
1Fragility Index of blok tailed vetorsHelena Ferreira Department of Mathematis, University of Beira Interior, Covilhã, PortugalMarta Ferreira Department of Mathematis, University of Minho, Braga, Portugal 1Abstrat: Finanial rises are a reurrent phenomenon with important e�ets on the real eonomy. The�nanial system is inherently fragile and it is therefore of great importane to be able to measure andharaterize its systemi stability. Multivariate extreme value theory provide us suh a framework throughthe fragility index (Geluk [10℄, et al., 2007; Falk and Tihy, [6, 7℄ 2010, 2011). Here we generalize thisonept and ontribute to the modeling of the stability of a stohasti system divided into bloks. Wewill �nd several relations with well-known tail dependene measures in literature, whih will provide usimmediate estimators. We end with an appliation to �nanial data.Keywords: multivariate extreme value theory, tail dependene, fragility index, extremal oe�ients1 IntrodutionIn the last deade, dependenies between �nanial asset returns have inreased, mostly as a on-sequene of globalization e�ets and relaxed market regulation. Therefore, the onept of taildependene has been disussed in �nanial appliations related to market or redit risk, e.g.,Hauksson et al. [12℄ (2001), Ané and Kharoubi [1℄ (2003), Junker and May [16℄ (2005), Straet-mans et al. [24℄ (2008), Embrehts and Puetti [5℄ (2010). The natural framework to modelextremal dependene turns out to be the multivariate extreme value theory. The study of systemistability is an important issue within this ontext of extreme risk dependene. The fragility ofa system have been addressed to the Fragility Index (FI) introdued in Geluk et al. ([10℄, 2006).More preisely, onsider a random vetor X = (X1, ..., Xd) and Nx :=
∑d

i=1 1{Xi>x} the numberof exeedanes among X1, ..., Xd above a threshold x. The FI orresponding to X is the asymp-toti onditional expeted number of exeedanes, given that there is at least one exeedane,i.e., FI = limx→∞ E(Nx|Nx > 0). The stohasti system {X1, ..., Xd} is alled fragile whenever
FI > 1. Theoretial developments, namely, the asymptoti distribution of Nx onditional to
Nx > 0 an be seen in Falk and Tihy ([6, 7℄, 2010, 2011).In this work we generalize some properties of the FI presented in the referenes above, on-tributing to the modeling of the stability of a stohasti system divided into bloks.We shall state some notation that will be used throughout the paper.Consider D = {I1, ..., Is} a partition of D = {1, ..., d}. For the random vetor X = (X1, ..., Xd),let XIj be a sub-vetor of X whose omponents have indexes in Ij , with j = 1, ..., s. If F denotesthe d.f. of X then FIj denotes the d.f. of sub-vetor XIj , j = 1, ..., s, and Fi the marginal d.f.,
i = 1, ..., d. Let xIj be a vetor of length |Ij | with omponents equal to x ∈ R. We will say that
XIj is the jth blok of random vetor X and denote by Nx the number of bloks where it oursat least one exeedane of x, i.e.,

Nx =

s∑

j=1

1{XIj
6≤xIj

}.All operations and inequalities on vetors are meant omponentwise.1Corresponding author: Marta Ferreirae-mail: msferreira�math.uminho.pt



2De�nition 1.1. The Fragility Index (FI) of a random vetor X = (X1, ..., Xd) relative to partition
D is

lim
x→∞

E(Nx|Nx > 0), (1)whenever the limit exists and is denoted FI(X,D).If we onsider Ij = {j}, j = 1, ..., d, we �nd the FI introdued in Geluk et al. ([10℄, 2007)and latter study by Falk and Tihy ([6, 7℄, 2010, 2011). This partition will be denoted as D∗, i.e.,
D∗ = {Ij = {j} : j = 1, ..., d}.We give partiular emphasis to random vetors in the domain of attration of a multivariateextreme value distribution (MEV) and onsider either the ase of identially distributed marginsor tail equivalent margins in the sense onsidered in Falk and Tihy ([7℄, 2011). In Setion 2 wepresent some asymptoti properties of the distribution of Nx onditional to Nx > 0, and �ndgeneralizations of results in Falk and Tihy ([7℄, 2011). We prove that FI(X,D) exists and relateswith the extremal oe�ients ǫ of Tiago de Oliveira ([25℄, 1962/63) and Smith ([23℄, 1990) in aseof identially distributed margins (Setion 3). We de�ne generalized versions of the multivariatetail dependene oe�ients of Li ([20℄, 2009) and extend some of its results (Setion 4). In Setion5 we relate these latter oe�ients with FI(X,D).For independent margins we have an unit FI. However, the stability of a stohasti systemat higher levels an also be haraterized by asymptoti independene (Geluk et al., [10℄, 2007).Asymptoti independene means that the dependeny when present vanishes at extreme quantilesand the system is said to be weakly fragile, albeit possibly orrelated (e.g., gaussian vetors). Weextend the onept of asymptoti independent FI in Geluk et al. ([10℄, 2007) for bloks. A seondmeasure is also presented by extending the 2-bloks asymptoti independent oe�ient in Ferreiraand Ferreira ([8℄, 2011) to the ase of s-bloks, with s > 2. This issue is onsidered in Setion 6.Our results relating FI(X,D) with well-known tail dependene measures, for whih estima-tors and respetive properties have already been study in literature, will provide us immediateestimators (Setion 7). We end with an appliation to �nanial data.2 Asymptoti Properties of NxIn this setion we present some asymptoti properties of the distribution of Nx onditional to
Nx > 0. We start to relate this latter with ǫGA, the extremal oe�ients (Tiago de Oliveira,[25℄ 1962/63; Smith, [23℄ 1990) of the sub-distribution funtions of the MEV G orresponding tomargins in A, i.e., by assuming G has unit Fréhet margins,

