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t: Finan
ial 
rises are a re
urrent phenomenon with important e�e
ts on the real e
onomy. The�nan
ial system is inherently fragile and it is therefore of great importan
e to be able to measure and
hara
terize its systemi
 stability. Multivariate extreme value theory provide us su
h a framework throughthe fragility index (Geluk [10℄, et al., 2007; Falk and Ti
hy, [6, 7℄ 2010, 2011). Here we generalize this
on
ept and 
ontribute to the modeling of the stability of a sto
hasti
 system divided into blo
ks. Wewill �nd several relations with well-known tail dependen
e measures in literature, whi
h will provide usimmediate estimators. We end with an appli
ation to �nan
ial data.Keywords: multivariate extreme value theory, tail dependen
e, fragility index, extremal 
oe�
ients1 Introdu
tionIn the last de
ade, dependen
ies between �nan
ial asset returns have in
reased, mostly as a 
on-sequen
e of globalization e�e
ts and relaxed market regulation. Therefore, the 
on
ept of taildependen
e has been dis
ussed in �nan
ial appli
ations related to market or 
redit risk, e.g.,Hauksson et al. [12℄ (2001), Ané and Kharoubi [1℄ (2003), Junker and May [16℄ (2005), Straet-mans et al. [24℄ (2008), Embre
hts and Pu

etti [5℄ (2010). The natural framework to modelextremal dependen
e turns out to be the multivariate extreme value theory. The study of systemi
stability is an important issue within this 
ontext of extreme risk dependen
e. The fragility ofa system have been addressed to the Fragility Index (FI) introdu
ed in Geluk et al. ([10℄, 2006).More pre
isely, 
onsider a random ve
tor X = (X1, ..., Xd) and Nx :=
∑d

i=1 1{Xi>x} the numberof ex
eedan
es among X1, ..., Xd above a threshold x. The FI 
orresponding to X is the asymp-toti
 
onditional expe
ted number of ex
eedan
es, given that there is at least one ex
eedan
e,i.e., FI = limx→∞ E(Nx|Nx > 0). The sto
hasti
 system {X1, ..., Xd} is 
alled fragile whenever
FI > 1. Theoreti
al developments, namely, the asymptoti
 distribution of Nx 
onditional to
Nx > 0 
an be seen in Falk and Ti
hy ([6, 7℄, 2010, 2011).In this work we generalize some properties of the FI presented in the referen
es above, 
on-tributing to the modeling of the stability of a sto
hasti
 system divided into blo
ks.We shall state some notation that will be used throughout the paper.Consider D = {I1, ..., Is} a partition of D = {1, ..., d}. For the random ve
tor X = (X1, ..., Xd),let XIj be a sub-ve
tor of X whose 
omponents have indexes in Ij , with j = 1, ..., s. If F denotesthe d.f. of X then FIj denotes the d.f. of sub-ve
tor XIj , j = 1, ..., s, and Fi the marginal d.f.,
i = 1, ..., d. Let xIj be a ve
tor of length |Ij | with 
omponents equal to x ∈ R. We will say that
XIj is the jth blo
k of random ve
tor X and denote by Nx the number of blo
ks where it o

ursat least one ex
eedan
e of x, i.e.,

Nx =

s∑

j=1

1{XIj
6≤xIj

}.All operations and inequalities on ve
tors are meant 
omponentwise.1Corresponding author: Marta Ferreirae-mail: msferreira�math.uminho.pt



2De�nition 1.1. The Fragility Index (FI) of a random ve
tor X = (X1, ..., Xd) relative to partition
D is

lim
x→∞

E(Nx|Nx > 0), (1)whenever the limit exists and is denoted FI(X,D).If we 
onsider Ij = {j}, j = 1, ..., d, we �nd the FI introdu
ed in Geluk et al. ([10℄, 2007)and latter study by Falk and Ti
hy ([6, 7℄, 2010, 2011). This partition will be denoted as D∗, i.e.,
D∗ = {Ij = {j} : j = 1, ..., d}.We give parti
ular emphasis to random ve
tors in the domain of attra
tion of a multivariateextreme value distribution (MEV) and 
onsider either the 
ase of identi
ally distributed marginsor tail equivalent margins in the sense 
onsidered in Falk and Ti
hy ([7℄, 2011). In Se
tion 2 wepresent some asymptoti
 properties of the distribution of Nx 
onditional to Nx > 0, and �ndgeneralizations of results in Falk and Ti
hy ([7℄, 2011). We prove that FI(X,D) exists and relateswith the extremal 
oe�
ients ǫ of Tiago de Oliveira ([25℄, 1962/63) and Smith ([23℄, 1990) in 
aseof identi
ally distributed margins (Se
tion 3). We de�ne generalized versions of the multivariatetail dependen
e 
oe�
ients of Li ([20℄, 2009) and extend some of its results (Se
tion 4). In Se
tion5 we relate these latter 
oe�
ients with FI(X,D).For independent margins we have an unit FI. However, the stability of a sto
hasti
 systemat higher levels 
an also be 
hara
terized by asymptoti
 independen
e (Geluk et al., [10℄, 2007).Asymptoti
 independen
e means that the dependen
y when present vanishes at extreme quantilesand the system is said to be weakly fragile, albeit possibly 
orrelated (e.g., gaussian ve
tors). Weextend the 
on
ept of asymptoti
 independent FI in Geluk et al. ([10℄, 2007) for blo
ks. A se
ondmeasure is also presented by extending the 2-blo
ks asymptoti
 independent 
oe�
ient in Ferreiraand Ferreira ([8℄, 2011) to the 
ase of s-blo
ks, with s > 2. This issue is 
onsidered in Se
tion 6.Our results relating FI(X,D) with well-known tail dependen
e measures, for whi
h estima-tors and respe
tive properties have already been study in literature, will provide us immediateestimators (Se
tion 7). We end with an appli
ation to �nan
ial data.2 Asymptoti
 Properties of NxIn this se
tion we present some asymptoti
 properties of the distribution of Nx 
onditional to
Nx > 0. We start to relate this latter with ǫGA, the extremal 
oe�
ients (Tiago de Oliveira,[25℄ 1962/63; Smith, [23℄ 1990) of the sub-distribution fun
tions of the MEV G 
orresponding tomargins in A, i.e., by assuming G has unit Fré
het margins,

ǫGA = − logG(1−1
A (1), ...,1−1

A (d)) (2)where, for all A ⊂ D, x ∈ R,
1
−1
A (x) =

{
1 , x ∈ A
∞ , x 6∈ A.They may be written through the stable tail dependen
e fun
tion (Huang, [14℄ 1992):

lG(x
−1
1 , ..., x−1

d ) = − logG(x1, ..., xd) = − logCG(e
−1/x1 , ..., e−1/xd), (3)where CG is the 
opula of G, i.e.,

G(x1, ..., xd) = CG(G1(x1), ..., Gd(xd)), (x1, ..., xd) ∈ Rd. (4)In the sequel we will use notation I(A) = ∪j∈AIj .



