B, Toledano MB. (2007). ROS as
signalling molecules: mechanisms that
generate specificity in ROS homeostasis.
Nature Reviews. Molecular Cell Biology,
8(10): 813-24.

D’mello NP, Childress AM, Franklin DS, Kale
SP, Pinswasdi C, Jazwinski SM. (1994)
Cloning and characterization of LAG1, a
longevity-assurance gene in yeast. The
Journal of Biological Chemistry, 269(22):
15451-9.

Debnath J, Baehrecke EH, Kroemer G. (2005)
Does Autophagy Contribute to Cell Death?
Autophagy, 1(2): 66-74.

Di Paola M, Zaccagnino P, Montedoro G, Cocco
T, Lorusso M. (2004) Ceramide induces
release of pro-apoptotic proteins from
mitochondria by either a Ca2+ -dependent
or a Ca2+ -independent mechanism.
Journal of Bioenergetics and
Biomembranes, 36(2): 165-70.

Dickson RC, Lester RL. (1999) Yeast
sphingolipids. Biochimica et Biophysica
Acta, 1426(2): 347-57.

Dickson RC, Nagiec EE, Wells GB, Nagiec MM,
Lester RL. (1997) Synthesis of mannose-
(inositol-P)2-ceramide, the major
sphingolipid in Saccharomyces cerevisiae,
requires the IPT1 (YDR072c) gene. The
Journal of Biological Chemistry, 272(47):
29620-25.

Dickson RC. (1998) Sphingolipid functions in
Saccharomyces cerevisiae: comparison to
mammals. Annual Review of Biochemistry,
67: 27-48.

Ellis HM, Horvitz HR. (1986) Genetic control of
programmed cell death in the nematode C.
elegans. Cell, 44(6): 817-29.

Fahrenkrog B, Sauder U, Aebi U. (2004) The S.
cerevisiae HtrA-like protein Nma111p is a
nuclear serine protease that mediates
yeast apoptosis. Journal of Cell Science,
117(Pt 1): 115-26.

Fannjiang Y, Cheng WC, Lee SJ, Qi B, Pevsner
J, McCaffery JM, Hill RB, Basañez G,
Hardwick JM. (2004) Mitochondrial fission
proteins regulate programmed cell death
in yeast. Genes & Development, 18(22):
2785-97.

Finkel T, Holbrook NJ. (2000) Oxidants,
oxidative stress and biology of ageing.
Nature, 408(9): 239-47.

Fischer U, Jänicke RU, Schulze-Osthoff K.
(2003) Many cuts to ruin: a comprehensive

update of caspase substrates. Cell Death
and Differentiation, 10(1): 76-100.

Fischer UTE, Schulze-Osthoff K. (2005) New
approaches and therapeutics targeting
apoptosis in disease. Pharmacological
Reviews, 57(2): 187-215.

France-Lanord V, Brugg B, Michel PP, Agid Y,
Ruberg M. (1997) Mitochondrial free
radical signal in ceramide-dependent
apoptosis: a putative mechanism for
neuronal death in Parkinson’s disease.
Journal of Neurochemistry, 69(4): 1612-
21.

Fuller M. (2010) Sphingolipids: the nexus
between Gaucher disease and insulin
resistance. Lipids in Health and Disease,
9: 113.

Futerman AH, Hannun YA. (2004) The complex
life of simple sphingolipids. EMBO reports,
5(8): 777-82.

Gable K, Slife H, Bacikova D, Monaghan E,
Dunn TM. (2000) Tsc3p is an 80-amino
acid protein associated with serine
palmitoyltransferase and required for
optimal enzyme activity. Journal of
Biological Chemistry, 275(11): 7597-603.

Ganesan V, Colombini M. (2010) Regulation of
ceramide channels by Bcl-2 family
proteins. FEBS letters, 584(10): 2128-34.

Ganesan V, Perera MN, Colombini D,
Datskovskiy D, Chadha K, Colombini M.
(2010) Ceramide and activated Bax act
synergistically to permeabilize the
mitochondrial outer membrane. Apoptosis,
15(5): 553-62.

García-Ruiz C, Colell A, Marí M, Morales A,
Fernández-Checa JC. (1997) Direct effect
of ceramide on the mitochondrial electron
transport chain leads to generation of
reactive oxygen species. Role of
mitochondrial glutathione. The Journal of
Biological Chemistry, 272(17): 11369-77.

