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seguir as minhas preferências de investigação, ser uma presença permanente
ao longo deste percurso e pelo seu empenho. Mais uma vez, recordo o
seu lema que continua presente desde que trabalhamos juntos: “Enquanto
houver estrada vamos caminhar, enquanto houver ventos e marés não vamos
parar”.

Agradeço ao Professor Jorge Sousa Pinto, pela sua presença, também con-
stante, e pelo seu esforço e dedicação a este projecto. Agradeço-lhe princi-
palmente pela confiança que sempre mostrou em mim e no meu trabalho e
pela calma que sempre me transmitiu.

A ambos agradeço as nossas viagens, que foram mais uma exploração do
mundo. Cada um com a sua visão e o seu conhecimento, foi um aprendizado
que nunca esquecerei.

A ambos agradeço também o facto de serem, mais do que orientadores, ver-
dadeiros amigos!
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Abstract

As a specification carries out relevant information concerning the behavior
of a program, why not explore this fact to slice a program in a semantic
sense aiming at optimizing it or easing its verification? It was this idea that
Comuzzi, in 1996, introduced with the notion of postcondition-based slicing
— slice a program using the information contained in the postcondition (the
condition Q that is guaranteed to hold at the exit of a program). After him,
several advances were made and different extensions were proposed, bridg-
ing the two areas of Program Verification and Program Slicing: specifically
precondition-based slicing and specification-based slicing. The work reported
in this Ph.D. dissertation explores further relations between these two areas
aiming at discovering mutual benefits.

A deep study of specification-based slicing has shown that the original
algorithm is not efficient and does not produce minimal slices. In this dis-
sertation, traditional specification-based slicing algorithms are revisited and
improved (their formalization is proposed under the name of assertion-based
slicing), in a new framework that is appropriate for reasoning about imper-
ative programs annotated with contracts and loop invariants.

In the same theoretical framework, the semantic slicing algorithms are
extended to work at the program level through a new concept called contract-
based slicing. Contract-based slicing, constituting another contribution of
this work, allows for the study of a program at an interprocedural level,
enabling optimizations in the context of code reuse.

Motivated by the lack of tools to prove that the proposed algorithms
work in practice, a tool (GamaSlicer) was also developed. It implements all
the existing semantic slicing algorithms, in addition to the ones introduced in
this dissertation. This third contribution is based on generic graph visualiza-
tion and animation algorithms that were adapted to work with verification
and slice graphs, two specific cases of labeled control flow graphs.
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Resumo

Tendo em conta que uma especificação contém informação relevante no que
diz respeito ao comportamento de um programa, faz sentido explorar este
facto para o cortar em fatias (slice) com o objectivo de o optimizar ou de fa-
cilitar a sua verificação. Foi precisamente esta ideia que Comuzzi introduziu,
em 1996, apresentando o conceito de postcondition-based slicing que con-
siste em cortar um programa usando a informação contida na pós-condição
(a condição Q que se assegura ser verdadeira no final da execução do pro-
grama). Depois da introdução deste conceito, vários avanços foram feitos e
diferentes extensões foram propostas, aproximando desta forma duas áreas
que até então pareciam desligadas: Program Verification e Program Slicing.
Entre estes conceitos interessa-nos destacar as noções de precondition-based
slicing e specification-based slicing, que serão revisitadas neste trabalho. Um
estudo aprofundado do conceito de specification-based slicing relevou que o
algoritmo original não é eficiente e não produz slices mı́nimos.

O trabalho reportado nesta dissertação de doutoramento explora a ideia
de tornar mais próximas essas duas áreas visando obter benef́ıcios mútuos.
Assim, estabelecendo uma nova base teórica matemática, os algoritmos orig-
inais de specification-based slicing são revistos e aperfeiçoados — a sua for-
malização é proposta com o nome de assertion-based slicing.

Ainda sobre a mesma base teórica, os algoritmos de slicing são extendi-
dos, de forma a funcionarem ao ńıvel do programa; além disso introduz-se
um novo conceito: contract-based slicing. Este conceito, contract-based slic-
ing, sendo mais um dos contributos do trabalho aqui descrito, possibilita o
estudo de um program ao ńıvel externo de um procedimento, permitindo,
por um lado, optimizações no contexto do seu uso, e por outro, a sua reuti-
lização segura.

Devido à falta de ferramentas que provem que os algoritmos propostos de
facto funcionam na prática, foi desenvolvida uma, com o nome GamaSlicer,
que implementa todos os algoritmos existentes de slicing semântico e os
novos propostos. Uma terceira contribuição é baseada nos algoritmos ge-
néricos de visualização e animação de grafos que foram adaptados para
funcionar com os grafos de controlo de fluxo etiquetados e os grafos de ver-
ificação e slicing.
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Chapter 1

Introduction

Every science begins as
philosophy and ends as art.

William Durant, 1885 — 1981

The idea of focusing on a specific part of a software system for its anal-
ysis, without caring about the remaining parts composing the system, is
something that pleases software engineers when they are required to un-
derstand that part of the system or even change it. It was this idea that
Mark Weiser defended in his PhD thesis [Wei79] when he introduced the
key concept of Program Slicing: given a slicing criterion, selecting the parts
in the system that influence or are influenced by such criterion. Many other
authors followed him and came up with more refined concepts of slicing: dy-
namic slicing that takes into account a particular execution of the program;
quasi-static slicing that is an intermediate concept between the original defi-
nition of static slicing and dynamic; hybrid slicing that combines both static
and dynamic concepts; among many others.

All these notions of slicing are based on a syntactic slicing criterion
which consists of a statement selected from the source code (usually a line
number) and a set of variables (and possibly a set of input values for such
variables). But sometimes it would be interesting to go beyond the syntax
and cover also the semantics aspect. Canfora et al pursued this idea and
introduced the concept of conditioned slicing [CCLL94], characterized by
the use of a condition to obtain a slice of a program. In this case, the
slicing criterion consists of a statement i in the program, a set of variables
V and a condition C. A conditioned slice is composed of all the statements
and predicates that might affect the values of the variables in V just before
the statement i is executed, when the condition C holds. This semantics-
preserving approach usually results in smaller slices when compared with
the traditional syntax-preserving slicing algorithms.

When the basic ideas of slicing appeared and were being developed in

1
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the context of the areas of Program Comprehension and Maintenance, the
Software Development community was still seeking for formal approaches
(semantics oriented) to establishing that a program performs according to
some intended specification. Typically, what is meant by this is that the in-
put/output behavior of the implementation matches that of the specification
(this is usually called the functional behavior of the program), and more-
over the program does not ‘go wrong’, for instance no errors occur during
evaluation of expressions (the so-called safety behavior).

Following this thread, the eighties saw the birth of an approach called
Design by Contract [Mey86], introduced by Bertrand Meyer, whose main
idea is to include in a software system the mutual obligations and benefits
between a “client” and a “supplier”. Both agree on a contract that should be
expressed in the source code. This is the metaphor upon which the Design
by Contract approach relies.

Applying this metaphor to a program or a procedure, the basic ideas
are:

• To expect that a certain condition will be met on entry by any client
module that calls it: the precondition P .

• To guarantee a certain property on its exit: the postcondition Q.

• To maintain the validity of a certain property, assumed on entry and
guaranteed on exit: the invariant I.

Basically, a contract can be defined as the formalization of these obliga-
tions and benefits; one of its most relevant applications is to facilitate the
verification of programs.

The verification problem can be reduced to the problem of checking
if for each procedure in a program, the code is in accordance with to its
specification (or contract). Namely, for every procedure p in a program Π
with a contract (P,Q), if P (the precondition) is true when p starts, then
Q (the postcondition) is invariantly true when p finishes.

Along this document, the setting for the verification of programs (con-
sisting of several procedures) will rely on the principles associated with the
design by contract methodology. Each individual procedure can be veri-
fied assuming that every procedure it invokes is correct with respect to its
announced specification, or contract. If this is successfully done for every
procedure in a program, then the program is correct.

Technically, the soundness of this approach is based on a mutual re-
cursion principle – a set of verification conditions is generated for each
procedure assuming the correctness of all the procedures in the program,
including itself. If all verification conditions are valid, correctness is estab-
lished simultaneously for the entire set of procedures in the program, with
all correctness assumptions dropped.
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Modern program verification systems are based on algorithms that ex-
amine a program and generate a set of verification conditions (or proof
obligations) that are sent to an external theorem prover for checking. If
all the conditions generated from a program and its specification can be
proved, then the program is guaranteed to be correct with respect to that
specification.

The general purpose of this work is to explore the relation between both
domains (slicing and verification), looking for mutual benefits. At first sight,
it is immediate to conclude that there are two points of contact between slic-
ing and verification: first, traditional slicing, applied a priori, may facilitate
the verification of large programs. Second, and this is the main topic of
this PhD work, slicing programs based on semantic, rather than syntactic,
criteria, can be helpful for a number of diverse software engineering tasks,
such as studying and optimizing the reuse of programs.

It was precisely this idea that Commuzi and Hart [CH96] explored when
they introduced the concept of p-slices (predicate-slice) or postcondition-
based slices. In this case, the slicing criterion is not anymore a statement
selected from the program but a predicate (a condition that should be sat-
isfied at the end of the execution of a procedure — a postcondition). Ba-
sically, the idea is to remove the statements in the program that do not
contribute to the truth of the postcondition in the final state of the pro-
gram, i.e. their presence is not required in order for the postcondition to
hold (p-slices are computed using Dijkstra’s weakest precondition predicate
transformer). As an extension of this work, Chung et al introduced the no-
tions of precondition-based slicing and specification-based slicing [CLYK01],
which consist in the use of a precondition, or both a precondition and a
postcondition, respectively, to slice a program.

The work reported in this Ph.D. dissertation explores these ideas in the
context of design by contract using specifications to slice programs.

Thesis I advocate that the use of specifications as slicing criteria helps to
obtain more aggressive slices, in the sense that they are semantics-based.

1.1 Contributions and Document Structure

The first four chapters of this document are devoted to the state-of-the-art
in the research areas involved in the thesis:

• In Chapter 2, a general overview of Code Analysis is given: tech-
niques used nowadays to extract information from code suitable for
analysis and transformation are reviewed. Also, current challenges are
discussed.
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• In Chapter 3, a general overview of Program Verification is given: the
manual, fully automated, static and dynamic approaches to program
verification are reviewed, giving special emphasis to the study of the
Verification Condition Generators and their algorithms.

• In Chapter 4, a general overview of Program Slicing is given: the differ-
ent notions of slicing (that have appeared since the original definition)
are introduced, discussed and compared. The methods and techniques
(static and dynamic) used in program slicing are also reviewed.

• In Chapter 5, a general overview of Program Visualization is given:
different techniques used to display the information extracted from a
program are reviewed. The existing taxonomies to classify the software
visualization systems are also presented.

Each one of these chapters starts with basic definitions needed in the
rest of the chapter, and closes with a section on applications and existing
tools.

The remaining chapters are dedicated to the four main contributions of
the PhD work reported here:

• Chapter 6, Verification Graphs

• Chapter 7, Assertion-based Slicing

• Chapter 8, Contract-based Slicing

• Chapter 9, the GamaSlicer tool

Chapter 6 establishes a formal basis for generating verification conditions
in a way that combines forward and backward reasoning, mixing weakest
precondition and strongest postcondition computations. This results in an
interactive verification conditions generator, based on the use of verification
graphs (control flow graphs annotated with logical assertions — called La-
beled Control Flow Graps or LCFG for short). In addition to the user-guided
generation of verification conditions, these graphs can be used for the im-
plementation of pre-defined strategies that bring together the advantages of
forward and backward reasoning; they allow for a closer relation between
verification conditions and error paths, and they also support visualization
applications.

An extensive study of specification-based slicing has shown that the
original algorithm is not efficient and in particular it does not produce
minimal slices. In Chapter 7, traditional postcondtion-, precondition-, and
specification-based slicing algorithms are revisited and improved (their for-
malization is proposed under the name of assertion-based slicing). A new
algorithm is presented, based on the previous notion of LCFG. This new
algorithm produces minimal slices (in a relative sense that will be made
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clear). These definitions and algorithms, along with their application to
code annotated with contracts, are discussed in this chapter.

In the same theoretical framework, the semantic slicing algorithms are
extended to work at the program (interprocedural) level through the in-
troduction of a new concept called contract-based slicing. Contract-based
slicing enables optimizations in the context of code reuse. The aim is to
bring to the interprocedural level the power of specification-based slicing.
These ideas are presented in Chapter 8 and are being further developed
in two master theses, one of which has already been successfully defended.
Both theses contribute to bringing the ideas to the context of realistic pro-
gramming languages and applications (see Chapter 10 for more details).

To help us test, evaluate, and compare the techniques introduced here
with previous work, we have also developed an environment that implements
all the existing semantic slicing algorithms, together with the ones intro-
duced in this dissertation. This fourth contribution is based on generic graph
visualization and animation algorithms that were adapted to work with
verification and slice graphs (more generally, labeled control flow graphs).
GamaSlicer is available as a web-based tool and as a desktop environment
and is the topic of Chapter 9.

This document closes in Chapter 10 with a summary of the work done,
summing up the novel results and their impact, as well as the identification
of some trends for future work.

Figure 1.1 is a roadmap with the possible paths than can be taken
through the document. Figure 1.2 contains a conceptual map that relates
the different concepts mentioned and introduced in this document.

Figure 1.1: Roadmap of this document
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Figure 1.2: Conceptual Map relating concepts and chapters



Chapter 2

State-of-the-Art: Code
Analysis

An absolute can only be given in
an intuition, while all the rest
has to do with analysis.

Henri Bergson, 1859 — 1941

The increasing amount of software developed in the last few years has
produced a growing demand for programmers and programmer productivity
to maintain it working along the years. During maintenance, the most
reliable and accurate description of the behavior of a software system is its
source code. However, given the complexity of modern software, the manual
analysis of source code is costly and ineffective. A more viable solution is to
resort to tool support. Such tools provide information to programmers that
can be used to coordinate their efforts and improve their overall productivity.

In [Bin07], David Binkley presents a definition of source code analysis:

Source code analysis is the process of extracting information
about a program from its source code or artifacts (e.g. from Java
byte code or execution traces) generated from the source code
using automatic tools. Source code is any static, textual, human
readable, fully executable description of a computer program
that can be compiled automatically into an executable form. To
support dynamic analysis the description can include documents
needed to execute or compile programs, such as program inputs.

The rest of this chapter will have as basis this definition of source code
analysis.

At the earlier stage of compilers (when they were introduced), program-
mers compiled their code and then made minor adjustments (tweaks) to the

7
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output assembly code to improve its performance. Once adjusted, future
updates (that might be better made at high-level source) required one of
three choices:

• re-adjusting the assembly code;

• performing the changes at the lower-level (assembly code); or

• changing the high-level source code, recompiling and forgetting the
adjustments.

The final option was mostly adopted after the emergence of improved com-
piler technology and faster hardware.

Nowadays, modern software projects often start with the construction of
models (e.g. using UML). These models can be “compiled” to a lower-level
representation: source code. But this code is incomplete and thus requires
that the programmers analyze the generated code and complete it. Until
such models are fully executable, the source code is considered “the truth”
and “the system”.

So, in both cases, code analysis is a relevant task in the life cycle of
programs.

There are two kinds of code analysis: static and dynamic. In both of
them, the extracted information must be coherent with the language se-
mantics and should be disproved from lexical concerns, focusing on abstract
semantic information. This extracted information should help programmers
gain insight of the source code’s meaning.

Structure of the chapter. In Section 2.1 some basic concepts of the area
are presented. Section 2.2 presents the stages of a typical code analysis. In
Section 2.3 some current code analysis techniques are discussed. In Sec-
tion 2.4 applications of code analysis are reviewed, and Section 2.5 covers
some tools for code analysis are presented.

2.1 Basic Concepts

This section introduces some basic concepts related not only with code anal-
ysis but also with the other areas covered by this thesis. These concepts are
relevant to a better understanding of the remainder of this and the following
chapters.

Definition 1. An Abstract Syntax Tree (AST) is a finite, labeled, directed
tree, where the internal nodes are labeled by operators, and the leaf nodes
represent the operands of the node operators.
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Definition 2. A Control Flow Graph (CFG) is a representation, using graph
notation, of all paths that might be traversed through a program during its
execution. A CFG contains a node for each statement and control predicate
in the program; an edge from node i to node j indicates the possible flow
of control from the former to the latter. CFGs contains special nodes la-
beled Start and Stop indicating the beginning and the end of the program,
respectively.

There are several types of data dependencies: flow dependency ; out-
put dependency ; and anti-dependency. In the context of slicing, only flow
dependency is relevant.

Definition 3. A node j is flow dependent on node i if there exists a variable
x such that:

• x ∈ DEF (i);

• x ∈ REF (j); and

• there exists a path from i to j without intervening definitions of x.

where DEF(i) denotes the set of variables defined at node i, and REF(i)
denotes the set of variables referenced at node i.

In other words, we can say that the definition of a variable x at a node
i is a reaching definition for node j.

Control dependency is usually defined in terms of post-dominance.

Definition 4. A node i in the CFG is post-dominated by a node j if all
paths from i to Stop pass through j.

Definition 5. A node j is control dependent on a node i if and only if:

• There exists a path from i to j such for that any u 6= i, in that path u
is post-dominated by j; and

• i is not post-dominated by j.

Notice that if j is control dependent on i, then i has two outgoing edges
(i.e., it corresponds to a predicate). Following one of the edges always results
in j being executed, while taking the other edge may result in j not being
executed. If the edge which always causes the execution of j is labeled with
true (false, respectively), then j is control dependent on the true (false)
branch of i.

Definition 6. A program path from the entry node Start to the exit Stop is
a feasible path if there exist some input values which cause the path to be
traversed during program execution (assuming program termination).
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Let V be the set of variables of program P . A feasible path that has
actually been executed for some input can be mapped onto the values the
variables in V assume before the execution of each statement. Such a map-
ping is the referred state trajectory. An input to the program univocally
determines a state trajectory.

Definition 7. A state trajectory of length k of a program P for input I is
a finite list of ordered pairs T =< (p1, σ1), (p2, σ2), ..., (pk, σk) >, where pi
is a statement in P , 1 ≤ i ≤ k, and σi is a function mapping the variables
in V to the values they assume immediately before the execution of pi.