3Proposition 2.1. If X has d.f. F with identi
ally distributed 
ontinuous margins and belongs tothe domain of attra
tion of a MEV G with unit Fré
het margins then, for ea
h k ∈ {1, ..., s}, wehave
lim
x→∞

P (Nx = k|Nx > 0) =
1

ǫGD

∑

S⊂{1,...,s};|S|=k

∑

T⊂S

(−1)|T |+1ǫGI(T∪SC)Proof We have, su

essively,
P (Nx = k|Nx > 0) = 1

1−P (Nx=0)

∑
S⊂{1,...,s};|S|=k P (∩j∈SXIj 6≤ xIj ,∩j 6∈SXIj ≤ xIj )

= 1
1−P (Nx=0)

∑
S⊂{1,...,s};|S|=k

∑
T⊂S(−1)|T |P (∩j∈T∪SCXIj ≤ xIj )

= 1
1−F (x)

∑
S⊂{1,...,s};|S|=k

∑
T⊂S(−1)|T |+1(1− F (x1−1

I(T∪Sc)(1), ..., x1
−1
I(T∪Sc)(d)))

(5)sin
e ∑
T⊂S(−1)|T |+1 = 0. Assuming w.l.o.g. that F has unit Pareto marginals, we obtained

P (Nx = k|Nx > 0) =

= 1
1−CF (1− 1

x1)

∑
S⊂{1,...,s};|S|=k

∑
T⊂S(−1)|T |+1(1− CF (1 −

1
x1

−1
I(T∪Sc)(1), ..., 1−

1
x1

−1
I(T∪Sc)(d))).

(6)By hypothesis, F belongs to the domain of attra
tion of a MEV G, whi
h is equivalent to (deHaan and de Ronde, [11℄ 1998):
lim
t→∞

1− CF (1− y1/x, ..., 1− yd/x)

1/x
= − logCG(e

−y1 , ..., e−yd), (y1, ..., yd) ≥ 0. (7)Taking limits in (5) and dividing both members by 1/x, 
onditions (6) and (7) lead us to
limx→∞ P (Nx = k|Nx > 0) =

= 1
− logCG(e−1,...,e−1)

∑
S⊂{1,...,s};|S|=k

∑
T⊂S(−1)|T |+1(− logCG(e

−1I(T∪Sc)(1), ..., e−1I(T∪Sc)(d)))

= 1
ǫGD

∑
S⊂{1,...,s};|S|=k

∑
T⊂S(−1)|T |+1ǫGI(T∪SC). �The previous result 
an be generalized to random ve
tors X with equivalent marginal distribu-tions, in the sense that, there exists a d.f. H su
h that,
lim

x→w(H)

1− Fi(x)

1−H(x)
= γi ∈ (0,∞), i = 1, ..., d, (8)where w(H) is the right-end-point of H . In this 
ase it is no longer possible an interpretationbased on extremal 
oe�
ients, as 
an be seen in the following result.Proposition 2.2. If X has d.f. F with equivalent marginal distributions in the sense of (8), andbelongs to the domain of attra
tion of a MEV G with unit Fré
het margins then, for ea
h k ∈

{1, ..., s}, we have
limx→w(H) P (Nx = k|Nx > 0) =

= 1
logCG(e−γ1 ,...,e−γd)

∑
S⊂{1,...,s};|S|=k

∑
T⊂S(−1)|T |+1 logCG(e

−γ11I(T∪Sc)(1), ..., e−γd1I(T∪Sc)(d))Proof Observe that
1− F (x1−1

I(T∪Sc)(1), ..., x1
−1
I(T∪Sc)(d))

= 1− CF (1− (1− F1(x1
−1
I(T∪Sc)(1))), ..., 1− (1− F1(x1

−1
I(T∪Sc)(d))))

= 1− CF (1− t
I(T∪Sc)
1 (x), ..., 1 − t

I(T∪Sc)
d (x))

(9)



4where
tAi (x) = 1A(i)

1 − Fi(x)

1−H(x)
(1−H(x)), i = 1, ...d .Applying (8), we have

limx→w(H)
1−CF (1−t

I(T∪Sc)
1 (x),...,1−t

I(T∪Sc)
d (x))

1−H(x)

= − logCG(e
−γ11I(T∪Sc)(1), ..., e−γd1I(T∪Sc)(d)).

(10)The result follows by retaking expression in (5) and 
onsidering (9) and (10). �If in parti
ular we 
onsider Ij = {j}, j = 1, ..., d, we �nd the result of Falk and Ti
hy ([7℄, 2011).In both results, we have (
s
k

)
× 2k terms. For ea
h 
hoi
e of k blo
ks, we 
onsider the dependen
ebetween the margins with indi
es in the remaining s− k blo
ks and t of k blo
ks with 0 ≤ t ≤ k.The results above 
an also be obtained through the relation between CG andD-norms presentedin Aulba
h et al. ([2℄, 2011). However, we have 
hosen to present self-
ontained proofs using theusual arguments of multivariate extreme value theory that are more familiar.3 The Fragility Index for blo
ksIn this se
tion we 
ompute the FI for blo
ks given in (1), whenever X has equally distributed ortail equivalent margins in the sense of (8), belonging to the domain of attra
tion of a MEV G withunit Fré
het margins.Proposition 3.1. If X has d.f. F with identi
ally distributed 
ontinuous margins and belongs tothe domain of attra
tion of a MEV G with unit Fré
het margins, we have

