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Abstract A Pareto Local Search (PLS) algorithm was developed and applied to 
the screw configuration of co-rotating twin-screw extruders. This problem can be 
seen as a sequencing problem where a set of different screw elements are to be se-
quentially positioned along the screw in order to maximize the extruder perform-
ance. The results obtained were compared with previous results obtained with a 
Multi-Objective Evolutionary Algorithm (MOEA), which was previously devel-
oped by the authors. These results show that the PLS algorithm, despite its con-
ceptual simplicity, is able to generate screws with good performance. 

1 Introduction 

Due to their geometrical flexibility and good mixing capacity, co-rotating twin 
screw extruders are widely used in the polymer compounding industry. This type 
of machines can easily be adapted to work with different polymeric systems, e.g., 
polymer blends, nanocomposites or highly filled polymers, taking into account its 
modular construction. However, this geometrical flexibility makes the perform-
ance of these machines strongly dependent on the screw configuration being used, 
i.e., defining the adequate screw geometry to use in a specific polymer system is 
an important process requirement. This can be seen as an optimization problem 
involving the selection of the location of a set of available screw elements along 
the screw axis. 

In the case tackled in this paper, the optimization consists in permuting a spe-
cific number of different screw elements in order to maximize the global perform-
ance of the system. This problem was designated as Twin Screw Configuration 
Problem (TSCP); it is a sequencing problem with, the aim of determining the posi-
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tion of screw elements along the screw axis. Since it involves several conflicting 
objectives, it is actually a multi-objective combinatorial optimization problem 
(MCOP). 

The TSCP was previously tackled using a Multi-Objective Evolutionary Algo-
rithm (MOEA) [1]. One important limitation of using MOEAs is the high number 
of necessary evaluations of the objective functions, since this implies running a 
numerical modelling routine, which has significant computational costs. There-
fore, in the present work a Stochastic Local Search (SLS) algorithm was applied 
as an alternative for tackling this problem. In particular, we adopted the Pareto 
Local Search (PLS) strategy [2,3]. For that purpose, a detailed comparison to the 
previously designed MOEA using different objectives was made. In particular, 
this work is a part of a more comprehensive study where different approaches will 
be tested, including MOEA, Multi-Objective Ant Colony Optimization (MO-
ACO), simple SLS algorithms and hybrids of these three classes of algorithms. 
The main motivation for the study of PLS here is its conceptual simplicity and its 
known very good performance.  

This paper is organized as follows. In section 2, the twin-screw extrusion con-
figuration problem is described. In section 3, the details of the algorithms used are 
discussed. Then, in section 4 the results are presented and discussed and we con-
clude in section 5. 

2 Twin-Screw Extruders 

Intermeshing co-rotating twin-screw extruders have by two Archimede-type 
screws with the same geometry rotating in the same direction inside a heated bar-
rel [4]. The screws are usually built up by coupling individual screw elements with 
different geometries. Conveying, mixing and kneading elements are available, 
with distinct geometries. The performance of this type of extruders depends on the 
use of the correct sequence of elements, so that the extruder be able to accomplish 
its main functions, namely, transporting and melting the solid polymer, mixing 
and devolatilizing and forcing the polymer to pass trough the die [4]. Polymer pel-
lets or powder are usually fed inside the barrel at a pre-set feed rate. The rotation 
speed of the screws, together with the local temperatures and screw geometry sub-
ject the polymer to a variety of thermomechanical stresses along the screw axis. 

Therefore, the co-rotating twin-screw configuration problem consists in defin-
ing the best location of a set of screw elements along the screw shaft as illustrated 
in figure 1. In this example the aim is to determine the position along the screw of 
10 transport elements, 3 kneading blocks (with different staggering angles) and 
one reverse element. 

The performance of each screw configuration is obtained by using an elabo-
rated computer simulation of the polymer flow through the screw elements, taking 
into account the relevant thermal and rheological physical phenomena. The proc-
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ess comprises the following steps: (i) transport of solid material; (ii) melting; (iii) 
mixing and homogenisation; (iv) pressure generation and (v) flow through the die 
[5, 6]. The flow characteristics are determined by the different geometries of the 
screw elements. Right handed elements have conveying properties while left 
handed and kneading blocks with a negative staggering angle create a flow restric-
tion (generating pressure). 