Program slices can be computed using the Program Dependency Graph
[FOW87, HRB88] both at the intraprocedural [OO84] and the interproce-
dure level [KFS93b], and also in the presence of goto statements [CF94]. A
program dependency graph is a program representation containing the same
nodes as the CFG and two types of edges: control dependency edges and data
dependency edges.

Definition 8. A program dependency graph (PDG) is a directed graph with
vertices corresponding to statements and control predicates, and edges cor-
responding to data and control dependencies.

The concepts hereby defined of CFG and PDG are illustrated in Fig-
ures 2.1 and 2.2 with respect to the program in Listing 2.1, which asks for
a number n and computes the sum and the product of the first n positive
numbers.

1 main ( ) {
int n , i , sum , product ;

3 s can f ( ”%d”,&n) ;
i = 1 ;

5 sum = 0 ;
product = 1 ;

7 while ( i <= n) {
sum += i ;

9 product ∗= i ;
i ++;

11 }
p r i n t f ( ”Sum: %d\n” , sum) ;

13 p r i n t f ( ”Product : %d\n” , product ) ;
}

Listing 2.1: Program example 1: iterate sum and product

In Figure 2.1 node 7 is flow dependent on node 4 because:

a) Node 4 defines variable product;

b) Node 7 references variable product; and
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Figure 2.1: CFG corresponding to the program listed in 2.1

Figure 2.2: PDG corresponding to the program listed in 2.1

c) There exists a path 4→ 5→ 6→ 7 not containing intervening definitions
of product.

Notice that, for the same reason, node 7 is also flow dependent on nodes 2
and 8. Also in the CFG of Figure 2.1, node 7 is control dependent on node
5 because there exists a path 5→ 6→ 7 such that:

a) Node 6 is post-dominated by node 7; and

b) Node 5 is not post-dominated by node 7.

Figure 2.2 shows a PDG constructed according to the variant of [HRB88],
where solid edges represent control dependencies and dashed edges represent
flow dependencies.

Definition 9. Given a program with multiple procedures, its System De-
pendency Graph (SDG) is a collection of procedure-dependency graphs (one
for each procedure), together with a program dependency graph for the main
program. We assume that parameter passing by value-result is modeled as
follows:

a) the calling procedure copies its actual parameters to temporary variables
before the call;
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b) the formal parameters of the called procedure are initialized using the
corresponding temporary variables;

c) before returning, the called procedure copies the final values of the formal
parameters to the temporary variables; and

d) after returning, the calling procedure updates the actual parameters by
copying the values of the corresponding temporary variables.

Then each procedure dependency graph includes vertices and edges repre-
senting call statements, parameter passing, and transitive flow dependencies
due to calls.

• A call statement is represented using a call vertex;

• Parameter passing is represented using four kinds of parameter ver-
tices:

1. on the calling side, parameter passing is represented by actual-in
and actual-out vertices, which are control dependent on the call
vertex and model copying of actual parameters to/from temporary
variables;

2. in the called procedure, parameter passing is represented by formal-
in and formal-out vertices, which are control dependent on the
procedure’s entry vertex and model copying of formal parameters
to/from temporary variables.

• Transitive dependency edges, called summary edges, are added from
actual-in vertices to actual-out vertices to represent transitive flow de-
pendencies due to called procedures.

Actual-in and formal-in vertices are included for every global variable
that may be used or modified as a result of the call and for every parameter;
actual-out and formal-out are included only for global variables and param-
eters that may be modified as a result of the call.

Procedure dependency graphs are connected to form a SDG using three
new kinds of edges:

• a call edge is added from each call-site vertex to the corresponding
procedure-entry vertex;

• a parameter-in edge is added from each actual-in vertex at a call site
to the corresponding formal-in vertex in the called procedure; and

• a parameter-out edge is added from each formal-out vertex in the called
procedure to the corresponding actual-out vertex at the call site.
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According to the Reps et al algorithm [RHSR94], a summary edge is
added if a path of control, flow and summary edges exists in the called pro-
cedure from the corresponding formal-in vertex to the corresponding formal-
out vertex. The addition of a summary edge in procedure Q may complete
a path from a formal-in vertex to a formal-out vertex in Q’s PDG, which in
turn may enable the addition of further summary edges in procedures that
call Q.

Definition 10. A Call Graph is a directed graph that represents calling re-
lationships between subroutines in a program. Each node represents a proce-
dure and each edge (f, g) indicates that procedure f calls procedure g. Thus,
a cycle in the graph indicates mutually recursive procedure calls.

Definition 11. A Value Dependency Graph (VDG) is a directed graph
whose vertices are nodes representing computations and operand values (ports)
representing values. Edges connect nodes to their operand values and ports
to the computation (nodes) producing them as results. Each port is either
produced by exactly one node or is a free value1 not produced by any node.

Definition 12. Given a software system, its Module Dependency Graph
(MDG) is a graph MDG = (M,R) where M is the set of named modules
of the system, and R ⊆ M ×M is the set of ordered pairs < u, v > that
represent the source-level dependencies (e.g., procedural invocation, variable
access) between modules u and v of the system.

Definition 13. A XTA2 Graph is a graph

G = {V,E, TypeF ilters,ReachableTypes}

where

• V ⊆M ∪F{α}, where M is a set of methods, F is a set of fields, and
α is an abstract name representing array elements;

• E ⊆ V × V , is the set of directed edges;

• TypeF ilters ⊆ E → S, is a map from edges to a set of types S; and

• ReachableTypes ⊆ V → T , is a map from nodes to a set of resolved
types T .

1The free values of a VDG can be viewed as analogous to the free variables in a lambda
term.

2XTA [QH04a] is a mechanism for implementing a dynamic reachability-based inter-
procedural analysis.
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The XTA graph combines call graphs and field/array accesses. A call
from a method A to a method B is modeled by an edge from node A to
node B. The filter set includes parameter types of method B. If B’s return
type is a reference type, it is added in the filter set of the edge from B
to A. Field reads and writes are modeled by edges between methods and
fields, with the fields’ declaring classes in the filter. Each node has a set of
reachable (resolved) types.

Definition 14. A Trace Flow Graph (TFG) is derived from a collection of
annotated CFGs. The TFG is a reduced “inlined” representation of the CFGs.
In the TFG, all method invocations are replaced by expansions of the methods
that they call, and the resulting graph is then reduced by the removal of all
nodes that neither bear event annotations nor affect control flow.

We end this section with a concept that has proved to be extremely
useful for Program Verification in recent years.

Definition 15. The Static Single Assignment (SSA) is a form of a program
representation that exposes very explicitly the flow of data within the pro-
gram. Every time a variable X is assigned a new value, the compiler creates
a new version of X and the next time that variable X is used, the compiler
looks up the latest version of X and uses that.

The central idea of the SSA is versioning. This representation is com-
pletely internal to the compiler, it is not something that shows up in the
generated code nor could be observed by the debugger.

For example, for the program below (see Listing 2.2) the internal repre-
sentation using the SSA form is shown in Listing 2.3.

int getValue ( ) {
2 int a = 3 ;

int b = 9 ;
4 int a = a + b ;

return a ;
6 }

Listing 2.2: Program example

int getValue ( ) {
2 int a 1 = 3 ;

int b 1 = 9 ;
4 int a 2 = a 1 + b 1 ;

return a 2 ;
6 }

Listing 2.3: Static Single Assignment Form of Listing 2.2

Notice that every assignment generates a new version number for the
variable being modified. And every time a variable is used inside an expres-
sion, it always uses the latest version. So, the use of variable a in line 4 is
modified to use a 1.
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Figure 2.3: Components of code analysis

2.2 Anatomy of Code Analysis

Under the umbrella of code analysis, there are many techniques used to
handle relevant static and dynamic information from a program: slicing,
parsing, software visualization, software metrics, and so on. In this section,
the three components needed for code analysis are described.

These three components, illustrated in Figure 2.3, are:

• Data extraction;

• Information representation; and

• Knowledge exploration.

2.2.1 Data Extraction

The process of retrieving data out of data sources for further data process-
ing or data storage is named data extraction. Importing that data into an
intermediate representation is a common strategy to make easier its analy-
sis/transformation and possibly the addition of metadata prior to exporting
to another stage in the data workflow.

In the context of code analysis this process is usually done by a syn-
tactic analyzer, or parser, which parses the code into one or more internal
representations. A parser is the part of a compiler that goes through a
program and cuts it into identifiable chunks before translation, each chunk



16 CHAPTER 2. STATE-OF-THE-ART: CODE ANALYSIS

more understandable than the whole. Basically, the parser searches for pat-
terns of operators and operands to group the source string into smaller but
meaningful parts (which are commonly called chunks).

Parsing is the necessary evil of most code analyzes. While not theo-
retically difficult, the complexities of modern programming languages, in
particular those that are not LR(1) [AU72, FRJL88] and those incorporat-
ing some kind of preprocessing, significantly make harder code analysis, as
will be seen in section 2.3.1.

2.2.2 Information Representation

After extracting from the code the relevant information, there is a need to
represent it in a more abstract form. This is the second component of code
analysis: storing the collected data into an internal representation, such that
data is kept grouped in meaningful parts and the relations among them are
also stored to give sense to the whole. The main goal of this phase is to ab-
stract a particular aspect of the program into a form more suitable for auto-
mated analysis. Essentially, an abstraction is a sound, property-preserving,
transformation to a smaller domain. Some internal representations are pro-
duced directly by the parser, e.g. Abstract Syntax Tree (AST), Control
Flow Graph (CFG), etc, while others require the result of prior analyzes
(e.g., dependency graphs require prior pointer analysis).

Many internal representations raise from the compilers area. Generally,
the most common internal representation is the graph — the most widely
used are the Control Flow Graph (CFG), the Call Graph, and the Abstract
Syntax Tree (AST). Let us now briefly consider how each of the graphs
introduced in Section 2.1 plays a role in code analysis.

The Value Dependency Graph (VDG) is another graph variant that im-
proves (at least for some analysis) the results obtained using SSA form; VDG
and SSA were both defined in section 2.1. VDG represents control flow as
data flow and thus simplify analysis [WCES94].

Another relevant graph is the Dependency Graph (see Section 2.1), in-
troduced in the context of a work with parallelizing and highly optimiz-
ing compilers [FOW87], where vertices represent the statements and pred-
icates of the program. These graphs have since been used in other analy-
sis [HRB88, HR92, Bal02]. A related graph, the Module Dependency Graph
(MDG), used by the Bunch tool, represents programs at a coarser level of
granularity. Its vertices represents modules of the system, and edges repre-
sent the dependencies between them [MMCG99].

Other sorts of graphs, also referred in the literature and defined in Sec-
tion 2.1, include Dynamic Call Graphs [QH04b, PV06] intended to record an
execution of a program, and XTA graphs [QH04b] which support dynamic
reachibility-based interprocedural analysis. These techniques are required to
analyze languages such as Java that include dynamic class loading. Finally,
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the Trace Flow Graph is used to represent concurrent programs [CCO01].

Finite-state Automata (FSA) are also used to represent analyzes of event-
driven systems and transitions in distributed programs where they provide
a formalism for the abstraction of program models [Sch02].

In real applications, it is common to combine different kinds of graphs or
AST with Identifier Tables (or similar mappings) in such a way that enriches
and structures the information extracted. All of the variants of graphs or
other internal representations presented are actually used according to the
type of analysis and the desired results of that analysis.

2.2.3 Knowledge Exploration

After organizing the data extracted into an intermediate representation
that makes or transforms it into information, the third component of code
analysis is aimed at knowledge inference. This process requires the inter-
connection of the pieces of the information stored and their inter-relation
with previous knowledge. This can be achieved using quantitative or qual-
itative methods. Concerning quantitative methods, resorting to program
metrics is the most commonly used approach. Concerning qualitative meth-
ods, name analysis, text and data mining, and information retrieval are the
most widely used. Visualization techniques are crucial for the effectiveness
of that process.

According to Binkley [Bin07], the main strategies used to extract knowl-
edge from the Intermediate Representation can be classified as follows: static
versus dynamic, sound versus unsound, flow-sensitive versus flow-insensitive,
and context-sensitive versus context-insensitive.

Static vs Dynamic

Static analyzes analyze the program to obtain information that is valid for
all possible executions. Dynamic analyzes instrument the program to collect
information as it runs. The results of a dynamic analysis are typically valid
for the run in question, but offer no guarantees for other runs. For example,
a dynamic analysis for the problem of determining the values of global vari-
ables could simply record the values as they are assigned. A static analysis
might analyze the program to find all statements that potentially affect the
global variables, then analyze the statements to extract information about
the assigned values.

Dynamic analysis has the advantage that detailed information about a
single execution is typically much easier to obtain than comparably detailed
information that is valid over all executions.

Another significant advantage of dynamic tools is the precision of the
information that they provide, at least for the execution under consideration.
Virtually all static analysis extract properties that are only approximations
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of the properties that actually hold when the program runs. This imprecision
means that a static analysis may provide information that is not accurate
enough to be useful. If the static analysis is designed to detect errors (as
opposed to simply extracting interesting properties), the approximations
may cause the tool to report many false positives. Because dynamic analyzes
usually record complete information about the current execution, it does not
suffer from these problems. The trade-off, of course, is that the properties
extracted from one execution may not hold in all executions.

Some techniques sit in between. They take into account a collection of
initial states that, for example, satisfy a predicate.

Sound vs Unsound

A deductive system is sound with respect to a semantics if it only proves
valid arguments. So, a sound analysis offers correctness guarantees.

Sound static analyzes produce information that is guaranteed to hold on
all program executions; sound dynamic analyzes produce information that
is guaranteed to hold for the analyzed execution alone. Unsound analyzes
make no such guarantees. A sound analysis for determining the potential
values of global variables might, for example, use pointer analysis to ensure
that it correctly models the effect of indirect assignments that take place
via pointers to global variables. An unsound analysis might simply scan the
program to locate and analyze only assignments that use the global variable
directly, by name. Because such an analysis ignores the effect of indirect
assignments, it may fail to compute all of the potential values of global
variables.

Unsound analyzes can exploit information that is unavailable to sound
analysis [JR00]. Examples of this kind of information include information
present in comments and identifiers. Ratiu and Deissenboeck [RD06] de-
scribe how to exploit non-structural information, such as identifiers, in main-
taining and extracting the mapping between the source code and real real
word concepts.

It may seem difficult to understand why an engineer will be interested
in an unsound analysis. However, in many cases, the information from an
unsound analysis is correct, and even when incorrect, may provide a useful
starting point for further investigation. Unsound analyzes are therefore often
quite useful for those faced with the task of understanding and maintaining
legacy code.

The most important advantages of unsound analyzes, however, are their
ease of implementation and efficiency. Reconsider the two examples cited
above for extracting the potential values of global variables. Pointer anal-
ysis is a complicated interprocedural analysis that requires a sophisticated
program analysis infrastructure and a potentially time-consuming analysis
of the entire program; locating direct assignments, on the other hand, re-
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quires nothing more than a simple linear scan of the program. An unsound
analysis may thus be able to analyze programs that are simply beyond the
reach of the corresponding sound analysis, and may be implemented with a
small fraction of the implementation time and effort required for the sound
analysis. For all these reasons, unsound analysis will continue to be impor-
tant.

A slightly different concept is that of safe analysis.

Safe static analysis means that the answer is precise on “one side”, in
particular it asserts the absence of certain situations or occurrences. For
example, a reaching-definitions computation can determine that certain as-
signments definitely do not reach a given use, but the remaining assignments
may or not reach the use.

Sagiv et al [SRW02] present a static analysis technique based on a
three-valued logic, capturing indecision as a third value. Thus again using
reaching-definition as an example, a definition could be labeled “reaches”,
“does not reach”, or “might reach”.

Flow sensitive vs Flow insensitive

Flow-sensitive analysis takes the execution order of the program’s state-
ments into account. It normally uses some form of iterative dataflow analy-
sis to produce a potentially different analysis result for each program point.
Flow-insensitive analyzes do not take the execution order of the program’s
statements into account, and are therefore incapable of extracting any prop-
erty that depends on this order. They often use some form of type-based or
constraint based analysis to produce a single analysis result that is valid for
the entire program.

For example, given the sequence p = &a; q = p; p = &b;, a flow-sen-
sitive points-to analysis can determine that q does not point to b.

In contrast, a flow-insensitive analysis treats the statements of a program
as an unordered collection and must produce conservative results that are
safe for any order. In the above example, a flow-insensitive points-to analysis
must include that q might point to a or b. This reduction in precision comes
with a reduction in computational complexity.

Context sensitive vs Context insensitive

Many programming languages provide constructs such as procedures that
can be used in different contexts. Roughly speaking, a context-insensitive
analysis produces a single result that is used directly in all contexts.

A context-sensitive analysis produces a different result for each different
analysis context. The two primary approaches are to reanalyze the construct
for each new analysis context, or to analyze the construct once (typically in
the absence of any information about the contexts in which it will be used)
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Figure 2.4: Relationship among code analysis

to obtain a single parameterized analysis result that can be specialized for
each analysis context.

Context sensitivity is essential for analyzing modern programs in which
abstractions (such as abstract datatypes and procedures) are pervasive.

2.3 Current Code Analysis Challenges

In this section we present the challenges that are being posed to the area of
code analysis. Many of these challenges are not related with only one of the
components referred in the previous section; instead, each issue affects more
than one component. The relationship between these challenges and the
code analysis components mentioned in the previous section are depicted
in Figure 2.4 in Venn Diagram form, where: the orange color refers to
the first component (data extraction); the green color refers to the second
component (information representation); and the blue color refers to the
third component (knowledge exploration).

2.3.1 Language Issues

In the last few years, many enhancements have been done to programming
languages, with the introduction of concepts such as dynamic class loading
and reflection in languages such as Java and C#.

Language reflection provides a very versatile way of dynamically linking
program components. It allows to create and manipulate objects of any
classes without the need to hardcode the target classes ahead of time. These
features make reflection especially useful for creating libraries that work
with objects in very general ways. For example, reflection is often used
in frameworks that persist objects to databases, XML, or other external
formats.
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Reflection has a couple of drawbacks. One is the performance issue.
Reflection is much slower than direct code when used for field and method
access. A more serious drawback for many applications is that using reflec-
tion can obscure what’s actually going on inside the code. Programmers
expect to see the logic of a program in the source code, and techniques such
as reflection that bypass the source code can create maintenance problems.
Reflection code is also more complex than the corresponding direct code.