FI(X,D) =

∑s
j=1 ǫ

G
Ij

ǫGD
.Proof Observe that

FI(X,D) =
∑s

j=1 limx→∞ P (XIj 6≤ xIj |Nx > 0)

=
∑s

j=1 limx→∞

1−F (x1−1
Ij

(1),...,x1−1
Ij

(d))

1−F (x,...,x)

=
∑s

j=1 limx→∞
1−CF (1− 1

x1Ij
(1),...,1− 1

x1Ij
(d))/(1/x)

1−CF (1− 1
x ,...,1− 1

x )/(1/x)

= 1
ǫGD

∑s
j=1 ǫ

G
Ij
. �In parti
ular, for partitions 
orresponding to the family of all margins we obtain the known result

FI(X,D∗) = d/ǫGD. Hen
e, the FI of the system divided into blo
ks is smaller than the systemitself, i.e., FI(X,D) ≤ FI(X,D∗).Remark 3.1. We 
an relate FI(X,D) with the fragility indexes of the whole system and of ea
hblo
k. More pre
isely, FI(X,D) is a 
onvex linear 
ombination of the ratios FI(X,D∗)/FI(XIj ,D
∗
Ij
),sin
e we 
an write

FI(X,D) =

s∑

j=1

|Ij |

d

FI(X,D∗)

FI(XIj ,D
∗)
.Furthermore, it is also a weighted mean of those ratios:

FI(X,D) =
1

s

s∑

j=1

|Ij |s

d

FI(X,D∗)

FI(XIj ,D
∗)
.



5Proposition 3.2 (inter-blo
ks dependen
e). Under the 
onditions of Proposition 3.1, we have(i) 1 ≤ FI(X,D) ≤

∑s
j=1 ǫGIj∨
s
j=1 ǫGIj

.(ii) FI(X,D) = 1 if and only if XIj , j = 1, ...s are independent random ve
tors.(iii) FI(X,D) =

∑s
j=1 ǫGIj∨s
j=1 ǫGIj

if and only if XIj , j = 1, ...s are totally dependent random ve
tors inthe sense G(x) =
∧s

j=1 GIj (xIj ).Proof By the inequalities
s∏

j=1

GIj (xIj ) ≤ G(x) ≤
s∧

j=1

GIj (xIj )we have, su

essively,
(G{1}(x))

∑s
j=1 ǫGIj ≤ G

ǫGD
{1}(x) ≤ (G{1}(x))

∨s
j=1 ǫGIj

s∨

j=1

ǫGIj ≤ ǫGD ≤
s∑

j=1

ǫGIj . �Proposition 3.3 (intra-blo
ks dependen
e). Under the 
onditions of Proposition 3.1, we have(i) s
ǫGD

≤ FI(X,D) ≤ d
ǫGD

.(ii) FI(X,D) = d
ǫGD

if and only if the sub-ve
tors XIj , j = 1, ...s, only have independent r.v.'s.(iii) FI(X,D) = s
ǫGD

if and only if the sub-ve
tors XIj , j = 1, ...s, only have totally dependentrandom r.v.'s.Proof Just observe that 1 ≤ ǫIj ≤ |Ij |, with the lower and upper bounds 
orresponding to,respe
tively, 
omplete dependen
e and independen
e of r.v.'s within sub-ve
tors XIj , j = 1, ...s. �Next result presents an extremal 
oe�
ient for the amount of dependen
e between YIj , j =
1, ..., s, Y ∼ G, through the FI of X ∼ F in the domain of attra
tion of the MEV G.Proposition 3.4. Under the 
onditions of Proposition 3.1, we have

G(x) = (GI1(xI1 ), ..., GIs(xIs))
1/FI(X,D).Proof Observe that

G(x) = G1(x)
ǫGD = (G1(x)

∑s
j=1 ǫGIj )1/FI(X,D)

= (G1(x)
ǫGI1 ...G1(x)

ǫGIs )1/FI(X,D)

= (GI1(xI1 ), ..., GIs(xIs))
1/FI(X,D). �If we 
onsider partition D∗ in the previous result, we obtain the known relation (Smith, [23℄1990),

G(x) = (G1(x)
d)1/FI(X,D∗) = (G1(x)

d)ǫ
G/d = G1(x)

ǫG .Observe also that we 
an write FI(Y,D) instead of FI(X,D) with X in the domain of attra
tionof the MEV distribution of Y sin
e Y belongs to the same domain of attra
tion. We �nish thisse
tion with a generalization of Proposition 3.1 to the 
ase of equivalent margins and two illustrativeexamples.



6Proposition 3.5. If X has d.f. F with equivalent marginal distributions in the sense of (8), andbelongs to the domain of attra
tion of a MEV G with unit Fré
het margins then, for ea
h k ∈
{1, ..., s}, we have

FI(X,D) =

∑s
j=1 logCG(e

−γ11Ij
(1), ..., e−γd1Ij

(d))

logCG(e−γ1 , ..., e−γd)
.Example 3.1. We 
onsider a random ve
tor X of Example 3.2 in Falk and Ti
hy ([6℄, 2010),i.e., having 
omponents Xi =

∑m
k=1 λikYk, where Y1, ..., Ym are independent r.v.'s with Pareto(α)distribution, α > 0, and λij ≥ 0 su
h that ∑m

k=1 λ
α
ik = 1, i = 1, ..., d. Taking for H any of thedistributions of the margins of X, the equivalen
e 
ondition (8) holds with γi = 1, i = 1, ..., d. Thedistribution of X belongs to the domain of attra
tion of

G(x) = exp
(
−
∑m

k=1 ∨
d
i=1

(
λik

xi

)α)
, x > 0with Fré
het margins, Gi(x) = exp(−x−α). Hen
e, for u = (u1, ..., ud) ∈ (0,1),

CG(u) = exp
(
−
∑m

k=1 ∨
d
i=1λ

α
ik(− log ui)

)
.By Proposition 3.5, we have

FI(X,D∗) =

∑d
j=1

∑m
k=1 ∨

d
i=1λ

α
ik1{j}(i)∑m

k=1 ∨
d
i=1λ

α
ik

=

∑d
j=1

∑m
k=1 λ

α
jk∑m

k=1 ∨
d
i=1λ

α
ik

=
d∑m

k=1 ∨
d
i=1λ

α
ik

.as obtained in Falk and Ti
hy ([6℄, 2010). For any partition D, we have
FI(X,D) =