ǫGA = − logG(1−1
A (1), ...,1−1

A (d)) (2)where, for all A ⊂ D, x ∈ R,
1
−1
A (x) =

{
1 , x ∈ A
∞ , x 6∈ A.They may be written through the stable tail dependene funtion (Huang, [14℄ 1992):

lG(x
−1
1 , ..., x−1

d ) = − logG(x1, ..., xd) = − logCG(e
−1/x1 , ..., e−1/xd), (3)where CG is the opula of G, i.e.,

G(x1, ..., xd) = CG(G1(x1), ..., Gd(xd)), (x1, ..., xd) ∈ Rd. (4)In the sequel we will use notation I(A) = ∪j∈AIj .



3Proposition 2.1. If X has d.f. F with identially distributed ontinuous margins and belongs tothe domain of attration of a MEV G with unit Fréhet margins then, for eah k ∈ {1, ..., s}, wehave
lim
x→∞

P (Nx = k|Nx > 0) =
1

ǫGD

∑

S⊂{1,...,s};|S|=k

∑

T⊂S

(−1)|T |+1ǫGI(T∪SC)Proof We have, suessively,
P (Nx = k|Nx > 0) = 1

1−P (Nx=0)

∑
S⊂{1,...,s};|S|=k P (∩j∈SXIj 6≤ xIj ,∩j 6∈SXIj ≤ xIj )

= 1
1−P (Nx=0)

∑
S⊂{1,...,s};|S|=k

∑
T⊂S(−1)|T |P (∩j∈T∪SCXIj ≤ xIj )

= 1
1−F (x)

∑
S⊂{1,...,s};|S|=k

∑
T⊂S(−1)|T |+1(1− F (x1−1

I(T∪Sc)(1), ..., x1
−1
I(T∪Sc)(d)))

(5)sine ∑
T⊂S(−1)|T |+1 = 0. Assuming w.l.o.g. that F has unit Pareto marginals, we obtained

P (Nx = k|Nx > 0) =

= 1
1−CF (1− 1

x1)

∑
S⊂{1,...,s};|S|=k

∑
T⊂S(−1)|T |+1(1− CF (1 −

1
x1

−1
I(T∪Sc)(1), ..., 1−

1
x1

−1
I(T∪Sc)(d))).

(6)By hypothesis, F belongs to the domain of attration of a MEV G, whih is equivalent to (deHaan and de Ronde, [11℄ 1998):
lim
t→∞

1− CF (1− y1/x, ..., 1− yd/x)

1/x
= − logCG(e

−y1 , ..., e−yd), (y1, ..., yd) ≥ 0. (7)Taking limits in (5) and dividing both members by 1/x, onditions (6) and (7) lead us to
limx→∞ P (Nx = k|Nx > 0) =

= 1
− logCG(e−1,...,e−1)

∑
S⊂{1,...,s};|S|=k

∑
T⊂S(−1)|T |+1(− logCG(e

−1I(T∪Sc)(1), ..., e−1I(T∪Sc)(d)))

= 1
ǫGD

∑
S⊂{1,...,s};|S|=k

∑
T⊂S(−1)|T |+1ǫGI(T∪SC). �The previous result an be generalized to random vetors X with equivalent marginal distribu-tions, in the sense that, there exists a d.f. H suh that,
lim

x→w(H)

1− Fi(x)

1−H(x)
= γi ∈ (0,∞), i = 1, ..., d, (8)where w(H) is the right-end-point of H . In this ase it is no longer possible an interpretationbased on extremal oe�ients, as an be seen in the following result.Proposition 2.2. If X has d.f. F with equivalent marginal distributions in the sense of (8), andbelongs to the domain of attration of a MEV G with unit Fréhet margins then, for eah k ∈

{1, ..., s}, we have
limx→w(H) P (Nx = k|Nx > 0) =

= 1
logCG(e−γ1 ,...,e−γd)

∑
S⊂{1,...,s};|S|=k

∑
T⊂S(−1)|T |+1 logCG(e

−γ11I(T∪Sc)(1), ..., e−γd1I(T∪Sc)(d))Proof Observe that
1− F (x1−1

I(T∪Sc)(1), ..., x1
−1
I(T∪Sc)(d))

= 1− CF (1− (1− F1(x1
−1
I(T∪Sc)(1))), ..., 1− (1− F1(x1

−1
I(T∪Sc)(d))))

= 1− CF (1− t
I(T∪Sc)
1 (x), ..., 1 − t

I(T∪Sc)
d (x))

(9)



4where
tAi (x) = 1A(i)

1 − Fi(x)

1−H(x)
(1−H(x)), i = 1, ...d .Applying (8), we have

limx→w(H)
1−CF (1−t

I(T∪Sc)
1 (x),...,1−t

I(T∪Sc)
d (x))

1−H(x)

= − logCG(e
−γ11I(T∪Sc)(1), ..., e−γd1I(T∪Sc)(d)).

