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Avaliação e caracterização das propriedades antioxidante e antigenotóxicas de 

propolis português 

Resumo 

O própolis é uma substância produzida pelas abelhas (Apis mellifera L.) após a colheita de 

brotos e cascas de plantas e pela mistura posterior com a enzima salivar β-glicosidase. As 

abelhas utilizam o própolis nos seus favos como proteção, para reparar danos, construir locais 

assépticos para os ovos da rainha, e também como isolante térmico. A composição química do 

própolis varia geograficamente, com a flora disponível, a época da colheita, e da raça das 

abelhas. Vários grupos de compostos podem ser encontrados nos extractos de própolis, tais 

como, polifenóis, terpenóides, esteróides e aminoácidos. Estes compostos têm estado 

associados a diversas actividades biológicas: antioxidante, antimicrobiana, scanvenger de 

radicais livres, antigenotóxico/genotóxico e antimutagénico. O própolis português tem sido pouco 

estudado o que abre a perspectiva da sua valorização económica através da validação cientifica 

das suas actividades biológicas normalmente atribuídas a amostras de outras origens. Assim, o 

nosso objectivo prende-se com a análise e estudo do própolis português, nomeadamente no que 

respeita à sua caracterização química e avaliação das suas actividades biológicas. Uma amostra 

colhida na Beira Interior (Côa) foi usada para preparar um extracto etanólico de própolis (PEE) 

para testar em diferentes ensaios utilizando Saccharomyces cerevisiae como modelo biológico. 

Para investigar o efeito protector do PEE em células de levedura, efectuaram-se ensaios de 

viabilidade com peróxido de hidrogénio (H2O2). Para avaliar o efeito antigenotóxico de PEE usou-

se o ensaio cometa e para verificar a sua actividade antioxidante intracelular usou-se citometria 

de fluxo. A amostra de própolis foi analisada quimicamente para quantificar o teor em polifenóis 

totais e flavonóides, e os métodos de DPPH e ABTS foram usados para demonstrar a actividade 

antioxidante in vitro. Os nossos resultados sugerem que o própolis português tem capacidade 

antioxidante quando avaliada pelo ensaio DPPH (in vitro) e por citometria de fluxo (in vivo). Do 

mesmo modo, a viabilidade celular da levedura aumentou, tanto em condições de pré-incubação 

e co-incubação, na presença de um agente oxidante (H2O2). No entanto em incubações 

prolongadas de células com PEE observamos um decréscimo da viabilidade. O ensaio cometa 

sugere que o PEE tem efeito antigenotóxico, ao proteger o DNA contra stresse oxidativo, e 

genotóxico quando usado sozinho na incubação de células. Para além da acção antioxidante, 

estes resultados sugerem uma acção pró-oxidante do PEE. 
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Evaluation and characterization of antioxidant and antigenotoxic properties of 

Portuguese propolis 

Resume 

Propolis is a substance produced by bees (Apis mellifera L.) after harvest of buds and bark 

of plants and by subsequent mixing with the salivary enzyme β-glucosidase. Bees use propolis in 

their combs as protection, to repair damage, to build aseptic locals for the eggs of the queen, 

and also as a thermal insulator. The chemical composition of propolis varies geographically, with 

the available flora, the time of collection and the race of the bees. Different group of compounds 

can be found in propolis extracts, such as polyphenols, terpenoids, steroids and amino acids. 

These compounds have been associated with diverse biological activities: antimicrobial, 

antioxidant and scavenger of free radicals, antigenotoxic and genotoxic, antimutagenic. 

Portuguese propolis has been insufficiently studied, which possibilitates the opportunity for its 

economic valorization by scientifically support the biological activities commonly assigned to 

samples from other origins. Thus, our objective relates to the analysis and study of Portuguese 

propolis, particularly in what concerns chemical characterization and evaluation of biological 

activities. A sample collected in Beira Alta (Côa) was used to prepare an ethanol extract (PEE) 

and this extract was tested in different assays, using Saccharomyces cerevisiae as biological 

model. To investigate the protector effect of PEE in yeast cells, viability assay was made using 

hydrogen peroxide (H2O2). Comet assay was made to evaluate the antigenotoxic effect of PEE and 

flow cytometry to verify the antioxidant activity. The sample was analyzed chemically to quantify 

total polyphenolic and flavonoids content, and DPPH and ABTS to demonstrate the antioxidant 

activity in vitro. Our results suggest that Portuguese propolis has antioxidant capacity when 

assessed by the DPPH assay (in vitro) and flow cytometry (in vivo). Accordingly, viability has 

improved when propolis was assayed, either by pre-incubation or co-incubation with yeast cells 

shocked with an oxidant agent (H2O2). However, prolonged incubation of cells with high 

concentrations of PEE promoted decrease of viability. Results obtained by the comet assay 

suggest that PEE has antigenotoxic activity, protecting the genome against oxidative stress, and 

genotoxic effect when used alone in incubation of yeast cells. Besides the antioxidant activity, we 

provide results suggesting a prooxidant activity of PEE. 
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1. Introduction 

1.1. Oxidative stress and genome integrity 

1.1.1. Oxidative stress 

Reactive oxygen species (ROS) are formed during the reduction of molecular oxygen to 

water. This is a reaction occurring in aerobic organisms and it is involved in the production of 

energy in the electron transport chain. ROS such as superoxide anion (O2

·-), hydrogen peroxide 

(H2O2) and hydroxyl radicals (·OH) are constantly produced by the mitochondrial respiratory chain, 

ionizing radiation, metabolism of exogenous compounds, as a response against infections and 

inflammation (Huang et al., 2005) and by antioxidant defenses. They interfere with cell 

components including nucleic acids, proteins and lipids, causing several damages if not 

neutralized (Tran et al., 1995; Collins, 2009). 

In homeostasis, ROS are balanced by antioxidants but if this equilibrium is disrupted, 

either by an excess of free radicals production or by deficient antioxidant defenses, cells become 

under oxidative stress (Collins, 2009). This stage causes cellular damage, which may be involved 

in human diseases such as atherosclerosis, cancer, and neurodegenerative diseases (Parkinson 

and Alzheimer) (Good et al., 1996; Gssen et al., 1997; Halliwell et al., 1999) and in processes 

such as aging and apoptosis (Laun et al., 2001). 

Aerobic organisms can counteract the effects of ROS by enzymatic antioxidant or 

nonenzimatic processes that attract and inactivate ROS and maintain the redox stability of cells 

(Huang et al., 2005). Superoxide anion (O2

·-) produced by cellular respiration or by enzymatic 

reactions, such as NADPH oxidase and xanthine oxidase, is rapidly converted to H2O2, the 

principal cellular mediator of oxidative stress. Many mechanisms are intrinsically correlated with 

the formation of ROS and, among them the Fenton reaction has an important role (Figure 1). 

This reaction occurs in the presence of H2O2 that can be formed by endogenous metabolism or 

by an exogenous source. In the reduction of O2 in the electron transport chain a small amount of 

superoxide (O2

·-) is formed and is converted to H2O2 by superoxide dismutase, which reacts with 

Fe2+, formed by the release of protein-bound iron, resulting in the formation of ·OH radicals. The 

presence of NADH promotes Fe2+ replenishing by reduction of Fe3+. H2O2 can be depleted by 

catalase, peroxidases and reduced glutathione (Henle et al., 1997). The mechanisms of defense 
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from ROS in cells include low molecular weight scavengers, such as α-tocopherol, cysteine, β-

carotene, reduced glutathione or ascorbic acid and enzymatic systems, such as superoxide 

dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione dehydrogenase 

(GSH-Red) and glucose-6-phosphate dehydrogenase (G6PD) (Halliwell et al., 1989; Izawa et al., 

1995). 

 

 

Figure 1 – Cellular reactions leading to oxidative damage in DNA via the Fenton reaction (Adapted from 

Henle et al., 1997). 

