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Abstract

In this paper we revisit the so-called Bergman kernel method(BKM) for solving confor-
mal mapping problems. This method is based on the reproducing property of the Bergman
kernel function. The construction of reproducing kernel functions is not restricted to real
dimension 2. Results concerning the construction of Bergman kernel functions in closed
form for special domains in the framework of hypercomplex function theory suggest that
BKM can also be extended to mapping problems in higher dimensions. We describe a
3-dimensional BKM-approach and present two numerical examples.

1 Introduction

Let Ω be a bounded simply-connected domain with boundary∂Ω in the complexz−plane(z =
x + iy), and letL2(Ω) denote the Hilbert space of all square integrable functionswhich are
analytic inΩ. Consider the inner product inL2(Ω)

< g1(z), g2(z)>=

∫ ∫

Ω

g1(z)g2(z)dxdy,

assume w.l.o.g. that0 ∈ Ω and letK(., 0) be the Bergman kernel function ofΩ with respect to
0. Then, the kernel functionK(., 0) is uniquely characterized by thereproducing property

< g, K(., 0)>= g(0), ∀g ∈ L2(Ω). (1)

2 The Bergman kernel method for numerical conformal mapping

There are several methods for solving conformal mapping problems. In contrast to most con-
formal mapping techniques, the approximation of the solution obtained by using the Bergman
kernel method (BKM) is an analytic function.

The BKM is a method for approximating the mappingf which maps conformallyΩ onto
the unit discD := {w : |w| < 1}, in such a way thatf(0) = 0 andf ′(0) > 0. The method is
based on thereproducing property (1) of the kernel function and on the well known relation of
K(., 0) with f ,

f(z) =

√

π

K(0, 0)

∫ z

0

K(t, 0)dt, (2)

(see [1, 4, 5]). More precisely, the BKM involves the following four steps:

S1: Choose a complete set of functions{ηj}∞1 for the spaceL2(Ω).

S2: Orthonormalize the functions{ηj}n
1 by means of the Gram-Schmidt process to obtain an

orthonormal set{η∗
j}n

1 .
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S3: Approximate the kernel functionK(., 0) by the Fourier sum

Kn(z, 0) =
n

∑

j=1

< K(., 0), η∗
j > η∗

j (z) =
n

∑

j=1

η∗
j (0)η∗

j (z) (3)

S4: Approximatef by

fn(z) =

√

π

Kn(0, 0)

∫ z

0

Kn(t, 0)dt. (4)

The second step of the BKM involves the use of the Gram-Schmidt process which can be
extremely unstable. For this reason we use Maple, as this system provides integration routines
so that the inner products involved in the construction of the Gramian matrix can be computed
without any loss of accuracy (cf. [7]).

For example, in the case of the squared domain

S := {z = x + iy : |x| < 1, |y| < 1},
the BKM details are as follows:

The usual choice of the basis set in stepS1 is to take the monomials1, z, z2, · · · . In this
example, because of the symmetry ofS it suffices to consider the monomials1, z4, z8, · · · , the
other inner products being zero, (see Gaier [4]). Denoting by n the number of monomials used,
we have, for example, forn = 2,

η1 = 1 and η2 = z4.

The corresponding ON functions are

η∗
1 =

1

2
and η∗

2 =
1

76

√
133 +

15

304

√
133z4,

the approximationK2 to the Bergman kernel function is

K2(z, 0) =
83

304
+

105

1216
z4

and finally, the approximationf2 to the conformal mapping function is

f2(z) =
1

76

√
1577πz +

21

25232

√
1577πz5.

Denote byεn the error estimate obtained by sampling the function|1 − |fn(z)|| at a number of
test points on∂S. The following table contains the values ofεn and the errorsEn corresponding
to results presented in [7], for several values ofn.

n 2 9 18 26 28
εn 2.2E − 2 5.2E − 9 1.5E − 17 4.0E − 25 5.0E − 27
En – 1.4E − 8 1.5E − 17 1.0E − 24 –

TABLE 1. Errors estimates for the square

The resultsE9 andE26 were obtained by Levin et al [8] and Papamichael et al [9], respec-
tively, and are the best possible. The resultE18 was obtained by Jank [7] by using the Maple
system. At that time it was not possible to reach values ofn > 18. Now it is clear that by
using the Maple system and thus avoiding, whenever it is possible, the numeric Gram-Schmidt
process, it is possible to obtain better results.
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3 From C to H

The construction of reproducing kernel functions is not restricted to real dimension 2. In-
deed, the two complex variable case has been already considered by Bergman himself (c.f.[1]).
Moreover, results concerning (and restricted to) the construction of Bergman kernel functions
in closed form for special domains in the framework of hypercomplex function theory (which
not supposes the consideration of spaces corresponding toeven real dimensions) can be found
in [2, 3, 10, 11]. They suggest that BKM can also be extended tomapping problems in higher
dimensions, particularly 3 or 4-dimensional cases.

We describe such a generalized BKM-approach and present numerical examples obtained by
the use of specially developed software packages for quaternions. A general and more rigorous
exposition with more technical details and examples will bepublished elsewhere. We will use
the notations of [6] without repeating them here.

3.1 The Bergman Kernel Method

Let Ω be a bounded simply-connected domain inR3 and consider theH-valued functions de-
fined inΩ:

f : R
3 → R

4 ∼= H

f(x) = e0f0(x) + e1f1(x) + e2f2(x) + e3f3(x),

wherex = (x0, x1, x2) ∈ R3, e0 := 1, e1, e2, e3 are the canonical quaternionic units andfk

are real valued inΩ functions. On the setC1(Ω, H) define the quaternionic Cauchy-Riemann
operator

D =
∂

∂x0

+ e1

∂

∂x1

+ e2

∂

∂x2

,

and recall that aC1-functionf is calledleft-monogenic (resp.right-monogenic) in a domainΩ
if

Df = 0, in Ω ( resp.fD = 0 in Ω).