Dynamic class loading is an important feature of the Java Virtual Machine
(JVM). It provides the Java platform with the ability to install software
components at runtime. It has a number of unique characteristics. First
of all, lazy loading means that classes are loaded on demand and at the
last moment possible. Second, dynamic class loading maintains the type
safety of the JVM by adding link-time checks, which replace certain runtime
checks and are performed only once. Finally, class loaders can be used to
provide separate name spaces for various software components. For example,
a browser can load applets from different web pages using separate class
loaders, thus maintaining a degree of isolation between those applet classes.

Modern languages increasingly require tools for high precision source
code analysis to handle only partially known behavior (such as generics in
Java, plug-in components, reflection, user-defined types, and dynamic class
loading). These features increase flexibility at runtime and impose a more
powerful dynamic analysis, but compromise static analysis.

2.3.2 Multi-Language Analysis

Many software systems are heterogeneous today, i.e., they are composed of
components of different programming and specification languages. Analysis
using current software development tools, e.g., Integrated Development En-
vironments (IDEs), cannot process these mixed-language systems as a whole
since they are too closely related to a particular programming language, and
do not process mixed-language systems across language boundaries.

For this reason, multi-language analysis grows more and more important.
Even a simple Java program could consist of Java-source and -bytecode
components. A larger system, e.g., a WEB application, joins SQL, HTML,
and Java codes on the server site and additional languages on the client site.
For example, the Visual Studio .Net environment merges languages such as
ASP, HTML, C#, J#, and Visual Basic.

Listing 2.4 shows a fragment of a small WEB application, that illustrates
such a mix of languages. This example contains an ASP.Net web page file.
The ASP web page is basically an HTML file with some special ASP.Net
elements and program code. When this page is requested on an ASP ap-
plication server, the code is executed first, which results in the translated
HTML code sent to the client. The page contains C# code in a script re-
gion. This code defines the event associated to the button defined in the
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ASP code. The page also contains a special HTML element <asp:Button>,
which represents a button. This element has an attribute ID with the value
Button1. The ASP application server uses this ID to allow program code
to refer to the <asp:Button> element and to modify it before it is sent to
clients.

<%@ Page Language=”C#”%>
2

<s c r i p t runat=” s e rv e r ”>
4 protec ted void Button1 Cl ick ( ob j e c t sender , EventArgs e ) {

Response . Red i rect ( ”Home . aspx” ) ;
6 }

</s c r i p t >
8

<html>
10 <head>

<s c r i p t type=” text / j a v a s c r i p t ”>
12 func t i on ShowModalPopup ( ) {

var modal = $ f ind ( ’ ModalPopupExtender ’ ) ;
14 modal . show ( ) ;

}
16 </s c r i p t >

</head>
18 <body>

<form id=”form1” runat=” s e rv e r ”>
20 <div>

<asp : Button ID=”Button1” runat=” s e rv e r ”
22 OnClick=” Button1 Cl ick ” Text=”Button” />

</div>
24 </form>

</body>
26 </html>

Listing 2.4: Fragment of a ASP.net application

To support these mixed-language systems with automated analysis, in-
formation from all different sources ought to be retrieved and commonly
processed. Only a system with a global view allows for a global correct
analysis. Today’s IDEs fail in cross-language analysis. At best, they can
only handle several programming languages individually.

In this context of cross-language analysis, Strein et al [SKL06] claim
that the reason for this gap is the lack of a common meta-model capturing
program information that is common for a set of programming languages,
abstracting from details of each individual language, and is related to the
source code level of abstraction, in order to allow for code analysis. The au-
thors propose an architecture for analysis composed by three major classes:
information extracting front-ends, a component meta-model (model data-
structure), and analysis components.

According to the three steps described in the previous section, these
three components match with the components referred for code analysis,
where the common meta-model corresponds to the intermediate representa-
tion. The common meta-model captures program information in a language
independent way.

Different language-specific front-ends extract information from programs
written in the respective languages. They use language-specific analysis and
first capture information about the program in a language specific meta-
model. Information that is relevant for global analysis is also stored in the
common model.
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The front-ends retrieve the information represented in the common model
to implement low-level analyzes (e.g. to look-up declarations). Different
high-level analyzes access the common model, which represents informa-
tion gained from analysis of a complete mixed-language program. Thus,
concrete analyzes based on this information are language-agnostic and can
handle cross-language relations.

In short, a front-end is responsible for parsing and analyzing specific
languages, whereas the common model stores the relevant analysis informa-
tion abstracting from language-specific details. The common meta-model is
accessed by language-independent analysis. This meta-model does not need
to be a union of all language concepts of all languages supported. Instead,
it is sufficient to model only those language concepts that are relevant to
higher-level analysis or to other languages.

Formally, each front-end supports a specific file type F that incorporates
a set of supported languages: F = {L1, L2, ..., Ln}. A file type F -specific
front-end FF is defined by a triple:

FF = (φF , {αL1 , αL2 , ..., αLn}, {σL1 , σL2 , ..., σLn})

The front-end provides the parsing function φF that sorts file parts ac-
cording to their languages into blocks and constructs syntax trees repre-
senting the different file blocks. For each language L of such a block, the
front-end defines the syntax mapping αL, that maps language-specific syntax
trees ASTL to common meta-model trees AST .

For each language L the semantic analysis function σL constructs com-
mon semantic relations between nodes that are defined by the syntax map-
ping. σL is based on the common meta-model M as well as a specific syn-
tactic meta-model to handle language specificities. Through the common
meta-model M it can indirectly access information created by front-ends
for other languages. This way, cross-language relations can be constructed
for arbitrary language combinations.

The semantic relations include also dynamic relations that can actually
only be computed at runtime, e.g., dynamic types in weakly or dynamically-
typed languages or dynamic call targets in object-oriented languages. How-
ever, the computation of (non-trivial) dynamic properties using static anal-
ysis is generally an undecidable problem.

At least the parsing, the syntax mappings, and the semantic analysis
functions need to be implemented for each new filetype. Also, it might be
necessary to extend the constructs in order to capture properties of a new
language.

To sum up, the key for a multi-language analysis is a common meta-
model to capture the concepts of each programming language. However, as
referred in subsection 2.3.1, one should parsing languages with mismatched
concepts and with different principles is not an easy task, specially when
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dealing with dynamic languages.

2.3.3 Static, Dynamic and Real-Time Analysis

Static analysis is usually faster than dynamic analysis but less precise.
Therefore it is often desirable to retain information from static analysis for
runtime verification, or to compare the results of both techniques. It would
be desirable to share the same generic algorithm for static and dynamic
analysis.

Martin et al describe in [MLL05] an error detection tool that checks
if a program conforms to certain design rules. This system automatically
generates from a query a pair of complementary checkers: a static checker
that finds all potential matches in an application, and a dynamic checker
that traps all matches precisely as they occur.

Slightly more sophisticated combinations often use static analysis to limit
the need for instrumentation in the dynamic analysis. Path testing tools
use this approach as does Martin et al’s error detection tool, where “static”
results are also useful in reducing the number of instrumentation points for
dynamic analysis. They report that the combination proves able to address
a wide range of debugging and program queries.

Gupta et al [GSH97] present an algorithm that integrates dynamic in-
formation from a program’s execution into a static analysis. The resulting
technique is more precise than static analysis and less costly than dynamic
analysis.

Heuzeroth et al [HHHL03] consider the problem of reverse engineering
design patterns using a more integrated combination of static and dynamic
analysis. In this case, static analysis is used first to extract structures re-
garding potential patterns and then dynamic analysis verifies that pattern
candidates have the correct behavior. Here static analysis does more than
improve the efficiency of the dynamic approach. The two truly complement
each other.

Closer to true integration is a combination that, in essence, iterates the
two to search for test data input. This technique applies a progression of
ever more complex static analyzes with search. This synergistic arrangement
allow low-cost static analysis to remove “obvious” uninteresting paths. It
then applies relatively naive, but inexpensive dynamic search. If more test-
ing is needed more sophisticated static and dynamic techniques are applied.
All these techniques, however, fall short of a truly integrated combination of
static and dynamic techniques. Future combinations should better integrate
the two.

Another kind of analysis that should be considered is real-time analysis.
This is an active topic of research, and has two distinct facets: compile-
time and runtime. Self-healing code3 and instrumented code are runtime

3While no consensual definition of the term “self-healing” exists, intuitively, these
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examples. Here analysis is performed in real time, while the program is
executing. The archetypical example of this idea is just-in-time compilation.

Looking forward, more such processing could be done in real-time. For
instance, code coverage and memory-leak analysis might be performed, at
least partially, at compile time instead of at runtime. This has the advan-
tage of providing information about a piece of code that is the current focus
of the programmer.

Other challenges in code analysis will emerge in the near future, such
as the combination of source code analysis with natural language analysis;
real-time verification; and improved support for user interaction (rather than
being asked to make a collection of similar low-level choices, tools will ask
about higher level-patterns that can be used to avoid future questioning).
Code analysis tools will also need to use, edit, compile, link, and runtime
information, and continue to include a combination of multiple views of a
software system such as structure, behavior, and runtime snapshots.

2.3.4 Analyzing Executables

In the past years there was a considerable amount of research to develop
static-analysis tools to find bugs and vulnerabilities. However, most of the
effort has been on static-analysis of source code, and the issue of analyzing
executables was largely ignored. In the security context, this is particularly
unfortunate because source code analysis can fail to detect certain vulnera-
bilities due to the phenomenon known as: “What You See Is Not What You
eXecute” (WYSINWYX). That is, there can be a mismatch between what a
programmer intends and what is actually executed on the processor.

Thomas Reps et al [RBL06] present a number of reasons why analyzes
based on source code do not provide the right level of detail for checking
certain kind of properties:

1. Source level tools are only applicable when source code is available,
which limits their usefulness in security applications (e.g. in analyzing
code from open-source projects);

2. Analyzes based on source code typically make assumptions. This often
means that an analysis does not account for certain behaviors that are
allowed by the compiler;

3. Programs make extensive use of libraries, including Dynamic Linked
Libraries (DLL), which may not be available in source code form.
Typically, source-level analyzes are performed using code stubs that
model the effects of library calls.

systems automatically repair internal faults.



26 CHAPTER 2. STATE-OF-THE-ART: CODE ANALYSIS

4. Programs are sometimes modified subsequently to compilation, e.g. to
perform optimizations or insert instrumentation code [Wal91]. They
may also be modified to insert malicious code. Such modifications are
not visible to tools that analyze source code.

5. The source code may have been written in more than one language.
As referred in the previous subsection, this complicates the life of
designers of tools that analyze source code.

6. Even if the source code is primarily written in one high-level language,
it may contain inlined assembly code in selected places.

Thus, even if source code is available, a substantial amount of informa-
tion is hidden from its analyzes, which can cause bugs, security vulnera-
bilities, and malicious behavior to be invisible to such tools. In order to
faithfully match the behavior of the program that is actually executed, a
source-level analysis tool would have to duplicate all of the choices made by
the compiler and optimizer, an approach that is destined to fail.

The main goal of the work presented in [RBL06] was to recover, from
executables, Intermediate Representations (IR) that are similar to those
that would be available had one started from source code, but expose the
platform-specific details discussed above. Specifically, the authors are inter-
ested in recovering IRs that represent the following information:

• Control Flow Graphs (CFGs) with indirect jumps resolved;

• Call Graphs with indirect calls resolved;

• Information about the program’s variables;

• Sets of used, killed, and possibly.killed variables for each CFG node;

• Data dependencies (including dependencies between instructions that
involve memory accesses);

• Type information (e.g. base types, pointer types, and structs).

In IR recovery, there are numerous obstacles that must be overcome.
In particular, in many situations debugging information is not available.
So, the authors have designed IR-recovery techniques that do not rely on
debugging information being present, and are language-independent.

One of the main challenges in static analysis of low-level code is to re-
cover information about memory access operations (e.g. the set of addresses
accessed by each operation). The reasons for this difficulty are:

• While some memory operations use explicit memory addresses in the
instruction (easy), others use indirect accessing via address expressions
(difficult);
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• Arithmetic on addresses is pervasive. For instance, even when the
value of a local variable is loaded from its slot in an activation record,
address arithmetic is performed;

• There is no notion of type at the hardware level: address values are
not intrinsically different from integer values;

• Memory accesses do not have to be aligned, so word-size address val-
ues could potentially be cobbled together from misaligned reads and
writes.

As a proof of concepts exposed in [RBL06], the authors implement a set
of tools: CodeSurfer/x86, WPDS++ and Path Inspector. CodeSurfer/x86
recovers IRs from an executable that are similar to the IRs that source
code analysis tools create. WPDS++ [KRML04] is a library for answering
generalized reachability queries on weighted pushdown systems (WPDSs)
[RSJM05]. This library provides a mechanism for defining and solving
model-checking and data-flow analysis problems. Finally, Path Inspector
is a software model checker built on top of CodeSurfer and WPDS++.

To recover the IR the authors assume that the executable that is being
analyzed follows a “standard compilation model”. By this, they mean that
the executable has procedures, activation records, a global data region, and
a heap; it might use virtual functions and DLLs; it maintains a runtime
stack; each global variable resides at a fixed offset in memory; each local
variable of a procedure f resides at a fixed offset in the activation records
for f ; actual parameters of f are pushed onto the stack by the caller so that
the corresponding formal parameters reside at a fixed offset in the activation
records for f ; and finally the program’s instructions occupy a fixed area of
memory and are not self-modifying.

With these assumptions, this set of tools gave a major contribution con-
cerning variable and type discovery especially for aggregates (i.e., structures
and arrays). The variable and type discovery phase of CodeSurfer/x86 re-
covers such information for variables that are allocated globally, locally (i.e.
on the runtime stack), and dynamically (i.e. from the heap). An iterative
strategy is used; with each round of the analysis, information about the
program’s variables and types is refined. The memory model used is an
abstraction of the concrete (runtime) address space, and has two parts:

• Memory-regions Although in the concrete semantics the activation
records for procedures, the heap, and the memory for global data are
all part of one address space, for the purpose of analysis, the address
space is separated into a set of disjoint areas, which are referred to as
memory-regions. Each memory-region represents a group of locations
that have similar runtime properties.
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• A-loc The second part of the memory model uses a set of proxies for
variables, which are inferred for each memory-region. Such objects
are called a-locs, which stands for “abstract locations”. In addition
to the a-locs identified for each memory-region, registers represent an
additional class of a-locs.

Many efforts have been made to improve the recovery of IRs through the
analysis of executables. However, other aspects like dynamic languages and
object-oriented programming languages still need further research.

2.3.5 Information Retrieval

In the last years, Information Retrieval (IR) has blossomed with the growth
of the Internet and the huge amount of information available in electronic
form.

Some applications of IR to code analysis include automatic link ex-
traction [ZB04], concept location [MSRM04], software and website mod-
ularization [GMMS07], reverse engineering [Mar03], software reuse impact
analysis [SR03, FN87], quality assessment [LFB06], and software measure-
ment [Hoe05, HSS01].

These techniques can be used to estimate a language model for each
“document” (e.g. a source file, a class, an error log, etc) and then a classi-
fier can be used (e.g. a classifier based on the Bayesian theorem which relates
the conditional and marginal probabilities of two random events) to score
each. Much of this work has a strong focus on program identifiers [LMFB06].
Unlike other approaches that consider non-source documents (e.g. require-
ments), this approach focuses exclusively on the code. It divides each source
code module into two documents: one includes the comments and the other
the executable source code.

To date, the application of IR has concentrated on processing the text
from source and non-source software artifacts (which can be just as impor-
tant as source) using only a few developed IR techniques. Given the growing
importance of non-source documents, source code analysis should in time
develop new IR-based algorithms specifically designed for dealing with such
documents.

2.3.6 Data Mining

The mining of software-related data repositories has recently been a very ac-
tive are. Techniques such as the analysis of large amounts of data require sig-
nificant computing resources and the application of techniques such as pat-
tern recognition [PM04], neural networks [LSL96], and decision trees [GFR06],
which have advanced dramatically in recent years.

Most existing techniques have been conducted by software engineering
researchers, who often reuse simple data mining techniques such as associ-
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ation mining and clustering. A wider selection of data mining techniques
should find more general applications, removing the requirement that exist-
ing systems fit the features provided by existing mining tools. For example,
API usage patterns often involve more than two API method calls or in-
volve orders among API method calls, leaving mining for frequent item sets
insufficient. Finally, the mining of API usage patterns in development en-
vironments as well as many other tasks pose requirements that cannot be
satisfied by reusing existing simple miners in a black-box way.

Data mining is also being applied to software comprehension. In [KT04],
the authors propose a model and associated method to extract data from
C++ source code which is subsequently to be mined, and evaluates a pro-
posed framework for clustering such data to obtain useful knowledge.

Thus, exists the demand for the adaptation or development of more
advanced data mining methods.

2.4 Applications

Over the years, source-code analysis techniques have been used for many
engineering tasks, facing the challenges discussed in the previous sections
and many others. This section lists applications of code analysis. Only few
of them will be discussed in detail.

Applications of code analysis include: architecture recovery [Sar03]; clone
detection [MM01, LLWY03]; comprehension [Rug95]; debugging [FGKS91];
fault location [MX05]; middleware [ICG07]; model checking [DHR+07]; model-
driven development [FR07]; performance analysis [WFP07]; program evolu-
tion [BR00d]; quality assessment [RBF96]; reverse engineering [CP07]; soft-
ware maintenance (multiple papers in the European Conference on Software
Maintenance and Reengineering, CSMR4 show this evidence); symbolic ex-
ecution [KS06]; testing [Ber07, Har00]; tools and environments [Zel07]; ver-
ification [BCC+03]; and web application development [Jaz07, FdCHV08].

2.4.1 Debugging

Debugging and debugger tools have been a research topic that was decreas-
ing in strength and increasing in quantity, maybe due to the ever increasing
complexity of the problems imposed by more complex compiler back-ends
and new language features, such as the ones previous referred: reflection and
dynamic class loading, among others. Some recent debugging innovations
that counter this trend include algorithmic debugging, delta debugging, and
statistical debugging.