Garrido C, Galluzzi L, Brunet M, Puig PE,
Didelot C, Kroemer G. (2006) Mechanisms
of cytochrome c release from
mitochondria. Cell Death and
Differentiation, 13(9): 1423-33.

Gross A, Pilcher K, Blachly-Dyson E, Basso E,
Jockel J, Bassik MC, Korsmeyer SJ, Forte
M. (2000). Biochemical and genetic
analysis of the mitochondrial response of
yeast to BAX and BCL-X(L). Molecular
and Cellular Biology, 20(9): 3125-36.

Guaragnella N, Antonacci L, Giannattasio S,
Marra E, Passarella S. (2008) Catalase T
and Cu,Zn-superoxide dismutase in the
acetic acid-induced programmed cell
death in Saccharomyces cerevisiae. FEBS
Letters, 582(2): 210-4.

Guaragnella N, Pereira C, Sousa MJ, Antonacci
L, Passarella S, Côrte-Real M, Marra E,
Giannattasio S. (2006) YCA1 participates
in the acetic acid induced yeast
programmed cell death also in a manner
unrelated to its caspase-like activity. FEBS
letters, 580(30): 6880-4.



References

59

Gudz TI, Tserng KY, Hoppel CL. (1997) Direct
inhibition of mitochondrial respiratory chain
complex III by cell-permeable ceramide.
The Journal of Biological Chemistry,
272(39): 24154-8.

Guicciardi ME, Leist M, Gores GJ. (2004)
Lysosomes in cell death. Oncogene,
23(16): 2881-90.

Guillas I, Kirchman PA, Chuard R, Pfefferli M,
Jiang JC, Jazwinski SM, Conzelmann A.
(2001) C26-CoA-dependent ceramide
synthesis of Saccharomyces cerevisiae is
operated by Lag1p and Lac1p. The EMBO
journal, 20(11): 2655-65.

Guillas I, Jiang JC, Vionnet C, Roubaty C, Uldry
D, Chuard R, Wang J, Jazwinski SM,
Conzelmann A. (2003) Human
homologues of LAG1 reconstitute acyl-
CoA-dependent ceramide synthesis in
yeast. The Journal of Biological Chemistry,
278(39): 37083-91.

Gulbins E, Dreschers S, Bock J. (2003) Role of
mitochondrial in apoptosis. Experimental
Physiology, 88(1): 85-90.

Haak D, Gable K, Beeler T, Dunn T. (1997)
Hydroxylation of Saccharomyces
cerevisiae ceramides requires Sur2p and
Scs7p. The Journal of Biological
Chemistry, 272(47): 29704-10.

Hanada M, Aimé-Sempé C, Sato T, Reed JC.
(1995) Structure-function analysis of Bcl-2
protein. Identification of conserved
domains important for homodimerization
with Bcl-2 and heterodimerization with
Bax. The Journal of Biological Chemistry,
270(20): 11962-9.

Hannun YA, Obeid LM. (2008) Principles of
bioactive lipid signalling: lessons from
sphingolipids. Nature Reviews. Molecular
Cell Biology, 9(2): 139-50.

Hearps AC, Burrows J, Connor CE, Woods GM,
Lowenthal RM, Ragg SJ. (2002)
Mitochondrial cytochrome c release
precedes transmembrane depolarisation
and caspase-3 activation during ceramide-
induced apoptosis of Jurkat T cells.
Apoptosis, 7(5): 387-94.

Heinrich M, Wickel M, Schneider-Brachert W,
Sandberg C, Gahr J, Schwandner R,
Weber T, Saftig P, Peters C, Brunner J,
Krönke M, Schütze S. (1999) Cathepsin D
targeted by acid sphingomyelinase-
derived ceramide. The EMBO Journal,
18(19): 5252-63.

Hengartner MO. (2000) The biochemistry of
apoptosis. Nature, 407(6805): 770-6.

Hotchkiss RS, Strasser A, McDunn JE, Swanson
PE. (2009) Cell death. The New England
Journal of Medicine, 361(16): 1570-83.

Jiang JC, Kirchman PA, Zagulski M, Hunt J,
Jazwinski SM. (1998) Homologs of the
yeast longevity gene LAG1 in
Caenorhabditis elegans and human.
Genome Research, 8(12): 1259-72.