(10)The result follows by retaking expression in (5) and onsidering (9) and (10). �If in partiular we onsider Ij = {j}, j = 1, ..., d, we �nd the result of Falk and Tihy ([7℄, 2011).In both results, we have (
s
k

)
× 2k terms. For eah hoie of k bloks, we onsider the dependenebetween the margins with indies in the remaining s− k bloks and t of k bloks with 0 ≤ t ≤ k.The results above an also be obtained through the relation between CG andD-norms presentedin Aulbah et al. ([2℄, 2011). However, we have hosen to present self-ontained proofs using theusual arguments of multivariate extreme value theory that are more familiar.3 The Fragility Index for bloksIn this setion we ompute the FI for bloks given in (1), whenever X has equally distributed ortail equivalent margins in the sense of (8), belonging to the domain of attration of a MEV G withunit Fréhet margins.Proposition 3.1. If X has d.f. F with identially distributed ontinuous margins and belongs tothe domain of attration of a MEV G with unit Fréhet margins, we have

FI(X,D) =

∑s
j=1 ǫ

G
Ij

ǫGD
.Proof Observe that

FI(X,D) =
∑s

j=1 limx→∞ P (XIj 6≤ xIj |Nx > 0)

=
∑s

j=1 limx→∞

1−F (x1−1
Ij

(1),...,x1−1
Ij

(d))

1−F (x,...,x)

=
∑s

j=1 limx→∞
1−CF (1− 1

x1Ij
(1),...,1− 1

x1Ij
(d))/(1/x)

1−CF (1− 1
x ,...,1− 1

x )/(1/x)

= 1
ǫGD

∑s
j=1 ǫ

G
Ij
. �In partiular, for partitions orresponding to the family of all margins we obtain the known result

FI(X,D∗) = d/ǫGD. Hene, the FI of the system divided into bloks is smaller than the systemitself, i.e., FI(X,D) ≤ FI(X,D∗).Remark 3.1. We an relate FI(X,D) with the fragility indexes of the whole system and of eahblok. More preisely, FI(X,D) is a onvex linear ombination of the ratios FI(X,D∗)/FI(XIj ,D
∗
Ij
),sine we an write

FI(X,D) =

s∑

j=1

|Ij |

d

FI(X,D∗)

FI(XIj ,D
∗)
.Furthermore, it is also a weighted mean of those ratios:

FI(X,D) =
1

s

s∑

j=1

|Ij |s

d

FI(X,D∗)

FI(XIj ,D
∗)
.



5Proposition 3.2 (inter-bloks dependene). Under the onditions of Proposition 3.1, we have(i) 1 ≤ FI(X,D) ≤

∑s
j=1 ǫGIj∨
s
j=1 ǫGIj

.(ii) FI(X,D) = 1 if and only if XIj , j = 1, ...s are independent random vetors.(iii) FI(X,D) =

∑s
j=1 ǫGIj∨s
j=1 ǫGIj

if and only if XIj , j = 1, ...s are totally dependent random vetors inthe sense G(x) =
∧s

j=1 GIj (xIj ).Proof By the inequalities
s∏

j=1

GIj (xIj ) ≤ G(x) ≤
s∧

j=1

GIj (xIj )we have, suessively,
(G{1}(x))

∑s
j=1 ǫGIj ≤ G

ǫGD
{1}(x) ≤ (G{1}(x))

∨s
j=1 ǫGIj

s∨

j=1

ǫGIj ≤ ǫGD ≤
s∑

j=1

ǫGIj . �Proposition 3.3 (intra-bloks dependene). Under the onditions of Proposition 3.1, we have(i) s
ǫGD

≤ FI(X,D) ≤ d
ǫGD

.(ii) FI(X,D) = d
ǫGD

if and only if the sub-vetors XIj , j = 1, ...s, only have independent r.v.'s.(iii) FI(X,D) = s
ǫGD

if and only if the sub-vetors XIj , j = 1, ...s, only have totally dependentrandom r.v.'s.Proof Just observe that 1 ≤ ǫIj ≤ |Ij |, with the lower and upper bounds orresponding to,respetively, omplete dependene and independene of r.v.'s within sub-vetors XIj , j = 1, ...s. �Next result presents an extremal oe�ient for the amount of dependene between YIj , j =
1, ..., s, Y ∼ G, through the FI of X ∼ F in the domain of attration of the MEV G.Proposition 3.4. Under the onditions of Proposition 3.1, we have

G(x) = (GI1(xI1 ), ..., GIs(xIs))
1/FI(X,D).Proof Observe that

G(x) = G1(x)
ǫGD = (G1(x)

∑s
j=1 ǫGIj )1/FI(X,D)

= (G1(x)
ǫGI1 ...G1(x)

ǫGIs )1/FI(X,D)

= (GI1(xI1 ), ..., GIs(xIs))
1/FI(X,D). �If we onsider partition D∗ in the previous result, we obtain the known relation (Smith, [23℄1990),

G(x) = (G1(x)
d)1/FI(X,D∗) = (G1(x)

d)ǫ
G/d = G1(x)

ǫG .Observe also that we an write FI(Y,D) instead of FI(X,D) with X in the domain of attrationof the MEV distribution of Y sine Y belongs to the same domain of attration. We �nish thissetion with a generalization of Proposition 3.1 to the ase of equivalent margins and two illustrativeexamples.