Algorithmic debugging uses programmer responses to a series of ques-
tions generated automatically by the debugger. There are two research goals

4http://csmr.eu/
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for future algorithmic debuggers: first, reducing the number of questions
asked in order to find the bug, and second, reducing the complexity of these
questions [Sil06].

Delta debugging systematically narrows the difference between two ex-
ecutions: one that passes a test and one that fails [Zel01]. This is done by
combining states from these two executions to automatically isolate failure
causes. At present the combination is statically defined in terms of the input,
but a more sophisticated combination might use dependency information to
narrow down the set of potential variables and statements to be considered.

The SOBER tool uses statistical methods to automatically locate soft-
ware faults without any prior knowledge of the program semantics [LFY+06].
Unlike existing statistical approaches that select predicates correlated with
program failures, SOBER models the predicate evaluation in both correct
and incorrect executions and regards a predicate as fault-relevant if its eval-
uation pattern in incorrect executions significantly diverges from that in
correct ones. Featuring a rationale similar to that of hypothesis testing,
SOBER quantifies the fault relevance of each predicate in a principled way.

2.4.2 Reverse Engineering

Reverse engineering is an attempt to analyze source code to determine the
know-how which has been used to create it [CP07]. Pattern-matching ap-
proaches to reverse engineering aim to incorporate domain knowledge and
system documentation in the software architecture extraction process. Most
existing approaches focus on structural relationships (such as the general-
ization and association relationships) to find design patterns. However, be-
havioral recovery, a more challenging task, should be possible using data
mining approaches such as sequential pattern discovery. This is useful as
some patterns are structurally identical but differ in behavior. Dynamic
analysis can be useful in distinguishing such patterns.

2.4.3 Program Comprehension

The increasing size and complexity of software systems introduces new chal-
lenges in comprehending the overall structure of programs.

In this context, program comprehension is necessary to get a deeper un-
derstanding of software applications. If they need to be changed or extended
and its original documentation is missing, incomplete, or inconsistent with
the implementation of the software application. Source code analysis as
performed by Rigi [MTO+92, TWSM94] or Software Bookshelf [FHK+02] is
one approach for program comprehension. These approaches creates a source
model that enables the generation of high level sequence and collaboration
diagrams. Since the collaboration between different modules also depends on
runtime data, dynamic tools such as Software Reconnaissance [EKS, WC96],
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BEE++ [BGL93] or Form [SMS01] have been developed. These approaches
identify the code that implements a certain feature by generating different
execution traces.

For a comprehensive understanding of any software system, several com-
plementary views need to be constructed, capturing information about dif-
ferent aspects of the system in question. The 4+1 Views model, introduced
in [Kru95], for example, identifies four different architectural views: the log-
ical view of the system data, the process view of the system’s thread of
control, the physical view describing the mapping of the software elements
onto hardware, and the development view describing the organization of the
software models during development. Scenarios of how the system is used
in different types of situations are used to integrate, illustrate and validate
the above views.

Chen and Rajlich [CS00] propose a semi-automatic method for feature
localization, in which an analyst browses the statically derived System De-
pendency Graph. The SDG describes detailed dependencies among subpro-
grams, types, and variables at the level of expressions and statements. Even
though navigation on the SDG is computer-aided, the analyst still has to
search for a feature’s implementation.

Understanding a system’s implementation without prior knowledge is a
hard task for engineers in general. So along the years many code analy-
sis models have been proposed to aid program comprehension. However, it
would be desirable to have multiple models representing alternative views.
For enabling slicing and abstraction mechanisms across the models, the se-
mantic relations between them should be well-defined. It would be useful
to reflect modifications in one view directly in the other views. Moreover,
for program comprehension, the environment should allow the user to easily
navigate between static and dynamic views, as well as between low and high
level views (for instance, the user might want to select a component in one
view and explore its role in the other views).

2.5 Tools

Code analysis tools can help to acquire a complete understanding of the
structure, behavior and functionality of a system, or they can assist in the
assessment of the impact of a modification in the system. Code analysis
tools are also useful in post-maintenance testing (for example to generate
cross-reference information, and to perform data flow analysis) and to pro-
duce specification and design-level documents that record for future use the
knowledge gained during a maintenance operation. Under the umbrella of
reverse engineering, many tools are available that support the extraction of
system abstractions and design information out of existing software systems.
In this section we briefly look at a representative set of such tools.
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2.5.1 FxCop

FxCop [Mic08b] is an application that analyzes modules coded in assembly
(targets modules included in the .NET Framework Common Language Run-
time — CLR) and reports information about the modules, such as possible
design, file system localization, performance, and security improvements.
Many of the issues concern violations of the programming and design rules
set forth in the Design Guidelines for Class Library Developers [Mic08a], which
are the Microsoft guidelines for writing robust and easily maintainable code
by using the .NET Framework.

However, the tool has a few drawbacks: it only parses the assembly code
and display it in a pretty form; it analyzes the assembly code and does
not infer any kind of knowledge, because its analysis is based on a set of
pre-defined and fixed rules; it does not have any kind of abstraction/visual-
ization of the intermediate representation, obtained from the parsing, to aid
program comprehension; it only analyzes assembly code files one at a time,
without relating them, thus restricting the analysis and comprehension of a
whole system to its individual components.

2.5.2 Lint

Lint [Joh78, Dar86] is a tool to examine C programs that compile without
errors, aiding to find bugs that had escaped detection.

Lint’s capabilities include:

• It complains about variables and functions which are defined but not
otherwise mentioned (an exception is variables which are declared
through explicit extern statements but are never referenced).

• It attempts to detect variables that are used before being assigned.
Lint detects local variables (automatic and register storage classes)
whose first use appears physically earlier in the input file than the
first assignment to the variable. It assumes that taking the address of
a variable constitutes a “use” since the actual use may occur at any
later time, in a data dependent fashion.

• It attempts to detect unreachable portions of the programs. It will
complain about unlabeled statements immediately following goto, break,
continue, or return statements. An attempt is made to detect loops
which can never be left at the bottom, detecting the special cases
while(1) and for(;;) as infinite loops. Lint also complains about
loops which cannot be entered at the top; some valid programs may
have such loops, but at best they are bad style, at worst bugs.

• It enforces the type-checking rules of C more strictly than the compilers
do. The additional checking is in four major areas: across certain
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binary operators and implied assignments, at the structure selection
operators, between the definition and uses of functions, and in the use
of enumerations.

Obviously a drawback of the Lint tool is that it is limited to the C
language and uses a static approach, it does not cover modern languages
with the notion of object, class, reflection, or dynamic class loading.

2.5.3 CodeSonar and CodeSurfer

Both CodeSonar [Gra08a] and CodeSurfer [Gra08b] are tools from GramaT-
ech. CodeSonar is a source code analysis tool that performs a whole-program,
interprocedural analysis on C/C++ code and identifies complex program-
ming bugs that can result in system crashes, memory corruption, and other
serious problems. CodeSonar pinpoints problems at compile time that can
take weeks to identify with traditional testing. The main goals of CodeSonar
are:

• to detect and eliminate bugs early in the development cycle, when
problems are easier and less expensive to fix;

• to avoid having to debug defects that can be pinpointed quickly and
simply with automated analysis; and

• to catch problems that test suites miss.

CodeSurfer, related to CodeSonar, is a program-understanding tool that
makes manual reviewing of code easier and faster. CodeSurfer does a precise
analysis. Program constructs — including preprocessor directives, macros,
and C++ templates — are analyzed correctly. CodeSurfer calculates a va-
riety of representations that can be explored through the graphical user
interface or accessed through the optional programming API. Some of its
features include:

• Whole-Program Analysis: see effects between files;

• Pointer Analysis: see which pointers point to which variables and pro-
cedures;

• Call Graphs: see a complete call graph, including functions called
indirectly via pointers;

• Impact Analysis: see what statements depend on a selected statement;

• Dataflow Analysis: pinpoint where a variable was assigned its value.

• Control Dependency Analysis: see the code that influences a state-
ment’s execution.
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Again, the main drawback of these tools is that they are language-
dependent (is this case of C/C++).



Chapter 3

State-of-the-Art: Program
Verification

Trust, but verify.

Ronald Reagan, 1911 — 2004

“Computer programs can be seen as formal mathematical objects whose
properties are subject to mathematical proof” [BM85]. Every program im-
plicitly asserts a theorem to the effect that if certain input conditions are
met, then the program will do what its specifications or documentation says
it will.

The process of program proving has some similarities with traditional
geometry in mathematics [McG82]. Geometric constructions can be com-
pared with programs as both have the goal to achieve a particular effect. The
geometric construction is followed by a (mathematical) proof that the con-
struction will perform the intended task. Similarly, after writing a program
one can prove by a (mathematical) argument that the program performs the
intended task, in the sense that it respects its specification.

Program Verification is the use of formal, mathematical techniques to
debug software and software specifications. The goal of Program Verifica-
tion is to establish that a program performs according to some intended
specification. Typically, what is meant by this is that the input/output
behavior of the implementation matches that of the specification (this is
usually called the functional behavior of the program), and moreover the
program does not ‘go wrong’, for instance, the program does not crash if
exceptional conditions occur (the so-called safety behavior).

However, every piece of software contains errors, and computer programs
rarely work properly the first time [Ltd92]. Usually, several rounds of rewrit-
ing, testing, and modifying are required before a working solution is pro-
duced [Sto96].

When a piece of source code is submitted to a compiler or the compiled

35
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code is executed, different kinds of errors can occur in the various stages.
For instance, the compiler should be capable of detecting the wrong repre-
sentation of symbols, mismatch of brackets, incorrect assignment or function
calls and so on. Besides this kind of syntactic errors, that result from the
incorrect typing or from malformation of language constructs, the compiler
should be capable of coping with semantic errors (like undeclared variables,
redeclared variables, or type inconsistencies) for fully understanding the
text, i.e., it should be capable of parsing the source code and interpreting it
as a semantically correct program.

At execution time other kind of errors may occur (besides the syntactic
and semantic ones detected at compile time) — like indexes out of range
(array subscripts), division by zero, use of uninitialized variables, use of
inappropriate data, and so on — that can also be detected and controlled
either by extra code generated by the compiler or by the operating system.
But unfortunately, many of the software errors are logical, i.e., algorithmic
mistakes which result in the program failing to perform its intended task;
and these are not detectable at compile or run time.

Although most software errors are relatively harmless, (e.g. a crash
of a word processor), there are cases where the occurrence of errors can
have serious consequences (e.g. the failure of an aircraft’s flight control
software). For this kind of safety-critical software, that can endanger human
life, its correctness is a concern for everyone (developers, users, public and
authorities).

The Ministry of Defense, in the United Kingdom, has defined a stan-
dard (Defense Standard 00-56) for the verification of safety critical soft-
ware [MDUK96]. This standard details two basic approaches:

• The use of formal methods (correct by design).

• The static analysis of the code (conformance with the design).

This standard emphasizes the use of code analysis to guarantee that the
program will perform according to its intended task. As Program Verifica-
tion can give a major contribute to certifying the correctness of programs,
verification techniques have lately been widely adopted to improve the con-
fidence in a program, making it safer.

A proof of correctness should mainly detect if a program is inconsistent
with respect to its assertions (that is, if it will not perform the intended
task). However, a proof itself can be erroneous. Mathematicians can err
in formulating proofs; the use of verification tools can help in reducing this
kind of errors.

Of course, the use of software verification tools cannot guarantee the
absence of errors but it can detect certain kinds of errors; sometimes it can
go further by allowing the programmer to derive parts of a program au-
tomatically from logical specifications. These specifications provide a rep-
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resentation of the program’s intended meaning or goal; they say what the
program is supposed to do rather than how to do it. Thus they are easier
to understand than the details of the program itself, and can be directly
accepted or rejected depending on whether they match or fail to match the
requirements.

In this chapter, our attention will be focused on Program Verification
techniques, mainly on the automated ones.

Let us start by considering some of the classes of questions that the
application of Program Verification techniques can help to answer. For each
question, we mention a paper that discusses the question in detail, or a tool
that helps to answer it.

• Will the program crash?

In [Ame02], the authors argues that the adoption of verification and
validation activities in safety systems, although dominating develop-
ment costs (80 percent in some cases), increase the software quality
and save time/money. That is, the adoption of development methods
focused on bug prevention rather than bug detection both raise qual-
ity and decrease costs. The author also highlights that a key factor of
correctness by construction is the use of unambiguous programming
languages that allow for a rigorous analysis.

The SPARK1 language, an annotated subset of Ada, was proposed as an
answer to this challenge of using unambiguous programming languages
to build safety or security-critical software. As argued by the creator
of SPARK, “the exact semantics of SPARK require software writers to
think carefully and express themselves clearly; any lack of precision is
ruthlessly exposed by ... its support tool, the SPARK Examiner”.

The main characteristics of the SPARK language are: logical sound-
ness (elimination of language ambiguities); expressive power (SPARK
retains the main Ada features required for writing well-engineered
object-based code); security (its static semantic rules are machine-
checkable using efficient analysis algorithms); and verifiability (the
precise meaning of the source code allows one to reason about it in
a rigorous mathematical manner).

• Does the program compute the correct result?

The KeY project [BHS07] has as main goal to contribute for the de-
velopment of high quality object-oriented software, guaranteeing that
the software is correct with respect to the specification.

The idea behind the KeY tool is to provide facilities for formal spec-
ification and verification of programs within a software development

1http://www.altran-praxis.com/spark.aspx
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platform. The formal specification is performed using the Object Con-
straint Language (OCL). The tool provides support for the authoring
and formal analysis of OCL constraints.

• Does the program leak private information?

Jif [MZZ+01] is a secure-typed programming language that extends
Java. It requires the programmer to label variables with information-
flow security policies as part of application development. This requires
the programmer to determine in advance: the entities that will handle
the data in the system; the security policies (the labels) that should
govern individual program variables; and the interaction of variables
throughout the application (the information flow).

After the process of labeling variables with policies, the compiler tracks
the correspondence between information and policies that restrict its
use, enforcing security properties within the system. The Jif compiler
then flags errors wherever information leaks may occur.

To help in the process of determining the security policies, the Jif-
clipse [HKM07] plugin for Eclipse was developed. It provides addi-
tional tools to view hidden information generated by a Jif compila-
tion, to suggest fixes for errors, and to get more details behind an
error message.

Both tools help to detect leaks of private information.

• How long does the program take to run?

Nowadays, in real-time systems, task completion at a precise time is
essential. It should be checked that each real-time task is completed
within a specific time frame to ensure that the program is working
correctly. For this reason it is crucial to know, for each task, its Worst-
Case Execution Time (WCET).

aiT [Inf09] is a tool that statically computes tight bounds for the WCET
of tasks in real-time systems. It analyzes the binary executables and
takes into account the intrinsic cache and pipeline behavior. This
allows to be computed correct and tight upper bounds for the worst-
case execution time.

The tools referred above and many others show the importance that
the area of formal verification took in the last years. Formal verification
techniques have also been adopted in the area of hardware industry, as
errors in such systems have enormous commercial significance.

Finally, two recent examples of formal verification of operating systems
include: NICTA’s Secure Embedded L4 microkernel [KEH+09] and Green Hills
Software Integrity [Gan09]. This verification provides a guarantee (a mathe-
matical proof) that the implementation is consistent with the specification
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and that the kernel is free of implementation bugs (e.g. deadlocks, livelocks,
buffer overflows, arithmetic exceptions or the use of uninitialized variables).

Impact of Program Verification Over the years, Program Verification
has been applied in different contexts and with different purposes. The
impact of the are was due mainly to very significant improvements in the
following:

• Reliability — higher assurance in program correctness by manual or
automated proofs.

• Programmer productivity — feedback on errors while typing program.

• Refactoring — checking that suggested program transformations pre-
serve program meaning (e.g. refactoring using Type Constraints; au-
tomated support for program refactoring using invariants).

• Program Optimizations — automatically transforming programs so
that they take less time and less memory power.

Verification versus Validation Before proceeding to more details about
software verification techniques, let us first clarify the meaning of “Software
Verification”.

The definitions of Verification and Validation are often confusing and
conflicting. According to the IEEE Standard Computer Dictionary [Ger91]:

• Validation is the confirmation by examination and provi-
sions of objective evidence that the particular requirements
for a specific intended use are fulfilled.

• Verification is the confirmation by examination and provi-
sions of objective evidence that specified requirements have
been fulfilled.

To sum up, Validation can be defined as the process of evaluating soft-
ware at the end of its development to ensure that it is free from failures and
complies with its requirements. A failure is an incorrect program behavior.
Often, this validation occurs through the use of different testing approaches.
Design validation encompasses software validation, but goes a step further
to check for proper operation of the software in its intended use environment.

Verification can be defined as the process of determining whether or not
the product of a software development process fulfills the requirements es-
tablished during the previous phase. Verification approaches attempt to
identify product faults or errors, which give rise to failures. Software veri-
fication looks for consistency, completeness and correctness of the software
and its supporting documentation. In a software development environment,
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software verification is the confirmation that the output of a particular phase
of development meets all of the input requirements for that phase. In this
thesis we assume that the objective evidence provided by Verification implies
the use of rigorous, mathematically justified arguments or processes.

Verification techniques Verification techniques can be divided into two
major groups: dynamic verification and static verification.

Dynamic verification techniques refer to those that check the software’s
behavior during execution. Because this process is usually done during the
Testing phase, these dynamic techniques are also known as Test or Experi-
mentation Techniques.

Static verification techniques are those that do a physical inspection of
code before its execution. The group of static verification techniques can
also be divided in two groups: the manual or semi-automatic techniques
and the fully automated techniques. Techniques requiring substantial man-
ual effort, like interaction with tools that construct a proof; techniques that
use refinement steps to construct programs from specifications; and tech-
niques that require annotations from the programmer fall in the first group.
Techniques such as model checking and (abstract) static analysis fall in the
second group.

Structure of the chapter. Section 3.1 introduces basic concepts neces-
sary to the remaining sections. Section 3.2 discusses the class of manual and
semi-automated (static) techniques for program verification and Section 3.3
presents the fully-automated (static) techniques. Section 3.4 discusses avail-
able dynamic techniques. The chapter concludes in Section 3.5 with the
presentation of some existing tools for program verification.

3.1 Basic Concepts

This section will be dedicated to basic concepts needed for the understand-
ing of the remaining sections. Special attention is given to propositional
logic, first-order logic, and Hoare logic, as these are important for the work
presented in the following chapters.