Kanno T, Nishizaki T. (2011) Sphingosine
induces apoptosis in hippocampal neurons
and astrocytes by activating caspase-3/-9

via a mitochondrial pathway linked to
SDK/14-3-3 protein/Bax/cytochrome c.
Journal of Cellular Physiology, 226(9):
2329-37.

Karbowski M, Youle RJ. (2003) Dynamics of
mitochondrial morphology in healthy cells
and during apoptosis. Cell Death and
Differenciation, 10(8):870-80.

Kerr JFR, Wyllie AH, Currie AR. (1972)
Apoptosis: a basic biological phenomenon
with wide-ranging implications in tissue
kinetics. British Journal of Cancer, 26(4):
239-57.

Kishikawa K, Chalfant CE, Perry DK, Bielawska
A, Hannun YA. (1999) Phosphatidic acid is
a potent and selective inhibitor of protein
phosphatase 1 and an inhibitor of
ceramide-mediated responses. The
Journal of Biological Chemistry, 274(30):
21335-41.

Kitagaki H, Cowart LA, Matmati N, Montefusco
D, Gandy J, Vaena de Avalos S,
Novgorodov SA, Zheng J, Obeid LM,
Hannun YA. (2009) ISC1-dependent
metabolic adaptation reveals an
indispensable role for mitochondria in
induction of nuclear genes during the
diauxic shift in Saccharomyces cerevisiae.
The Journal of Biological Chemistry,
284(16): 10818-30.

Kitagaki H, Cowart LA, Matmati N, Vaena de
Avalos S, Novgorodov SA, Zeidan YH,
Bielawski J, Obeid LM, Hannun YA.
(2007). Isc1 regulates sphingolipid
metabolism in yeast mitochondria.
Biochimica et Biophysica Acta, 1768(11):
2849-61.

Korsmeyer SJ. (1995). Regulators of cell death.
Trends in Genetics, 11(3): 105-5.

Kroemer G, Galluzzi L, Brenner C. (2007)
Mitochondrial membrane permeabilization
in cell death. Physiological Reviews, 87(1):
99-163.

Kroemer G, Galluzzi L, Vandenabeele P,
Abrams J, Alnemri ES, Baehrecke EH,
Blagosklonny MV, El-Deiry WS, Golstein
P, Green DR, Hengartner M, Knight RA,
Kumar S, Lipton SA, Malorni W, Nuñez G,
Peter ME, Tschopp J, Yuan J, Piacentini
M, Zhivotovsky B, Melino G; Nomenclature
Committee on Cell Death 2009. (2009)
Classification of cell death:
recommendations of the Nomenclature
Committee on Cell Death 2009. Cell Death
and Differentiation, 16(1): 3-11.

Krown KA, Page MT, Nguyen C, Zechner D,
Gutierrez V, Comstock KL, Glembotski
CC, Quintana PJ, Sabbadini RA. (1996)
Tumor necrosis factor alpha-induced
apoptosis in cardiac myocytes.
Involvement of the sphingolipid signaling
cascade in cardiac cell death. The Journal
of Clinical Investigation, 98(12): 2854-65.

Lawen A. (2003) Apoptosis-an introduction.
BioEssays, 25(9): 888-96.

Lee JY, Hannun YA, Obeid LM. (1996)
Ceramide inactivates cellular protein



Characterization of the role of sphingolipids in the modulation of acetic acid-induced apoptosis

60

kinase Calpha. The Journal of Biological
Chemistry, 271(22): 13169-74.

Letai A, Bassik MC, Walensky LD, Sorcinelli MD,
Weiler S, Korsmeyer SJ. (2002) Distinct
BH3 domains either sensitize or activate
mitochondrial apoptosis, serving as
prototype cancer therapeutics. Cancer
Cell, 2(3): 183-92.

Lockshin RA, Zakeri Z. (2001) Programmed cell
death and apoptosis: origins of the theory.
Nature reviews. Molecular Cell Biology,
2(7): 545-50.

Ludovico P, Rodrigues F, Almeida A, Silva MT,
Barrientos A, Côrte-Real M. (2002)
Cytochrome c release and mitochondria
involvement in Programmed Cell Death
induced by acetic acid in Saccharomyces
cerevisiae. Molecular Biology of the Cell,
13(8): 2598-606.