6Proposition 3.5. If X has d.f. F with equivalent marginal distributions in the sense of (8), andbelongs to the domain of attration of a MEV G with unit Fréhet margins then, for eah k ∈
{1, ..., s}, we have

FI(X,D) =

∑s
j=1 logCG(e

−γ11Ij
(1), ..., e−γd1Ij

(d))

logCG(e−γ1 , ..., e−γd)
.Example 3.1. We onsider a random vetor X of Example 3.2 in Falk and Tihy ([6℄, 2010),i.e., having omponents Xi =

∑m
k=1 λikYk, where Y1, ..., Ym are independent r.v.'s with Pareto(α)distribution, α > 0, and λij ≥ 0 suh that ∑m

k=1 λ
α
ik = 1, i = 1, ..., d. Taking for H any of thedistributions of the margins of X, the equivalene ondition (8) holds with γi = 1, i = 1, ..., d. Thedistribution of X belongs to the domain of attration of

G(x) = exp
(
−
∑m

k=1 ∨
d
i=1

(
λik

xi

)α)
, x > 0with Fréhet margins, Gi(x) = exp(−x−α). Hene, for u = (u1, ..., ud) ∈ (0,1),

CG(u) = exp
(
−
∑m

k=1 ∨
d
i=1λ

α
ik(− log ui)

)
.By Proposition 3.5, we have

FI(X,D∗) =

∑d
j=1

∑m
k=1 ∨

d
i=1λ

α
ik1{j}(i)∑m

k=1 ∨
d
i=1λ

α
ik

=

∑d
j=1

∑m
k=1 λ

α
jk∑m

k=1 ∨
d
i=1λ

α
ik

=
d∑m

k=1 ∨
d
i=1λ

α
ik

.as obtained in Falk and Tihy ([6℄, 2010). For any partition D, we have
FI(X,D) =

∑s
j=1

∑m
k=1 ∨

d
i=1λ

α
ik1Ij (i)∑m

k=1 ∨
d
i=1λ

α
ik

.To illustrate, onsider d = 3 = m, α = 1 and weights
λ11 = 4/8, λ12 = 2/8, λ13 = 2/8,
λ21 = 1/8, λ22 = 1/8, λ23 = 6/8,
λ31 = 3/8, λ32 = 2/8, λ33 = 3/8.We have
FI(X,D∗) = 3

4/8+2/8+6/8 = 24
12 = 2and, for D = {{1, 2}, {3}},

FI(X,D) = (4/8+2/8+6/8)+(3/8+2/8+3/8)
4/8+2/8+6/8 = 20

12 < 2.Example 3.2. If G has opula
CG(u1, ..., ud) = exp

(
−
(∑d

i=1(− log ui)
1/α

)α)
, 0 < α ≤ 1,(symmetri logisti model) then, for any partition D, we have

FI(X,D) =
∑s

j=1 |Ij |
α

dα =
∑s

j=1

( |Ij |
d

)α
,and FI(X,D∗) = d1−α as already stated in Geluk et al. ([10℄, 2007). In the symmetri model theFI is only a funtion of the bloks size. If we onsider the more general asymmetri logisti model,whose opula is given by

CG(u1, ..., ud) = exp
{
−
∑q

k=1

(∑d
i=1(−βki log ui)1/αk

)αk
}where βki are non-negative onstantes suh that ∑q

k=1 βki = 1, i = 1, ..., d, 0 < αk ≤ 1, k = 1, ..., q,we obtain
FI(X,D) =

∑s
j=1

∑q
k=1

(∑
i∈Ij

β
1/αk
ki

)αk

∑q
k=1

(∑
d
i=1 β

1/αk
ki

)αk .



74 Tail dependene for bloksIn the following we always onsider that X has ontinuous marginal d.f.'s. Consider notation
M(Ij) =

∨
i∈Ij

Fi(Xi), j ∈ D.De�nition 4.1. The upper-tail dependene oe�ients of X orresponding to partition D of Dare de�ned by, for eah S ( {1, ..., s},
τFS = limu↑1 P (

⋂
j 6∈S M(Ij) > u|

⋂
j∈S M(Ij) > u) (11)when the limit exists.If we onsider partition D∗, then S ( {1, ..., d} and we �nd the de�nition of Li ([20℄, 2009).Further, the ase s = 2 lead us to de�nition of Ferreira and Ferreira ([8℄, 2011).Consider

λF
S := lim

u↑1

P (
⋂

j∈S M(Ij) > u)

1− u
(12)for eah S ( {1, ..., s}. Hene we an write

τFS =
λF
{1,...,s}

λF
S

. (13)Observe that λF
S orresponds to the multivariate upper-tail dependene oe�ient ΛU (1S) inShmidt and Stadtmüller ([21℄, 2006), where 1S denotes the unit vetor with dimension |S|. Inpartiular, for partition D∗, λF

{i,j} = ΛU (1, 1) orresponds to the well-known bivariate tail depen-dene onept (Sibuya, [22℄ 1960; Joe, [15℄ 1993).Before we relate the FI with the tail dependene oe�ients orresponding to a partition, wepresent in this setion some extensions of the results in Li ([20℄, 2009).Proposition 4.1. If X has MEV distribution G with standard Fréhet margins and spetral mea-sure W de�ned on the d-dimensional unit sphere Sd then, for eah S ( {1, ..., s}, we have
τGS =