We start by briefly reviewing the three basic styles of programming lan-
guage semantics.

Definition 16 (Operational Semantics). Operational Semantics is a way
to give meaning to computer programs in a mathematically rigorous way.
The operational semantics of a programming language describes how a valid
program is interpreted a sequence of computational steps.

In other words, defining an operational semantics is like writing an in-
terpreter.
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In the context of functional programs, the final step in a terminating
sequence returns the value of the program. In general there can be many
return values for a single program, because the program can be nondeter-
ministic. Even for a deterministic program there can be many computation
sequences since the semantics may not specify exactly what sequence of
operations results in the return value.

Definition 17 (Denotational Semantics). Denotational Semantics is an ap-
proach to formalizing programming languages by constructing mathematical
objects (called denotations) which describe the meaning of program expres-
sions and commands.

In other words, denotational semantics is a bit like translating the given
program to a pure functional program.

Definition 18 (Axiomatic Semantics). Axiomatic Semantics is an approach
based on mathematical logic. Axiomatic semantics define the meaning of a
command in a program by describing its effect on assertions about the pro-
gram state. The assertions are logical statements - predicates with variables,
where the set of variables correspond to the state of the program.

Axiomatic semantics is closely related to Hoare Logic and the Weakest
Precondition Calculus. Hoare logic will be considered in detail in subsec-
tion 3.1.3.

3.1.1 Propositional Logic

Propositional logic is the basis for any logic. As any logical system, the
task of describing its elements comes in three parts: its syntax describes
what counts as a formula; its semantics describes its meaning; and its proof
systems describe what is a valid proof in the logic under consideration. Given
a logical language and its semantics, it is possible to establish one or more
proof systems for it. A proof system is said to be: sound if every provable
formula is valid; and complete if every valid formula is provable.

The language of Propositional Logic language consists of:

• a set of primitive symbols, usually known as atomic assertions, propo-
sitional letters or variables; and

• a set of operator symbols, usually known as logical connectives (and,
or, not, implication and absurdum).

In the next subsections, both the syntax and semantics of propositional
logic are presented.
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Syntax

Propositional formulas (or propositions) are sequences of symbols from a
finite alphabet defined in Definition 19, formed according to a set of rules
stated in Definition 20.

Definition 19 (Alphabet of propositional logic). The alphabet of proposi-
tional logic consists of:

• A countable set Prop of propositional symbols: P , Q, R, ...

• The logical connectives: ∧ (conjunction), ∨ (disjunction), ⊥ (absur-
dum or false), ¬ (negation) and → (implication);

• Auxiliary symbols: “(”, “)”.

Definition 20 (Propositional formulas). The set Form of propositional
logic formulas is the smallest set of expressions such that:

• Prop ⊆ Form

• If A, B ∈ Form, then

1. (A ∧B) ∈ Form,

2. (A ∨B) ∈ Form,

3. (A→ B) ∈ Form,

4. (¬A) ∈ Form,

5. ⊥ ∈ Form.

According to this definition, an atomic formula has the form ⊥ or P .
A structured formula is formed by combining other formulas with logical
connectives.

A well-formed formula is thus any atomic formula, or any formula that
can be built up from atomic formulas by means of operator symbols accord-
ing to the rules of the grammar.

Semantics

Having described the syntax of propositional logic, we now describe the
semantics which provide its meaning. The semantics or meaning of a formula
ψ with propositional symbols A, B, ..., is given by individually assigning a
truth value (T — “true” or F — “false”) to A, B, ..., and then, according
to the operators, calculating the value of ψ.

The semantics are well defined due to the fact that the rules used to
build propositions are unambiguous.

Definition 21 (Valuation). A valuation is a function ρ : Prop → {F,T}
that assigns truth values to propositional symbols.
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One way to specify the semantics of a logical connective is by using
a truth table. A truth table is a complete list of possible truth values of
statements. Most of the formulas will have some combinations of Ts and
Fs in their truth table columns. Some formulas will have nothing but Ts
— they are called tautologies. Others will have nothing but Fs — they are
called contradictions.

Truth tables for the connectives ¬, ∧, ∨ and → are given in Figure 3.1.

A ¬ A

F T
T F

A B A ∨B
F F F
F T T
T F T
T T T

A B A ∧B
F F F
F T F
T F F
T T T

A B A→ B

F F T
F T T
T F F
T T T

Figure 3.1: Truth tables for the connectives ¬, ∧, ∨ and →

This way, the meaning of a structured formula is obtained by combining
the meanings of the sub-formulas according to a specific internal operation
over the truth values, that captures the intended semantics of each connec-
tive.

For instance, the meaning of the formula P ∨Q→ P ∧Q can be obtained
by computing recursively the meaning of each of its sub-formulas by con-
sulting the truth table of the corresponding connective. Having considered
parentheses as part of the syntax, the following conventions to lighten the
presentation of formulas are considered:

• Outermost parentheses are usually dropped.

• Parentheses dictate the order of operations in any formula. In the
absence of parentheses, the following convention about precedence is
adopted. Ranging from the highest to the lowest precedence, we have
respectively: ¬, ∧, ∨ and →.

• All binary connectives are right-associative.

Writing P ∨Q→ P ∧Q is equivalent to writing (P ∨Q)→ (P ∧Q) due
to the precedence given to operators, and we have the truth table:

P Q P ∨Q P ∧Q P ∨Q→ P ∧Q
F F F F T
F T T F F
T F T F F
T T T T T

The notions of propositional model and validity relation offer an alter-
native formulation of the semantics of propositional logic [AFPMdS11].
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Definition 22 (Propositional model). A propositional model is a set of
propositional symbols M ⊆ Prop. The validity relation |=⊆ P(Prop) ×
Form is defined inductively by (P denotes the powerset over P ):

M |= P iff P ∈M
M |= ¬A iff M 6|= A
M |= A ∧B iff M |= A and M |= B
M |= A ∨B iff M |= A or M |= B
M |= A→ B iff M 6|= A or M |= B

Definition 23 (Validity and Satisfiability of a formula). • A formula A
is said to be valid in a model M (or M is said to satisfy A), iff
M |= A. When M 6|= A the formula A is said to be refuted by the
model M.

• A formula A is satisfiable if there exists some model M such that
M |= A. It is refutable if some model refutes A.

• A formula A is valid (also called a tautology) if every model satisfies
A. A formula A is a contradiction if every model refutes A.

• Given two formulas A and B, A is said to be logically equivalent to
B (A ≡ B), if A and B are valid exactly in the same models.

Considering the formula used as example previously, P ∨ Q → P ∧ Q,
and models M1 = {P,Q} and M2 = {Q}, it is possible to observe that:

• SinceM1 |= P andM1 |= Q, we haveM1 |= P ∧Q andM1 |= P ∨Q.
This allows us to conclude that M1 |= P ∨Q→ P ∧Q.

• SinceM2 |= Q andM2 6|= P , we haveM2 |= P ∨Q andM2 6|= P ∧Q.
Thus, we can conclude that M2 6|= P ∨Q→ P ∧Q.

Proof System

A proof system is defined by a set of inference rules used to construct deriva-
tions. A derivation is a sequence of sentences that explains why a given
formula — the conclusion or theorem — is deducible from a set of formulas
(assumptions). The rules that guide the construction of such derivations
are called inference rules and consist of zero or more premises and a single
conclusion. Usually, derivations are built in the form of a tree. From now
on, the following notation of separating the premises from the conclusion by
a horizontal line, will be used:

prem1 · · · premn

concl
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This should be read as: “whenever the conditions prescribed by the
premises prem1, ..., premn are met, it is allowed to conclude concl.

Whilst there are various proof systems for propositional logic, the most
well known is Natural Deduction. It was first introduced by Gerhard Gentzen
in [Gen35] (1935), and the reason for this term is described in his disserta-
tion:

Ich wollte zunächst einmal einen Formalismus aufstellen, der dem
wirklichen Schließen möglichst nahe kommt. So ergab sich ein
“Kalkül des natürlichen Schließens”.

First I wished to construct a formalism that comes as close as
possible to actual reasoning. Thus arose a “calculus of natural
deduction”.

There are different variants of natural deduction proof systems, but all of
them have the same basic elements: basic rules; rules to eliminate operators;
and rules to introduce operators. The rules hereby presented will be written
in a sequent style.

Definition 24 (Sequent). A sequent is a judgment of the form Γ ` A, where
Γ is a set of formulas (called the context) and A is a formula (called the
conclusion of the sequent).

A sequent Γ ` A is read as “A can be deduced from the set of assumptions
Γ” or “A is a consequence of Γ”.

Rules of the proof system The rules are grouped in three categories as
follows.

Please notice that the formulas A, B, and C occurring in the rules are
in fact meta-variables that can be replaced by concrete formulas to obtain
specific instances of each rule (see Definition 26).

• Basic Rules

(Ax)
Γ, A ` A

This rule, called axiom rule is the only rule with no premises and is
the base case for the inductively defined set of derivations. The axiom
rule simply asserts that deduction subsumes inclusion.

Γ,¬A ` ⊥
(RAA)

Γ ` A

The reductio ad absurdum (RAA or reduction to the absurd) is a form
of argument that enables reasoning by contradiction: a formula A can
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be proved by establishing that assuming ¬A leads to a contradiction
(that is, a proposition is proven true by proving that it is impossible
for it to be false).

• Introduction rules

Inference rules that introduce a logical connective in the conclusion are
known as introduction rules. Introduction rules for a logical operator
⊗ express the conditions for the truth of a sentence P containing ⊗
as main operator and whose premises assert the truth of immediate
sub-formulas of P .

Γ, A ` B
(I→)

Γ ` A→ B

Γ, A ` ⊥
(I¬)

Γ ` ¬A

These two rules modify the assumption sets used in the conclusion and
in the premises.

The (I→) rule states that proving an implication corresponds to prov-
ing its conclusion assuming the antecedent as an additional assump-
tion.

The (I¬) rule states that proving the negation of A corresponds to
reaching a contradiction assuming A.

Γ ` A Γ ` B(I∧)
Γ ` A ∧B

The (I∧) rule states that if one can derive both A and B then A ∧ B
is true.

Γ ` A(I∨1)
Γ ` A ∨B

Γ ` B(I∨2)
Γ ` A ∨B

These rules state that if one of A or B is derivable, then so is A ∨B.

• Elimination rules

Elimination rules are dual to introduction rules, and describe how to
de-construct information about a compound proposition into informa-
tion about its constituents.

Γ ` A Γ ` A→ B(E→)
Γ ` B

This rule, also known as modus ponens (latin words for the way that
affirms by affirming) captures the conditional nature of implication:
if one is able to deduce both an implication A→ B and its antecedent
A from a given set of assumptions Γ, then the consequent B can also
be deduced from the same set of assumptions.
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An example of an argument that fits the form modus ponens:

If today is Monday (P ), then (→) I will go to work (Q).

Today is Monday (P ).

Therefore, I will go to work (Q).

Γ ` A Γ ` ¬A(E¬)
Γ ` B

This rule states the principle of explosion, also known as ex falso se-
quitur quodlibet, according to which “anything follows from a contra-
diction”. That is, once a contradiction has been asserted, any propo-
sition (or its negation) can be inferred from it.

The rule can be read as: “If one claims something is both true (A)
and not true (¬A), one can logically derive any conclusion (B)”.

Γ ` A1 ∧A2(E∧i) i ∈ {1, 2}
Γ ` Ai

These rules, known also as simplification, state that if the conjunction
A1 ∧A2 is true, then A1 is true and A2 is true.

An example in natural language:

It is raining (A1) and (∧) it is pouring (A2).

Therefore it is raining (A1) and it is also pouring (A2).

Γ ` A ∨B Γ, A ` C Γ, B ` C
(E∨)

Γ ` C
This rule, also known as disjunction elimination, states that if A or B
is true, and A is a consequence of C, and B is a consequence C, then
we may infer C. That is, since at least one of the statements A and
B is true, and since either of them is sufficient to entail C, then C is
certainly true.

An example in natural language:

It is true that either I am inside (A) or I am outside (B). It is also
true that if I am inside, I have my wallet on me (C, A ` C). It is also
true that if I am outside, I have my wallet on me (B ` C).

Therefore it follows that I have my wallet on me (C).

Taking into account these sets of rules, we are now able to define the
proof system NPL of natural deduction.

Definition 25 (Proof system NPL). The proof system NPL of natural deduc-
tion for propositional logic is defined by the sets of Basic rules, Introduction
rules and Elimination rules presented previously.



48 CHAPTER 3. STATE-OF-THE-ART: PROGRAM VERIFICATION

Definition 26 (Instance of an inference rule). An instance of an inference
rule is obtained by replacing all occurrences of each meta-variable by a phrase
in its range.

Definition 27. A derivation or proof in NPL is a finite tree whose leaves
are propositional formulas, and which is built by using the rules of NPL.

Example 1. The following proof shows that (P ∧Q)→ R ` P → (Q→ R)
is derivable in NPL.

(Ax)
(P ∧Q)→ R,P,Q ` (P ∧Q)→ R

(Ax)
(P ∧Q)→ R,P,Q ` P

(Ax)
(P ∧Q)→ R,P,Q ` Q

(I∧)
(P ∧Q)→ R,P,Q ` P ∧Q

(E→)
(P ∧Q)→ R,P,Q ` R

(I→)
(P ∧Q)→ R,P ` Q→ R

(I→)
(P ∧Q)→ R ` P → (Q→ R)

See for instance [AFPMdS11] for proofs of soundness and completeness
with respect to this proof system.

3.1.2 First-order Logic

In propositional logic, it is not possible to express assertions about elements
of a structure. This is mainly due to its relative mathematical simplicity.
First-order logic is richer than propositional logic and still enjoys some in-
teresting mathematical properties. It allows one to reason about properties
that are shared by different objects, by allowing the propositional symbols
to have arguments ranging over elements of structures. In addition to spec-
ifying the meaning of predicate symbols, an interpretation must specify a
non empty set, known as the domain of discourse, as a range for quantifiers.
Thus, a statement of the form ∃ x. printer(x) is said to be true, under a
particular interpretation, if there is some object in the domain of discourse
of that interpretation that satisfies the predicate that the interpretation uses
to assign meaning to the symbol printer, and ∀x. printer(x) is true if every
such object satisfies the predicate.

Essentially, first-order logic is a powerful notation that extends proposi-
tional logic with predicates and quantification. A predicate is a function that
returns either true or false. If printer is a predicate of arity one and ancestor
is a predicate of arity two, then the formula printer(x) means that x is a
printer, and the formula ∀x. ∀y. ((ancestor(x,Mary) ∧ ancestor(y, x)) →
ancestor(y,Mary) means that if y is an ancestor of x, who is an ancestor of
Mary , then y is also Mary ’s ancestor.

This section briefly introduces the basic notions of first-order logic. Sim-
ilarly to propositional logic, the syntax of the first-order logic language will
first be presented, then its semantics, and finally a proof system.
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Syntax

The language of first-order logic, unlike from natural languages, is com-
pletely formal, so that it can be mechanically determined whether a given
expression is legal.

There are two types of valid expressions in the language: terms, which
represents objects, and formulas, which express properties that can be either
true or false. The terms and formulas are strings of symbols which together
form the alphabet of the language. It is common to divide the symbols of
the alphabet into logical symbols, which always have the same meaning, and
non-logical symbols, whose meaning varies according to the interpretation.

Definition 28 (Alphabet of first-order logic — Logical symbols). The al-
phabet of logical symbols of first-order logic consists of:

• Logical connectives: ∧ (and), ∨ (or), ⊥ (absurdum or false), ¬ (not),
→ (implication), ∀ (universal quantifier) and ∃ (existential quantifier);

• Auxiliary symbols: “(”, “)”.

• Variables: a countable set X of variables that represent arbitrary ele-
ments of an underlying domain. Let x, y, z, ... range over X .

The non-logical symbols represent predicates (relations), functions and
constants of the domain of discourse.

Definition 29 (Alphabet of first-order logic — Non-logical symbols). The
alphabet of non-logical symbols of first-order logic consists of:

• Constants: a countable set C of constants that represent specific ele-
ments of an underlying domain. Let a, b, c, ... range over C. Examples:
Mary, 3, etc.

• Functions: a countable set F of function symbols. Let f, g, h, ... range
over F . Examples: fatherOf of arity 1, colorOf of arity 1.

• Predicates: a countable set P of predicate symbols.

Let P,Q,R, ... range over P. Examples: greater of arity 2, green of
arity 1.

These three sets are disjoint and they constitute the vocabulary V =
C ∪ F ∪ P.

The next step is to define the terms and formulas of first-order logic.

Definition 30 (Terms). The set of terms of a first-order language over a
vocabulary V is inductively defined by the following rules:

• Every constant c ∈ C and every variable x ∈ X is a term.
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• If t1, ..., tn are terms and f is a function of arity n > 0, then f(t1, ..., tn)
is a term.

Only expressions using these two rules are terms. No expression involv-
ing predicate symbols is a term.

Example 2. Let L be the following first-order language for arithmetic where:
C = {0}, F = {Succ,+,−} and P = {<}. The symbol Succ has arity 1 and
the symbols +,− and < have arity 2. Then the following are terms:

• Succ(0)

• +(Succ(0),Succ(Succ(0)))

• < (x1, 0)

Definition 31 (Formulas). The set of formulas FormV of a first-order
language over a vocabulary V is inductively defined by the following rules:

• ⊥ is a formula.

• If t1, ..., tn are terms and P is a predicate symbol of arity n, then
P (t1, ..., tn) is a formula.

• If ψ, φ ∈ FormV , then:

– (¬φ) ∈ FormV

– (φ ∧ ψ) ∈ FormV

– (φ ∨ ψ) ∈ FormV

– (φ→ ψ ) ∈ FormV

– (∀x.φ) ∈ FormV

– (∃x.φ) ∈ FormV

An atomic formula is either ⊥ or P (t1, ..., tn).
Similarly to propositional logic, parentheses dictate the order of opera-

tions in any formula. In the absence of parentheses we have, ranging from
the highest precedence to the lowest: ¬,∧,∨,→. Finally we have that →
binds more tightly than ∀ and ∃.

