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Abstract

In this paper we revisit the so-called Bergman kernel me{B&dMW) for solving confor-
mal mapping problems. This method is based on the reproglycoperty of the Bergman
kernel function. The construction of reproducing kerneldtions is not restricted to real
dimension 2. Results concerning the construction of Bergkeanel functions in closed
form for special domains in the framework of hypercomplerction theory suggest that
BKM can also be extended to mapping problems in higher dimnaas We describe a
3-dimensional BKM-approach and present two numerical gtesn

1 Introduction

Let Q2 be a bounded simply-connected domain with boundaryn the complex:—plane(z =
r + iy), and letL?(Q2) denote the Hilbert space of all square integrable functishigh are
analytic inQ2. Consider the inner product i*(Q

< qi(z / / 91(2)ga(2)dzdy,

assume w.l.o.g. th&t € 2 and letK (., 0) be the Bergman kernel function 8fwith respect to
0. Then, the kernel functio&’(., 0) is uniquely characterized by tmeproducing property

< g, K(.,0)>= g(0), Yg € L*(Q). (1)

2 TheBergman kernel method for numerical conformal mapping

There are several methods for solving conformal mappinglpms. In contrast to most con-
formal mapping techniques, the approximation of the sotutibtained by using the Bergman
kernel method (BKM) is an analytic function.

The BKM is a method for approximating the mappifigvhich maps conformally) onto
the unit discD := {w : |w| < 1}, in such a way thaf(0) = 0 and f'(0) > 0. The method is
based on theeproducing property (1) of the kernel function and on the well known relation of

K(.,0) with f, .
) = /K(O’O)/O K(t,0)dt, (2)

(see [1, 4, 5]). More precisely, the BKM involves the follogifour steps:

S1: Choose a complete set of functiofig };° for the spacd.?(12).

S2: Orthonormalize the function); }1 by means of the Gram-Schmidt process to obtain an
orthonormal se{n; }7.
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S3: Approximate the kernel functioA'(., 0) by the Fourier sum

Kn(zvo) = Z < K(->0)a77}k> 77;(2) = Zmﬁj(z) (€))

fu(z) = ‘/Kn(0,0) /o K, (t,0)dt. 4)

The second step of the BKM involves the use of the Gram-Schpmatess which can be
extremely unstable. For this reason we use Maple, as thismysrovides integration routines
so that the inner products involved in the construction ef@amian matrix can be computed
without any loss of accuracy (cf. [7]).

SA: Approximatef by

For example, in the case of the squared domain
S:={z=av+iy:|z| <1, |y <1},
the BKM details are as follows:
The usual choice of the basis set in s&pis to take the monomials, z, 22, ---. In this
example, because of the symmetrySoit suffices to consider the monomials z*, 28, - -, the
other inner products being zero, (see Gaier [4]). Denoting the number of monomials used,

we have, for example, for = 2,

m=1 and gy = 2"

The corresponding ON functions are

1 1 15
f=-  and ;= —V133 + —V1332"
=y I AT VA
the approximatiorny, to the Bergman kernel function is
83 105
K = 4
2(2,0) = 351+ 12167

and finally, the approximatiofi, to the conformal mapping function is

1 21
=1 —— V1 °.
fa(2) 6 57Tz + 55930 57Tmz

Denote by, the error estimate obtained by sampling the functior |f,,(2)|| at a number of
test points odS. The following table contains the valuesspfand the errorés,, corresponding
to results presented in [7], for several values.of

n 2 9 18 26 28
En |22 —=2|02E -9 |15FE —17|40E —25|5.0E — 27
E, - 14F —8 | 1H5E — 17 | 1.0E — 24 -

TABLE 1. Errors estimates for the square

The resultsty and E»¢ were obtained by Levin et al [8] and Papamichael et al [9pees
tively, and are the best possible. The redulf was obtained by Jank [7] by using the Maple
system. At that time it was not possible to reach values of 18. Now it is clear that by
using the Maple system and thus avoiding, whenever it isiplesshe numeric Gram-Schmidt
process, it is possible to obtain better results.
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3 FromCtoH

The construction of reproducing kernel functions is notrieted to real dimension 2. In-

deed, the two complex variable case has been already coegiolg Bergman himself (c.f.[1]).

Moreover, results concerning (and restricted to) the cansbn of Bergman kernel functions
in closed form for special domains in the framework of hypemnplex function theory (which

not supposes the consideration of spaces correspondevgrtoeal dimensions) can be found
in[2, 3, 10, 11]. They suggest that BKM can also be extendeddpping problems in higher
dimensions, particularly 3 or 4-dimensional cases.

We describe such a generalized BKM-approach and preser@naahexamples obtained by
the use of specially developed software packages for quates. A general and more rigorous
exposition with more technical details and examples wilpbblished elsewhere. We will use
the notations of [6] without repeating them here.