Ludovico P, Sansonetty F, Silva M, Côrte-Real
M. (2003) Acetic acid induces a
programmed cell death process in the food
spoilage yeast Zygosaccharomyces bailii.
FEMS Yeast Research, 3(1): 91-6.

Ludovico P, Sousa MJ, Silva MT, Leão C, Côrte-
Real M. (2001) Saccharomyces cerevisiae
commits to a programmed cell death
process in response to acetic acid.
Microbiology (Reading, England), 147(Pt
9): 2409-15.

Luo X, Budihardjo I, Zou H, Slaughter C, Wang
X. (1998) Bid, a Bcl2 interacting protein,
mediates cytochrome c release from
mitochondria in response to activation of
cell surface death receptors. Cell, 94(4):
481-90.

Madeo F, Fröhlich E, Fröhlich KU. (1997) A
yeast mutant showing diagnostic markers
of early and late apoptosis. The Journal of
Cell Biology, 139(3): 729-34.

Madeo F, Fröhlich E, Ligr M, Grey M, Sigrist SJ,
Wolf DH, Fröhlich KU. (1999) Oxygen
stress: a regulator of apoptosis in yeast.
The Journal of Cell Biology, 145(4): 757-
67.

Madeo F, Herker E, Maldener C, Wissing S,
Lächelt S, Herlan M, Fehr M, Lauber K,
Sigrist SJ, Wesselborg S, Fröhlich KU.
(2002) A caspase-related protease
regulates apoptosis in yeast. Molecular
Cell, 9(4): 911-7.

Mager WH, Winderickx J. (2005) Yeast as a
model for medical and medicinal research.
Trends in Pharmacological Sciences,
26(5): 265-73.

Mao C, Xu R, Bielawska A, Obeid, LM. (2000)
Cloning of an alkaline ceramidase from
Saccharomyces cerevisiae. An enzyme
with reverse (CoA-independent) ceramide
synthase activity. The Journal of
Biological Chemistry, 275(10): 6876-84.

Mao C, Xu R, Bielawska A, Szulc ZM, Obeid,
LM. (2000) Cloning and characterization of
a Saccharomyces cerevisiae. Alkaline
ceramidase with specificity for
Dihydroceramide. The Journal of
Biological Chemistry, 275(40): 31369-78.

Marques M, Mojzita D, Amorim MA, Almeida T,
Hohmann S, Moradas-Ferreira P, Costa V.
(2006) The Pep4p vacuolar proteinase
contributes to the turnover of oxidized
proteins but PEP4 overexpression is not
sufficient to increase chronological
lifespan in Saccharomyces cerevisiae.
Microbiology (Reading, England), 152(Pt
12): 3595-605.

Mathias S, Peña LA, Kolesnick RN. (1998)
Signal transduction of stress via ceramide.
The Biochemical Journal, 335(Pt 3): 465-
80.

Matmati N, Kitagaki H, Montefusco D, Mohanty
BK, Hannun YA. (2009) Hydroxyurea
sensitivity reveals a role for ISC1 in the
regulation of G2/M. The Journal of
Biological Chemistry, 284(13): 8241-6.

Mcdonnell JM, Fushman D, Milliman CL,
Korsmeyer SJ, Cowburn D. (1999)
Solution structure of the proapoptotic
molecule BID: a structural basis for
apoptotic agonists and antagonists. Cell,
96(5): 625-34.

Mollapour M, Piper PW. (2007) Hog1 mitogen-
activated protein kinase phosphorylation
targets the yeast Fps1 aquaglyceroporin
for endocytosis, thereby rendering cells
resistant to acetic acid. Molecular and
Cellular Biology, 27(18): 6446-56.

Nagiec MM, Baltisberger JA, Wells GB, Lester
RL, Dickson RC. (1994) The LCB2 gene of
Saccharomyces and the related LCB1
gene encode subunits of serine
palmitoyltransferase, the initial enzyme in
sphingolipid synthesis. Proceedings of the
National Academy of Sciences of the
United States of America, 91(17): 7899-
902.

Nagiec MM, Nagiec EE, Baltisberger JA, Wells
GB, Lester RL, Dickson RC. (1997).
Sphingolipid synthesis as a target for
antifungal drugs. Complementation of the
inositolphosphorylceramide synthase
defect in a mutant strain of
Saccharomyces cerevisiae by the AUR1
gene. Journal of Biological Chemistry,
272(15): 9809-17.

