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Abstract. The classical Joukowski transformation plays an importal@ in different applica-
tions of conformal mappings, in particular in the study oioaround airfoils. Generalizations
of this transformation where used in the 1920s by J. L. Walstrder to approximate a con-
tinuous function on the boundary of its domain. Later, in1880s, H. Haruki and M. Barran
studied generalized Joukowski transformations of highdenin the complex plane but from
the perspective of functional equations. The aim of ourrdaumtion is to present a second order
Joukowski type transformation R™*!, but the construction also shows how to proceed in the
case of higher orders. Like in the complex plane it still preges some of the main properties of
the ordinary Joukowski transformation (thereby justityio be called a Joukowski type trans-
formation), but also reveals some new and less expectecegiep. We deal in some detall
only with the 3D-case correspondingito = 2 and discuss its properties and visualizations for
different geometric configurations.



1 GENERALIZED JOUKOWSKI TRANSFORMATIONS IN THE COMPLEX PLA NE

In the decade of 20 J. L. Walsh (c.f._[16]) studied the problEhapproximating an ar-
bitrary function of a complex variable by rational functson Concretely, if the function is
known to be continuous (analyticity is not reacquired) oroeddn curve enclosing the ori-
gin then, on this curve the function can be approximated@set} as desired by a polynomial
Ru(z) = Y p_  ar (2" + %) (see also[15]). In fact, restricting to the unit circle weréa

k —k k —k
sink@zl, cos k) = i,
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revealing that every trigonometric polynomial is a polynahin z and % A classical ex-
ample in this category of trigonometric polynomials are @reebychev polynomials. Its com-
plex parametrization over the unit circle in the foffa(z) = coskf = 1(z* + =7*) with
x = 1(z+ z7'), already revels the link between the classical Joukowakisffiormation (where
k = 1) and its generalization of higher order in approximatiosnity.

In the decade of 80, the same functions referred above pkyad an important role in an-
other subject. H. Haruki and M. Barran, with [11] and [1],died specific functional equations
whose unique solution is given by

w=w(z)= %(zk + 275, (1)

wherek is a positive integer. The functian = w, + iw; is said to be @eneralized Joukowski
transformation of order k

Among other properties it maps the unit circle into the ivéf—1, 1] of the real axis in
the w-plane tracedk times. Moreover, fork = 1, i.e. the classical case, symmetric and
unsymmetric airfoils are obtained as images of circles wvathters sufficiently near to the origin.
Following [5], |2] and [3], the generalization to higher dsmsiond indicates some modification
in the use of the standard polar coordinates as well as traidumrepresentation itself. If we
use modified polar coordinates in the form-= pei(§‘¢’) = p(sinp + i cos ), for p € [0, 2],
then we obtain the interval-i, /] as the image of the unit circl¢! under the mapping

1 k

w=w(z)= 5(2 — M. (2)

Moreover the real and imaginary partswofare obtained in the following form

1/, 1 k 1/, 1\ . k
b (- Byt m= (i)

Circles of radiug # 1 are transformed onto confocal ellipses with semi-axis
1 1
b=—p" 4+ —
’ 2 (p +_p’f)

Fork = 1 seel2] or[3], where this modified treatment of the Joukoviskisformation was used for the first
time. It allows to connect the 2D case more directly with theesponding hypercomplex 3D case, where the unit
sphereS? has a purely vector-valued image in analogy to the purelygimeay image of5*.
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and fociw = 7 andw = —i.
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Complex Case - Orderk = 2
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Figure 1: Images of the quarter-disks
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Figure 2: Images of semi-disks of radipis= 1.5 andp = 3

Figures.1 andl2 show the images of disks with radii equal oatgrethan one under the
mappingw, for k = 2. In this case, the mapping is 4-fold whenr= 1 and 2-fold forp > 1. For
this reason, to stress the 4-fold covering of the segrent], in the case = 1, we present the
images of the four quarter-disks separately.

A suitably higher dimensional analogue of the generalizrdkdwski transformatiom can
be obtained using Clifford Analysis. In order to obtain mganic analogues t¢® andz~* in
R™*! we present in the next section some preliminaries.