Using the first-order language described previously, < (0,Succ(0)) is an
atomic formula. And the following is a formula:

∀x. ∀y. (< (x, y)→ ∃z. < (z, y + x− z)
In a quantified formula ∀x.φ or ∃x.φ, x is a quantified variable and φ is

its scope of quantification. Occurrences of a quantified variable in a given
scope are said to be bound, while the occurrences that are not bound are
said to be free. For example, in the formula ∃x.P (x, y), x is bound but y is
free.
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Definition 32 (Free variables). The set of free variables of a formula ϕ,
FV(ϕ), is defined inductively as follows:

• If ϕ is an atomic formula then FV(ϕ) is the set of all variables occur-
ring in ϕ.

• If ϕ is ¬φ, then FV(ϕ) = FV(φ).

• If ϕ is φ ∧ ψ or φ ∨ ψ or φ→ ψ, then FV(ϕ) = FV(φ) ∪ FV(ψ).

• If ϕ is ∀x.φ or ∃x.φ, then FV(ϕ)=FV(φ) \x.

Definition 33 (Bound variables). The set of bound variables of a formula
ϕ, BV(ϕ), is defined inductively as follows:

• If ϕ is an atomic formula then BV(ϕ) = ∅.

• If ϕ is ¬φ, then BV(ϕ) = BV(φ).

• If ϕ is φ ∧ ψ or φ ∨ ψ or φ→ ψ, then BV(ϕ) = BV(φ) ∪ BV(ψ).

• If ϕ is ∀x.φ or ∃x.φ, then BV(ϕ)=BV(φ) ∪ {x}.

For example, in ∀x. ∀y. (P (x)→ Q(x, f(x), z)), BV={x, y} FV={z}.

Definition 34 (Sentence, Universal Closure and Existential Closure). A
formula iofn first-order logic with no free variables is called a sentence. If
FV(φ) = {x1, ..., xn}, the universal closure of φ is the formula ∀x1, ..., xn.φ
and the existential closure of φ is the formula ∃x1, ..., xn.φ.

An important notion in a first-order language is the substitution of a
term for a free variable in a term or formula.

Definition 35 (Substitution in terms). Let s, t be terms and x a variable.
The result s[t/x] of replacing in s all free instances of x by t is defined
recursively by the following rules:

y[t/x] =

{
y y 6= x

t otherwise

c[t/x] = c
f(t1, ..., tn)[t/x] = f(t1[t/x], ..., tn[t/x])

Definition 36 (Substitution in a formula). Let φ be a formula, t a term
and x a variable. The result of replacing all free instances of x by t in φ is
defined recursively by the following rules:
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⊥[t/x] = ⊥
P (t1, ..., tn)[t/x] = P (t1[t/x], ..., tn[t/x])

(¬φ)[t/x] = ¬(φ[t/x])
φ⊗ ψ[t/x] = (φ[t/x])⊗ (ψ[t/x])

Qy.φ[t/x] =

{
Qy.φ[t/x] if y 6= x

Qy.φ otherwise

where ⊗ ∈ {∧,∨,→} and Q ∈ {∀, ∃}.

The above definition is not perfect. To understand why, let φ be the
valid formula ∃x.(x = y) over the signature ({0, 1},{+,×,=}) of arithmetic.
If t is the term x + 1, the formula φ[t/y] = ∃x.(x = x + 1), which will be
false in many interpretations. The problem is that the free variable x of t
became bound during the substitution. We say that the occurrence of x in
t has been captured by the quantifier.

Substitutions in which some variable in the substituted term t becomes
bound will not behave as expected, in the sense that they can change the
meaning (and the truth value) of the formula in which they occur. The
following definition delineates the situations in which the substitution can
be performed in a safe way.

Definition 37 (Free term for a variable in a formula). The notion of a term
t free for a variable x in a formula φ is defined inductively as follows:

• If φ is atomic, then t is free for x in φ.

• If φ is ¬ϕ and t is free for x in ϕ, then t is free for x in φ.

• If φ is ϕ ⊗ ψ and t is free for x in both ϕ and ψ, then t is free for x
in φ (⊗ ∈ {∧,∨,→}).

• If φ is either ∀x.ψ or ∃x.ψ and either

- x 6∈ FV(ψ), or

- y 6∈ Vars(t) and t is free for x in ψ,

then t is free for x in φ.

Rather than giving a version of Definition 36 that avoids variable capture,
we will restrict its application to the situations in which t is free for x in φ.
In practice this requirement can be met by renaming bound variables before
applying the substitution.

The definition of substitution has several aspects in common with rules
of inference. It is entirely syntactic and has some limitations on when it
can be applied. These limitations are necessary because of the interaction
between free and bound variables involved.
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Semantics

Given a first-order language, the semantics of formulas is obtained by inter-
preting the function, constant and predicate symbols of the language (the
vocabulary) and assigning values to the free variables. For this, one needs
to introduce the concept of first-order structure.

Definition 38 (Structure). Given a vocabulary V, a V-structure M is a
pair (D,I) where D is a non-empty set called the interpretation domain,
and I is an interpretation function that assigns constants, functions and
predicates over D to the symbols of V as follows:

• For every constant c ∈ V, I(c) is an element of D.

• For every function symbol f ∈ V of arity n > 0, I(f) ∈ Dn → D.

• For every predicate symbol p ∈ V of arity n > 0, I(p) ∈ Dn → {T,F}.
Predicate symbols of arity 0 are interpreted as truth values.

Introduced the notion of V-structure, it is time to define the semantics
of formulas. However, the previous definition does not take into account the
formulas containing free variables. The truth of that formula will generally
depend on the specific assignment of values from the domain M to the
variables. So, the semantics of a formula should be defined as a function
from the set of assignments of values in D to the variables, to the set {T,F}
of truth values. First, it is necessary to introduce the notion of assignment.

Definition 39 (Assignment). Given a domain D, an assignment is a func-
tion α : X → D from the set of variables to D. The set of all assignments
for a domain D is represented by ΣD.

The semantics of first-order logic formulas can now be presented. Terms
are interpreted as elements of the interpretation domain, and formulas as
truth values, based on a V-structure and an assignment.

Definition 40 (Semantics of terms). Let M = (D, I) be a V-structure, α
an assignment, and t ∈ TermV . The value of t with respect to M and α,
written [[t]]M(α), is given by the function [[t]]M : ΣD → D, defined below:

[[x]]M(α) = α(x)
[[c]]M(α) = I(c)

[[f(t1, ..., tn)]]M(α) = I(f)([[t1]]M(α), ..., [[tn]]M(α))

Definition 41 (Semantics of formulas). Let M = (D, I) be a V-structure,
α an assignment, and φ ∈ FormV . The value of φ with respect to M and
α, written [[φ]]M(α), is given by the function [[φ]]M : ΣD → {T,F}, defined
below:
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[[⊥]]M(α) = F
[[P (t1, ..., tn)]]M(α) = I(P )([[t1]]M(α), ..., [[tn]]M(α))

[[¬φ]]M(α) = T iff [[φ]]M(α) = F
[[φ ∧ ψ]]M(α) = T iff [[φ]]M(α) = T and [[ψ]]M(α) = T
[[φ ∨ ψ]]M(α) = T iff [[φ]]M(α) or [[ψ]]M(α) = T

[[φ→ ψ]]M(α) = T iff [[φ]]M(α) = F or [[ψ]]M(α) = T
[[∀x.φ]]M(α) = T iff [[φ]]M(α[x 7→ a]) = T for all a ∈ D
[[∃x.φ]]M(α) = T iff [[φ]]M(α[m 7→ a]) = T for some a ∈ D

where f [x 7→ y] is a function defined as follows:

(f [x 7→ y])(z) =

{
y if z = x

f(z) otherwise

Notice that universal and existential quantifications can be seen as gen-
eralizations of the conjunction and disjunction connectives as follows:

[[∀x.φ]]M(α) =
∧
a∈D[[φ]]M(α[x 7→ a])

[[∃x.φ]]M(α) =
∨
a∈D[[φ]]M(α[x 7→ a])

Now, we are able to define the concepts of validity, satisfaction and model
in first-order logic.

Definition 42 (Satisfaction and Model). Let V be a vocabulary, M a V-
structure, and φ a formula. One says that:

• M satisfies φ with α, denoted by M, α |= φ, iff [[φ]]M(α) = T.

• M satisfies φ (or φ is valid in M), denoted by M |= φ, iff for every
assignment α, M, α |= φ. M is said to be a model of φ.

Definition 43 (Satisfiability and Validity). • A formula φ is satisfiable
if there exists some V-structure M such that M |= φ and it is valid,
denoted by |= φ, if M |= φ for every structure M.

• A formula φ is unsatisfiable (or a contradiction) if it is not satisfiable,
and refutable if it is not valid.

Proof System

The proof system presented in what follows is the natural deduction system
for (classical) first-order logic in sequent style. The difference between this
proof system and the one presented for propositional logic lies in the rules
introduced to deal with the quantifiers.
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Rules of the proof system. The system is composed of the Basic Rules,
Introduction Rules and Elimination Rules introduced in subsection 3.1.1,
together with the following Introduction and Elimination rules for Quanti-
fiers.

• Introduction rules for Quantifiers

Γ ` φ [y/x]
(I∀) (a)

Γ ` ∀x.φ

(a) Restriction: y must not occur free in either Γ or φ.

What this rule means is that if φ holds for an arbitrary element y of
the universe, then we can conclude that ∀x.φ, i.e., one can generalize
it to all elements. The restriction ensures precisely that y represents
an arbitrary element.

Γ ` φ [t/x]
(I∃) Γ ` ∃x.φ

This rule (I∃) states that if the property φ holds for some element t in
the universe, then one can deduce that there exists an element in the
universe that has the property φ.

• Elimination rules for quantifiers

Γ ` ∀x.φ
(E∀)

Γ ` φ [t/x]

This rule (E∀) states that if ∀x.φ can be deduced, then φ holds for any
term.

Γ ` ∃x.φ Γ, φ [y/x] ` θ
(E∃) (b)

Γ ` θ
(b) Restriction: y must not occur free in Γ, φ or θ.

In this rule (E∃), the second premise states that θ can be deduced if
φ is assumed to hold for an unspecified term. The first premise states
that such a term exists, thus θ can in fact be deduced with no further
assumptions.

Definition 44. The proof system NFOL of natural deduction for first-order
logic is defined by the set of basic, introduction, and elimination rules sum-
marized in Figure 3.2.

Similarly to propositional logic, this system is sound and complete (see
for instance [AFPMdS11]).
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(Ax)
Γ, φ ` φ

Γ, φ ` ψ
(I→)

Γ ` φ→ ψ

Γ ` φ Γ ` φ→ ψ
(E→)

Γ ` ψ

Γ, φ ` ⊥
(I¬)

Γ ` ¬φ
Γ ` φ Γ ` ¬φ

(E¬)
Γ ` ψ

Γ,¬φ ` ⊥
(RAA)

Γ ` φ

Γ ` φ Γ ` ψ
(I∧)

Γ ` φ ∧ ψ
Γ ` φ ∧ ψ

(E∧1)
Γ ` φ

Γ ` φ ∧ ψ
(E∧2)

Γ ` ψ

Γ ` φ
(I∨1)

Γ ` φ ∨ ψ
Γ ` ψ

(I∨2)
Γ ` φ ∨ ψ

Γ ` φ ∨ ψ Γ, φ ` θ Γ, ψ ` θ
(E∨)

Γ ` θ

Γ ` φ [y/x]
(I∀) (a)

Γ ` ∀x.φ
Γ ` ∀x.φ

(E∀)
Γ ` φ [t/x]

Γ ` φ [t/x]
(I∃)

Γ ` ∃x.φ
Γ ` ∃x.φ Γ, φ [y/x] ` θ

(E∃) (b)
Γ ` θ

(a) y must not occur free in Γ or φ
(b) y must not occur free in Γ, φ or θ

Figure 3.2: System NFOL for classical first-order logic
[AFPMdS11]
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3.1.3 Hoare Logic

In 1969, Hoare [Hoa69] introduced an axiomatic approach for reasoning
about the correctness of imperative programs, based on first-order logic. A
program is seen as a mathematical object and properties of a program are
established through the use of an inference system.

Hoare, who was inspired by the work of Robert Floyd [Flo67], used a very
simple language (known as While language) — that has only the following
statements: assignment, sequence of statements, conditional if-then-else,
and loop while — to illustrate his ideas.

“The basis of our approach is the notion of an interpretation of
a program: that is, an association of a proposition with each
connection in the flow of control through a program, where the
proposition is asserted to hold whenever that connection is taken.
To prevent an interpretation from being chosen arbitrarily, a
condition is imposed on each command of the program.”
Robert Floyd, in [Flo67]

Although simple, the introduction of Hoare logic had a significant impact
on methods for both designing and verifying programs. It owes its success
mainly to two factors [dRE98]:

• It is state-based, by characterizing programming constructs as trans-
formers of states, and therefore applies in principle to every such con-
struct.

• It is syntax directed : every rule for a programming construct reduces
the problem of proving properties of that construct to proving prop-
erties of its constituent constructs.

Hoare logic deals with the notion of correctness of a program by means
of preconditions and postconditions. A program is said to be correct with
respect to a precondition and a postcondition if after the execution of the
program the postcondition holds, if the program was started in a state which
satisfied the precondition.

Additionally, if there are loops in a program they need to be annotated
with invariants. An invariant states what should be true on entry into a
loop and what is guaranteed to remain true in every iteration of the loop.
This means that on exit from the loop, the loop invariant and the loop
termination condition are guaranteed to hold.

In the following subsections, we present a version of Hoare logic for
annotated procedures. The reader is referred to [AFPMdS11, FP11] for
more details.
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Expint 3 e ::= . . . | −1 | 0 | 1 | . . . | x |
−e | e1 + e2 | e1 − e2 | e1 × e2 | e1 div e2 | e1 mod e2 |
a[e]

Expbool 3 b ::= > | ⊥ | ¬b | b1 ∧ b2 | b1 ∨ b2 | e1 = e2 | e1 6= e2 |
e1 < e2 | e1 ≤ e2 | e1 > e2 | e1 ≥ e2

Assert 3 A ::= > | ⊥ | e = e | e < e | e ≤ e | e > e | e ≥ e |
e 6= e | A ∧A | A ∨A | ¬A | A→ A | ∀x. A | ∃x. A

Comm 3 C ::= skip | x := e | if b then S else S | while b do {A}S |
call p

Block 3 S ::= C | C ; S

Proc 3 Φ ::= pre A post A proc p = S

Prog 3 Π ::= Φ | Π Φ

Figure 3.3: Abstract syntax of WhileDbC language (x and p range over sets
of variables and procedure names respectively).

The WhileDbC Programming Language

In this subsection will be presented the syntax of a simple programming
language, hereafter called WhileDbC , an extension of the While language
with mutually recursive procedures annotated with contracts.

The language has two basic types,

Type 3 τ ::= bool | int

and its syntax is given in Figure 3.3. It is defined in two levels: first, it is
possible to form sequences of commands, which are standard programs of a
While programming language. It is then possible to construct procedures
consisting of a block of code, annotated with a precondition and a post-
condition that forms the procedure’s specification, or contract. Commands
include skip, assignment, conditional branching, loops, and a procedure call
command.

Each block may additionally be annotated with loop invariants, if it con-
tain loops. The language of annotated assertions (used for writing invariants
and contracts) extends boolean expressions with implication and first-order
quantification.

Expressions of type int are interpreted as values in Z. Operators of
the language are interpreted as the corresponding operators in the semantic
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domain: e1 + e2 is interpreted as the integer addition of e1 and e2, e1 ≤ e2

is interpreted as “e1 is less than or equal to e2”, and so on.

A program is a non-empty set of (mutually recursive) procedure defi-
nitions. For the sake of simplicity, only parameterless procedures will be
considered (sharing a set of global variables), but the ideas presented here
can be adapted to cope with parameters (passed by value or by reference)
as well as return values of functions (see Chapter 8 of [AFPMdS11]).

From now on, a program will be considered well-formed if the name
of every procedure defined in it is unique and the program is closed with
respect to procedure invocation. We will write PN(Π) for the set of names
of procedures defined in Π. The operators pre, post, and body will be used
to refer to a procedure’s precondition, postcondition, and body command,
respectively, i.e. given the procedure definition pre P post Q proc p = S
with p ∈ PN(Π), one has preΠ(p) = P , postΠ(p) = Q, and bodyΠ(p) =
S. The program name will be omitted when clear from context.

Hoare Logic for WhileDbC Programs

The basic formulas of Hoare logic are partial correctness formulas {φ}S{ψ},
also called Hoare triples, where φ and ψ are assertions.

φ is called a precondition and is composed of assertions that are as-
sumed to hold when the execution of the program is started. ψ is called a
postcondition and is composed of assertions that must hold when execution
stops.

The pair of assertions (φ,ψ) is the intended specification for the block
S. The correctness of a program is always defined with respect to a given
specification.

A partial correctness property for a block S with respect to a specification
(φ, ψ) has the following meaning: if φ holds in a given state and S is executed
in that state, then either execution of S does not stop, or if it does, ψ will
hold in the final state.

A total correctness property for a block S, written [φ]S[ψ], with respect
to a specification (φ, ψ) has the following meaning: if φ holds in a given state
and S is executed in that state, then execution of C will stop, and moreover
ψ will hold in the final state of execution.

The validity of a Hoare triple is established by the following interpre-
tation: [[{φ}S {ψ}]] = For all states s, s′, [[P ]](s) ∧ (S, s) ⇓ s′ ⇒ [[Q]](s′).
Note that the annotations plays no role in the operational semantics of the
language.

There are three kinds of variables that may occur in a Hoare triple:

• Logical variables: variables that are bound (recall Definition 33) by
some quantifier in φ or ψ or in annotations in S.
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• Program variables: variables that are used in commands of S, loop
annotations, as well as in the precondition φ and postcondition ψ.

• Auxiliary variables: variables that occur free in φ, ψ or other annota-
tions inside S, but do not occur as program variables in S.

Occurrences of variables in the precondition and postcondition of a block
refer to their values in the pre-state and post-state of execution of the block
respectively; the use of auxiliary variables (that occur in assertions only, not
in the code) allows the value of a variable in the pre-state to be recorded,
which can thus be used in the postcondition.