∑s
j=1

∑m
k=1 ∨

d
i=1λ

α
ik1Ij (i)∑m

k=1 ∨
d
i=1λ

α
ik

.To illustrate, 
onsider d = 3 = m, α = 1 and weights
λ11 = 4/8, λ12 = 2/8, λ13 = 2/8,
λ21 = 1/8, λ22 = 1/8, λ23 = 6/8,
λ31 = 3/8, λ32 = 2/8, λ33 = 3/8.We have
FI(X,D∗) = 3

4/8+2/8+6/8 = 24
12 = 2and, for D = {{1, 2}, {3}},

FI(X,D) = (4/8+2/8+6/8)+(3/8+2/8+3/8)
4/8+2/8+6/8 = 20

12 < 2.Example 3.2. If G has 
opula
CG(u1, ..., ud) = exp

(
−
(∑d

i=1(− log ui)
1/α

)α)
, 0 < α ≤ 1,(symmetri
 logisti
 model) then, for any partition D, we have

FI(X,D) =
∑s

j=1 |Ij |
α

dα =
∑s

j=1

( |Ij |
d

)α
,and FI(X,D∗) = d1−α as already stated in Geluk et al. ([10℄, 2007). In the symmetri
 model theFI is only a fun
tion of the blo
ks size. If we 
onsider the more general asymmetri
 logisti
 model,whose 
opula is given by

CG(u1, ..., ud) = exp
{
−
∑q

k=1

(∑d
i=1(−βki log ui)1/αk

)αk
}where βki are non-negative 
onstantes su
h that ∑q

k=1 βki = 1, i = 1, ..., d, 0 < αk ≤ 1, k = 1, ..., q,we obtain
FI(X,D) =

∑s
j=1

∑q
k=1

(∑
i∈Ij

β
1/αk
ki

)αk

∑q
k=1

(∑
d
i=1 β

1/αk
ki

)αk .



74 Tail dependen
e for blo
ksIn the following we always 
onsider that X has 
ontinuous marginal d.f.'s. Consider notation
M(Ij) =

∨
i∈Ij

Fi(Xi), j ∈ D.De�nition 4.1. The upper-tail dependen
e 
oe�
ients of X 
orresponding to partition D of Dare de�ned by, for ea
h S ( {1, ..., s},
τFS = limu↑1 P (

⋂
j 6∈S M(Ij) > u|

⋂
j∈S M(Ij) > u) (11)when the limit exists.If we 
onsider partition D∗, then S ( {1, ..., d} and we �nd the de�nition of Li ([20℄, 2009).Further, the 
ase s = 2 lead us to de�nition of Ferreira and Ferreira ([8℄, 2011).Consider

λF
S := lim

u↑1

P (
⋂

j∈S M(Ij) > u)

1− u
(12)for ea
h S ( {1, ..., s}. Hen
e we 
an write

τFS =
λF
{1,...,s}

λF
S

. (13)Observe that λF
S 
orresponds to the multivariate upper-tail dependen
e 
oe�
ient ΛU (1S) inS
hmidt and Stadtmüller ([21℄, 2006), where 1S denotes the unit ve
tor with dimension |S|. Inparti
ular, for partition D∗, λF

{i,j} = ΛU (1, 1) 
orresponds to the well-known bivariate tail depen-den
e 
on
ept (Sibuya, [22℄ 1960; Joe, [15℄ 1993).Before we relate the FI with the tail dependen
e 
oe�
ients 
orresponding to a partition, wepresent in this se
tion some extensions of the results in Li ([20℄, 2009).Proposition 4.1. If X has MEV distribution G with standard Fré
het margins and spe
tral mea-sure W de�ned on the d-dimensional unit sphere Sd then, for ea
h S ( {1, ..., s}, we have
τGS =

∫
Sd

∧s
j=1

∨
i∈Ij

wi dW (w)
∫
Sd

∧
j∈s

∨
i∈Ij

wi dW (w)
. (14)Proof From the spe
tral representation of G we obtain, for u su�
iently 
lose to 1,

P
(⋂s

j=1 M(Ij) > u
)
= 1−

∑
∅6=S⊂{1,...,s}(−1)|S|+1G

(
−

1
−1
I(S)

(1)

log u , ...,−
1
−1
I(S)

(d)

log u

)

≈ 1−
∑

∅6=S⊂{1,...,s}(−1)|S|+1
(
1 + log u

∫
Sd

∨
i∈I(S)wi dW (w)

)

= 1−
∑

∅6=S⊂{1,...,s}(−1)|S|+1
(
1− (− log u)

∫
Sd

∨
j∈S

∨
i∈Ij

wi dW (w)
)
.

(15)Sin
e
∑

∅6=S⊂{1,...,s}(−1)|S|+1 = 1and
∑

∅6=S⊂{1,...,s}(−1)|S|+1
∨

j∈S aj =
∧

j∈{1,...,s} aj ,expression in (15) be
omes
P
(⋂s

j=1 M(Ij) > u
)
≈ (− logu)

∫
Sd

∧s
j=1

∨
i∈Ij

wi dW (w)
)
.



8Analogously, we obtain
P
(⋂

j∈S M(Ij) > u
)
≈ (− log u)

∫
Sd

∧
j∈S

∨
i∈Ij

wi dW (w)
)
. �For the parti
ular 
ase D∗, the previous result is the one found in Li ([20℄, 2009). Note also thatthe numerator of (14) 
an be expressed through extremal 
oe�
ients as follows:

∑
∅6=S⊂{1,...,s}(−1)|S|+1

∫
Sd

∨
j∈S

∨
i∈Ij

wi dW (w)

=
∑

∅6=S⊂{1,...,s}(−1)|S|+1ǫGI(S)

= ǫGI1 + ...+ ǫGIs − (ǫGI1∪I2
+ ǫGI1∪I3

+ ...)− ...+ (−1)|S|+1ǫGI1∪...∪Is
,a generalization of result (15) in Ferreira and Ferreira ([8℄, 2011) where s = 2.The next result highlights the 
onne
tions between tail dependen
e and extremal 
oe�
ients.Corollary 4.2. Under the 
onditions of Proposition 4.1, we have(i) λG