Nissen TL, Hamann CW, Kielland-Brandt MC,
Nielsen J, Villadsen J. (2000) Anaerobic
and aerobic batch cultivations of
Saccharomyces cerevisiae mutants
impaired in glycerol synthesis. Yeast
(Chichester, England), 16(5): 463-74.

Ohta H, Yatomi Y, Sweeney, E, Hakomori S,
Igarashi Y. (1994) A possible role of
sphingosine in induction of apoptosis by
tumor necrosis factor-α, in human
neutrophils. FEBS letters, 355(3): 267-70.

Ozbayraktar FBK, Ulgen KO. (2009) Molecular
facets of sphingolipids: mediators of
diseases. Biotechnology Journal, 4(7):
1028-41.

Paiva S, Althoff S, Casal M, Leão C. (1999)
Transport of acetate in mutants of
Saccharomyces cerevisiae defective in



References

61

monocarboxylate permeases. FEMS
Microbiology letters, 170(2): 301-6.

Parra V, Eisner V, Chiong M, Criollo A, Moraga
F, Garcia A, Härtel S, Jaimovich E,
Zorzano A, Hidalgo C, Lavandero S.
(2008) Changes in mitochondrial dynamics
during ceramide-induced cardiomyocyte
early apoptosis. Cardiovascular Research,
77(2): 387-97.

Pereira C, Camougrand N, Manon S, Sousa MJ,
Côrte-Real M. (2007) ADP/ATP carrier is
required for mitochondrial outer membrane
permeabilization and cytochrome c
release in yeast apoptosis. Molecular
Microbiology, 66(3): 571-82.

Pereira C, Chaves S, Alves S, Salin B,
Camougrand N, Manon S, Sousa MJ,
Côrte-Real M. (2010) Mitochondrial
degradation in acetic acid-induced yeast
apoptosis: the role of Pep4 and the
ADP/ATP carrier. Molecular Microbiology,
76(6): 1398-410.

Pereira C, Silva RD, Saraiva L, Johansson B,
Sousa MJ, Côrte-Real M. (2008)
Mitochondria-dependent apoptosis in
yeast. Biochimica et Biophysica Acta,
1783(7): 1286-302.

Perrone GG, Tan S-X, Dawes IW. (2008)
Reactive oxygen species and yeast
apoptosis. Biochimica et Biophysica Acta,
1783(7): 1354-68.

Pettus BJ, Chalfant CE, Hannun, YA. (2002)
Ceramide in apoptosis: an overview and
current perspectives. Biochimica et
Biophysica Acta, 1585(2-3): 114-25.

Pinto I, Cardoso H, Leão C, van Uden N. (1989)
High enthalpy and low enthalpy death in
Saccharomyces cerevisiae induced by
acetic acid. Biotechnology and
Bioengineering, 33(10): 1350-2.

Pitson SM. (2011) Regulation of sphingosine
kinase and sphingolipid signaling. Trends
in Biochemical Sciences, 36(2): 97-107.

Proskuryakov SY, Konoplyannikov AG, Gabau
VL. (2003) Necrosis: a specific form of
programmed cell death? Experimental Cell
Research, 283(1): 1-16.

Rodriguez-Lafrasse C, Alphonse G, Broquet P,
Aloy MT, Louisot P, Rousson R. (2001)
Temporal relationships between ceramide
production, caspase activation and
mitochondrial dysfunction in cell lines with
varying sensitivity to anti-Fas-induced
apoptosis. The Biochemical Journal,
357(Pt 2): 407-16.

Ruvolo PP, Deng X, Ito T, Carr BK, May WS.
(1999) Ceramide induces Bcl-2
dephosphorylation via a mechanism
involving mitochondrial PP2A. The Journal
of Biological Chemistry, 274(29): 20296-
300.

Sakakura C, Sweeney EA, Shirahama T,
Hakomorpb S-I, Igarashpb Y. (1996)
Suppression of Bcl-2 gene expression by
sphingosine in the apoptosis of human
leukemic HL-60 cells during phorbol ester-

induced terminal differentiation. FEBS
Letters, 379(2): 177-80.