1.1.2. DNA damage and repair  

The integrity and stability of DNA is essential for the survival and normal function of 

organisms. However, there are constantly damages by endogenous and exogenous genotoxic 

agents, including those that are produced by oxidative electron transport chain in mitochondria, 

ionizing radiation, metabolism of exogenous compounds, infection and inflammation. The DNA 

damage that can occur involves single- and double-stranded DNA breaks (SSB and DSB, 

respectively), base and sugar modifications, formation of apurinic/apyrimidinic (AP) lesions, and 

DNA-protein crosslinks (Newcomb et al., 1998; Wang et al., 1998; Friedberg, 2003; Boiteux et 

al., 2004). One of the most frequent lesions in DNA - the AP sites - can be formed by 

spontaneous hydrolysis of the N-glycosidic bond or by elimination of damaged or inappropriate 

bases. These lesions can be mutagenic and can lead to cell death (Huang et al., 2005). DNA 

bases are under several types of damage occurring by methylation, oxidation and deamination, 

that can cause lesions such as N7-methylguanine (N7-meG), 8-oxo-7,8-dihydroguanine (8-oxoG), 

5,6-dihydroxy-5-6-dihydrothymine (Tg) and uracil (in DNA). 8-oxoG is the most abundant product 
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of DNA oxidative damage and can produce GC to TA transversions, pairing with adenine, and 

potentially increases the risk of mutation and cancers (Kelley et al., 2003).  AP sites block DNA 

replication and transcription (Lindahl et al., 1974; Cadet et al., 1997). The cleavage of AP sites 

by AP endonucleases or by DNA N-glycosylases/AP lyases forms SSBs with 3’- or 5’-blocked 

ends that cannot be used as substrates by DNA polymerases or DNA ligases (Krokan, 1997). 

Besides, 3’- or 5’-blocked SSBs can be converted into highly toxic DSBs after DNA replication 

(Caldecott, 2001).  

Normally, organisms can respond to alterations in their genomic DNA by repairing the 

damage and restoring the genome to the normal physical and functional state, or they can 

support the lesions in a way that reduces their lethal effects (Friedberg and Wood, 1996). This 

DNA repair is possible due to cellular mechanisms such as base excision repair (BER), nucleotide 

excision repair (NER), mismatch repair (MMR), translesion synthesis (TLS), homologous 

recombination (HR) and non-homologous end joining (NHEJ) pathways (Prakash et al., 2000; 

Sluppehaug et al., 2003; Boiteux et al., 2004). 

The major DNA repair pathway for the removal of endogenous DNA damage in yeast and 

mammalian cells seems to be the BER pathway. This pathway is involved in the removal of DNA 

lesions such as 8-oxoG, uracil, thymine glycols and hydrates. Specific DNA glycosylases 

participate in BER and occur in two steps: these enzymes catalyze the excision of the base by 

cleavage of the glycosidic bond, leaving noncoding AP sites in DNA; then, the AP site is cleaved 

by AP endonucleases and the resulting gap is filled by action of DNA polymerase β (Boiteux et al., 

2004; Hanna et al., 2004). The nucleotide excision repair (NER) pathway operates on a large 

spectrum of base damages, mainly lesions that destabilize the double helix and perturb the DNA 

structure. These are usually bulky lesions produced by environmental mutagenic and 

carcinogenic agents such as ultra-violet light (UV) or DNA intrastrand and interstrand crosslinks. 

This pathway consists in the incision of the DNA strand on both sides of the lesion, resulting in 

the removal of the damage in an oligonucleotide fragment (25-30 oligonucleotides), followed by 

repair synthesis and ligation steps (Friedberg et al., 1996).   

1.1.3. Methods for DNA damage assessment  

DNA damage has been studied in a variety of organisms such as bacteria, cyanobacteria, 

phytoplankton, macroalgae, plants and animals like humans (Horio et al., 2007). Detection of 
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DNA damage is crucial in the study of processes such as carcinogenesis and ageing (Kumari et 

al., 2008). Several methods have been developed for DNA damage/repair assessment such as 

polymerase chain reaction (PCR), comet assay, halo, terminal deoxyribonucleotidyltrasnferase-

mediated deoxyuridine triphosphate nick end labeling (TUNEL) assay, HPLC-electrospray tandem 

mass spectrometry, fluorescence in situ hybridization (FISH) and flow cytometry (FCM) (Kumari 

et al., 2008). The correlation between the potentialities of each methodology, its advantages and 

disadvantages and the kind of specific results that can be obtained dictates the selection of the 

method.  

The comet assay or single cell gel electrophoresis (SCGE) was initially developed by Ostling 

and Johanson (1984) to quantify DNA damage using a microgel electrophoresis technique in 

neutral conditions, allowing exclusively the detection of DNA double-strand breaks. In 1988, 

Singh et al. adapted this method to alkaline conditions, allowing assessment of both double- and 

single-strand DNA breaks, as well the alkali labile sites expressed as frank strand breaks in the 

DNA (Dhawan et al., 2009). This method has been used to study the role of oxidative stress in 

human diseases, to detect effects of environmental exposure to genotoxins, and to better 

understand the importance of antioxidants in our diet (Collins, 2009). Nowadays the assay is well 

established in genotoxicity testing, it is simple, rapid and visual, and allows assessment of DNA 

damage and repair in individual cell populations. Other advantages include sensitivity (detection 

of low levels of DNA damage requires small number of cells -  10,000 - per sample), flexibility 

(allows the use of proliferating as well as non-proliferating cells), low cost and speed (Dhawan et 

al., 2009). Nevertheless, the comet assay has some limitations such as the requirement of viable, 

non-aggregated cell suspension and the impossibility of discrimination between strand breaks 

from base damage in sample containing necrotic and apoptotic cells. In addition, variation of 

results can occur due to sample variability (cells and cultures), image analysis systems or visual 

scoring, and the use of different DNA damage parameters (e.g. olive tail moment and percentage 

of DNA in the tail), which contribute to inter-laboratory variability (Dhawan et al., 2009). Even 

though, the advantages of the comet assay outweigh these disadvantages and it is, nowadays, 

intensively used to assess DNA damage and repair both quantitatively and qualitatively in 

individual cells (Olive et al., 2006). 
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1.1.4. Prevention of DNA damage/oxidative stress using phytochemicals  

Currently, the interest in finding naturally occurring antioxidants has increased, because 

they can replace synthetic antioxidants, which are being restricted due to reports of suspected 

carcinogenicity. Herbs have been used for a large range of purposes including medicine, nutrition, 

fragrances, cosmetic and industrial uses mainly due to their polyphenol contents, that promote 

the antioxidant potential, flavor and fragrance (Zeng et al., 2001).  

Chronic diseases such as cardiovascular diseases, cancer, or Parkinson and Alzheimer 

diseases tend to be associated to a large production of free radicals, which lead to oxidative 

stress. However, balanced diets, rich in fruits and vegetables have been associated with lower 

risk of these diseases, mainly because of antioxidant properties displayed by some of their 

constituents such as the polyphenolic compounds flavonoids (Arts et al., 2005).  In plants, the 

role of polyphenols is associated with defense mechanisms. In stress conditions, such as 

temperature alterations, UV exposure and pathogenic attacks, plants increase polyphenol 

production (Dixon et al., 1995). 

One of the most important attributes of polyphenols is their capacity to protect against 

oxidative damage. They are beneficial in heart diseases to protect from peroxidation of low-

density lipoprotein (LDL), and prevent against cancer and genomic instability by combating 

oxidative DNA damage (Fergunson, 2001). Polyphenols have been associated to antioxidant 

activity in vitro, being capable of scavenging a wide range of reactive oxygen and nitrogen species, 

such as superoxide anion, hydroxyl radical, peroxyl radicals, nitric oxide and peroxynitrous acid. 