3.1 TheBergman Kernel Method

Let 2 be a bounded simply-connected domairiRihand consider thél-valued functions de-
fined inQ:
f:R*=R'~H

f(x) = eofo(z) + e1fi(x) + eafolz) + e3f3(x),

wherex = (zg, 11, 22) € R, ¢y := 1, e1, eq, e3 are the canonical quaternionic units afd
are real valued iff2 functions. On the sef’! (2, H) define the quaternionic Cauchy-Riemann

operator
D= 0 +e 0 +e 0
N on ! 8x1 2 61'2 '
and recall that @' -function f is calledleft-monogenic (resp.right-monogenic) in a domaint

if

Df=0,inQ (resp.fD =0in Q).

Now denote byL?(2, H) the right-Hilbert space of all square integrablevalued functions,
endowed with the inner product:

< F(2)9(2) >= / F@alz) dv. (5)

The right linear sef.?(Q2, H) N ker D is a subspace if?({2, H) and has also a unique repro-
ducing kernelK (z, (), i.e

<K(.,Q), f>= f(Q), Vf € L2(Q, H)NkerD. (6)

and if we now take an orthonormal complete system of funstioyi} then it can be proved a
Fourier series expansion for all functiofiss L?(Q, H) N ker D

F) =S ) <n f>
j=1
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and therefore

Z n;(2) <nj, K(z, Z n; (= (7)

It is well known that the monogenic Fueter polynomials areraplete set of functions (see p.e.
[6]) and thus step§1 - S3 can be rewritten easily in order to obtain a numerical pracedo
construct approximations t& similar to the complex case.

All these results underline that the Clifford analysis aneé complex variable analysis are
closely connected. Thus, if we go further and introduce

A Compute
ful2) = Cn/ K,(t,0)dt; n=1,2,---,
0

where(,, denotes some constant (dependingio0, 0)), shall we get a “mapping” function
from the domairn? to a sphere?

Before attempting to answer this question, we should makesemarks.

Remark 1. The polynomials); are inQ2 C R* = A := spang{1, e, 5}, but the corresponding
ON polynomialsy; are, in general, it = R*. This means that the kernel functidf and the
mapping functionf are, in fact, functions fronf2 in R*.

Remark 2. From the geometric and practical point of view, we would ljkéo map domains
Q) C R3 to a sphere (for the moment, not necessarily the unit sphere)

Remark 3. It can be proved easily that if a functigiof the formf = f(2) = fo(2)+ fi(2)e1 +
f2(2)eq, is left-monogenic therf is also right-monogenic. Conversely, if a function of thenfio

[ =71(2) = fo(2)+ fi(2)e1 + fa(2)e2 + f3(2)es, is monogenic from both sides and is such that
Ja e Q: f(a)=0,then,f; =0, i.e. f:H? — AR

Remark 4. We do not expecif to be monogenic from both sides. We recall that Mobius
transformations are the only conformal mapping®&iti, (m > 2), but quaternionic Mobius
transformations themselves are neither left nor right ngenics. However, the results pre-
sented in Remark 3 give the motivation for the numerical edoce we propose for computing
f in step$4 of BKM.

SA.1 Approximate the mapping function: 2 — H by
0

4.2 Approximate the mapping functiofiby “cutting” the “es-part” in (8), i.e. if g, is of the
form
gn(2) = gi(2) + g{ (2)er + giP (2)es + 937 (2)es, 9

then construct the functiofy, from Q) into A = R3 by means of

fa(2) = i (2) + gi (2)er + g7 (2)en. (10)
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3.2 Numerical examples

We apply now the above technique to a cube and a L-shaped do@@amsider first the cube
C:={(z,y,2) eR*: x| < 1, |y| <1, |2| < 1}.

For N = 2 the ON polynomials in stef2 are

0y = 2V70(a} — 2§ — 2x12001),
n = %\/ 1414z 29 — 14z9m0€61 — 4217062 + (523 — Hd)es),

7]; = % 10(-1‘% — 37(2) + 237% — 21’21‘062 + 2371.]7263).
and the image of by the BKM approximatiory, is illustrated in Figure 1(a).

The analysis of the¢;-part” in (9), i.e. g' (=) shows some evidence that Asgrows this
function gets smaller. However we did not go further than= 14, as our program becomes
very time consuming. Figure 1(b) corresponds to the plqjﬁ)}f(z), wherez € {(z,y,2) €
R¥:x=1,lyl <1,|z] <1}.

FIGURE 1. The mapping functiong»(C) andgﬁ’}(z)

Consider now the L-shaped domain presented in Figure 2fe BKM result forN = 8 is
illustrated in Figure 2(b).

FIGURE 2. An L-shaped domain

It is well known that for a 2-dimensional L-shapped domédire, tlassical BKM gives very
poor approximations to the conformal mapping functfoas this function has a serious branch
point singularity (see [9] for all the details). Although wle not have for the moment a the-
oretical justification for the remarkable results achielsgdhe BKM proposed, even for small
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values of NV and a “difficult” domain, we are convinced that this BKM-apach for 3 dimen-
sional cases works and it is useful to continue the invetstigan this direction.
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