Samanta S, Stiban J, Maugel TK, Colombini M.
(2011) Visualization of ceramide channels
by transmission electron microscopy.
Biochimica et Biophysica Acta, 1808(4):
1196-201.

Saraiva L, Silva RD, Pereira G, Gonçalves J,
Côrte-Real M. (2006) Specific modulation
of apoptosis and Bcl-xL phosphorylation in
yeast by distinct mammalian protein
kinase C isoforms. Journal of Cell
Science, 119(Pt 15): 3171-81.

Saraste A, Pulkki K. (2000) Morphologic and
biochemical hallmarks of apoptosis.
Cardiovascular Research, 45(3): 528-37.

Sartorius U, Schmitz I, Krammer PH. (2001)
Molecular mechanisms of death-receptor-
mediated apoptosis. ChemBioChem, 2(1):
20-9.

Sato K, Noda Y, Yoda K. (2009) Kei1: a novel
subunit of inositolphosphorylceramide
synthase, essential for its enzyme activity
and golgi localization. Molecular Biology of
the Cell, 20(20): 4444-57.

Sawai H, Okamoto Y, Luberto C, Mao C,
Bielawska A, Domae N, Hannun YA.
(2000) Identification of ISC1 (YER019w)
as inositol phosphosphingolipid
phospholipase C in Saccharomyces
cerevisiae. The Journal of Biological
Chemistry, 275(50): 39793-8.

Schorling S, Vallée B, Barz WP, Riezman H,
Oesterhelt D. (2001) Lag1p and Lac1p are
essential for the Acyl-CoA-dependent
ceramide synthase reaction in
Saccharomyces cerevisae. Molecular
Biology of the Cell, 12(11): 3417-27.

Schubert KM, Scheid MP, Duronio V. (2000)
Ceramide inhibits protein kinase B/Akt by
promoting dephosphorylation of serine
473. The Journal of Biological Chemistry,
275(18): 13330-5.

Shimizu S, Matsuoka Y, Shinohara Y, Yoneda Y,
Tsujimoto Y. (2001) Essential role of
voltage-dependent anion channel in
various forms of apoptosis in mammalian
cells. The Journal of Cell Biology, 152(2):
237-250.

Sims KJ, Spassieva SD, Voit EO, Obeid LM.
(2004) Yeast sphingolipid metabolism:
clues and connections. Biochemistry and
Cell Biology, 82(1): 45-61.

Siskind LJ, Colombini M. (2000) The Lipids C2-
and C16-Ceramide form large stable
channels. Implications for apoptosis. The
Journal of Biological Chemistry, 275(49):
38640-4.

Siskind LJ, Feinstein L, Yu T, Davis JS, Jones
D, Choi J, Zuckerman JE, Tan W, Hill RB,
Hardwick JM, Colombini M. (2008). Anti-
apoptotic Bcl-2 family proteins
disassemble ceramide channels. The
Journal of Biological Chemistry, 283(11),
6622-30.

Siskind LJ, Kolesnick Richard N, Colombini, M.
(2006) Ceramide forms channels in



Characterization of the role of sphingolipids in the modulation of acetic acid-induced apoptosis

62

mitochondrial outer membranes at
physiologically relevant concentrations.
Mitochondrion, 6(3): 118-25.

Siskind LJ, Lokesnick R, Colobini M. (2002)
Ceramide channels increase the
permeability of the mitochondrial outer
membrane to small proteins. The Journal
of Biological Chemistry, 277(30), 26796-
803.

Siskind LJ. (2005) Mitochondrial ceramide and
the induction of apoptosis. Journal of
Bioenergetics and Biomembranes, 37(3):
143-53.

Spiegel S, Milstien S. (2003) Sphingosine-1-
phosphate: an enigmatic signalling lipid.
Nature Reviews. Molecular Cell Biology,
4(5): 397-407.

Taha T, Mullen T, Obeid LM. (2006) A house
divided: ceramide, sphingosine, and
sphingosine-1- phosphate in programmed
cell death. Biochimica et Biophysica Acta.,
22(5): 629-629.

Tsujimoto Y. (1998) Role of Bcl-2 family proteins
in apoptosis: apoptosomes or
mitochondria? Genes to Cells, 3(11): 697-
707.

Uemura S, Kihara A, Inokuchi J-I, Igarashi Y.
(2003) Csg1p and newly identified Csh1p
function in mannosylinositol
phosphorylceramide synthesis by
interacting with Csg2p. The Journal of
Biological Chemistry, 278(46): 45049-55.