Proof System

The Hoare calculus is a set of logical rules (an inference system) for reasoning
about Hoare triples. We will refer to it as system H. It describes in a formal
way the use of preconditions, postconditions, and invariants in order to verify
blocks of commands and programs.

The inference system of Hoare logic is composed of the following rules:

(skip) {φ} skip {φ}

The skip axiom states that this command preserves the truth of asser-
tions (does not change the state). If φ holds before its execution, then φ
thus holds afterwards as well.

(assign) {ψ[e/x]}x := e {ψ}
The assign axiom states that to make sure that the assertion ψ holds

after the assignment of e to x, it suffices to make sure that the assertion
resulting from substituting e for x in ψ holds in the pre-state.

(seq)
{φ}C {θ} {θ}S {ψ}

{φ}C ; S {ψ}
The seq rule introduces an intermediate assertion and states that to

prove that φ holds before the execution of C ; S then ψ holds afterwards, it
suffices to show for some θ that: if φ holds before C is executed then θ holds
afterwards and if θ holds before S is executed then ψ holds afterwards.

(while)
{θ ∧ b}S {θ}

{θ}while b do {θ}S {θ ∧ ¬b}
The while rule states that:

• In order to prove that the assertion θ is a loop invariant, then it is
required to prove that θ is preserved by the body of the loop when the
loop condition also holds as a precondition.
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• The negation of the loop condition is a postcondition of the loop.

(if )
{φ ∧ b}St {ψ} {φ ∧ ¬b}Sf {ψ}

{φ} if b then St else Sf {ψ}

The if rule states that in order to show that φ holds before the execution
of the conditional then ψ holds, in the final state it suffices to show that
the same is true for each condition branch, under the additional assumption
that this branch is executed (this is in accordance with the fact that St is
executed when b holds and Sf when ¬b holds).

The next two rules make use of a new judgement {Π}, whose interpre-
tation is that every procedure in the program respects its contracts, i.e. it
is correct with respect to its annotated precondition and postcondition.

(mutual recursion − parameterless)

[{Π}]
·
·
·

{preΠ(p1)}bodyΠ(p1) {postΠ(p1)} · · ·

[{Π}]
·
·
·

{preΠ(pn)}bodyΠ(pn) {postΠ(pn)}

{Π}

The mutual recursion-parameterless rule states that a program is correct
if each one of its individual procedures is correct. If the correctness of the
body of each procedure in the program can be derived assuming only the
correctness of each procedure in that same program, then all the procedures
(and therefore the program) are correct.

(procedure call − parameterless)

{Π}
if φ→ ∀xf . (∀yf . pre(p)[yf/y]→ post(p)[yf/y, xf/x])→ ψ[xf/x]

{φ} call p {ψ}

where

p ∈ PN(Π)
y is a sequence of the auxiliary variables of p
x is a sequence of the program variables occurring in body(p)
xf and yf are sequences of fresh variables
The expression t[e/x], with x = x1, . . . , xn and e = e1, . . . , en,

denotes the parallel substitution t[e1/x1, . . . , en/xn]

The procedure call-parameterless rule concerns the procedure call com-
mand, and has as premise the global correctness of the program. The side
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condition establishes the adaptation between the actual required specifica-
tion and the contract [Kle99].

(conseq)
{φ}C {ψ}

if φ′ → φ and ψ → ψ′
{φ′}C {ψ′}

The conseq rule has a side condition stating that the first-order formu-
las must be valid. This rule can be applied to infer a triple from another
triple containing the same program, in which either the precondition has
been weakened or the postcondition has been strengthened. An immediate
consequence of this rule is that derivations for a given goal are not unique.

Proof System for Total Correctness

The validity of the Hoare triple {θ ∧ b}S {θ} implies the validity of

{θ}while b do {θ}S {θ}.

However, the validity of [θ ∧ b]S [θ] does not imply the validity of

[θ] while b do {θ}S [θ].

In order to prove total correctness one must prove the termination of the
loop. In this situation, loop invariants are inappropriate since they do not
include any information about loop termination. To deal with this a math-
ematical function is required, which is restricted to non-negative numbers
and whose value is monotonically decreasing in each loop iteration. This
function is usually called a loop variant. The presence of a loop variant
implies the termination of all possible executions of the loop.

In a total correctness setting the Hoare logic rule for while loops becomes:

[θ ∧ b ∧ V = v0]C [θ ∧ V < v0]
if θ ∧ b→ V >= 0

[θ] while V do {θ, V } b [θ ∧ ¬b]
where V is the loop variant and v0 is a fresh auxiliary variable used to

record its initial value.
All the remaining rules of the total correctness system are similar to the

rules of the partial correctness system.

3.1.4 Other Definitions

We end this section with some basic structures used in the context of formal
verification.

Definition 45 (Boolean Function). A Boolean Function is a function of
the form f : Bk → B, where B = {0, 1} is a boolean domain and k is a
non-negative integer called the arity of the function.
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Every k-ary Boolean function can be expressed as a propositional formula
in k variables x1, x2, . . . , xk.

Definition 46 (Binary Decision Tree). A Binary Decision Tree (BDT, for
short) is a data structure (a tree) used to represent a Boolean function. If
d is a BDT, then:

1. the internal nodes of d are labeled with variables;

2. the leaves of d are labeled with 0 and 1;

3. every internal node in d has exactly two children, and the two edges
from d to the children are labeled with 0 (shown as a dashed line, also
known as low child) and by 1 (shown as a solid line, also know as high
child);

4. nodes in every path in d have unique labels, i.e., every two different
nodes in the path are labeled with distinct variables.

For example, Figure 3.4 and Table 3.1, show respectively a binary deci-
sion tree and a truth table representing the following Boolean function:

f(x1, x2, x3) = (¬x1 ∧ ¬x2 ∧ x3) ∨ (x1 ∧ x2)

Figure 3.4: Binary Decision Tree for the function f(x1, x2, x3).

Therefore, to find the value of f(x1 = 0, x2 = 0, x3 = 1), begin at x1,
traverse down two dashed lines to x3 (since x1 and x2 are assigned to zero),
then down one solid line (since x3 is assigned to one). This leads to the
terminal 1, which is the value of f(0, 0, 1).

Notice the following two properties of Binary Decision Trees:

• In general, the size of a binary decision tree for a formula ϕ is expo-
nential in the size of ϕ.
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x1 x2 x3 f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Table 3.1: Truth table for the boolean function f(x1, x2, x3).

• Satisfiability and validity checking on binary decision trees can be done
in linear time in the size of the tree.

Indeed, given the binary decision tree for a formula ϕ, we can verify
if ϕ is satisfiable by simply inspecting all the leaf nodes of the tree: ϕ is
satisfiable if and only if at least one of them is 1. Likewise, ϕ is valid if and
only if all leaves in ϕ are 1.

Definition 47 (Binary Decision Diagram). A Binary Decision Diagram
(BDD, for short) is a rooted Directed Acyclic Graph (DAG) d such that d
satisfies the properties of Definition 46 and additionally the following two
requisites:

• For every node n, its left and right sub-DAGs are distinct;

• Every pair of sub-DAGs of d rooted at two different nodes n1, n2 are
non-isomorphic.

These two conditions formalize the properties that d contains no redun-
dant tests and that the isomorphic sub-DAGs of d are merged.

As an example, the binary decision tree of Figure 3.4 can be transformed
into a binary decision diagram as shown in Figure 3.5.

There exists a two-step algorithm to transform a Binary Decision Tree
into a Binary Decision Diagram. Let neg(n) denote the subtree rooted at
the dashed edge coming from n and pos(n) denote the subtree rooted at the
solid edge. Then:

• Elimination of Redundant Tests: if there exists a node n such neg(n)
and pos(n) are the same DAG, then remove this node, i.e., replace the
sub-DAG rooted at n by neg(n).

• Merging isomorphic sub-DAGs: if the sub-DAGs rooted at two differ-
ent nodes n1 and n2 are isomorphic, then merge them into one, i.e.,
remove the sub-DAG rooted at n2 and replace all edges to n2 by edges
leading to n1.
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Figure 3.5: Binary Decision Diagram for the function f(x1, x2, x3) with
x1 = 0, x2 = 0 and x3 = 1.

Binary Decision Diagrams enjoy the following properties:

• In general, the size of a binary decision diagram for a formula ϕ is
exponential in the size of ϕ.

• Satisfiability and validity checking on binary decision diagrams can be
done in constant time.

Thus, BDDs have advantages over binary decision trees in terms of effi-
ciency.

Finally, we briefly review two notions of transition systems augmented
with labeling functions, and extensively used in model checking [BBF+01,
BK08]. The first includes a labeling of states, and the second a labeling of
transitions.

Definition 48 (Kripke Structure). Let AP be a set of atomic propositions.
A Kripke structure over AP is a structure M = (S, S0, R, L), where:

• S is a finite set of states.

• S0 ⊆ S is the set of initial states.

• R ⊆ S × S is a total binary relation on S, so for every s ∈ S, there
exists a t ∈ S, such that sRt. R represents the set of transitions of
M .

• L : S → P(AP ) is a function that assigns the set of atomic proposi-
tions that hold in a state.

A path π in M is an infinite sequence s0, s1, s2, . . ., such that ∀ i, si ∈
S ∧ si R si+1.
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Figure 3.6 shows a Kripke structure over AP , where M = (S, S0, R, L)
is as follows:

• AP = {p, q}

• S = {s0, s1, s2, s3}

• S0 = {s0}

• R = {(s0, s1), (s1, s0), (s1, s3), (s3, s3), (s0, s2), (s2, s1)}

• L(s0) = {}, L(s1) = {p, q}, L(s2) = {q}, L(s3) = {p}

Notice that without the loop (s3, s3), R would not be total, and M would
not be a Kripke structure.

Figure 3.6: Kripke Structure: Example

Definition 49 (Labeled Transition System). A transition system T =
(S, I,A, δ) is given by a set S of states, a nonempty subset I ⊆ S of initial
states, a set A of actions, and a transition relation δ ⊆ S ×A× S.

An action A ∈ A is called enabled at state s ∈ S iff (s,A, t) ∈ δ holds
for some t ∈ S.

A run of a Labeled Transition System is a list of transitions that proceed
from one state to another.

The trace of a run is the series of labels from these transitions.
Both runs and traces may be finite or infinite.

A labeled transition system specifies the allowed evolutions of the system:
starting from an initial state, the system evolves by performing actions that
take the system to new states.

Figure 3.7 shows a Labeled Transition System over T1, where T1 =
(S, I,A, δ) is as follows:

• S = {In, R, A}

• I = { In }

• A = {alert, relax, on, off }
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• δ = { (In, alert, R), (R, relax, In), (R, on, A), (A, off, In)}

The following are examples of traces over T1:

on.off, alert.on.off, alert.relax.alert.on.off.allert.

Figure 3.7: Labeled Transition System: Example

3.2 Static Techniques: Semi-automated

After this not so short introduction of basic concepts, let us return to the
main topic of this chapter — Program Verification — starting more precisely
with static approaches (semi-automated in this section and fully automated
in the next one).

When program verification first appeared in the 60’s with Floyd [Flo67],
Hoare [Hoa69] and Dijkstra [Dij76b], the primary focus was on manual rea-
soning. Hoare’s approach was to regard source code as specifying a relation
between assertions.

However, as the size of software systems grew, the use of manual tech-
niques became error-prone as well as too cumbersome. Besides these prob-
lems, questions related with the correctness of long and arduous proofs were
raised. Mechanical proofs (constructed manually with the assistance of a
computer program) are safer, but even more detailed and difficult to un-
derstand. Over the years, a movement towards semi-automatic techniques
(through the use of loop invariants and pre/post conditions) appeared. They
are called semi-automatic due to the need for the programmer to include
assertions in the program in order to prove its correctness. The presence of
annotations (in particular loop invariants) eliminates the difficulty inherent
to the rules of Hoare logic. One solution to deal with the difficulty of prov-
ing the correctness of a program is to partially automate the construction
of a proof. This is usually done by what is called Verification Condition
Generator (VCGen for short). A VCGen reduces the question of whether a
program is consistent with its specification to that of whether certain logical
formulas are theorems in an underlying theory. These sets of formulas are
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usually called verification conditions and they do not contain any references
to programming language constructs. They only deal with the logic of the
underlying data types. The provability of these theorems is sufficient to
guarantee that an axiomatic proof using the Hoare system could be con-
structed. A VCGen must thus embody the semantics of the programming
language; they can also be seen as implementations of Hoare-style axiomatic
semantics. Note that even through the inclusion of annotations makes pos-
sible to generate verification conditions mechanically, this does not mean
that proofs can always be done automatically, since they are still restricted
by the decidability properties of the underlying logic.

In the past, all VCGens have been hand-coded for a specific language.
Nowadays, the scenario is different, since a number of VCGens are avail-
able based on intermediate languages; the idea being that is that different
programming languages can be translated into such intermediate language.
Also, nowadays checking verification conditions is frequently left to an exter-
nal theorem prover or solver, making the process more effective. Figure 3.8
depicts the general architecture of a program verifier that makes use of a
VCGen.

Figure 3.8: General architecture of a program verifier using a VCGen

From an engineer’s perspective, program verifiers are similar to inter-
preters. Their input is a program written in a high-level language, and the
output is a set of warnings or errors. Using a good program verifier, the
lack of warnings and errors should be an indicator that the source program
is correct.

Before proceeding to a more detailed discussion of VC generation, it is
worth mentioning Dijkstra’s related predicate transformers:

• One that maps a program fragment S and a postconditionQ into a pre-
condition. This function computes an assertion sufficient to guarantee
that Q will be obtained as a postcondition. A predicate transformer
that produces preconditions which are both necessary and sufficient to
derive Q as the postcondition is said to compute the weakest derivable
precondition and is usually denoted by wp.S.Q.

The provability of the verification condition P → wp.S.Q in the under-
lying logic is thus sufficient to show that [P ]S[Q] is derivable within
any Hoare system containing the rule of consequence.
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The weakest precondition calculus was introduced by Dijkstra in his
paper “Guarded commands, nondeterminacy and formal derivation of
programs” [Dij75], in which the semantics of an imperative language
is defined by assigning to each statement a corresponding predicate
transformer.

Dijkstra’s wp predicate transformer implies the termination of the pro-
gram. The related weakest liberal precondition (wlp) predicate trans-
former, which does not force termination, is appropriate for establish-
ing the derivability of partial correctness triples.

• Another approach, dual of the previous one, maps a program fragment
S and a precondition P into a postcondition. This predicate is usually
known as strongest postcondition calculus and denoted by sp.S.P .

sp.S.P is a postcondition for S that is ensured by precondition P
and thus must satisfy {P}S{sp.S.P}. Taking any P , Q such that
{P}S{Q}, then sp.S.P → Q.

As a consequence, a Hoare triple {P}S{Q} is provable in Hoare logic
if and only if the following predicate holds: sp.S.P → Q.

Notions of weakest preconditions and strongest postconditions for anno-
tated blocks of code will be defined in what follows, and play an important
role in the mechanization of Hoare logic. An alternative approach is the
direct use of predicate transformers after translating programs to a guarded
commands language. This approach is followed very successfully in the ES-
C/Java2 and Boogie projects and tools.

The next subsections will be dedicated to the presentation of:

a) how Hoare logic can be given as alternative formulation in order to deal
with the backward application of rules of the logic without ambiguity
(this ambiguity was introduced by the seq/conseq rules as explained
in subsection 3.1.3);

b) the definition of weakest preconditions for one language;

c) a VCGen algorithm based on a weakest precondition strategy;

d) the definition of strongest postconditions for one language;

e) a VCGen algorithm based on a strongest postcondition strategy.

Some of these and other related issues will be discussed in more de-
tail in Section 6.1, in particular verification conditions for total correctness
and a VCGen containing the use of strongest postconditions and weakest
preconditions.

Some tools that implement VCGens are presented in Section 3.5.
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3.2.1 Mechanizing Hoare Logic

There are two desirable properties that the Hoare calculus should enjoy in
order to be used as the underlying logic of a VCGen [AFPMdS11]:

• All the assertions that occur in the premises of a rule also occur in
its conclusion — this property avoids the need to guess assertions
that appear in the new goals generated when a rule is applied. The
exceptions of the inference system of Hoare logic are (recall the rules
from subsection 3.1.3): the seq rule where an intermediate assertion
needs to be guessed; and the conseq rule where both a precondition
and a postcondition must be guessed. Loop invariants do not have to
be invented because they are part of the program to start with.

• The absence of ambiguity in the choice of a rule. When applying a
rule, it would be desirable to have a single rule that could be applied
to a given goal. The conseq rule introduces this ambiguity too, as it
can be applied with any arbitrary goal.

The inference system presented in subsection 3.1.3 thus needs to be
adapted in order to allow a mechanization of Hoare logic. Figure 3.9 presents
such an alternative. In [AFPMdS11], it is proved that systems H and Hg
are equivalent.

By eliminating the conseq rule, ambiguity was also eliminated. Notice,
however, that the seq rule is still present, which means that certain interme-
diate assertions still have to be guessed and thus it is possible to construct
different proof trees (with the same structure) for a given Hoare triple. This
problem can be solved by using a strategy (based, for instance, on weak-
est preconditions) as a way to systematically determine the intermediate
assertions required by the seq rule.

3.2.2 The Weakest Precondition Strategy

As referred in the previous subsection, the presence of the seq rule intro-
duces some ambiguity due to the need to guess an intermediate assertion.
The general strategy to deal with this problem is as follows. Consider that
a derivation is being constructed for the Hoare triple {φ}C{ψ}, where φ
may be either known or unknown (if unknown the triple will be written as
{?}C{ψ}).