S =
∑

∅6=T⊂S(−1)|T |+1ǫGI(T )(ii) τGS =
∑

∅6=T⊂{1,...,s}(−1)|T |+1ǫGI(T )∑
∅6=T⊂S(−1)|T |+1ǫG

I(T )

.We end this se
tion with a generalization of Theorem 2.6 in Li ([20℄, 2009), by adapting thearguments to subsets of D that 
orrespond to unions of blo
ks in D.Proposition 4.3. If F belongs to the domain of attra
tion of a MEV G with unit Fré
het marginsthen, for any partition D and ∅ 6= S ⊂ {1, ..., s}, the non-null upper-tail dependen
e 
oe�
ients τFSare the same as the 
orresponding ones of G.5 Fragility Index and tail dependen
e for blo
ksIn this se
tion we shall see that the asymptoti
 d.f.'s of the 
onditional probability of k ex
eedan
esbetween blo
ks, I1, ..., Is, 
an be derived through the tail dependen
e 
oe�
ients given in (12).More pre
isely, if the d.f. F of X has tail dependen
e 
oe�
ients λF
S 
orresponding to partition D,we 
an obtain limx→∞ P (Nx = k|Nx > 0) from these latter. In parti
ular, for F in the domain ofattra
tion of a MEV G, besides the representations presented in the previous results, we 
an writethose limiting probabilities through tail dependen
e 
oe�
ients λG
S .Proposition 5.1. Let X be a random ve
tor with d.f. F with 
ontinuous and identi
ally distributedmargins. Let D be a partition of D for whi
h the tail dependen
e 
oe�
ients λF

S 
orresponding to
F exist for ea
h S ⊂ {1, ..., s}. Then,(i) for ea
h k ∈ {1, ..., s},

lim
x→∞

P (Nx = k|Nx > 0) =

∑
S⊂{1,...,s},|S|=k

∑
T⊂SC (−1)|T |λF

T∪S∑s
k=1

∑
S⊂{1,...,s},|S|=k

∑
T⊂SC (−1)|T |λF

T∪S

,as long as the numerator is non-null.(ii) if F belongs to the domain of attra
tion of a MEV G with unit Fré
het marginals, the limitsin (i) exist and 
oin
ide for both distributions, F and G.



9Proof Just observe that
limx→∞ P (Nx = k|Nx > 0) = lim

u↑1

∑
S⊂{1,...,s},|S|=k

∑
T⊂SC (−1)|T |P (

⋂
T∪S M(Ij) > u)

∑s
k=1

∑
S⊂{1,...,s},|S|=k

∑
T⊂SC (−1)|T |P (

⋂
T∪S M(Ij) > u)

.Now divide both terms of the ratio by 1− u. �Analogously, we obtain the FI through λF
S or λG

S .Proposition 5.2. Under the 
onditions of Proposition 5.1, we have(i)
FI(X,D) =

∑s
j=1 λ

F
{j}∑s

k=1

∑
S⊂{1,...,s},|S|=k

∑
T⊂SC (−1)|T |λF

T∪Sas long as the numerator is non-null.(ii) if F belongs to the domain of attra
tion of a MEV G with unit Fré
het marginals, FI(X,D)exists and the the expression in (i) 
oin
ides for both distributions, F and G.The statements in (ii) of the two propositions are 
onsequen
es of Proposition 4.3.6 Asymptoti
 Independen
eIf X has independent margins Xi, i = 1, ..., d, we have an unit FI. As Geluk et al. ([10℄, 2007)observed, in this 
ase we might have an asymptoti
 independen
e 
hara
terized by a dependen
ythat vanishes at extreme quantiles. Asymptoti
 independen
e means that the system is weaklyfragile, albeit possibly 
orrelated (e.g., gaussian ve
tors). Geluk et al. ([10℄, 2007) have de�ned afragility index for asymptoti
 independen
e (AIFI) given by
ηD =

1

d
lim
x→∞

∑d
i=1 logP (Xi > x)

logP (X1 > x, ..., Xd > x)
. (16)In 
ase d = 2 we �nd the Ledford and Tawn 
oe�
ient of asymptoti
 independen
e ([18, 19℄, 1996,1997) and, if d > 2, a multivariate extension of this latter (Ferreira and Ferreira, [9℄, 2012).Here we 
onsider an extension of the AIFI in (16) for blo
ks, in the same spirit of the FI inProposition 3.1, i.e., by relating the AIFI within blo
ks with the AIFI of the whole ve
tor.Let ηA be the AIFI of sub-ve
tor XA of X, with A ⊂ D, i.e.,

ηA =
1

|A|
lim
x→∞

∑
i∈A logP (Xi > x)

logP (XA > xA)
. (17)De�nition 6.1. Let X = (X1, ..., Xd) be a random ve
tor with FI(X,D) = 1. Then the AIFI of

X = (X1, ..., Xd) relative to partition D of D is
1

s
lim
x→∞

∑s
j=1 logP (XIj > xIj )

logP (X1 > x, ..., Xd > x)
, (18)whenever the limit exists and is denoted η(X,D).Proposition 6.1. Let X = (X1, ..., Xd) be a random ve
tor with FI(X,D) = 1. Assume that (16)holds and that (17) holds for all Ij ∈ D, j = 1, ..., s, with limit given by ηIj , respe
tively. If X hasidenti
ally distributed or equivalent margins in the sense of (8), then

η(X,D) = ηD
1

s

s∑

j=1

1

ηIj
. (19)



10 Proof Observe that by (16) and (17), then
η(X,D) = lim

x→∞
ηD

1
s

∑s
j=1

1
ηIj

|Ij |

∑
i∈Ij

logP (Xi > x)

1
d

∑d
i=1 logP (Xi > x)

,and by (8), we have
η(X,D) = lim

x→∞
ηD

1
s

∑s
j=1

1
ηIj

(
1

|Ij |

∑
i∈Ij

log γi + log(1−H(x))
)

1
d

∑d
i=1 log γi + log(1 −H(x))