∫
Sd

∧s
j=1

∨
i∈Ij

wi dW (w)
∫
Sd

∧
j∈s

∨
i∈Ij

wi dW (w)
. (14)Proof From the spetral representation of G we obtain, for u su�iently lose to 1,

P
(⋂s

j=1 M(Ij) > u
)
= 1−

∑
∅6=S⊂{1,...,s}(−1)|S|+1G

(
−

1
−1
I(S)

(1)

log u , ...,−
1
−1
I(S)

(d)

log u

)

≈ 1−
∑

∅6=S⊂{1,...,s}(−1)|S|+1
(
1 + log u

∫
Sd

∨
i∈I(S)wi dW (w)

)

= 1−
∑

∅6=S⊂{1,...,s}(−1)|S|+1
(
1− (− log u)

∫
Sd

∨
j∈S

∨
i∈Ij

wi dW (w)
)
.

(15)Sine
∑

∅6=S⊂{1,...,s}(−1)|S|+1 = 1and
∑

∅6=S⊂{1,...,s}(−1)|S|+1
∨

j∈S aj =
∧

j∈{1,...,s} aj ,expression in (15) beomes
P
(⋂s

j=1 M(Ij) > u
)
≈ (− logu)

∫
Sd

∧s
j=1

∨
i∈Ij

wi dW (w)
)
.



8Analogously, we obtain
P
(⋂

j∈S M(Ij) > u
)
≈ (− log u)

∫
Sd

∧
j∈S

∨
i∈Ij

wi dW (w)
)
. �For the partiular ase D∗, the previous result is the one found in Li ([20℄, 2009). Note also thatthe numerator of (14) an be expressed through extremal oe�ients as follows:

∑
∅6=S⊂{1,...,s}(−1)|S|+1

∫
Sd

∨
j∈S

∨
i∈Ij

wi dW (w)

=
∑

∅6=S⊂{1,...,s}(−1)|S|+1ǫGI(S)

= ǫGI1 + ...+ ǫGIs − (ǫGI1∪I2
+ ǫGI1∪I3

+ ...)− ...+ (−1)|S|+1ǫGI1∪...∪Is
,a generalization of result (15) in Ferreira and Ferreira ([8℄, 2011) where s = 2.The next result highlights the onnetions between tail dependene and extremal oe�ients.Corollary 4.2. Under the onditions of Proposition 4.1, we have(i) λG

S =
∑

∅6=T⊂S(−1)|T |+1ǫGI(T )(ii) τGS =
∑

∅6=T⊂{1,...,s}(−1)|T |+1ǫGI(T )∑
∅6=T⊂S(−1)|T |+1ǫG

I(T )

.We end this setion with a generalization of Theorem 2.6 in Li ([20℄, 2009), by adapting thearguments to subsets of D that orrespond to unions of bloks in D.Proposition 4.3. If F belongs to the domain of attration of a MEV G with unit Fréhet marginsthen, for any partition D and ∅ 6= S ⊂ {1, ..., s}, the non-null upper-tail dependene oe�ients τFSare the same as the orresponding ones of G.5 Fragility Index and tail dependene for bloksIn this setion we shall see that the asymptoti d.f.'s of the onditional probability of k exeedanesbetween bloks, I1, ..., Is, an be derived through the tail dependene oe�ients given in (12).More preisely, if the d.f. F of X has tail dependene oe�ients λF
S orresponding to partition D,we an obtain limx→∞ P (Nx = k|Nx > 0) from these latter. In partiular, for F in the domain ofattration of a MEV G, besides the representations presented in the previous results, we an writethose limiting probabilities through tail dependene oe�ients λG
S .Proposition 5.1. Let X be a random vetor with d.f. F with ontinuous and identially distributedmargins. Let D be a partition of D for whih the tail dependene oe�ients λF

S orresponding to
F exist for eah S ⊂ {1, ..., s}. Then,(i) for eah k ∈ {1, ..., s},

lim
x→∞

P (Nx = k|Nx > 0) =

∑
S⊂{1,...,s},|S|=k

∑
T⊂SC (−1)|T |λF

T∪S∑s
k=1

∑
S⊂{1,...,s},|S|=k

∑
T⊂SC (−1)|T |λF

T∪S

,as long as the numerator is non-null.(ii) if F belongs to the domain of attration of a MEV G with unit Fréhet marginals, the limitsin (i) exist and oinide for both distributions, F and G.



9Proof Just observe that
limx→∞ P (Nx = k|Nx > 0) = lim

u↑1

∑
S⊂{1,...,s},|S|=k

∑
T⊂SC (−1)|T |P (

⋂
T∪S M(Ij) > u)

∑s
k=1

∑
S⊂{1,...,s},|S|=k

∑
T⊂SC (−1)|T |P (

⋂
T∪S M(Ij) > u)

.Now divide both terms of the ratio by 1− u. �Analogously, we obtain the FI through λF
S or λG

S .Proposition 5.2. Under the onditions of Proposition 5.1, we have(i)
FI(X,D) =

∑s
j=1 λ

F
{j}∑s

k=1

∑
S⊂{1,...,s},|S|=k

∑
T⊂SC (−1)|T |λF

T∪Sas long as the numerator is non-null.(ii) if F belongs to the domain of attration of a MEV G with unit Fréhet marginals, FI(X,D)exists and the the expression in (i) oinides for both distributions, F and G.The statements in (ii) of the two propositions are onsequenes of Proposition 4.3.6 Asymptoti IndependeneIf X has independent margins Xi, i = 1, ..., d, we have an unit FI. As Geluk et al. ([10℄, 2007)observed, in this ase we might have an asymptoti independene haraterized by a dependenythat vanishes at extreme quantiles. Asymptoti independene means that the system is weaklyfragile, albeit possibly orrelated (e.g., gaussian vetors). Geluk et al. ([10℄, 2007) have de�ned afragility index for asymptoti independene (AIFI) given by
ηD =