The computer simulation programme considers all above steps [6]. After the 
solid polymer is fed into the hopper, it will flow under starved conditions through 
transport elements. When a restrictive element is reached, the channel starts to fill 
up and the melting process is initiated. When the polymer is full melted, the flow 
develops with or without pressure in the remaining of the screw elements, depend-
ing on whether they are totally or partially filled; overall, the pressure is deter-
mined by the location of the restrictive elements. Each evaluation of a screw con-
figuration takes about one to two minutes on current CPUs. Hence, the high 
computational effort required for these evaluations is an additional complicating 
factor and we require algorithms that use a low number of function evaluations. 

 
Fig. 1. Screw elements. 

3 Multi-Objective Optimization 

3.1 Multi-Objective Evolutionary Algorithms 

MOEAs have been recognized in the last decade as good methods to explore and 
find an approximation to the Pareto-optimal front for multi-objective optimization 
problems. This is due to the difficulty of traditional exact methods to solve this 
type of problems and by their capacity to explore and combine various solutions to 
find the Pareto front in a single run. A MOEA must provide a homogeneous dis-
tribution of the population along the Pareto frontier, together with an improvement 
of the solutions along successive generations [7, 8]. 

In this work, the Reduced Pareto Set Genetic Algorithm (RPSGA) is adopted 
[9, 10], where a clustering technique is applied to reduce the number of solutions 
on the efficient frontier. Initially, RPSGA sorts the individuals of the population in 
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a number of pre-defined ranks using a clustering technique, in order to reduce the 
number of solutions on the efficient frontier, while maintaining its characteristics 
intact. Then, the individuals’ fitness is calculated through a ranking function. To 
incorporate this technique, the traditional GA was modified [9, 10], following the 
steps of a traditional GA, except for the existence of an external (elitist) popula-
tion and for a specific fitness evaluation. Initially, an internal population of size N 
is randomly defined and an empty external population formed. At each generation 
a fixed number of best individuals, obtained by reducing the internal population 
with the clustering algorithm [10], are copied to an external population. This proc-
ess is repeated until the number of individuals of the external population becomes 
full. Then, the RPSGA is applied to sort the individuals of the external population, 
and a pre-defined number of the best individuals are incorporated in the internal 
population by replacing low fitness individuals. Detailed information about this 
algorithm can be found elsewhere [9, 10]. 

3.2 Pareto Local Search Algorithm 

SLS algorithms [11] have been successfully applied to single objective problems 
and, more recently, also to Multi-Objective Optimization Problems (MOOP). Suc-
cessful single-objective based SLS algorithms can be readily extended to MOOPs 
via two strategies. The one we study here is to adopt a component-wise acceptance 
model, where a new solution is accepted in the local search if it is non-dominated 
by any of the other previous. As an example of such a strategy, we use Pareto Lo-
cal Search (PLS) [2,3]. A key component of any local search algorithm is the defi-
nition of which solutions are neighbouring. Some preliminary experiments showed 
that the most suitable neighbourhood relation to be used in the local search is 
based on the 2-swap operator: two solutions are considered to be neighbours, if 
one can be obtained from the other by swapping the position of two screw ele-
ments.  

The main ideas of PLS are the use of an archive, where all non-dominated solu-
tions found so far are kept, and the exploration of the neighbourhood of each of 
these solutions using non-dominance criteria to decide about the acceptance of so-
lutions [2,3]. The algorithm starts with a random initial solution. This is added to 
the archive and its neighbourhood is explored using the 2-swap operator. All non-
dominated solutions identified in the neighbourhood exploration are added to the 
archive, if they are not dominated by any of the solutions in the archive, otherwise 
it is eliminated. These solution selection and archive update steps are iterated until 
the neighbourhood of all solutions in the archive has been explored. In order to 
avoid a too strong increase of the number of solutions in the archive, an archive 
bounding technique is used [12]. This bounding technique divides the objective 
space by a grid into hypercubes and allows only one non-dominated solution to 
occupy a given hypercube.  
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4 Results and Discussion 

4.1 Case study 

The RPSGA and the PLS algorithms presented above were tested using the indi-
vidual screw elements presented in Table 1 for a Leistritz LSM 30.34 twin-screw 
extruder. In this example the objectives considered are the average strain, the spe-
cific mechanical energy (SME) and the viscous dissipation. Four instances and 
three different case studies were considered as presented, respectively, in Tables 1 
and 2. Each optimization run was performed 10 times using different seed values. 
The comparison between the algorithms was made using the attainment functions 
methodology [13]. 