Polyphenols can also chelate metal ions, such as iron and copper, preventing or minimizing their 

participation in Fenton reaction, and thus decreasing pro-oxidant activity of these reactive species 

(Manach et al., 2004; Halliwell et al., 2005). 

Nevertheless, some studies have shown flavonoid pro-oxidant activity in vitro. Pro-oxidant 

activity appears to require the presence of Fe3+ and high flavonoid concentrations, increasing the 

formation of Fe2+ that reacts with H2O2 in the Fenton reaction (Laughton et al., 1989). In addition, 

kaempferol can induce DNA degradation and concurrent lipid peroxidation in rat liver nuclei 

under aerobic conditions (Sahu et al., 1994).  
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 In the presence of copper and absence of H2O2, flavonoids may act as pro-oxidants rather 

than antioxidants, and this activity in vitro increases with concentration (Cao et al., 1997). The 

generation of reactive species and the subsequent damage to macromolecules in flavonoids-Cu2+-

O2 systems can be accounted for the following reaction sequences (Figure 2), where F represents 

flavonoids with the structure presented in Figure 3. However, this mechanism may occur in a 

different way in the intercellular medium because different cellular constituents can interfere with 

these reactions (Cao et al.,1997). 

 

 

Figure 2 – Generation of reactive species using copper as catalyst of Fenton reaction. Adapted from Cao et 

al. (1997). 

 

Figure 3 – Struture of the flavonoids Flavone, Flavanone and Isoflavone (Cao et al., 1997). 

1.2. Propolis 

Propolis is a resinous substance collected by honey bees (Apis mellifera L.) from the buds 

and bark of plants such as poplar (Populus spp.), birch (Betula alba), beech (Fagus sylvatica), 

chestnut (Aesculus hippocastanum) and alder (Alnus glutinosa) (Silica et al., 2005; Chen et al., 

2007) or from plants such as rosemary (Baccharis dracunculifolia), eucalyptus (Eucalyptus sp.) 

and pine (Araucaria angustifolia) (Sforcin et al., 2005). Bees mix the resinous substance 

collected from plants with the salivary enzyme β-glucosidase causing the hydrolysis of glycosyl 

flavonoids into flavonoids aglucones (Pereira et al., 2002). 

Etymologically, the word propolis comes from the Greek words pro – for or in defense – 

and polis – city – meaning defense of the hive (Sforcin, 2007). Bees use propolis in their combs 

as protection, to repair damage (cracks and/or openings), to build aseptic locals for the eggs of 
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the queen, to embalm killed invaders - avoiding problems arising from the putrefaction of the 

corpses (Simões et al., 2004) and preventing the proliferation of microbial infections (Laskar et 

al., 2010) - and also as a thermal insulator (Moreira et al., 2008; Fokt et al., 2011). 

1.2.1. Chemical composition of propolis and biological activities 

The composition of propolis varies geographically, with the available flora and the season 

of collection as well as with the race of the producing bees (Miguel et al., 2006; Sforcin et al., 

2011). In general, propolis is composed of 50% resin and vegetable balsam, 30% wax, 10% 

essential and aromatic oils, 5% pollen and 5% of other substances (Kalogeropoulos et al., 2009). 

This product is a complex mixture where about 300 compounds have been identified so far. 

Chemical compounds present in propolis belong to different groups, such as polyphenols 

(flavonoids including flavones, flavonones, flavonols, dihydroflavonols and chalcones; phenolic 

acids and their esters), terpenoids, steroids and amino acids (Banskota et al. 2002; Usia et al., 

2002; Melliou et al., 2004; Kalogeropoulos et al., 2009). With appropriate solvents such as water, 

methanol, hexane, acetone and ethanol, extracts of propolis can be obtained containing these 

compounds. The most used and more efficient in extracting the majority of the main propolis 

bioactive compounds seems to be ethanol (Gómez-Caravaca et al., 2006; Miguel et al. 2010), 

also used by beekeepers to make propolis “tincture”.  

Propolis has a huge variability worldwide and as such the chemical composition among 

samples from different continents differs considerably. The American propolis is mainly 

composed of terpenoids and prenylated derivatives of p-coumaric acids while European (Miguel 

et al., 2010) and Asian (Usia et al., 2002) propolis contain several types of flavonoids and 

phenolic acid esters. These compounds, in particular polyphenolic components, caffeic acid 

derivatives and flavonoids, have been associated with biological activities of propolis, namely 

antimicrobial (Murad et al., 2002; Silici et al., 2005; Orsi et al., 2005; Kalogeropoulos et al., 

2009; Nolkemper et al., 2010) cytotoxic and hepatoprotective (Banskota et al., 2000), 

radioprotective (Benkovic et al., 2008), antimutagenic (Varanda et al., 1999; Pereira et al., 2008), 

antioxidant (Mohammadzadeh et al., 2007; Moreira et al., 2008; Miguel et al., 2010; Valente et 

al., 2010; Laskar et al., 2010) and as a scavenger of free radicals (Banskota et al., 2000; Cardile 

et al., 2003). Tavares et al. (2006) showed that Brazilian green propolis acted as antigenotoxic at 

low concentration and as genotoxic substance at high concentration. Compounds that have 

“double face”, in other words, two different and opponent modes of action, are considered to 
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have a “Janus” effect (from the name of the roman god with two faces), and this type of 

compounds have been called Janus compounds (von Borstel et al., 1998). 

1.2.2. Polyphenol and flavonoid compounds 

The human diet is made up of more than 8000 polyphenols. They are phytochemicals 

derived from phenylalanine containing an aromatic ring with a reactive hydroxyl group. They can 

be divided into different classes, being the following the most important: flavonoids and phenolic 

acids (eg. gallic acid), stilbenes (eg. resveratrol) and lignins (eg. secoisolariciresinol). The group 

of flavonoids comprises seven classes: flavones, flavonol, flavonones, anticianidines, flavan, 

isoflavones, and chalcones (Araújo et al., 2011). Polyphenols functions in plants are related with 

the formation of flowers, fruits and seed pigmentation; the attraction of pollinators and dispersion 

of seeds; protection from UV radiation and the promotion of plant-microorganism interactions 

(Duthil et al., 2000; Schijlen et al., 2004). Polyphenols are fundamental in the human diet due to 

the antioxidant (Gladine et al., 2007) and chemopreventive properties (Araújo et al., 2011), 

protection of UV radiation (Liu et al., 2008) and prevention of oral diseases (Petti et al., 2009).  

1.2.3. Portuguese propolis 

In the Northern Hemisphere bees collect propolis in final spring, summer and beginning of 

autumn (Bankova et al., 1998; Sforcin, 2007). Results obtained with Portuguese propolis indicate 

differences in polyphenols composition of samples collected in winter and in spring, being such 

content higher in spring. Miguel et al. (2010) took samples from different areas of Algarve 

(Portugal) and concluded that large distance between apiaries are not necessary to found 

significant differences in propolis phenol and flavonoids contents. The presence of polyphenols 

such as flavonoids may explain the antioxidant capacity of propolis, since they can act as 

scavengers of free radicals. Samples from Algarve display higher scavenger 1,1-diphenyl-2-

picrylhydrazyl (DPPH) capacity in winter than in spring which is unexpected because propolis 

samples collected in spring usually have higher polyphenols and flavonoids content. So, this 

suggests that propolis phenol content and the antioxidant activity do not correlate, unlike what 

happens with propolis from the North and Centre of Portugal (Moreira et al. 2008); however, the 

studies available are still scarce to support this. 

  Chemical analysis of propolis from Northeast of Portugal demonstrated  the presence of 

37 compounds such as methylated and/or esterified or hydroxylated derivatives of common 
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polar flavonoids, peculiar derivatives of pinocembrin/pinobanksin containing a phenylpropanoic 

acid derivative moiety in their structure and a p-coumaric ester derivative dimmer (Falcão et al., 

2010). The chemical analysis of Portuguese propolis is very important in order to identify its 

compounds, to ascribe bioactive compounds to propolis activities, and to compare national 

propolis with other worldwide samples.  