1

d
lim
x→∞

∑d
i=1 logP (Xi > x)

logP (X1 > x, ..., Xd > x)
. (16)In ase d = 2 we �nd the Ledford and Tawn oe�ient of asymptoti independene ([18, 19℄, 1996,1997) and, if d > 2, a multivariate extension of this latter (Ferreira and Ferreira, [9℄, 2012).Here we onsider an extension of the AIFI in (16) for bloks, in the same spirit of the FI inProposition 3.1, i.e., by relating the AIFI within bloks with the AIFI of the whole vetor.Let ηA be the AIFI of sub-vetor XA of X, with A ⊂ D, i.e.,

ηA =
1

|A|
lim
x→∞

∑
i∈A logP (Xi > x)

logP (XA > xA)
. (17)De�nition 6.1. Let X = (X1, ..., Xd) be a random vetor with FI(X,D) = 1. Then the AIFI of

X = (X1, ..., Xd) relative to partition D of D is
1

s
lim
x→∞

∑s
j=1 logP (XIj > xIj )

logP (X1 > x, ..., Xd > x)
, (18)whenever the limit exists and is denoted η(X,D).Proposition 6.1. Let X = (X1, ..., Xd) be a random vetor with FI(X,D) = 1. Assume that (16)holds and that (17) holds for all Ij ∈ D, j = 1, ..., s, with limit given by ηIj , respetively. If X hasidentially distributed or equivalent margins in the sense of (8), then

η(X,D) = ηD
1

s

s∑

j=1

1

ηIj
. (19)



10 Proof Observe that by (16) and (17), then
η(X,D) = lim

x→∞
ηD

1
s

∑s
j=1

1
ηIj

|Ij |

∑
i∈Ij

logP (Xi > x)

1
d

∑d
i=1 logP (Xi > x)

,and by (8), we have
η(X,D) = lim

x→∞
ηD

1
s

∑s
j=1

1
ηIj

(
1

|Ij |

∑
i∈Ij

log γi + log(1−H(x))
)

1
d

∑d
i=1 log γi + log(1 −H(x))

. �In partiular, we have η(X,D∗) = ηD and hene, the AIFI of the system divided into bloks islarger than the AIFI of the system itself, i.e., η(X,D) ≥ η(X,D∗).Remark 6.1. In the partiular ase of FI(X,D∗) > 1 we have η(X,D) = 1.Observe also that, by Proposition 6.1, we an relate η(X,D) with the fragility indexes of thewhole system and of eah blok. More preisely, η(X,D) is the arithmeti mean of the ratios
η(X,D∗)/η(XIj ,D

∗).Example 6.1. Consider X = (X1, ..., Xd) a standard d-variate Gaussian random vetor with d.f.
Φd(·; (Σi,j)i,j∈D) having positive de�nite orrelation matrix (Σi,j)i,j∈D . We have, for all A ⊂ D,
η−1
A = 1A(Σi,j)

−1
i,j∈A1

T
A, the sum of all elements of the sub-matrix (Σi,j)

−1
i,j∈A (Geluk et al., [10℄,2007; Hua and Joe, [13℄, 2011). For illustration, onsider dimension d = 4, onstant orrelation ρ,and take s = 3 with I1 = {1, 2}, I2 = {3} and I3 = {4}. We have ηD = (3ρ+1)/4, ηI1 = (ρ+1)/2and ηI2 = ηI3 = 1. Hene

η(X,D) = 1
3
3ρ+1

4

(
2

ρ+1 + 1 + 1
)
= (3ρ+1)(ρ+2)

6(ρ+1) .In the sequel we onsider positive/negative assoiation of a random vetor in the sense ofLedford and Tawn ([18, 19℄, 1996, 1997).Proposition 6.2 (inter-bloks asymptoti independene). Under the onditions of Proposition6.1, we have(i) η(X,D) ≤ 1
s in ase of positive assoiation between sub-vetorsXIj , j = 1, ...s, and η(X,D) ≥

1
s in ase of negative assoiation.(ii) η(X,D) ≥

∧s
j=1ηIj

s

∑s
j=1

1
ηIj

.(iii) η(X,D) = 1
s if and only if the sub-vetors XIj , j = 1, ...s, are independent.(iv) η(X,D) =
∧s

j=1ηIj

s

∑s
j=1

1
ηIj

if and only if the sub-vetors XIj , j = 1, ...s, are totally depen-dent.Proof Observe that, P (X1 > x, ..., Xd > x) ≤ ∧s
j=1P (XIj > xIj ), with the upper boundorresponding to total dependene between sub-vetors XIj , j = 1, ...s. Under positive assoiationwe have P (X1 > x, ..., Xd > x) ≥

∏s
j=1 P (XIj > xIj ) and negative assoiation otherwise, with thebounds orresponding to independene between sub-vetors XIj , j = 1, ...s. �Proposition 6.3 (intra-bloks asymptoti independene). Under the onditions of Proposition6.1, we have(i) η(X,D) ≤ ηDd

s in ase the sub-vetors XIj , j = 1, ...s, only have positively assoiated r.v.'sand η(X,D) ≥ ηDd
s in ase of negative assoiation.(ii) η(X,D) ≥ ηD.