2 CLIFFORD ANALYSIS - SOME BASIC NOTATIONS AND DEFINITIONS

Let {e1,es,...,e,} be an orthonormal basis of the Euclidean vector sg@&cewith the
non-commutative product according to the multiplicatiokese,e; + eje,, = —20y, k, 1 =
1,...,m, wheredy, is the Kronecker symbol. The s¢t, : A C {1,...,m}} with ey =
€hiChy - -€n., 1 < hy <--- < h, <m, eg = ey = 1, forms a basis of th#"*-dimensional Clif-
ford algebraC/,,, overR. Let R™*! be embedded if/, ,, by identifying (zo, z1,...,z,) €
R™ ! with the algebra’s element = =, + z € A := spa{l,e;,...,em} C Clym. The
elements of4 are called paravectors and = Sqx) andz = Vec(z) = e1x; + -+ - + €T,
are the scalar resp. vector part of the paravectdihe conjugate of: is given byz = xq — x
and the normz| of x is defined by|z|*> = 2z = zx = 2% + 23 + - - - + 22,. Consequently, any

non-zerar has an inverse defined by ! = ﬁ

We consider functions of the forrfi(z) = 3", fa(z)ea, Wheref4(z) are real valued, i.e.
Cly.»-valued functions defined in some open suliet R™*!. Continuity and real differen-
tiability of f in 2 are defined componentwise. The generalized Cauchy-Riewaenator in

R™* m > 1, is defined by

522 80+6£,

where

0 0 0
80 .—8—1‘0, 8£.—ela—ld+---+em@.

The higher dimensional analogue of an holomorphic funci®onsually defined ag*(Q)-



function f satisfying the equatiofif = 0 (resp. f0 = 0) which is the hypercomplex form of
a generalized Cauchy-Riemann system. By historical resisas calledleft monogenigresp.
right monogenit [4]. An equivalent definition of monogenic functions is thais hypercom-
plex differentiable inQ2 in the sense of 8], i.e. that fof exists a uniquely defined areolar
derivative f’ in each point of? (see also [14]). Therf is automatically real differentiable and
/' can be expressed by the real partial derivativeg'as 1/20f, whered := (Jy — 0,) is the
conjugate Cauchy-Riemann operator. Since a hypercomgffexahtiable function belongs to
the kernel ofd, it follows that in factf’ = d,f = —0,.f like in the complex case. Conformal
mappings in real Euclidean spaces of dimension higher ttzaa Bestricted to Mobius transfor-
mations (Liouville’s theorem) which are not monogenic fiimies. But obviously, this does not
mean that monogenic functions cannot play an importantinoégplications to the more gen-
eral class of quasi-conformal mappings. The advantage @édcpmplex methods applicable
to Euclidean spaces of arbitrary real dimensions (not ohven dimensions like in the case
of C"-methods) is already evident for one of the most importasé ¢a practical applications,
i.e. the lowest odd dimensional caseRf!. It allows directly visualization of all geometric
mapping properties. We compare the complex 2D case withl83-produced wittMathemat-
ica for their visualization. A deeper function theoretic arsdy for instance, the relationship of
the hypercomplex derivative and the Jacobian matrix, wash@oaim of this work. However,
in [2], the reader can find the corresponding results for §pehcomplex case of generalized
Joukowski transformations of order= 1.

A detailed discussion of the relationship between the hggraplex derivative and the Jaco-
bian matrix fork = 2 would exceed the purpose of this article. It can be done isdinge way as
in [3] for the generalized Joukowski transformation of aréle= 1, which is 4-quasiconformal
for p > /4. Propositiod R is linked to the behavior of the Jacobian iatrdifferent ranges of

p-

3 MONOGENIC POLYNOMIALS AND THEIR KELVIN TRANSFORM

In [2] the higher dimensional analogue of the classical dadki transform form > 1 and
k = 1 has been studied in detail for the first time. For its geneaéibn to the case of arbitrary
orderk > 1, we use the fundamental solution of the generalized Caucbm&hn operator

E,(x) = m++1 defined forz # 0, and the monogenic paravector-valued function defined for
m > 1 by
: K\ g - k k—s~
Pl(x) = Z cs(m) o) %o St = ZTS (m)x"°z° (3)
s=0 5=0

wherec, (m) = YF_ (—1)*T*(m) and

3

k! (T)(k;—s) ( 2_1)(3)
m(k) (/ﬂ — 8).
with m ) denoting the Pochhammer symbol (see [6] and [7]). The paiyalsP;" generalize

the complex powers”* and, restricted to the real case, coincide wifh We recall also the
definition of the Kelvin transform.