1.3. Biological problem and objectives of this work  

Excessive agricultural and industrial activities promote increasing release of toxic 

substances in the environment, leading to deterioration of air, water and soil quality, which 

comprehend several risks to the survival of species (Dhawan et al., 2009). Nowadays, the 

interest in natural products has been increasing since the suspected toxicity of some synthetic 

compounds used in food (Stone et al., 2003), and because of that industries such as cosmetic 

and pharmaceutical have increased their efforts in obtaining bioactive compounds from natural 

products by extraction and purification (Halliwell, 1997).  

Many natural products have been identified as containing several bioactivities capable to 

provide protection against disorders associated with cancer, cardiovascular diseases, aging and 

neurodegenerative diseases such as Parkinson and Alzheimer (Good et al., 1996; Gassen et al., 

1997; Halliwell et al., 1999; Russo et al., 2003). These activities are correlated with the 

presence of polyphenols, mainly flavonoids, which have high antioxidant properties and also 

protect nuclear DNA from damage caused by hydrogen peroxide through the role of iron 

chelation (Melidou et al., 2005). However, some studies showed that several flavonoids act, 

either, as prooxidant and genotoxic (Cao et al., 1997).  

Saccharomyces cerevisiae has been used as a model to understand the complex 

physiological, biochemical and molecular processes in metazoan cells. The advantages of this 

biological model are well known and relate to fast growth, cheap cultivation and tractability. The 

molecular mechanisms of fundamental cellular processes are very similar between higher 

eukaryotes and yeast, in transcription, replication, and DNA repair. The full genome sequence of 

S. cerevisiae is now available, and so this organism is one of the most studied model systems in 

cell biology, molecular biology and genetics (Grzelak et al., 2006).  

 



 

10 
 

The aim of this work relates to the analysis and study of the antioxidant and antigenotoxic 

properties of Portuguese propolis. This work comprises a chemical characterization and the 

investigation of biological activities in a sample collected in Beira Alta (Côa), used to prepare a 

propolis ethanol extract (PEE), which was used in the following studies. 

In order to investigate the antigenotoxic/genotoxic effect of PEE the comet assay was 

performed to measure DNA damage after pre-, and co-incubation of S. cerevisiae cells with 

propolis. Hydrogen peroxide, which causes base oxidation and single-strand breaks mediated by 

the highly reactive hydroxyl radicals (Miloshev et al., 2002), was used as stressing agent. Cell 

viability under stress (5 mM H2O2) and non-stress conditions, was also evaluated in pre-, co- and 

post-incubation assays to understand propolis effects. To complete the study, flow cytometry was 

used to evaluate intracellular oxidation and antioxidant activity in vivo. 
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2. Material and Methods 

2.1.  Yeast strain, media and growth conditions 

In all experiments the haploid Saccharomyces cerevisiae strain BY4741 (MATahis3Δ1 

leu2Δ0 met15Δ0 ura3Δ0) (Brachmann et al., 1998) was used. Cells were grown on liquid YPD 

medium (1% w/v yeast extract, 1% w/v peptone and 2% w/v glucose), in an orbital shaker at 30 

ºC and 200 revolutions per minute (rpm). Growth of cultures was monitored by optical density 

measurement at 600nm (OD600).  

2.2.  Propolis extract 

Propolis was obtained in August 2010 from an apiary in Côa (Beira Interior), Portugal. For 

alcoholic extraction the raw propolis was incubated with 100 mL absolute ethanol in an orbital 

shaker at room temperature and in the dark. The solution was filtered (Whatman filter nr. 4) and 

the residue was re-dissolved in 100 mL absolute ethanol three times more. The filtrates were 

pooled and dried in a rotary evaporator, at 40 ºC under stirring, yielding the propolis ethanolic 

extract (PEE), which was stored in the dark at 4 ºC until further use. 

2.3. Viability assay 

Cultures of 5mL YPD media were incubated overnight at 30 ºC and 200 rpm (pre-

inoculum). Pre-inocula were diluted with fresh media to obtain 50 mL cultures with OD600 0.1 and 

incubated under the same conditions until OD600 0.4-0.8 (exponential phase), ensuring growth for 

2 generations. For each assay, cells were harvested from 5 mL of the culture by centrifugation at 

5869 x g, 2 min at 4 ºC, washed twice with the same volume of sterilized deionized H2O at 4 ºC 

and suspended in the same volume of S buffer (1 M sorbitol, 25 mM KH2PO4, pH 6.5) at 4 ºC. 

Assays were performed with these cell suspensions using PEE in pre-incubation, co-incubation 

and post-incubation conditions. 

A volume of 100 µL of cell suspension (in S buffer) was removed, serially diluted to 10-4 in 

sterilized deionized H2O and spread on solid YPD medium (YPD with 2% w/v agar), in order to 

obtain a control situation.  

In pre-incubation conditions, different stock solutions of PEE were added to the cell 

suspension for 300 µg/mL, 100 µg/mL or 25 µg/mL final concentration (final volume of 5 mL 



 

12 
 

was maintained in all samples).  Alternatively, S buffer and ethanol were added to a similar cell 

suspension, to be used as control. The different suspensions were incubated for 20 min, at 30 

ºC, 200 rpm. At the end of this incubation time, 100 µL was taken, serially diluted to 10-4 in 

sterilized deionized H2O and transferred to YPD plates as 7 drops of 40 µL each. Cells of the 

suspension were washed twice with the same volume of sterilized deionized H2O at 4 ºC and 

suspended in the same volume of S buffer.  From a stock solution of 1M H2O2, 25 µL were added 

for 5 mM final concentration and the suspension was incubated for 90 min under the same 

conditions. Samples were harvested at 5, 10, 15, 30, 60 and 90 min, serially diluted to 10-4 in 

sterilized deionized H2O and 7 drops of 40 µL each were transferred to YPD plates. Plates were 

incubated at 30 ºC for 48 h and the colonies were counted. Survival rates were calculated as 

percentage of colony-forming units (CFU), assuming 100% survival for cells of the suspension 

before any treatment (H2O2, propolis or ethanol). 

In co-incubation experiments, the procedure was the same, except for the simultaneous 

incubation with PEE or ethanol and H2O2. In post-incubation experiments the procedure was also 

similar except for the previous incubation with H2O2 (5 mM final concentration) with subsequent 

incubation with PEE or ethanol (control) for 20 min. 

2.4. Comet assay 

Cultures in 5 mL YPD medium were incubated overnight at 30 ºC, 200 rpm (pre-inoculum). 

Pre-inocula were diluted to obtain 10 mL cultures with OD600 0.1 and were incubated under the 

same conditions until OD600 0.4-0.8 (exponential phase), ensuring 2 generations growth. Cells 

were harvested by centrifugation of 1 mL of the suspension at 17608 x g, 2 min at 4 ºC, and 

washed twice with the same volume of deionized H2O at 4 ºC. The pellet was ressuspended in 

lyticase buffer (200U/mL lyticase, 500 µL S buffer 2x, 300 µL deionized H2O and 50 mM β-

mercaptoethanol) and incubated at 30 ºC, 200 rpm for 40 min in order to obtain spheroplasts. 