Uemura S, Kihara A, Iwaki S, Inokuchi J-I,
Igarashi Y. (2007) Regulation of the
transport and protein levels of the inositol
phosphorylceramide
mannosyltransferases Csg1 and Csh1 by
the Ca2+-binding protein Csg2. The
Journal of Biological Chemistry, 282(12):
8613-21.

Vaena de Avalos S, Okamoto Y, Hannun YA.
(2004) Activation and localization of
inositolphosphosphingolipid phospholipase
C, Isc1p, to the mitochondria during
growth of Saccharomyces cerevisiae. The
Journal of Biological Chemistry, 279(12):
11537-45.

Vaena de Avalos S, Su X, Zhang M, Okamoto Y,
Dowhan W, Hannun YA. (2005) The
phosphatidylglycerol/cardiolipin
biosynthetic pathway is required for the
activation of inositol phosphosphingolipid
phospholipase C, Isc1p, during growth of
Saccharomyces cerevisiae. The Journal of
Biological Chemistry, 280(8): 7170-7.

Valenti D, Vacca R, Guaragnella N, Passarella
S, Marra E, Giannattasio S. (2008) A
transient proteasome activation is needed
for acetic acid-induced programmed cell
death to occur in Saccharomyces
cerevisiae. FEMS Yeast Research, 8:
400–404.

Vallée B, Riezman H. (2005) Lip1p: a novel
subunit of acyl-CoA ceramide synthase.
The EMBO Journal, 24(4): 730-41.

van Loo G, Schotte P, van Gurp M, Demol H,
Hoorelbeke B, Gevaert K, Rodriguez I,

Ruiz-Carrillo A, Vandekerckhove J,
Declercq W, Beyaert R, Vandenabeele P.
(2001) Endonuclease G: a mitochondrial
protein released in apoptosis and involved
in caspase-independent DNA degradation.
Cell Death and Differentiation, 8(12):
1136-42.

Walter D, Wissing S, Madeo F, Fahrenkrog B.
(2006) The inhibitor-of-apoptosis protein
Bir1p protects against apoptosis in S.
cerevisiae and is a substrate for the yeast
homologue of Omi/HtrA2. Journal of Cell
Science, 119(Pt 9): 1843-51.

Wang G, Silva J, Krishnamurthy K, Tran E,
Condie BG, Bieberich E. (2005). Direct
binding to ceramide activates protein
kinase Czeta before the formation of a
pro-apoptotic complex with PAR-4 in
differentiating stem cells. The Journal of
Biological Chemistry, 280(28): 26415-24.

Westermann B, Neupert W. (2000)
Mitochondria-targeted green fluorescent
proteins: convenient tools for the study of
organelle biogenesis in Saccharomyces
cerevisiae. Yeast, 16(15): 1421-7.

Wissing S, Ludovico P, Herker E, Büttner S,
Engelhardt SM, Decker T, Link A, Proksch
A, Rodrigues F, Corte-Real M, Fröhlich
KU, Manns J, Candé C, Sigrist SJ,
Kroemer G, Madeo F. (2004). An AIF
orthologue regulates apoptosis in yeast.
The Journal of Cell Biology, 166(7): 969-
74.

Xin M, Deng, X. (2006) Protein phosphatase 2A
enhances the proapoptotic function of Bax
through dephosphorylation. The Journal of
Biological Chemistry, 281(27): 18859-67.

Yan F, Polk DB. (2001) Kinase suppressor of ras
is necessary for tumor necrosis factor
alpha activation of extracellular signal-
regulated kinase/mitogen-activated protein
kinase in intestinal epithelial cells. Cancer
Research, 61(3): 963-9.

Zhang X, Li B, Zhang Y, Liu J. (2008) Ceramide
induces release of mitochondrial
proapoptotic proteins in caspase-
dependent and -independent manner in
HT-29 cells. Science in China, 51(1): 66-
71.

Zhang Y, Yao B, Delikat S, Bayoumy S, Lin XH,
Basu S, McGinley M, Chan-Hui PY,
Lichenstein H, Kolesnick R. (1997) Kinase
suppressor of Ras is ceramide-activated
protein kinase. Cell, 89(1), 63-72.