Now denote byL2
r(Ω, H) the right-Hilbert space of all square integrableH-valued functions,

endowed with the inner product:

< f(z), g(z)>=

∫

Ω

f(z)g(z) dV. (5)

The right linear setL2
r(Ω, H) ∩ kerD is a subspace inL2

r(Ω, H) and has also a unique repro-
ducing kernelK(z, ζ), i.e

<K(., ζ), f >= f(ζ), ∀f ∈ L2
r(Ω, H) ∩ kerD. (6)

and if we now take an orthonormal complete system of functions {η∗
j} then it can be proved a

Fourier series expansion for all functionsf ∈ L2
r(Ω, H) ∩ kerD

f(z) =

∞
∑

j=1

η∗
j (z) < η∗

j , f >
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and therefore

K(z, ζ) =
∞

∑

j=1

η∗
j (z) < η∗

j , K(z, ζ)>=
∞

∑

j=1

η∗
j (z)η∗

j (ζ). (7)

It is well known that the monogenic Fueter polynomials are a complete set of functions (see p.e.
[6]) and thus stepsS1 - S3 can be rewritten easily in order to obtain a numerical procedure to
construct approximations toK similar to the complex case.

All these results underline that the Clifford analysis and one complex variable analysis are
closely connected. Thus, if we go further and introduce

S4 Compute

fn(z) = Cn

∫ z

0

Kn(t, 0)dt; n = 1, 2, · · · ,

whereCn denotes some constant (depending onKn(0, 0)), shall we get a “mapping” function
from the domainΩ to a sphere?

Before attempting to answer this question, we should make some remarks.

Remark 1. The polynomialsηj are inΩ ⊂ R
3 ∼= A := span

R
{1, e1, e2}, but the corresponding

ON polynomialsη∗
j are, in general, inH ∼= R4. This means that the kernel functionK and the

mapping functionf are, in fact, functions fromΩ in R4.

Remark 2. From the geometric and practical point of view, we would likef to map domains
Ω ⊂ R3 to a sphere (for the moment, not necessarily the unit sphere).

Remark 3. It can be proved easily that if a functionf of the formf = f(z) = f0(z)+f1(z)e1+
f2(z)e2, is left-monogenic thenf is also right-monogenic. Conversely, if a function of the form
f = f(z) = f0(z)+f1(z)e1 +f2(z)e2 +f3(z)e3, is monogenic from both sides and is such that
∃a ∈ Ω : f(a) = 0, then,f3 = 0, i.e. f : H2 → A ∼= R3.

Remark 4. We do not expectf to be monogenic from both sides. We recall that Möbius
transformations are the only conformal mappings inRm+1, (m ≥ 2), but quaternionic Möbius
transformations themselves are neither left nor right monogenics. However, the results pre-
sented in Remark 3 give the motivation for the numerical procedure we propose for computing
f in stepS4 of BKM.

S4.1 Approximate the mapping functiong : Ω → H by

gn(z) =

∫ z

0

Kn(t, 0)dt; n = 1, 2, · · · (8)

S4.2 Approximate the mapping functionf by “cutting” the “e3-part” in (8), i.e. ifgn is of the
form

gn(z) = g{0}
n (z) + g{1}

n (z)e1 + g{2}
n (z)e2 + g{3}

n (z)e3, (9)

then construct the functionfn from Ω intoA ∼= R3 by means of

fn(z) = g{0}
n (z) + g{1}

n (z)e1 + g{2}
n (z)e2. (10)
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3.2 Numerical examples

We apply now the above technique to a cube and a L-shaped domain. Consider first the cube

C := {(x, y, z) ∈ R
3 : |x| < 1, |y| < 1, |z| < 1}.

ForN = 2 the ON polynomials in stepS2 are

η∗
1 = 3

56

√
70(x2

1 − x2
0 − 2x1x0e1),

η∗
2 = 3

224

√
14(14x1x2 − 14x2x0e1 − 4x1x0e2 + (5x2

1 − 5x2
0)e3),

η∗
3 = 3

32

√
10(−x2

1 − x2
0 + 2x2

2 − 2x2x0e2 + 2x1x2e3).

and the image ofC by the BKM approximationf12 is illustrated in Figure 1(a).

The analysis of the “e3-part” in (9), i.e.g{3}
N (z) shows some evidence that asN grows this

function gets smaller. However we did not go further thanN = 14, as our program becomes
very time consuming. Figure 1(b) corresponds to the plot ofg

{3}
14 (z), wherez ∈ {(x, y, z) ∈

R3 : x = 1, |y| < 1, |z| < 1}.
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FIGURE 1. The mapping functionsf12(C) andg
{3}
14 (z)

Consider now the L-shaped domain presented in Figure 2(a). The BKM result forN = 8 is
illustrated in Figure 2(b).
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FIGURE 2. An L-shaped domain

It is well known that for a 2-dimensional L-shapped domain, the classical BKM gives very
poor approximations to the conformal mapping functionf as this function has a serious branch
point singularity (see [9] for all the details). Although wedo not have for the moment a the-
oretical justification for the remarkable results achievedby the BKM proposed, even for small
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values ofN and a “difficult” domain, we are convinced that this BKM-approach for 3 dimen-
sional cases works and it is useful to continue the investigation in this direction.
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D-99421 Weimar Universidade do Minho Institut Mathematik/Physik
Germany 4470 Braga D-99421 Weimar

Portugal Germany
bastian.bock@web.de mif@math.uminho.pt guerlebe@fossi.uni-weimar.de