Spheroplasts were washed twice with deionized H2O, ressupended in the same volume of S 

buffer and distributed by aliquots of 50 µL. Each aliquot was centrifuged at 17608 x g, 2 min at 

4 ºC and the pellet ressuspended in 500 µL S buffer. PEE (300 µg/mL, 100 µg/mL and 25 

µg/mL), H2O2 (10 mM), and S buffer or ethanol (controls), were added according to the type of 

incubation described above: pre-, co- and post-incubation. In all cases, the incubation time was 

20 min, followed by two washes with deionized H2O. The resultant pellet was ressuspended in 

500 µL of 1.5% (w/v in S buffer) low melting agarose (LMA) at 35 ºC, spread onto glass slides 
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previously layered with 0.5% (w/v) normal melting agarose (NMA), covered with cover slips and 

incubated in ice in order to solidify the agarose. The cover slips were removed after 5min and the 

glass slides were submerged in lysing buffer (300 mM NaOH, 5 M NaCl, 0.5 M Ethylenediamine 

tetraacetic acid (EDTA), 0.1 M Tris-HCl, 0.05% w/v Laurylsarcosine, pH 10) for 20 min. Glass 

slides were incubated in electrophoresis buffer (300 mM NaOH, 0.5 M EDTA, 0.1 M Tris-HCl, pH 

10) for 20 min, placed in the electrophoresis chamber with electrophoresis buffer and 

electrophoresis was performed at 0.7 V/cm for 10 min at 4º C. The gels were neutralized with 

10 mM Tris-HCl buffer, pH 7.4, for 10 min, and samples were fixed, firstly during 10 min in 76% 

v/v ethanol and then 10 min with 96% v/v ethanol. The slides were dried at room temperature or 

in a laminar flow chamber and visualized immediately or stored at 4 ºC until observation. The 

comets were analyzed by fluorescence microscopy (Leica DMB 5000, black and with camera) 

after staining with 10 µL of GelRed™ (diluted 10,000 fold from the stock solution; Biotium). The 

tail length was measured with CometScore software. 

2.5. Flow cytometry  

Cultures in 5 mL YPD medium were incubated overnight at 30 ºC, 200 rpm (pre-inoculum). 

Pre-inocula were diluted to obtain 10 mL cultures with OD600 0.1 and were incubated under the 

same conditions until OD600 0.4-0.8 (exponential phase), ensuring 2 generations growth. Cells 

were harvested by centrifugation of 1 mL of the suspension at 17608 x g, 2 min at 4 ºC and 

washed twice with the same volume of PBS (137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.47 

mM KH2PO4, pH 7.4). The suspension was diluted to OD600 0.02 and 500 µL were removed for 

auto fluorescence measurement. Dichlorofluorescein diacetate (H2DCFDA) of was added to the 

suspension (50 µM final concentration) before incubation at 30 °C, 200 rpm during 1 h in the 

dark. Cells were washed twice with the same volume of PBS and aliquots of 1 mL were mixed 

with the PEE and H2O2 in co-incubation conditions and incubated at 30 °C, 200 rpm, 20 min in 

dark. Treatments were as follows: PBS, 10 mM H2O2, 2% ethanol, 300 µg/mL PEE, 300 µg/mL 

PEE and 10mM H2O2, 100 µg/mL PEE, 100 µg/mL PEE and 10mM H2O2, 25 µg/mL PEE, and 

25 µg/mL PEE and 10mM H2O2. Twenty thousand cells of each sample were analyzed by flow 

cytometry in an Epics® XLTM cytometer (Beckman Coulter) equipped with an argon-ion laser 

emitting a 488 nm beam at 15 mW. Green flurescence was collected through a 488 nm blocking 

filter, a 550 nm long-pass dichroic and a 225 nm band-pass filter. Data were analyzed and 

histograms were made with the WinMDI 2.8 software. 
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2.6. Chemical analysis of Propolis 

Spectrophotometric methods were used to perform PEE chemical analysis: the 

determination of total polyphenols and flavonoids contents and the evaluation of the antioxidant 

capacity of the sample. 

2.6.1. Quantification of total polyphenols content 

To quantify total polyphenol content in PEE, 300 mg ethanol solution of propolis, diluted 4-

fold (0.0499 mg/g final concentration), mixed with 2.0 g deionized H2O, 200 mg Folin-Ciocalteu 

reagent, 2,0 g of 10% NaCO3, and H2O to complete 10,000 g final mass of the mixture. The 

reducing power of phenols in the mixture was observed by optical density at 760 nm (OD760) after 

1 h incubation. Polyphenol concentration in propolis sample was calculated taking the standard 

gallic acid as reference and results were expressed as gallic acid equivalents. 

2.6.2. Quantification of flavonoids 

This method allows quantification of substances (flavonoids) capable to inhibit the 

chelation of aluminum of the ethanolic solution of AlCl3·6H2O. Five hundred mg of the solution 

AlCl3·6H2O 2% were added to 300 mg of ethanolic solution of propolis (10,887 mg/g) and 

ethanol was used to complete the mixture final mass of 10,000 g. After 30 min, chelation of 

aluminum was followed by optical density at 420 nm (OD420). Flavonoids concentration in PEE 

was calculated comparing with quercetin (1,2mg/g), used as standard, and results are expressed 

as quercetin equivalents.    

2.6.3. DPPH assay 

One of the main referred propolis activities is antioxidant capacity. This capacity can be 

tested by chemical assays such as DPPH or 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) 

(ABTS) methods. DPPH assay quantifies the existence of antioxidant activity of a solution that can 

reduce the DPPH molecule, by the capture of the free electron of nitrogen atom present in DPPH. 

xThis reduction is visible by the loss of violet colour and is followed by OD517, after 20 min in dark. 

Two hundred mg of PEE 4x diluted (0.0498 mg/g final concentration) were added to 500 mg 

ethanol solution of DPPH (0.5 mM) and the final mass of the mixture (3,000 g) was completed 

with absolute ethanol. After 20 min incubation OD517 was measured and the amount of 
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antioxidant substances present in PEE was calculated taking the standard gallic acid as reference 

(5 mg/g 5x diluted) and results were expressed as gallic acid equivalents.  

2.6.4. ABTS assay 

The antioxidant capacity of propolis extract was also determined by the ABTS assay, which 

quantifies the substances capable to inhibit oxidation of ABTS radical. ABTS work-solution (2.5 g) 

was added to 100 mg of PEE (10,887 mg/g) and ethanol was added to complete a final mass of 

the mixture of 3,000 g. After 30 min incubation in the dark, the optical density of the samples 

was measured at 734 nm and the amount of antioxidant substances present in propolis sample 

was calculated taking the standard gallic acid as reference (5mg/g 5x diluted) and results were 

expressed as gallic acid equivalents.   

2.7. Statistic analysis  

The experiments were done in triplicate and results are presented as a mean±standard 

deviation (SD). One-way analysis of variance (ANOVA) was used for comparison of more than two 

means and Tukey’s test was used to perform multiple comparisons. All asterisks indicate 

statistically significant differences when compared to the respective control: * means p < 0.05, ** 

means p  < 0.01, and *** means p < 0.001. 
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3. Results 

 

Several reports in the literature have recently provided evidence of the anticancer and 

antioxidant properties of ethanolic extracts of Portuguese propolis (Moreira et al., 2008; Miguel et 

al., 2010; Valente et al., 2011). Based on the documented antioxidant properties and flavonoids 

presence in propolis, we decided to investigate the effect of a Portuguese propolis ethanol extract 

(PEE) against oxidative stress in S. cerevisiae cells measured as viability and antigenotoxicity. 