11(iii) η(X,D) = ηDd
s if and only if the sub-vetors XIj , j = 1, ...s, only have independent r.v.'s.(iv) η(X,D) = ηD if and only if the sub-vetors XIj , j = 1, ...s, only have totally dependentrandom r.v.'s.Proof For eah j = 1, ...s, under positive assoiation of the r.v.'s in XIj we have P (XIj >

xIj ) ≥
∏

i∈Ij
P (Xi > x), and hene 1/ηIj ≤ |Ij |, with the upper bound orresponding to inde-pendene. For negative assoiation we have P (XIj > xIj ) ≤

∏
i∈Ij

P (Xi > x). Observe also thattotal dependene within eah blok means P (XIj > xIj ) = ∧i∈Ijγi(1−H(x)). �As already mentioned, the de�nition of the AIFI in (18) measures the asymptoti independentfragility of a system divided into bloks (sub-vetors), by relating the asymptoti independentfragility within the bloks and in the whole system. If in (16) we generalize for bloks the oneptof an exeedane of a r.v., Xi > x, through events XIj 6≤ xIj , we obtain another oe�ient forasymptoti tail independene. In this way, we extend the oe�ient of asymptoti tail independenethat was onsidered in Ferreira and Ferreira ([8℄, 2011) for the partiular ase of a partition
D = {I1, I2} of D = {1, ..., d}.De�nition 6.2. Let X = (X1, ..., Xd) be a random vetor with FI(X,D) = 1. The oe�ient ofasymptoti independene of X = (X1, ..., Xd) relative to partition D of D is

lim
x→∞

1

s

∑s
j=1 logP (XIj 6≤ xIj )

logP (
⋂s

j=1{XIj 6≤ xIj})
, (20)whenever the limit exists, and is denoted η(I1,...,Is).The following result is therefore an immediate extension of Proposition 2.4 in Ferreira andFerreira ([8℄, 2011).Proposition 6.4. Let X = (X1, ..., Xd) be a random vetor with FI(X,D) = 1. Assume that thelimit in (20) exists and, for all ∅ 6= Kj ⊂ Ij , j = 1, ..., s, (17) holds for ∪s

j=1Kj. Then
η(I1,...,Is) = max{η{i1,...,is} : ij ∈ Ij , j = 1, ..., s}. (21)Similar to η(X,D), oe�ient η(I1,...,Is) is also based on the oe�ient of Ledford and Tawn ormultivariate extensions of this latter.In the example below, one an see that the asymptoti tail independent oe�ients, η(X,D)and η(I1,...,Is), are di�erent.Example 6.2. Consider {Vi}i≥1 an i.i.d. sequene of unit Pareto r.v.'s. Let (X1, X2, X3) be arandom vetor suh that, X1 = min(V1, V2), X2 = min(V2, V3) and X3 = min(V3, V4). If D =

{I1, I2}, with I1 = {1, 2} and I2 = {3}, we have P (Xi > x) = x−2, i = 1, 2, 3, P (X1 > x,X2 >
x) = P (X2 > x,X3 > x) = x−3 and P (X1 > x,X3 > x) = P (X1 > x,X2 > x,X3 > x) = x−4.Therefore

FI(X,D) = lim
x→∞

=
P (

⋃2
i=1{Xi > x}) + P (X3 > x)

P (
⋃3

i=1{Xi > x})
=

2x−2 − x−3 + x−2

3x−2 − 2x−3 − x−4 + x−4
= 1,

η(X,D) = 1
2 limx→∞

∑2
j=1 logP (XIj

>xIj
)

logP (X1>x,X2>x,X3>x) =
1
2 limx→∞

logP (X1>x,X2>x)+P (X3>x)
logP (X1>x,X2>x,X3>x) = 1

2
−3−2
−4 = 5

8and
η(I1,I2) =

1
2 limx→∞

logP (XI1 6≤xI1)+logP (XI2 6≤xI2)

logP (XI1 6≤xI1 ,XI2 6≤xI2)

= 1
2 limx→∞

log(P (X1>x)+P (X2>x)−P (X1>x,X2>x))+logP (X3>x)
log(P (X1>x,X3>x)+P (X2>x,X3>x)−P (X1>x,X2>x,X3>x))

= 1
2 limx→∞

log(2x−2−x−3)+log x−2

log(x−4+x−3−x−4) = 2/3.



