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ABSTRACT: The use of commercially available injection moulding simulation software’s allows us to 
predict the process response to the operating conditions defined. These codes can be used to define better 
injection conditions to use in specific situations, i.e., to optimize the process. Generally, this is an iterative 
procedure requiring the analysis of multiple outputs (pressures, temperatures, shear stresses profiles) 
supported by pre-established decision criteria. Most of the cases the taken options may lead to opposed 
results. In this sense the development of optimization methodologies are of paramount importance in order to 
facilitate the definition of processing windows in injection moulding. In this work the results obtained by the 
use of an automatic optimization methodology based on Multi-Objective Evolutionary Algorithms (EMOA), 
where an EMOA is linked to an injection moulding simulation code (CMOLD), will be assessed 
experimentally. For that purpose the processing conditions will be optimized for a desired process 
performance, where criteria, such as the evolution of the pressure inside the cavity, the maximum pressure 
level, the pressure work and the shrinkage, are taken into account. Some of the computational results 
obtained, selected from the set of optimized and non-optimized solutions, will be compared with the 
corresponding experimental results in order to validate the optimization approach used.  
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1 INTRODUCTION 

The injection moulding technique is a high 
throughput process adequate to manufacture 
thermoplastic components of complex geometry 
with tight dimensional tolerances. Injection 
moulding of polymeric materials is an intricate 
dynamic and transient process, involving convoluted 
melting-flow-pressure-solidification phases and a 
complex material behaviour strongly affecting the 
quality and properties of the final moulded 
component. 
In injection moulding, the thermomechanical 
environment imposed to the polymer melt is 
controlled by: i) the adjustment of operative 
processing variables ii) the selection of process 
parameters. 
This thermomechanical conditions control the 
microstructure and morphology of the final moulded 

component [1,2], which determines their dimensions 
(shrinkage), dimensional stability (distortion and 
warpage) and properties (e.g., mechanical behaviour, 
permeability, appearance) [3, 4]. Furthermore, in 
order to produce injection moulding components of 
high quality at the lowest costs, the processing 
conditions have to be initially adjusted to avoid 
moulding defects, such as flash, no completely filled 
component, surface and aesthetic defects, material 
degradation and process instabilities. The 
establishment of the adequate processing conditions 
to mould a high quality plastic component is 
therefore a complex task because there are 
significant number of processing variables, a high 
level of interactions between these variables and 
numerous moulding features and end-use properties 
to maximize. 
Nowadays, the use of computational simulations of 
the injection process (e.g., based on finite/volume 
element methods) is a well established tool in the 



industrial environment. Generally, this is an iterative 
procedure requiring the analysis of multiple 
computed outputs (e.g., pressures, temperatures, 
shear stresses profiles) supported by pre-established 
decision criteria [5, 6]. Most of the cases, the taken 
options may lead to opposed results. In this sense the 
development of optimization methodologies are of 
paramount importance in order to facilitate the 
definition of processing windows in injection 
moulding. The definition of a global integrated 
scheme for a full optimization of the injection 
moulding process and maximization of the moulding 
properties is of therefore of paramount importance. 
Particularly, the application of this methodology to 
the proper setting of the processing variables to 
manufacture engineering injection moulded 
components (process optimization) is the aim of this 
work. The optimization of the injection moulding 
process, were different optimization strategies have 
been used [7-11].  
In this work is proposed the use of an automatic 
optimization methodology based on MOEA [12] to 
define the processing window (melt and mould 
temperatures, injection flow rate, switchover point, 
holding time and pressure) in injection moulding. 
For that purpose a MOEA is linked to an injection 
moulding simulator code (in this case CMOLD). 
Optimization criteria were defined based on the 
simulation outputs. The results define the Pareto 
frontier leading to the multi-constrained optimized 
criteria, allowing the establishment of the operative 
processing conditions. An identical approach has 
been used previously to optimize the processing 
conditions for a desired morphological state or for 
an enhanced mechanical response [13]. 

2 PROBLEM STATEMENT 

Computer simulations of the injection moulding 
process are widely used in the design stages of 
engineering plastic components [e.g. 5, 6]. 
Commonly, a (finite element) mesh representative of 
the part geometry is constructed, the materials (e.g., 
polymer, mould, cooling fluid) are selected, the gate 
location is defined and the initial processing 
variables are introduced. The simulation is launched 
and the selected outputs are analysed. An iterative 
process progresses, where the initial conditions 
(geometry, material, processing conditions) are 
modified until the desired results are obtained. This 
is a trial-and-error approach and most of the cases 

multiple criteria are to be optimized that makes the 
decisional process rather complex. Furthermore, the 
finding of a global optimum solution is not 
guaranteed. 
The approach proposed in this work integrates the 
computer simulations of the injection process, an 
optimization methodology based on evolutionary 
algorithm and multi-objective criteria in order to 
establish the set of operative processing variables 
leading to a good moulding process. Initially, a set 
of process and moulding component criteria is 
defined based on the outputs of the simulation code 
that were selected accordingly to the common 
practice followed in the results analysis of the 
computer simulations [5, 6]. The optimization 
methodology adopted is based on a Multi-Objective 
Evolutionary Algorithm (MOEA) described in more 
detail in section 3 [12]. 