3.1. Effects of PEE on cell viability under stress conditions  

In viability assays, three methodologies were applied: pre-incubation, co-incubation and 

post-incubation. In all cases, cultures of yeast cells were diluted 50 fold in S buffer when 

incubated with PEE. In pre-incubation experiments, cultures were incubated with PEE at 30 ºC, 

200 rpm for 20 min, washed twice with deionized H2O and subsequently incubated with 5 mM 

H2O2 under the same conditions. Aliquots of the culture were harvested at different time-points, 

diluted (10-4 dilution) and plated solid YPD medium in order to count colonies after 48 h 

incubation at 30 ºC. Cell death was considered as loss of viability expressed as percentage of 

colonies of test plates when compared to the reference plate, without toxic treatment. A control 

experiment without PEE and H2O2 was included so that viability of untreated and non-stressed 

cells could be determined. Results obtained (Figure 4) show that yeast cells when exposed to 5 

mM H2O2 had a significant decrease in survival rate. However, when cells were pre-treated with 

300 µg/mL (Figure 4A) and 100 µg/mL (Figure 4B) of PEE, loss of viability was slower during 

the 90 min of exposure to 5 mM H2O2. As expected, cells without any treatment and treated only 

with PEE or ethanol 2% showed a nearly constant survival rate for 90 min incubation. These 

results suggest that PEE in pre-incubation protect yeast cells against oxidative stress, by 

promoting cell adaptation to oxidative stress.   
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Figure 4 – Pre-incubation with PEE increases viability of S. cerevisiae cells under oxidative stress. Yeast 
cells were incubated with PEE (A: 300 µg/mL; B: 100 µg/mL) for 20 min, washed and suspended in S buffer, and 

subsequently, incubated with 5 mM H2O2 for different time-points (0, 5, 10, 20, 30, 60 and 90 min). At each time-
point, an aliquot was collected, diluted to 10-4 and spread on YPD plates. Colonies were counted after 48 h 
incubation at 30 ºC. The same procedure was applied to all treatments: cells only with S buffer (  ), treated with 
H2O2 ( ), treated with 2% ethanol ( ), treated only with PEE ( ) and treated with PEE and H2O2 ( ). Data are 
the mean±SD of three independent experiments. 
 

To investigate a direct antioxidant activity of PEE on the toxicant we have performed co-

incubation experiments. Cells were incubated simultaneously with PEE (300 µg/mL, 100 µg/mL 

and 25 µg/mL) and 5 mM H2O2 under the same conditions. Aliquots of the culture were 

harvested at different time-points, diluted (10-4 dilution) and plated on YPD plates in order to 

count colonies after 48 h incubation at 30 ºC. Cell death was considered as loss of viability 

expressed as percentage of colonies of test plates when compared to the reference plate, without 

toxic treatment. A control experiment without PEE and H2O2 was included so that viability of 

untreated and non-stressed cells could be determined. Results obtained (Figure 5) show that 

yeast cells when exposed to 5 mM H2O2 had a significant decrease in survival rate. However, 

when cells were incubated with of PEE, the loss of viability was slower during the 90 min of 

exposure to 5 mM H2O2. As expected, cells without any treatment and treated only with PEE or 

ethanol 2% displayed a nearly constant survival rate during all the experiment. At 100 µg/mL 

(Figure 5B) PEE provided more protection when compared with the other concentrations (figs. 5A 

and 5C). These results suggest that PEE protects yeast cells against oxidative damage also in co-

incubation with H2O2. 
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Figure 5 – PEE increases viability of S. cerevisiae cells when co-incubated with H2O2. Yeast cells were co-
incubated with PEE (A: 300 µg/mL; B: 100 µg/mL; C: 25 µg/mL) and 5 mM H2O2 for different time-points (0, 5, 10, 

20, 30, 60 and 90 min). At each time-point, an aliquot was collected, diluted to 10-4 and spread on YPD plates. 
Colonies were counted after 48 h incubation at 30 ºC. The same procedure was applied to all treatments: cells only 
with S buffer (  ), treated with H2O2 ( ), treated with 2% ethanol ( ), treated only with PEE ( ) and treated 
with PEE and H2O2 ( ). Data are the mean±SD of three independent experiments. 

 

After investigating protection in pre- and co-incubation, we have performed post-incubation 

experiments to study if PEE promotes recovery from damage caused by H2O2 in yeast cells. Cells 

were incubated with 5 mM H2O2 during 20 min, at 30 ºC, 200 rpm, washed twice and 

subsequently incubated with PEE (300 µg/mL, 100 µg/mL and 25 µg/mL) for 20 min. Aliquots 

of the culture were harvested at different time-points, diluted to 10-4 and spread on YPD plates in 

order to count colonies after 48 h incubation at 30 ºC. Cell death was considered as loss of 

viability expressed as percentage of colonies of test plates when compared to the reference plate, 

without toxic treatment. A control experiment without PEE and H2O2 was included so that viability 

of untreated and non-stressed cells could be determined. Results obtained (Figure 6) show that 

post-treatments with PEE with yeast cells exposed to 5 mM H2O2 did not change significantly 

survival rate, except for 300 µg/mL (Figure 6A) PEE, which promoted faster loss of viability than 

with H2O2 alone. These results suggest that PEE at 100 µg/mL and 25 µg/mL did not improve 

oxidative damage recovery after damage in cells promoted by H2O2,. However, at 300 µg/mL 

evidence suggests that oxidative damage is more pronounced. As expected, cells without any 

treatment and treated only with PEE or 2% ethanol showed a nearly constant survival rate 

throughout the experiment. 
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Figure 6 – Post-incubation with PEE did not affect the viability of S. cerevisiae cells exposed to oxidative 

stress. Yeast cells were incubated 10 min with 5 mM H2O2, washed and incubated with PEE (A: 300 µg/mL; B: 100 

µg/mL; C: 25 µg/mL) for 10 min. At each time-point 0, 10, 20, 30, 40 min, an aliquot was collected, diluted to 10-4 

and spread on YPD plates. Colonies were counted after 48 h incubation at 30 ºC. The same procedure was applied 
to all treatments: cells only with S buffer (  ), treated with H2O2 ( ), treated with 2% ethanol ( ), treated only 
with PEE ( ) and treated with PEE and H2O2 ( ). Data are the mean±SD of three independent experiments. 

  

3.2. PEE protects yeast cells from DNA damage by H2O2 

The capacity of propolis decrease DNA damage promoted by H2O2 has been scarcely 

reported before (Russo et al., 2006). In addition, to our knowledge, Portuguese propolis has not 

been studied for antigenotoxicity. Therefore, we decided to investigate antigenotoxicity of 

Portuguese propolis, using the yeast comet assay in cells, under pre- and co-incubation 

conditions. 

Yeast spheroplasts were pre-treated with 300 µg/mL, 100 µg/mL and 25 µg/mL in S 

buffer to maintain osmotic protection of spheroplasts, and then, exposed to 10 mM H2O2. Several 

controls were included: incubation only with S buffer; incubation with ethanol as control of the 

dilutions of PEE used; incubation with H2O2; and incubation only with PEE.  Control experiments 

indicate that S buffer (untreated cells) and ethanol (PEE solvent) did not cause damage to DNA 

(Figure 7). As expected, H2O2 increased dramatically comet tail length and when yeast 

spheroplasts were treated with PEE before exposure to H2O2, a statistically significant decrease in 

comet tail length was observed when compared with the control situation (H2O2) (Figures 7 and 8). 

 

 

 

 



 

20 
 

U
ntr

ea
te

d c
el

ls 2O
2

10
 m

M
 H

E
th

an
ol

30
0µ

g/m
L P

E
E 2O

2

30
0µ

g/m
L P

E
E
+H

10
0µ

g/m
L P

E
E 2O

2

10
0µ

g/m
L P

E
E
+H

25
µg

/m
L P

E
E 2O

2

25
µg

/m
L P

E
E
+H

0

10

20

30

40

T
a

il
 l

e
n

g
th

 (


m
)

 
Figure 7 - Pre-treatment of S.cerevisiae cells with PEE protects DNA against oxidative damage by H2O2. 

Spheroplasts were incubated with PEE (300 µg/mL, 100 µg/mL and 25 µg/mL) for 20 min, washed, and 

subsequently incubated with 10mM H2O2 for 20min. In samples with exclusive PEE treatment H2O2 was replaced by S 

buffer. DNA damage was analyzed with the yeast comet assay (see Materials and Methods). Cells without any 

treatment were included in the experiment (untreated cells) as well as cells treated with ethanol and with H2O2 (10 

mM H2O2) and treated only with PEE solvent (ethanol). Mean±SD values are from three independent experiments (* 

represent p < 0.05 and *** p < 0.001). 