Y

u

Definition 1 Given a monogenic, paravector-valued, and homogeneogtidary of degreek,
then its Kelvin transform is defined, for£ 0, by

I[f](x) == Ep(z) f(27). (4)

4



The following proposition shows the connection betweerkiblein transform applied to the
polynomialsP;* and the hypercomplex derivative 6f,.

Proposition 1 LetP;" be the polynomials defined ky (3). Then,fof 0
E)(x) = (1) mgy I[P;"] (). (5)

Proof: The factorization of the fundamental solution in the form

m+1 m—1
. (z\? [z~
et \faf? 2

allows the use of Leibniz’ differentiation rule in order tbtain

E
@) = o
k _ N . mt
- ;(lz)<_1)k<mT—H>(ks)<m2 1)@)(\;2) o <#> .
= ()M g (?7“_)“;)‘!8’ (T_;!)(S) T+ 1
= Pl)km(k)ﬁﬂ?(ﬂ (6)

On the other hand, applying the Kelvin transfoih (4), we obta

1PPYe) = s PE (5) = s PO )

||

and the final result follows now at ondel.

4 GENERALIZED JOUKOWSKI TRANSFORMATIONS IN HIGHER DIMENSI  ONS

Analogously tol[2], the proposed higher dimensional anaéogf the Joukowski transforma-
tion is given by

Definition 2 Letz = zo+z € A= R™"! C Cly,,, Withx # 0. The generalized hypercomplex
Joukowski transformation of ordéris defined as

J@) = a (Pﬁ(wHﬂEﬁf%)), ®)

M (k—1)

whereqy, is a real normalization constant anﬂ,ﬁ’f‘l)(:p) denotes the hypercomplex derivative

of order(k — 1), fork > 1.

Formula[8) witha; = § is the generalized hypercomplex Joukowski transformatasid-
ered in[2].



In what follows we focus on the case = 2 andk = 2, i.e. R3, and write brieflyPZ(z) =
Py(z) and JZ(x) = Jo(z). This means, that we consider now the generalized hypereaxmp
Joukowski transformation of second order in the form

Jo(x) = g <732(x) + %E'(x)) = g (Po(z) — I[P](x)) .

Then the image of the unit sphe$é = {z = 2, + z : |z|*> = 1} under.J, is given by:

JQ(SZ) = 0422250& (9)

Form,k > 3, JJ*(S™) has a paravector-valued expression, i.e., the image ofrttiéall
S™ in R™*! is mapped into the hyperplane, = 0, however, the corresponding proof relies
on more difficult expressions of the(m) (see [6]) and for this reason has been omitted here.
In fact, form = 2, the normalization constant, in (8) is determined in such a way théit in
the hyperplaney, = 0 is the image of the unit sphef#. For that, and analogously to Section
[, we recall the geographic spherical coordinates in th@r@xdsional space. They allow to
describe easily the mapping properties/pfs explained in_[2] and [3]. Therefore, lgt, ¢, 0)
be radius, latitude, and longitude respectively, so thaivwaek with

r1 = pcospcosl, x9=pcospsinfd, x5=psing

wherep > 0, -7 < § < Tand—35 < ¢ < 7.
For k = 2 we have in terms of spherical coordinates

2 2
’Jg(Sz)’2 = a3 (g) cos” psin® o = a3 (Z) sin®(2¢p). (10)

Finally one easily observes that = % is the desired normalization value. In the same way
itis, in principle, possible to determine for eveéryhe corresponding value af. in such a way
thatS! in the hyperplaney, = 0 is the image of the unit sphef#. However, since the solution
of algebraic equations of higher order becomes involveslibbviously be more complicated
than in those lower dimensional cases.