. �In parti
ular, we have η(X,D∗) = ηD and hen
e, the AIFI of the system divided into blo
ks islarger than the AIFI of the system itself, i.e., η(X,D) ≥ η(X,D∗).Remark 6.1. In the parti
ular 
ase of FI(X,D∗) > 1 we have η(X,D) = 1.Observe also that, by Proposition 6.1, we 
an relate η(X,D) with the fragility indexes of thewhole system and of ea
h blo
k. More pre
isely, η(X,D) is the arithmeti
 mean of the ratios
η(X,D∗)/η(XIj ,D

∗).Example 6.1. Consider X = (X1, ..., Xd) a standard d-variate Gaussian random ve
tor with d.f.
Φd(·; (Σi,j)i,j∈D) having positive de�nite 
orrelation matrix (Σi,j)i,j∈D . We have, for all A ⊂ D,
η−1
A = 1A(Σi,j)

−1
i,j∈A1

T
A, the sum of all elements of the sub-matrix (Σi,j)

−1
i,j∈A (Geluk et al., [10℄,2007; Hua and Joe, [13℄, 2011). For illustration, 
onsider dimension d = 4, 
onstant 
orrelation ρ,and take s = 3 with I1 = {1, 2}, I2 = {3} and I3 = {4}. We have ηD = (3ρ+1)/4, ηI1 = (ρ+1)/2and ηI2 = ηI3 = 1. Hen
e

η(X,D) = 1
3
3ρ+1

4

(
2

ρ+1 + 1 + 1
)
= (3ρ+1)(ρ+2)

6(ρ+1) .In the sequel we 
onsider positive/negative asso
iation of a random ve
tor in the sense ofLedford and Tawn ([18, 19℄, 1996, 1997).Proposition 6.2 (inter-blo
ks asymptoti
 independen
e). Under the 
onditions of Proposition6.1, we have(i) η(X,D) ≤ 1
s in 
ase of positive asso
iation between sub-ve
torsXIj , j = 1, ...s, and η(X,D) ≥

1
s in 
ase of negative asso
iation.(ii) η(X,D) ≥

∧s
j=1ηIj

s

∑s
j=1

1
ηIj

.(iii) η(X,D) = 1
s if and only if the sub-ve
tors XIj , j = 1, ...s, are independent.(iv) η(X,D) =
∧s

j=1ηIj

s

∑s
j=1

1
ηIj

if and only if the sub-ve
tors XIj , j = 1, ...s, are totally depen-dent.Proof Observe that, P (X1 > x, ..., Xd > x) ≤ ∧s
j=1P (XIj > xIj ), with the upper bound
orresponding to total dependen
e between sub-ve
tors XIj , j = 1, ...s. Under positive asso
iationwe have P (X1 > x, ..., Xd > x) ≥

∏s
j=1 P (XIj > xIj ) and negative asso
iation otherwise, with thebounds 
orresponding to independen
e between sub-ve
tors XIj , j = 1, ...s. �Proposition 6.3 (intra-blo
ks asymptoti
 independen
e). Under the 
onditions of Proposition6.1, we have(i) η(X,D) ≤ ηDd

s in 
ase the sub-ve
tors XIj , j = 1, ...s, only have positively asso
iated r.v.'sand η(X,D) ≥ ηDd
s in 
ase of negative asso
iation.(ii) η(X,D) ≥ ηD.



11(iii) η(X,D) = ηDd
s if and only if the sub-ve
tors XIj , j = 1, ...s, only have independent r.v.'s.(iv) η(X,D) = ηD if and only if the sub-ve
tors XIj , j = 1, ...s, only have totally dependentrandom r.v.'s.Proof For ea
h j = 1, ...s, under positive asso
iation of the r.v.'s in XIj we have P (XIj >

xIj ) ≥
∏

i∈Ij
P (Xi > x), and hen
e 1/ηIj ≤ |Ij |, with the upper bound 
orresponding to inde-penden
e. For negative asso
iation we have P (XIj > xIj ) ≤

∏
i∈Ij

P (Xi > x). Observe also thattotal dependen
e within ea
h blo
k means P (XIj > xIj ) = ∧i∈Ijγi(1−H(x)). �As already mentioned, the de�nition of the AIFI in (18) measures the asymptoti
 independentfragility of a system divided into blo
ks (sub-ve
tors), by relating the asymptoti
 independentfragility within the blo
ks and in the whole system. If in (16) we generalize for blo
ks the 
on
eptof an ex
eedan
e of a r.v., Xi > x, through events XIj 6≤ xIj , we obtain another 
oe�
ient forasymptoti
 tail independen
e. In this way, we extend the 
oe�
ient of asymptoti
 tail independen
ethat was 
onsidered in Ferreira and Ferreira ([8℄, 2011) for the parti
ular 
ase of a partition
D = {I1, I2} of D = {1, ..., d}.De�nition 6.2. Let X = (X1, ..., Xd) be a random ve
tor with FI(X,D) = 1. The 
oe�
ient ofasymptoti
 independen
e of X = (X1, ..., Xd) relative to partition D of D is

lim
x→∞

1

s

∑s
j=1 logP (XIj 6≤ xIj )

logP (
⋂s

j=1{XIj 6≤ xIj})
, (20)whenever the limit exists, and is denoted η(I1,...,Is).The following result is therefore an immediate extension of Proposition 2.4 in Ferreira andFerreira ([8℄, 2011).Proposition 6.4. Let X = (X1, ..., Xd) be a random ve
tor with FI(X,D) = 1. Assume that thelimit in (20) exists and, for all ∅ 6= Kj ⊂ Ij , j = 1, ..., s, (17) holds for ∪s

j=1Kj. Then
η(I1,...,Is) = max{η{i1,...,is} : ij ∈ Ij , j = 1, ..., s}. (21)Similar to η(X,D), 
oe�
ient η(I1,...,Is) is also based on the 
oe�
ient of Ledford and Tawn ormultivariate extensions of this latter.In the example below, one 
an see that the asymptoti
 tail independent 
oe�
ients, η(X,D)and η(I1,...,Is), are di�erent.Example 6.2. Consider {Vi}i≥1 an i.i.d. sequen
e of unit Pareto r.v.'s. Let (X1, X2, X3) be arandom ve
tor su
h that, X1 = min(V1, V2), X2 = min(V2, V3) and X3 = min(V3, V4). If D =