3 OPTIMIZATION ALGORITHMS 

Evolutionary Algorithms (EAs) are search and 
optimization methods that mimic the process of 
natural evolution. They are based on a population of 
potential solutions (or chromosomes) that evolves 
during the successive generations (or iterations). To 
each individual is associated a value (fitness or 
objective function) that represents a measure of its 
performance on the system. Individuals with greater 
performance have a bigger opportunity for 
reproduction, i.e., to pass their characteristics to 
future generations [14].  
EAs starts by the initialization of population, i.e., the 
random definition of all individuals of the 
population. Each individual (or chromosome) is 
represented by the binary value of the set of all 
variables. Then, the individuals are evaluated by the 
calculation of the values of the criteria using the 
modelling routine (in this case C-MOLD). To each 
individual is assigned a single value identifying its 
performance on the process (fitness). This fitness is 
calculated using a Multi-Objective approach as 
described below. If the convergence criterion is not 
satisfied (e.g., a pre-defined number of generations), 
the population is subjected to the operators of 
reproduction (i.e., the selection of the best 
individuals for crossover and/or mutation) and of 
crossover and mutation (i.e., the methods to obtain 
new individuals for the next generation). 
Simultaneously, real optimization problems are 
generally multi-objective, i.e., they require the 



simultaneous optimization of various, often 
conflicting, criteria [15-17]. The solution must then 
result from a compromise between the different 
criteria. To take into account this characteristic, an 
approach based on the concept of Pareto frontiers 
(i.e., the set of points representing the trade-off 
between the criteria) together with an EA was been 
used. The objective is to obtain simultaneously 
several solutions along the Pareto frontier. A Pareto 
frontier is constituted by the set of non-dominated 
solutions. Figure 1, where two criteria to maximize 
are represented, illustrates this concept. For 
example, point 2 is better for the two criteria than 
point 5, thus point 5 is dominated by point 2. The 
same conclusion can be draw when point 6 is 
compared with point 3. Therefore, points 1, 2, 4 and 
4 are non-dominated and constitute the Pareto 
frontier. A MOEA using this concept, was been 
developed, the details are given elsewhere [12]. 
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Fig. 1. Pareto frontier  

4 EXAMPLE OF APPLICATION 

The proposed optimization methodology was used to 
set the processing conditions of the moulding 
(Figure 2) in polystyrene (STYRON 678E). The 
moulding was injected in a fan gate. The relevant 
polymer properties used for the flow simulations 
were obtained from the software (CMOLD) 
database.  
The mesh has 408 triangular elements. The 
simulations considered the mould filling and holding 
(post-filling) stages. A node near the P1 position, 
pressure sensor position (see figure 2) was selected 
as a reference point for this study. The processing 
variables to optimise and allowed to varied in the 
simulations in following intervals were: injection 
time, tinj ∈ [0.5; 3] s, melt temperature, Tinj ∈ [180; 
280] ºC, mould temperature, Tw ∈ [30; 70] ºC, 
absolute holding pressure, Ph ∈ [7; 38] % of 

maximum machine injection pressure, with fixed 
switch-over point, SF/P at 99 %, post fill time, t2P at 
30 s and timer for hold pressure at 15 s. 

 
Fig. 2. Injection moulding part with 2 mm of thickness 

(dimensions in mm)  

 
Two process restrictions were imposed in the 
simulations: the moulding has to be completely 
filled, obviously no short-shots were admitted; the 
computed values of the maximum shear stress and 
strain-rate were limited to their critical values 
(defined on the CMOLD database) in order to avoid 
potential defects (e.g., melt fracture). 
The optimization criteria were established based on 
indirect moulding quality indicators (a-c) and 
productive parameters (d-f) as follows: 

a) The temperature difference on the moulding at 
the end of filling, dT = (Tmax - Tmin), was 
minimised; 

b) The pressure difference dP = (Pmax – Ph) was 
minimised; 

c) The volumetric shrinkage of the mouldings 
was minimised; 

d) The maximum pressure was minimised; 
e) The cycle time was minimised; 
f) The pressure work was minimized. 

5 RESULTS 

The purpose of this work is to validate 
experimentally the optimization methodology 
proposed. Thus, a single optimization run, using as 
criteria the minimization of pressure work and of the 
volumetric shrinkage was been carried out. These 
criteria were chosen due to the possibility of 
measuring them experimentally on the available 
injection machine. Six points were chosen from the 
Pareto frontiers obtained for the initial and the final 
populations of the EA (Figure 3). These solutions 



were after tested in an injection moulding machine 
and the corresponding results were compared in 
Figure 4. As can be seen the general behaviour of 
the experimental and computational solutions is very 
similar (i.e., its relative location), the differences 
been due to the capacity of the modelling program 
(C-MOLD) in reproducing the reality. Therefore, 
since the aim here is to validate the optimization 
methodology, seems that the optimization results 
obtained are adequate for the process and the 
optimization procedure can be adopted as a global 
methodology for this process. 
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Fig. 3. Pareto frontier  
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Fig. 4. Pareto frontier  

6 CONCLUSIONS 

An injection moulding finite-element based 
computational code was linked to a multi-objective 
evolutionary algorithm allowing the optimization of 
the process for obtaining high quality parts. This 
methodology is sensitive to the used optimization 
criteria, and the obtained results have physical 
meaning. The experimental results produced 
validated the proposed optimization methodology. 
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