Table 1. Configuration of the individual screw elements for the 4 instances considered 

Instance Screw 
Element 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Length (mm) 97.5 120 45 60 30 30 30 60 30 120 30 120 37.5 60 60 30 
TSCP1 

Pitch (mm) 45 30 45 30 20 60 30 20 KB
-60º 30 30 60 20 45 30 20 

Length (mm) 97.5 120 45 60 30 30 30 60 30 120 30 120 37.5 60 60 30 
TSCP2 

Pitch (mm) 45 30 45 30 -20 60 30 20 KB
-60º 30 30 60 20 45 30 20 

Length (mm) 97.5 120 45 60 30 30 30 60 30 120 30 120 37.5 60 60 30 
TSCP3 

Pitch (mm) 45 30 KB
-45º 30 -20 60 30 20 KB

-60º 30 30 60 20 45 30 20 

Length (mm) 97.5 120 45 60 30 30 30 60 30 120 30 120 37.5 60 60 30 
TSCP4 

Pitch (mm) 45 30 KB
-45º 30 -20 60 30 20 KB

-60º 30 30 60 KB 
-30º 45 30 20 

Table 2. Optimization objectives, aim of optimization and prescribed range of variation used in 
each case  

 Objectives Aim Xmin Xmax 
Average Strain Maximize 1000 15000 Case 

study 1 Specific mechanical energy Minimize 0.1 2 
Average Strain Maximize 1000 15000 Case 

study 2 Viscous dissipation Minimize 0.9 1.5 
Specific mechanical energy Minimize 0.1 2 Case 

study 3 Viscous dissipation Minimize 0.9 1.5 
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4.2 Comparative Results 

In order to demonstrate the capacity of the PLS algorithm to deal with the TSCP, 
figure 2 shows a Pareto front for case study two and instance 1, considering a sin-
gle run. As expected, the viscous dissipation (to be minimized) increases with the 
average strain (to be maximized). The viscous dissipation (measured as the ratio 
between the average melt temperature and the set barrel temperature) is smaller 
when the restrictive elements are separated by conveying elements, since in this 
case the increase in temperature is also smaller. The opposite is true for the case of 
the average strain. 
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Fig. 2. Pareto front for case study 2, instance 1 and run 1 and some screw configurations gener-
ated. 

The results obtained with the PLS algorithm presented here were compared with 
the results obtained with the RPSGA algorithm developed previously. The com-
parison was made using the EAFs, as shown in Figure 3 for all cases studies and 
for instance 4. Similar results can be found on www.dep.uminho.pt/agc/results. 
The graphs on the left represent the region(s) of the Pareto front where the MOEA 
(in this case the RPSGA) is better, while the graphs on the right represent the re-
gion(s) where the PLS algorithm is better. The results shown in Figure 3 allow one 
to conclude that the PLS is better for instance 4. The same happens for instance 3, 
while for instance 1 and 2 the results are slightly better for the RPSGA algorithm.  

5 Conclusions 

A Pareto Local Search algorithm was applied with success to the Twin Screw 
Configuration Problem. The solutions obtained comply with the available scien-
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tific and technical knowledge on the process. The good performance obtained with 
the PLS algorithm alone is somewhat surprising, since it is a very simple method. 
In addition, the results indicate that it may be worthwhile to further develop the 
method, for example, by a better choice of which solutions are to be explored 
next, or to consider it for a possible combination with other methods, for example, 
as a post-processor to improve the search process of techniques such as the 
RPSGA. 
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Fig. 3. EAFs differences between MOEA and PLS results for instance 4 and case studies 1 (top), 
2 (middle) and 3 (bottom). 