 

 

Figure 8 – Photomicrographss of yeast comets after DNA staining with GelRed. A: control experience only 

with S buffer; B: cells treated with ethanol before incubation with 10 mM H2O2; C: incubation with ethanol before 

incubation with S buffer; D: incubation with 300 µg/mL PEE before incubation only with S buffer; E: incubation with 

300 µg/mL PEE before incubation with 10 mM H2O2; F: incubation with 100 µg/mL PEE before incubation only with 

S buffer; G: incubation with 100 µg/mL PEE before incubation with 10 mM H2O2; H: incubation with 25 µg/mL PEE 

before incubation only with S buffer; I: incubation with 25 µg/mL PEE before incubation with 10 mM H2O2. All 

images were obtained at 400x magnification. 
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When cells were incubated only with 100 µg/mL of PEE, a statistically significant increase 

in comet tail length compared with cells treated with ethanol was observed, suggesting that PEE 

has also genotoxic activity. As depicted in Figure 7, genotoxicity did not correlate directly with 

PEE, however, this activity is in accordance with a previous report by Tavares et al. (2006) who 

concluded that PEE is both, genotoxic and antigenotoxic. 

Subsequently, we decided to assay co-incubation of yeast cells with PEE and H2O2 to 

investigate if antioxidant activity of PEE protects DNA cells from damage under oxidative stress 

conditions. In this experiment we incubated spheroplasts with PEE (300 µg/mL, 100 µg/mL and 

25 µg/mL) and 10 mM of H2O2 for 20 min and then we analyzed DNA damage. Several controls 

were included: incubation only with S buffer; incubation with ethanol as control of the dilutions of 

PEE used; incubation only with H2O2; and incubation only with PEE.  Control experiments indicate 

that S buffer did not cause damage of DNA, but ethanol caused a significant increased in the tail 

length of the comets (Figure 9). In addition, H2O2 increased dramatically comet tail length and 

when yeast spheroplasts were treated only with PEE, we observed a statistically significant 

increase in tail length comparing with the control (ethanol). These results suggest that PEE acted 

as a genotoxic agent to S. cerevisiae cells. However, in the presence of a toxic agent, H2O2, 300 

µg/mL PEE displayed antigenotoxic activity, since the tail length of the comets had a statistically 

significant decrease relatively to the control (H2O2) (Figures 9 and 10). So, in co-incubation 

conditions PEE can act either, as an antigenotoxic and as genotoxic agent. Interestingly, while 

genotoxicity was observed for all assayed concentrations, antigenotoxicity was only observed for 

the higher concentration (300 µg/mL).  
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Figure 9 – Co-incubation of S. cerevisiae cells with 300 µg/mL PEE protects cells from DNA damage under 

oxidative stress with 10 mM of H2O2. In samples with exclusive PEE treatment H2O2 was replaced by S buffer. DNA 

damage was analyzed with the yeast comet assay (see Materials and Methods). Cells without any treatment were 

included in the experiment (untreated cells; suspended in S buffer) as well as cells treated with ethanol and with H2O2 

(10 mMH2O2) and treated only with PEE solvent (ethanol). Mean±SD values are from three independent experiments 

(* represent p < 0.05, ** p < 0.01 and *** p < 0.001). 
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Figure 10 – Photomicrographs of yeast comets after DNA staining with GelRed. A: control experience only 

with S buffer; B: cells treated with 10 mM H2O2; C: incubation with ethanol; D: incubation with 300 µg/mL PEE; E: 

incubation with 300 µg/mL PEE and 10 mM H2O2; F: incubation with 100 µg/mL PEE; G: incubation with 100 

µg/mL PEE and 10 mM H2O2; H: incubation with 25 µg/mL PEE; I: incubation with 25 µg/mL PEE and 10 mM H2O2. 

All images were obtained at 400x magnification. 

3.3. Chemical characterization of propolis 

To characterize chemically propolis used in this work we analyzed the total content of 

polyphenols and flavonoids, the main potentially bioactive compounds found in propolis. We 

analyzed total polyphenols with the Folin-Ciocaulteu method by measuring OD760 after reaction 

PEE, Folin-Ciocaulteu reagent and Na2CO3, the result was expressed in mg galic acid equivalent/g 

of sample. To analyze the flavonoids content, we used AlCl3·H2O2, which is quelated by flavonoids, 

resulting a yellow color proportional to the concentration flavonoids and the result was expressed 

in mg quercetine equivalent /g of sample. In addition, we used DPPH (violet color) and ABTS 

(blue-green color) radicals to quantify the in vitro antioxidant capacity of PEE, both in mg galic 

acid  equivalent/g of sample. The results are express in table 1. We can’t comparing ours results 

of DPPH and ABTS with others reports, because no one did the methods in mg/g of sample like 

us. 

Table 1 – Chemical analysis of PEE. Total polyphenols and flavonoids content, and in vitro antioxidant 

activity of PEE by DPPH and ABTS methods.  

 
Total Polyphenols 

(mg GAE/g) 

 
Flavonoids  
(mg QE/g) 

 
DPPH 

(mg GAE/g) 

 
ABTS 

(mgGAE/g) 
 

160,40±16,56 

 

30,21±0,52 

 

50,46±3,00 

 

46,29±12,41 
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3.4. PEE decreases intracellular oxidation 

Chemical characterization of PEE suggests antioxidant capacity of PEE, which correlates 

with results obtained in viability assays with cells stressed with H2O2. To investigate if PEE 

influences the intercellular oxidation in the presence of H2O2, we have performed experiments in 

co-incubation conditions using flow cytometry with H2DCFDA as probe. This substance enters the 

cell and is deacetylated to dichlorofluorescein (DCFH2) by intracellular esterases. The 

deacetylated form DCFH2 is hydrophilic and becomes trapped inside the cells due to 

impermeability of plasma membranes. In the presence of oxidants, DCFH2 oxidizes, forming DCF, 

which is fluorescent with excitation at 530nm and emission at 485nm. With this approach, we 

expected to observe a decrease in fluorescence in cells treated with PEE and H2O2 10mM 

comparing with controls (H2O2). As depicted in Figure 11, treatment with PEE decreased 

intracellular fluorescence in a dose-dependent manner when compared with cells treated only 

with 10 mM H2O2. To verify that fluorescence measured in the cytometer was from intracellular 

fluorochrome, we analyzed an aliquot of cells from each sample in fluorescence microscopy 

(Figure 12). As shown in Figure 12, a significant proportion of cells displayed intracellular 

fluorescence upon incubation with H2DCFDA. 

 

Figure 11 – Intercellular oxidation of S. cerevisiae cells co-incubated with PEE and 10 mM H2O2, by flow 

cytometry. Cells were loaded with H2DCFDA, treated with PEE and 10 mM H2O2 for 20 min and analyzed for 

fluorescence by flow cytometry. Data are from a representative experiment from three independent experiments. 
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Figure 12 – Photomicrographs of S. cerevisiae cells with fluorescence (H2DCFDA) after co-incubation with S 

buffer (BY; 200x magnification), ethanol (EtOH; 400x magnification), H2O2 10 mM (H2O2; 200x magnification), and 

PEE and H2O2 (300+H2O2; 400x magnification). For each sample bright field (left image) and fluorescence microscopy 

(right image) are presented. Arrows point to cells displaying fluorescence. 
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4. Discussion 

Our interest in Portuguese propolis relates to the existence of only few reports on biological 

activities, namely antioxidant and antigenotoxic and genotoxic. In the last decades propolis has 

been widely study to complement its use in medicine, cosmetic and food. Over the last decades, 

research has been engaged to support scientifically characteristics that confer propolis the 

traditionally known healing properties and subsequently increase its economical valorization. The 

principal significance of the study of propolis relates to the importance of standardization  for its 

acceptance as a medicine (Sforcin et al., 2011). One of the most documented characteristics of 

propolis is antioxidant activity (Silici et al., 2005), free radical scavenging (Banskova et al., 2000; 

Russo et al., 2003; Simões et al., 2004), antigenotoxicity and genotoxicity (Tavares et al., 2006), 

antimutagenicity (Varanda et al., 1999), anti-cancer activity (Valente et al., 2011) and 

antimicrobial activity (Kalogeropoulos, et al., 2009). In the literature on Portuguese propolis 

several reports mention mainly antioxidant potential (Moreira et al., 2008; Miguel et al., 2010; 

Moreira et al., 2011) and the potencial to inhibit human renal cancer cell growth (Valente et al., 

2011). 