{I1, I2}, with I1 = {1, 2} and I2 = {3}, we have P (Xi > x) = x−2, i = 1, 2, 3, P (X1 > x,X2 >
x) = P (X2 > x,X3 > x) = x−3 and P (X1 > x,X3 > x) = P (X1 > x,X2 > x,X3 > x) = x−4.Therefore

FI(X,D) = lim
x→∞

=
P (

⋃2
i=1{Xi > x}) + P (X3 > x)

P (
⋃3

i=1{Xi > x})
=

2x−2 − x−3 + x−2

3x−2 − 2x−3 − x−4 + x−4
= 1,

η(X,D) = 1
2 limx→∞

∑2
j=1 logP (XIj

>xIj
)

logP (X1>x,X2>x,X3>x) =
1
2 limx→∞

logP (X1>x,X2>x)+P (X3>x)
logP (X1>x,X2>x,X3>x) = 1

2
−3−2
−4 = 5

8and
η(I1,I2) =

1
2 limx→∞

logP (XI1 6≤xI1)+logP (XI2 6≤xI2)

logP (XI1 6≤xI1 ,XI2 6≤xI2)

= 1
2 limx→∞

log(P (X1>x)+P (X2>x)−P (X1>x,X2>x))+logP (X3>x)
log(P (X1>x,X3>x)+P (X2>x,X3>x)−P (X1>x,X2>x,X3>x))

= 1
2 limx→∞

log(2x−2−x−3)+log x−2

log(x−4+x−3−x−4) = 2/3.



12 Observe that the same results are obtained if we apply Propositions 6.1 and 6.4, respe
tively.More pre
isely, we have
ηD = η{1,2,3} =

1

3
lim
x→∞

∑3
i=1 logP (Xi > x)

logP (X1 > x,X2 > x,X3 > x)
=

1

3

3 logx−2

log x−4
=

1

2
,

η{1,3} =
1

2

2 log x−2

log x−4
=

1

2
and η{2,3} =

1

2

2 log x−2

log x−3
=

2

3
.Obviously ηI2 = 1 and

ηI1 =
1

2
lim
x→∞

∑2
i=1 logP (Xi > x)

logP (X1 > x,X2 > x)
=

1

2

2 logx−2

log x−3
=

2

3
.Hen
e, by Propositions 6.1 and 6.4, respe
tively,

η(X,D) =
1

2

(1
2
(3/2 + 1)

)
=

5

8and
η(I1,I2) = max{η{1,3}, η{2,3}} = max{1/2, 2/3} = 2/3.7 Estimation of the Fragility Index for blo
ksIn the previous se
tions we have relate the FI for blo
ks with well-known tail dependen
e measures.This will allow to obtain immediate estimators for our index through the estimators of those
oe�
ients that are already studied in literature.Proposition 3.1 presents an estimation pro
edure for the FI based on the extremal 
oe�
ientsof Tiago de Oliveira ([25℄, 1962/63) and Smith ([23℄, 1990) given in (2). Observe that they 
anbe expressed through the stable tail dependen
e fun
tion, lG, de�ned in (3). There are severalreferen
es in literature on the estimation of the stable tail dependen
e fun
tion. In a parametri
framework, a model for lG must be imposed. Non-parametri
 estimators are usually based on anarbitrarily 
hosen parameter, 
orresponding to the number of top order statisti
s to use in orderto provide the best trade-o� between bias and varian
e, whi
h is not an easy task. For a survey,we refer Krajina ([17℄, 2010) or Beirlant et al. ([3℄ 2004). The more re
ent work in Ferreira andFerreira ([8℄, 2011) presents a simpler non-parametri
 estimator based on sample means, whi
h weshall adopt here.For A ⊂ D, denote M(A) =

∨
i∈A Fi(Xi). Consider

ǫ̂GD = M(D)

1−M(D)
and ǫ̂GIj =

M(Ij)

1−M(Ij)
, (22)where M(A) is the sample mean

M(A) =
1

n

n∑

i=1

∨

j∈A

F̂j(X
(i)
j ) (23)and F̂j , j ∈ A, is the (modi�ed) empiri
al d.f. of Fj ,

F̂j(u) =
1

n+ 1

n∑

k=1

1
{X

(k)
j ≤u}

.



13The denominator n+1 instead of n in the ordinary empiri
al d.f. 
on
erns estimation a

ura
y andother modi�
ations 
an be used (see, for instan
e, Beirlant et al. [3℄ 2004). Based on Proposition3.1, and for a partition D of D, we 
onsider estimator
F̂ I(X,D) =