12 Observe that the same results are obtained if we apply Propositions 6.1 and 6.4, respetively.More preisely, we have
ηD = η{1,2,3} =

1

3
lim
x→∞

∑3
i=1 logP (Xi > x)

logP (X1 > x,X2 > x,X3 > x)
=

1

3

3 logx−2

log x−4
=

1

2
,

η{1,3} =
1

2

2 log x−2

log x−4
=

1

2
and η{2,3} =

1

2

2 log x−2

log x−3
=

2

3
.Obviously ηI2 = 1 and

ηI1 =
1

2
lim
x→∞

∑2
i=1 logP (Xi > x)

logP (X1 > x,X2 > x)
=

1

2

2 logx−2

log x−3
=

2

3
.Hene, by Propositions 6.1 and 6.4, respetively,

η(X,D) =
1

2

(1
2
(3/2 + 1)

)
=

5

8and
η(I1,I2) = max{η{1,3}, η{2,3}} = max{1/2, 2/3} = 2/3.7 Estimation of the Fragility Index for bloksIn the previous setions we have relate the FI for bloks with well-known tail dependene measures.This will allow to obtain immediate estimators for our index through the estimators of thoseoe�ients that are already studied in literature.Proposition 3.1 presents an estimation proedure for the FI based on the extremal oe�ientsof Tiago de Oliveira ([25℄, 1962/63) and Smith ([23℄, 1990) given in (2). Observe that they anbe expressed through the stable tail dependene funtion, lG, de�ned in (3). There are severalreferenes in literature on the estimation of the stable tail dependene funtion. In a parametriframework, a model for lG must be imposed. Non-parametri estimators are usually based on anarbitrarily hosen parameter, orresponding to the number of top order statistis to use in orderto provide the best trade-o� between bias and variane, whih is not an easy task. For a survey,we refer Krajina ([17℄, 2010) or Beirlant et al. ([3℄ 2004). The more reent work in Ferreira andFerreira ([8℄, 2011) presents a simpler non-parametri estimator based on sample means, whih weshall adopt here.For A ⊂ D, denote M(A) =

∨
i∈A Fi(Xi). Consider

ǫ̂GD = M(D)

1−M(D)
and ǫ̂GIj =

M(Ij)

1−M(Ij)
, (22)where M(A) is the sample mean

M(A) =
1

n

n∑

i=1

∨

j∈A

F̂j(X
(i)
j ) (23)and F̂j , j ∈ A, is the (modi�ed) empirial d.f. of Fj ,

F̂j(u) =
1

n+ 1

n∑

k=1

1
{X

(k)
j ≤u}

.



13The denominator n+1 instead of n in the ordinary empirial d.f. onerns estimation auray andother modi�ations an be used (see, for instane, Beirlant et al. [3℄ 2004). Based on Proposition3.1, and for a partition D of D, we onsider estimator
F̂ I(X,D) =

∑s
j=1 ǫ̂GIj
ǫ̂GD

, (24)whih is onsistent given the onsisteny of estimators ǫ̂GD and ǫ̂GIj already stated in Ferreira andFerreira ([8℄, 2011).By Proposition 5.2, we an also estimate FI(X,D) based on the tail dependene oe�ientsin (12). As already mentioned, these orrespond to multivariate upper-tail dependene oe�ientsonsidered in Shmidt and Stadtmüller ([21℄, 2006), for whih non-parametri estimators havebeen studied. We remark that these estimators are also based on a similar proedure as desribedabove for the stable tail dependene funtion, i.e., it omprises the hoie of a number of top orderstatistis to be used, not too large neither too small to avoid, respetively, large bias and largevariane.Remark 7.1. In ase of asymptoti independene onsidered in Setion 6, immediate estimatorsfor the asymptoti independent oe�ients, η(X,D) and η(I1,...,Is), an be derived from the foundrelations with the Ledford and Tawn oe�ient (or multivariate extensions), whose estimation hasalready been studied in literature (see, for instane, Draisma [4℄, 2004 or, for a survey, Beirlantet al., [3℄, 2004). In partiular, the Ledford and Tawn oe�ient an be estimated as the extremevalue index of r.v. min(1/(1−F1(X1)), 1/(1−F2(X2))) and, similarly, its multivariate versions in(17) an be estimated as the extreme value index of r.v. mini∈A(1/(1− Fi(Xi))).7.1 An appliation to �nanial dataWe now illustrate the estimation of the FI for bloks through an appliation to data analyzed byFerreira and Ferreira ([8℄, 2011). The data are the series of negative log-returns of the losing valuesof the stok market indexes, CAC 40 (Frane), FTSE100 (UK), SMI (Swiss), XDAX (German),Dow Jones (USA), Nasdaq (USA), SP500 (USA), HSI (China), Nikkei (Japan). The period overedis January 1993 to Marh 2004. Sine we do not have a sample of maximum values, we onsiderthe monthly maximums in eah market. We group the indexes in Europe (CAC 40, FTSE100,SMI, XDAX), USA (Dow Jones, Nasdaq) and Far East (HSI, Nikkei). The presene of dependenewithin these groups was already evidened in Ferreira and Ferreira ([8℄, 2011). We are interestedin assessing the fragility within the system of the �nanial stok markets whenever grouped inthe three big world markets referred: Europe, USA and Far East. To this end, we use estimator
F̂ I(X,D) in (24). In Table 1 are the obtained estimates, as well as, the estimates of the extremaloe�ient (ǫ̂G) within eah group and in the whole system (we denote the whole system, i.e., thevetor of all observations as �Global"). The estimates of the FI within eah �nanial market groupand in the whole system are also presented. One an see that the USA is the most fragile �nanialsystem with F̂ I = 1.885948905. Observe also that the FI of the whole system is almost twie theFI of the system divided into bloks.Referenes[1℄ Ané T., Kharoubi, C. (2003). Dependene struture and risk measure. J. Bus. Eonom. Statist.76, 411-438 .[2℄ Aulbah, S., Bayer, V. and Falk, M. (2011). A multivariate pieing-together approah with anappliation to operational loss data. Bernoulli, in print.
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