In our work, we aimed to further support the antioxidant activity and the 

antigenotoxic/genotoxic activities of Portuguese propolis ethanolic extract. When we incubated 

cells firstly with PEE and then with H2O2, we observed an increase in cell viability relatively with 

the control (H2O2) (Figure 4). These results suggest that PEE activates the antioxidant 

mechanisms in cells, promoting an alert state in intercellular medium allowing cells to cope more 

efficiently with oxidative stress. Some reports suggest that polyphenols can act either, as anti-

oxidant and as pro-oxidant, mainly by promoting the Fenton reaction with cooper ions (Cao et al., 

1997). In co-incubation with PEE and H2O2, we observed a more pronounced increase in cell 

viability when 100 µg/mL was used relatively with the control situation (H2O2) (Figure 5B). This 

suggests that a direct ROS scavenging effect (co-incubation) is more efficient than an activation of 

stress responses (pre-incubation) in promoting cell survival under oxidative stress. However, 

when cells were incubated only with PEE, in the concentration of 300 µg/mL and 100 µg/mL, 

we observed decreased cell viability in co-incubation than in pre-incubation experiments. In the 

former case cells were in contact with PEE and H2O2 for 90 min, far more than the 20 min 

incubation with PEE in pre-incubation experiments. Therefore, the pro-oxidant activity would have 

more impact in cell viability as is further supported by the dose-dependent decrease in cell 
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viability caused by PEE in co-incubation (Figure 5). To complete the study of the effect of PEE in 

cell viability, we did a post-incubation experience to verify if PEE can improve recovery from 

exposure to an oxidative agent. Our results suggest that PEE does not improve recovery upon 

oxidative shock and may even contribute to decrease cell viability, especially at high 

concentrations. This further support the prooxidant activity of PEE discussed above, which is 

especially patent at high concentrations.  

We have performed the yeast comet assay to investigate the antigenotoxic/genotoxic 

effects of PEE. When cells were pre-treated with PEE, before H2O2 exposure, we detected a 

statistically significant decrease of comet tail length in all concentrations used (Figure 7). On the 

other hand, in incubation only with PEE, we observed an increase of comet tail length relatively of 

the control (ethanol) in the concentration of 100 µg/mL (Figure 7). These results, indicating that 

PEE has antigenotoxic and genotoxic activities, correlate with viability assays, in which protection 

against oxidative stress and toxicity were detected. We did a complementary experience, using 

co-incubation, to investigate if PEE protects DNA under oxidative stress with H2O2. Here, again, 

PEE displayed an antigenotoxic and genotoxic effect on yeast cells (Figure 9). Tavares et al. 

(2006) have reported before antigenotoxicity and genotoxicity of hydro-alcoholic propolis extracts 

from Brazilian propolis in mammalian cells. Our results are in accordance with this study and 

suggest that Portuguese propolis can have similar biological activities than propolis from South 

America. 

Interestingly, genotoxicity of PEE, in experiments without H2O2 treatment, was higher in co-

incubation than in pre-incubation experiments (Figures 7 and 9). This difference can be explained 

by the experimental design of these experiments, since in pre-incubation, cells were exposed to 

PEE, washed and incubated with S buffer, while in co-incubation, cells were analyzed with the 

comet assay immediately after incubation with PEE. Therefore, pre-incubation experiments allow 

cells to repair DNA damage before application of the comet assay. This argues in favor of an 

induction of an alert state of cells discussed above for viability assays. In fact here we show that 

PEE has mild genotoxic activity, which can be a consequence of the prooxidant properties of PEE 

that promote activation of cellular stress responses. Under these conditions, cells become more 

prepared to cope with stress leading to improved viability. 

Our sample of propolis has a total polyphenolic and flavonoids content relatively close to 

propolis from Portuguese propolis from Fundão (Moreira et al., 2008), Indian propolis (Laskar et 
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al., 2010) and to Brazilian propolis (Alencar et al., 2007; Mello et al., 2010). However, 

comparisons should be cautious due to differences between the solvent used for the extracts 

(different percentages of ethanol) and in the procedure to obtain the extracts. To our knowledge 

antioxidant activity of PEE (extraction only with ethanol), measured by the DPPH and ABTS 

assays, has not been reported before. Therefore, comparison, in terms of in vitro antioxidant 

capacity between Portuguese propolis and propolis from different origins is not possible. 

Nevertheless, we show evidence suggesting that Portuguese propolis has similar composition in 

polyphenolols and flavonoids, the phytochemicals with more potential to have biological activity 

found in propolis. This correlates with the in vitro antioxidant activity and protection against 

oxidative stress measured in terms of viability and antigenotoxicity. 

To detect the intracellular antioxidant activity of PEE in living cells, we used flow cytometry 

with a redox-sensitive fluorochrome. As expected, cells displayed decrease in intracellular 

oxidation by incubation with PEE upon oxidative shock (Figure 11). This dose-dependent 

intracellular antioxidant activity is in accordance with the in vitro antioxidant activity and the 

protection effect in viability and antigenotoxicity upon oxidative shock.  

In this work we present evidence strongly suggesting that Portuguese propolis has 

antioxidant and prooxidant activity and antigenotoxic and genotoxic activity, which fits in the so-

called “Janus” effect. According to this model, substances that has dual effect, one positive and 

one negative, are “Janus” compounds (von Brostel et al., 1998). 

Portuguese propolis had been demonstrate an important significance in medicine, namely 

in Hereditary spherocytosis (HS) (Moreira et al., 2011), to protect erythrocytes from damage 

promoted by free radicals and inhibition of human renal cancer cell growth (Valente et al., 2011) 

and  its antioxidant properties could be extensible used mainly in food industry (Moreira et 

al.,2008; Miguel et al., 2010). However, additional studies are required to complete the 

evaluation of Portuguese propolis potentials.  
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5. Future perspectives 

To better understand biological activities of propolis it would be important to complete the 

analysis of the sample used in this study with powerful analytical methodologies such as 

chromatography (HPLC, GC and MS). This would give detailed information on chemical 

composition, allowing to study year by year variations of samples from the same origin and to 

compare samples from different regions. In addition, the identification of biologically active 

compounds would allow to predicted medical applications and to guide investigation in the 

search of pharmacological effects. 

The antigenotoxic/genotoxic effect of propolis can be investigated by taking advantage of 

the amenability of the genetic system of S. cerevisiae. Mutants affected in stress responses, in 

antioxidant proteins and in DNA repair pathways can be used in assays to help to identify the 

pathways involved in the protective activity of propolis. In addition, elegant screening systems 

with reporter gene-based genetic constructs can easily be adapted to the search of new biological 

activities of propolis at cellular level. 

These two types of approach could be extended to Portuguese propolis from as many 

different origins as possible so that a map of properties could be created, assigning medical 

properties of propolis to the region of production. This would contribute to improve valorization of 

this natural product, enabling the creation of a Portuguese propolis-specific business activity. 
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