∑s
j=1 ǫ̂GIj
ǫ̂GD

, (24)whi
h is 
onsistent given the 
onsisten
y of estimators ǫ̂GD and ǫ̂GIj already stated in Ferreira andFerreira ([8℄, 2011).By Proposition 5.2, we 
an also estimate FI(X,D) based on the tail dependen
e 
oe�
ientsin (12). As already mentioned, these 
orrespond to multivariate upper-tail dependen
e 
oe�
ients
onsidered in S
hmidt and Stadtmüller ([21℄, 2006), for whi
h non-parametri
 estimators havebeen studied. We remark that these estimators are also based on a similar pro
edure as des
ribedabove for the stable tail dependen
e fun
tion, i.e., it 
omprises the 
hoi
e of a number of top orderstatisti
s to be used, not too large neither too small to avoid, respe
tively, large bias and largevarian
e.Remark 7.1. In 
ase of asymptoti
 independen
e 
onsidered in Se
tion 6, immediate estimatorsfor the asymptoti
 independent 
oe�
ients, η(X,D) and η(I1,...,Is), 
an be derived from the foundrelations with the Ledford and Tawn 
oe�
ient (or multivariate extensions), whose estimation hasalready been studied in literature (see, for instan
e, Draisma [4℄, 2004 or, for a survey, Beirlantet al., [3℄, 2004). In parti
ular, the Ledford and Tawn 
oe�
ient 
an be estimated as the extremevalue index of r.v. min(1/(1−F1(X1)), 1/(1−F2(X2))) and, similarly, its multivariate versions in(17) 
an be estimated as the extreme value index of r.v. mini∈A(1/(1− Fi(Xi))).7.1 An appli
ation to �nan
ial dataWe now illustrate the estimation of the FI for blo
ks through an appli
ation to data analyzed byFerreira and Ferreira ([8℄, 2011). The data are the series of negative log-returns of the 
losing valuesof the sto
k market indexes, CAC 40 (Fran
e), FTSE100 (UK), SMI (Swiss), XDAX (German),Dow Jones (USA), Nasdaq (USA), SP500 (USA), HSI (China), Nikkei (Japan). The period 
overedis January 1993 to Mar
h 2004. Sin
e we do not have a sample of maximum values, we 
onsiderthe monthly maximums in ea
h market. We group the indexes in Europe (CAC 40, FTSE100,SMI, XDAX), USA (Dow Jones, Nasdaq) and Far East (HSI, Nikkei). The presen
e of dependen
ewithin these groups was already eviden
ed in Ferreira and Ferreira ([8℄, 2011). We are interestedin assessing the fragility within the system of the �nan
ial sto
k markets whenever grouped inthe three big world markets referred: Europe, USA and Far East. To this end, we use estimator
F̂ I(X,D) in (24). In Table 1 are the obtained estimates, as well as, the estimates of the extremal
oe�
ient (ǫ̂G) within ea
h group and in the whole system (we denote the whole system, i.e., theve
tor of all observations as �Global"). The estimates of the FI within ea
h �nan
ial market groupand in the whole system are also presented. One 
an see that the USA is the most fragile �nan
ialsystem with F̂ I = 1.885948905. Observe also that the FI of the whole system is almost twi
e theFI of the system divided into blo
ks.Referen
es[1℄ Ané T., Kharoubi, C. (2003). Dependen
e stru
ture and risk measure. J. Bus. E
onom. Statist.76, 411-438 .[2℄ Aulba
h, S., Bayer, V. and Falk, M. (2011). A multivariate pie
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ation to operational loss data. Bernoulli, in print.



14[3℄ Beirlant, J., Goegebeur, Y., Segers, J. e Teugels, J. (2004). Statisti
s of Extremes: Theoryand Appli
ation. John Wiley.[4℄ Draisma,G., Drees, H., Ferreira, A. and de Haan, L. (2004). Bivariate tail estimation: depen-den
e in asymptoti
 independen
e. Bernoulli 10, 251-280.[5℄ Embre
hts, P., Pu

etti, G. (2006). Bounds for Fun
tions of Dependent Risks. Finan
e Sto
h.10(3), 341-352.[6℄ Falk, M. and Ti
hy, D. (2010). Asymptoti
 
onditional distribution of ex
eedan
e 
ounts.Revised version submitted.[7℄ Falk, M. and Ti
hy, D. (2011). Asymptoti
 
onditional distribution of ex
eedan
e 
ounts:fragility index with di�erent margins.[8℄ Ferreira, H., Ferreira M. (2011). Extremal dependen
e: some 
ontributions. arXiv:1108.1972v1[math.ST℄.[9℄ Ferreira, M., Ferreira, H. (2012). Tail dependen
e between order statisti
s. JMVA 105(1),176-192.[10℄ Geluk, J.L., De Haan, L. and De Vries, C.G. (2007). Weak and strong �nan
ial fragility.Tinbergen Institute Dis
ussion Paper, TI 2007-023/2.[11℄ de Haan, L. and de Ronde, J. (1998). Sea and wind: multivariate extremes at work. Extremes1 7-45.[12℄ Hauksson, H., Da
orogna, M., Domenig, T., Mueller, U. and Samorodnitsky, G. (2001). Mul-tivariate Extremes, Aggregation and Risk Estimation, Quantitative Finan
e 1, 79-95.[13℄ Hua, L., Joe, H. (2011). Tail order and intermediate tail dependen
e of multivariate 
opulas.J. Multivariate Anal. 102(10), 1454-1471.[14℄ Huang, X. (1992). Statisti
s of Bivariate Extreme Values. Ph. D. thesis, Tinbergen InstituteResear
h Series 22, Erasmus University Rotterdam.[15℄ Joe, H. (1997). Multivariate Models and Dependen
e Con
epts, Chapman & Hall, London.[16℄ Junker, M., May, A. (2005). Measurement of aggregate risk with 
opulas. E
onom. J. 8, 428-454.[17℄ Krajina, A. (2010). An M-Estimator of Multivariate Tail Dependen
e. Tilburg: Tilburg Uni-versity Press.[18℄ Ledford, A. and Tawn, J. A. (1996). Statisti
s for near independen
e in multivariate extremevalues. Biometrika, 83, 169-187.
ǫ̂G F̂ IEurope 2.243980009 1.78254707USA 1.590711176 1.885948905Far East 1.673156121 1.195345715Global 4.017568517 2.240160924 F̂ I(X,D)1.370940479Table 1: Estimates of the extremal 
oe�
ient (ǫ̂G) within ea
h blo
k (Europe, USA, Far East)and in the whole system (Global) 
omprising the three blo
ks, as well as, estimates of the FI (F̂ I)within ea
h blo
k, in the whole system and within the system divided into blo
ks (F̂ I(X,D)).



15[19℄ Ledford, A. and Tawn, J. A. (1997). Modelling Dependen
e within joint tail regions, J. R.Stat. So
. Ser. B Stat. Methodol. 59, 475-499.[20℄ Li, H. (2009). Orthant tail dependen
e of multivariate extreme value distributions, J. Multi-variate Anal., 100(1), 243-256.[21℄ S
hmidt, R., Stadtmüller, U. (2006). Nonparametri
 estimation of tail dependen
e, S
andina-vian J. Statist. 33 307-335.[22℄ Sibuya, M. (1960). Bivariate extreme statisti
s, Ann. Inst. Statist. Math. 11 195-210.[23℄ Smith, R.L. (1990). Max-stable pro
esses and spatial extremes. Preprint, Univ. North Car-olina, USA.[24℄ Straetmans, S. , Wol�, C. , Vers
hoor, W. (2008). Extreme U.S. Sto
k Market Flu
tuationsin the Wake of 9/11. J. Appl. E
onometri
s, 23(1), 17-42.[25℄ Tiago de Oliveira, J. (1962/63). Stru
ture theory of bivariate extremes, extensions. Est. Mat.,Estat. e E
on. 7, 165-195.