5 3D MAPPINGS BY GENERALIZED JOUKOWSKI TRANSFORMATIONS OF S EC-
OND ORDER

We now focus on some basic geometric mapping aspects ofahsformation/, in R3.
Using the normalization facter, = g:

4 1 2 (1o —1z\’
Jg(l’):g(l'g+l’0£+ §£2)+5(W)

we obtain for the components df = wy + wye; + woe, the following expressions:

2 1

wo = ¢ (1 — ;) p*(—=1+ 3sin®p), (11)
4 3 5 .

wy = — |14+ —=)p sinpcosypcosh, (12)
5 2p°
4 3 9 . .

we = — |14+ —]p sinpcosysinb, (13)
5 2p°
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Figure 4: Images of hemispheres of radius 1.3, p = ¥/6 andp = 3

As we expected, spheresitt with radiusp # 1 are transformed into spheroids, but this time,
we obtain a 2-fold mapping. Itis also possible to detectlagotew property, different from the
casek = 1, namely the effect that the center of the spheroids doesnyomhare remain on the
origin. The shift of the center from the origin occurs in dtien of the realv,-axis and is equal

to +p? (1 — p%) Therefore the polar radius is given by= 2,? )1 — p% and the equatorial

radius bya = %pQ (2 + p%) so that we have:

2
1 1
()

+ 2 + 2
57 (2 3)]

e (-3)] e (e)]

The following proposition summarizes some properties efrttapping/; (see [5]):

=1.

Proposition 2
1. Spheres with radius < p < v/6 are 2-folded transformed into oblate spheroids.
2. The sphere with radius = +v/6 is 2-folded transformed into the sphere with center
(b0.55)
3. Spheres with radiug/6 < p are 2-folded transformed into prolate spheroids.

4. The unit spher&? is 4-folded mapped onto the unit circle (including its i) in the
hyperplanew, = 0.

Figure[3 shows the images of four zones of the unit sphererithdamapping/, as conse-
quence of the 4-fold mapping of the unit sphéfeto S'. Analogously tok = 1, Fig.[4 is the
result of mapping one of the hemispheres with several radatgr than one.



Hypercomplex Case - Orderk =1

Figure 5: Image of a sphere of radips= 1 + |d| and centetl = 0.15¢¢ + 0.1e; + 0.2¢e5

Figure 6: Cuts parallel to the hyperplane = w-

6 FINAL REMARKS ON JOUKOWSKI TYPE 3D AIRFOILS OF SECOND ORDER

The classical Joukowski transformatieriz) = 1(z + 2~') plays in Aerodynamics an im-
portant role in the study of flows around so-called Joukowasfkoils, since it maps circles with
centers sufficiently near to the origin into airfoils. In tbkassicalDictionary of Conformal
RepresentationfL3], for example, or the more recent boGomputational Conformal Map-
ping [12], specially dedicated to computational aspects, ondind a lot of details about those
symmetric or unsymmetric airfoils.

In the hypercomplex case, the paper [3] includes imagesusextiwithMaple of spheres in
R3 centered at points of one of the axgsor =, with a small displacement and passing through
the endpoints of the unit vectoes ande,, respectively. If the displacement of the center of the
sphere is done in all three directions unsymmetrically \hitiee different values of the center
coordinates, then we get a mapping like the one presentbe iRig).[5. We interpret this figure
as some kind of unsymmetric Joukowski airfoils generaline2D. Figure 6 which shows some
cuts of the domain illustrated in Fid.l 5 parallel to the hypanew; = w, illustrates this
situation even more.

Finally we compare some mappings for the case 2 in 2D and 3D. Due to the higher order
of singularities in the origin we should also be aware of ntmn@plicated images of circles and
spheres, respectively, with radii different frgm= 1 (Figureg ¥-8). Nevertheless, we would not
exclude the possibility, that they could be useful for matagcal models working with more
complicated geometric configurations with some singu&sjtparticularly inR?.

Resuming this steps towards a more systematic study of 3pimgs realized by gener-
alized hypercomplex Joukowski transformations we wolkd tb mention that hypercomplex
methods seem to us in general a promising tool for quasiecordl mappings ifik? ([17]).
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Complex Case - Orderk = 2
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Figure 7: The image of a disk with radips= 1.2 and center] = (p — 1)i

Hypercomplex Case - Orderk = 2

Figure 8: The image of a sphere of radjus- 1 + |d| and cented = 0.1e; + 0.1es
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