If φ is known, then the derivation is constructed by applying the unique
rule applicable from Figure 3.9. In case the goal is of the form {φ}C1;C2{ψ},
then the second sub-derivation will be first constructed with a goal of the
form {?}C2{ψ}. After the construction of this sub-derivation ? will be in-
stantiated with some assertion θ, and then the first sub-derivation can be
constructed for the goal {φ}C1{θ}.
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(skip) if φ→ ψ
{φ} skip {ψ}

(assign) if φ→ ψ[e/x]
{φ}x := e {ψ}

(seq)
{φ}C1 {θ} {θ}C2 {ψ}

{φ}C1 ; C2 {ψ}

(while)
{θ ∧ b}C {θ}

if φ→ θ and θ ∧ ¬b→ ψ
{φ}while b do {θ}C {ψ}

(if )
{φ ∧ b}Ct {ψ} {φ ∧ ¬b}Cf {ψ}

{φ} if b then Ct else Cf {ψ}

(mutual recursion − parameterless)
[{Π}]
···

{preΠ(p1)}bodyΠ(p1) {postΠ(p1)} · · ·

[{Π}]
···

{preΠ(pn)}bodyΠ(pn) {postΠ(pn)}

{Π}

(procedure call − parameterless)
{Π}

if φ→ ∀xf . (∀yf . pre(p)[yf/y]→ post(p)[yf/y, xf/x])→ ψ[xf/x]
{φ} call p {ψ}

Figure 3.9: Inference system of Hoare logic without consequence rule: sys-
tem Hg
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If φ is unknown, the construction follows as explained in the previous
item, except that, in the rules for skip, assignments and loop, with a side
condition φ→ θ for some θ, the precondition φ is taken to be θ.

This strategy ensures that a weakest precondition is determined for
goals that have unknown preconditions: a derivation for the Hoare triple
{φ}C1;C2{ψ} is constructed by taking as postcondition for C1 the weakest
precondition θ that will ensure the validity of ψ after execution of C2.

Before formalizing a VCGen based on this strategy, let us consider how
weakest preconditions should be defined for one language annotated with
invariants.

Figure 3.10 shows the rules for computing the weakest precondition for
a given program S and a postcondition Q. Notice that:

• The wprec function, in the case of the sequence rule, is invoked with
argument wprec(S, ψ), to calculate the postcondition for the first com-
mand in the sequence.

• wprec(x := e, ψ) = ψ[e/x] denotes the substitution of e for x in ψ. For
example, the wprec(x := x− 3, x > 15) is x− 3 > 15 ≡ x > 18.

• The weakest precondition of a conditional command is obtained from
the weakest preconditions of both branches.

• The weakest precondition of a loop while b do {θ}C is simply defined
as being its invariant θ, since it is not possible to derive triples of the
form

{φ}while b do {θ}C {ψ}

such that φ is weaker than θ.

This approach differs from the Dijkstra’s approach. The definition of
wprec shares much with Dijkstra’s weakest liberal precondition predicate
transformer; the difference is that whereas a true weakest precondition is
given as a least-fixpoint solution to a recursive equation, wprec simply makes
use of the annotated loop invariant. Note that it may well be the case that
this annotation is not in fact an invariant; even if it is an invariant, it is
possible that it is not sufficiently strong to allow Q as a postcondition of the
loop; on the other hand, the annotation does not need to be the weakest of
all sufficiently strong invariants, and often is not. Thus, the function that
computes the weakest precondition of a command will be denoted as wprec
instead of simply wp. To maintain the consistency, the function that com-
putes the strongest postcondition of a command will be denoted as spost.
wprec computes a weak precondition of an annotated program, which is
not necessarily the weakest precondition of the underlying (non-annotated)
program.
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wprec(skip, ψ) = ψ

wprec(x := e, ψ) = ψ[e/x]

wprec(C;S, ψ) = wprec(C,wprec(S, ψ))

wprec(if b then St else Sf , ψ) = (b→ wprec(St, ψ)) ∧ (¬b→ wprec(Sf , ψ))

wprec(while b do {θ}S, ψ) = θ

wprec(call p, ψ) = ∀xf . (∀yf . pre(p)[yf/y]
→ post(p)[yf/y, xf/x])→ ψ[xf/x]

where y is a sequence of the auxiliary variables of p
x is a sequence of the program variables occurring in body(p)
xf and yf are sequences of fresh variables
The expression t[e/x], with x = x1, . . . , xn and e = e1, . . . , en,

denotes the parallel substitution t[e1/x1, . . . , en/xn]

Figure 3.10: Weakest precondition of annotated blocks

3.2.3 A VCGen Algorithm based on Weakest Preconditions

This section introduces a VCGen algorithm based on the weakest precon-
dition strategy. Basically, for a given Hoare triple {φ}S{ψ}, a weakest
precondition wprec(S, ψ) is calculated which is required for ψ to hold after
terminating the execution of S.

A first approach would be simply to ensure that the precondition φ
is stronger than the calculated weakest precondition. The VCGen would
simply be defined as:

VCGw(φ, S, ψ) = {φ→ wprec(S, ψ)}

However, this definition would only work if the program does not contain
loops. Loops introduce additional side conditions that need to be recursively
collected. According to the weakest precondition strategy for the construc-
tion of proof trees, whenever a precondition φ occurs in a side condition of
the form φ → ψ, the strategy determines that φ is taken to be equal to ψ
(the weakest precondition), and so this particular verification condition is
trivially satisfied.

Thus, the rule for while loops introduces two verification conditions:

• The first one corresponds to the preservation of the loop invariant.
Note that the loop rule in systemHg has as premise a Hoare triple with
a different precondition from the one in the conclusion. This forces the



74 CHAPTER 3. STATE-OF-THE-ART: PROGRAM VERIFICATION

VCw(skip, ψ) = ∅

VCw(x := e, ψ) = ∅

VCw(C;S, ψ) = VCw(C,wprec(S, ψ)) ∪ VCw(S, ψ)

VCw(if b then Ct else Cf , ψ) = VCw(Ct, ψ) ∪ VCw(Cf , ψ)

VCw(while b do {θ}S, ψ) = {θ ∧ b→ wprec(S, θ), θ ∧ ¬b→ ψ} ∪ VCw(S, θ)

VCw(call p, ψ) = ∅

Figure 3.11: VCw auxiliary function

inclusion of a verification condition stating that the intended precon-
dition θ∧ b must be stronger that the calculated weakest precondition
of the loop body, with respect to the invariant θ.

• The second one corresponds to the second side condition of the while
rule (the first side condition is trivially satisfied by the use of weakest
preconditions).

The VCGen algorithm for blocks containing loops can now be defined:

Definition 50 (Verification Conditions for a block based on weakest pre-
conditions).

VCGw(φ, S, ψ) = {φ→ wprec(S, ψ)} ∪ VCw(S, ψ)

Where the auxiliary function VCw is defined in Figure 3.11.

Now that the set of verification conditions for a command block has
been defined, the algorithm to compute the set of verification conditions
for a program can be given. The VCs for a program can be defined as the
union of all the sets of verification conditions required for its constituent
procedures.

Definition 51 (Verification Conditions for a Program based on weakest
preconditions).

Verif({Π}) =
⋃

p∈PN(Π)

VCGw(preΠ(p), bodyΠ(p), postΠ(p))

Given a procedure p, VCGw(pre(p),body(p),post(p) will in this thesis
be called its set of local verification conditions.

The intra-procedural (command-level) aspects of the VCGen are stan-
dard, but the inter-procedural aspects (program-level) are less well-known.
We remark the following:
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• Although this is somewhat hidden (unlike in the underlying program
logic), the VCGen is based on a mutual recursion principle, i.e. the
proof of correctness of each routine assumes the correctness of all the
routines in the program, including itself. If all verification conditions
are valid, correctness is established simultaneously for the entire set of
procedures in the program. This is the fundamental principle behind
design-by-contract.

• The weakest precondition rule for procedure call takes care of what
is usually known as the adaptation between the procedure’s contract
and the postcondition required in the present context. The difficulty
of reasoning about procedure calls has to do with the need to refer,
in a contract’s postcondition, to the values that some variables had in
the pre-state. This issue will be discussed again in Section 6.1. The
reader is referred to [Kle99] for details and a historical discussion of
approaches to adaption.

• This VCGen is sound : it can be proved that a Hoare logic tree with
conclusion {P}S {Q} can be constructed that has exactly the asser-
tions in the set VCGw(P, S, Q) as side conditions; if these conditions
are all valid then the tree is indeed a proof tree, and the triple is
derivable in Hoare logic.

3.2.4 The Strongest Postcondition Strategy

As previously mentioned, the strongest postcondition is a predicate trans-
former that propagates the precondition, in a forward manner, through the
program.

Figure 3.12 shows the rules to compute the strongest postcondition of a
sequence of statements, in one context of annotated programs with proce-
dure calls. spost(P, S) characterizes the set of all states in which there exists
a computation of S that begins with P true. That is, given that P holds,
execution of S results in spost(P, S) being satisfied in the final state, if S
terminates (spost(P, S) assumes partial correctness).

Notice that, dually to the wprec function, in the case of the sequence
rule, the spost function is invoked with the first command (spost(C,P )) to
calculate the precondition for the second command (S) in the sequence.

A dual method to generate verification conditions is based on forward
propation of assertions using spost. The algorithm to verify a procedure
using the strongest postcondition strategy is given as follows:

Definition 52 (Verification Conditions for a block based on strongest post-
conditions).

VCGs(P, S, Q) = VCs(S, P ) ∪ {spost(S, P )→ Q}

Where the auxiliary function VCs is defined in Figure 3.13.
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spost(skip, φ) = φ

spost(x := e, φ) = ∃ v. φ[v/x] ∧ x = e[v/x]

spost(C;S, φ) = spost(S, spost(C, φ))

spost(if b then St else Sf , φ) = spost(St, b ∧ φ) ∨ spost(Sf ,¬b ∧ φ)

spost(while b do {θ}S, φ) = θ ∧ ¬b

spost(call p, φ) = ∃xf . φ[xf/x] ∧ (∀yf . pre(p)[yf/y, xf/x]
→ post(p)[yf/y])

Figure 3.12: Strongest postcondition of annotated blocks

3.3 Static Techniques: Fully-Automated

This section is dedicated to the fully automated techniques currently used
to verify programs.

3.3.1 Abstract Interpretation

As discussed in Chapter 2, static analyzes compute in an efficient and sound
way information about a program — for instance control flow, data depen-
dencies and call flow — without executing it. Although the primary goal
of static analysis was optimization, nowadays it is widely used in program
verification.

Two types of static analysis can be distinguished:

• Concrete interpretation: the analysis of a program is done according
to a concrete domain.

The static analysis approaches classified in Section 2.2, fall in this cate-
gory of concrete interpretation: flow-sensitive (if the order of execution
of statements is taken into account); path-sensitive (if it distinguishes
between paths through a program and attempts to consider only the
feasible ones); context-sensitive (if methods are analyzed based on the
call sites); and inter-procedural (if a method’s body is analyzed con-
sidering the context of each respective call site).

• Abstract interpretation: the analysis of a program is done according
to an abstract domain. An abstract domain is an approximate repre-
sentation of sets of concrete values. An abstraction function is used to
map concrete values to abstract ones.
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VCs(skip, φ) = ∅

VCs(x := e, φ) = ∅

VCs(C;S, φ) = VCs(C, φ) ∪ VCs(S, spost(C, φ))

VCs(if b then St else Sf , φ) = VCs(St, b ∧ φ) ∪ VCs(Sf ,¬b ∧ φ)

VCs(while b do {θ}S, φ) = {φ→ θ, spost(S, θ ∧ b)→ θ} ∪ VCs(S, θ ∧ b)

VCs(call p, φ) = ∅

Figure 3.13: VCs auxiliary function

Abstract interpretation can be defined as the process of evaluating
the behavior of a program on an abstract domain to obtain a rough
solution [JM09]. Such interpretations can be derived from a concrete
interpretation by defining counterparts of concrete operations, such as
addition or union, in the abstract domain. Cousot and Cousot [CC79]
have shown that if there are certain constraints between the abstract
and concrete domains, fixed points computed in an abstract domain
are guaranteed to be sound approximations of concrete fixed points.

Abstract static analysis is used in different tools to detect different types
of errors. A non extensive list is shown below:

• CodeSonar [Gra08a], from GramaTech (already referred in chapter 2),
uses inter-procedural analysis to check for buffer overflows, memory
leaks, redundant loops and branch conditions in C/C++ code.

• K7 [Ins09], from KlockWork has similar features to the previous tool
and supports Java.

• Software Architect [PJNR+98] was used to identify the error leading
to the failure of the Ariane 5 rocket.

• Astrée Static Analyzer [BCC+02] is a tool that uses abstract domains
for finding buffer overflows and undefined results in numerical opera-
tions. This tool was used to verify the Airbus flight control software.

• C Global Surveyor [NAS09] (CGS), from NASA, is a static analyzer
specially developed for space mission software. It analyzes a C pro-
gram to find runtime errors. CGS analyzes each instruction in a pro-
gram to detect the occurrence of malfunctions like the access to a
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non-initialized variable, a dereference of a null pointer or out-of-bound
array accesses.

3.3.2 Model Checking

Model Checking, introduced by Clarke and Emerson [CE82] and by Queille
and Sifakis [QS82], is a set of algorithmic analysis techniques used in the
automatic analysis of systems that have been extensively used to find subtle
errors, in particular in the design of safety-critical systems. These tech-
niques have been proven to be cost-effective and they also integrate well
with conventional design methods. These advantages have contributed to
the adoption of Model Checking as a standard technique for the quality
assurance of systems.

The difference between Model Checking and Static Analysis is primarily
historical. Static analysis methods were used to collect facts about pro-
grams by analyzing their source code and extracting information. In con-
trast, model checking was conceived to check possibly complex and temporal
logic properties of manually constructed finite-state models. However, Stef-
fen [Ste91] and Schmidt [Sch98] have shown, from a theoretical point of
view, that static analyzes can be cast as model checking algorithms and the
other way around. In practice, static analyzers and model checkers differ in
their capabilities and applicability. The main difference between the two ap-
proaches lies in the fact that Model Checking is tuned to deal with reactive
systems (systems that continuously interact with their environment) while
static analysis is more general. Nonetheless, modern static analyzers sup-
port specification mechanisms, and software model checkers use abstraction
and operate on program code, so the distinction from the practical point of
view may cease to be meaningful.

The main goal of model checking is to prove that a model of a system
satisfies a correctness specification [CE82]. A model is usually defined by a
set of states and transitions. A state is defined by: a value for the program
counter; the values of all variables in a program; and the configurations of
the stack and the heap. A transition describes how the program evolves
from one state to another.

The input to a model checker is thus a description of the system and a
set of properties (logical formulas usually expressed in temporal logic) that
are expected to hold for the system. In practice, reactive systems are de-
scribed using modelling languages, including pseudo programming languages
such as Promela2 (Process Meta Language). The operational semantics
for these formalisms is defined in terms of transition systems. The model
checking algorithm will exhaustively search for the reachable states of the
system. If a state violates one of the properties, an execution trace (or run)

2http://spinroot.com/spin/Man/Quick.html
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demonstrating the error should be produced. Such q run is usually called q
counter-example, and can provide valuable feedback and also point to design
errors.

Usually, a model checker verifies safety and liveness properties [Lam77].
Safety properties express that something bad never happens. These prop-
erties include assertion violations, null pointer dereferences, buffer overflow,
API contract violations (order of function calls not satisfied), and so on.
Liveness properties express that something good will happen eventually.
Examples of liveness properties are: “If the tank is empty, the outlet valve
will eventually be closed”; “If the tank is full and a request is present, the
outlet valve will eventually be opened”; “The program eventually termi-
nates”.

Generally, given a transition system T , we can ask the following ques-
tions:

• Are undesired states reachable in T , such as states that represent a
deadlock, a violation of mutual exclusion, etc?

• Are there runs of T such that, from some point on, some desired state
can never be reached or some action can never be executed? Such
kind of runs represent livelocks where, for example, some process is
prevented from entering its critical section, although other components
of the system still make progress.

• Is some initial state of T reachable from every state? In other words,
can the system be reset?

However, we should keep in mind that the object under analysis is an
abstract model. Possible counter-examples may be due to modeling artifacts
and no longer correspond to the actual system runs. Reviews can thus be
necessary to ensure that the abstract model reflects the behavior of the
concrete system.

To sum up, model checking can be formally defined as follows:
Given a transition system T and a formula ϕ, the model checking problem

is to decide whether T |= ϕ holds or not. If not, the model checker should
provide an explanation, in the form of a counter-example (i.e., a run of T
that violates ϕ). For this to be feasible, T is usually required to be finite-
state [Mer00].

Software Model Checking is a particular application of model checking,
consisting of the algorithmic analysis of programs to prove properties of their
execution [JM09].

In this approach a software system is seen as a state machine and so is
modeled by a graph, consisting of:

• nodes, representing states of the system (e.g. value of program counter,
variables, registers, stack/heap contents, and so on);
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• edges, representing state transitions (e.g. events, input/output ac-
tions, internal steps).

The information (logical formulas) can be associated to either states or
transitions. There are two kinds of models:

• Kripke structures (see Definition 48): information is placed in the
states, called “atomic propositions”;

• Labeled Transition Systems (see Definition 49): information is placed
in the transitions, called “action labels”.

The complexity of model checking in general and software model checking
in particular, arises from:

• State-space explosion: the state-space of a software program is
exponential on many parameters such as the number of variables.

This could become infinite in the presence of function calls and dy-
namic memory allocation. This state-space explosion problem must be
addressed to allow real world problems to be solved. Model checking
algorithms use the statements in the program to generate the set of
states to be analyzed. These states need to be stored to ensure that
they are visited at most once.

• Expressive logics (logics like Computation Tree Logic — CTL, and
Linear Time Logic — LTL): have complex model checking algorithms.

There are different methods to deal with the problem of state-space ex-
ploration. Two of them will now be presented in some detail: symbolic model
checking and bounded model checking. Other approaches, like partial-order
reduction (ignoring some executions, because they are covered by others)
and on-the-fly execution (integrating the model generation and verification
phases, to prune the state space), are used by some of the tools reviewed in
Section 3.5.

Symbolic model checking

Along the years, symbolic model checking [BCM+92, McM92], has proven to
be a powerful technique to formally verify state systems such as sequential
circuits and protocols. Since its definition in the early 90’s, it has been
integrated in the quality assurance process of several hardware companies.

The ability to analyze systems of considerable size using model checking
techniques requires efficient data structures to represent objects such as
transition systems and sets of system states. A common representation in
symbolic model checking algorithms is the Binary Decision Diagram (see
Definition 47) [Bry86]. This kind of data structure is appropriate for the
symbolic representation of sets because it offers the following features:
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• Every boolean function has a unique and canonical BDD representa-
tion.

• Boolean operations (e.g. negation, conjunction, implication, etc) can
be implemented with complexity proportional to the product of the
inputs.

• The projection operation (quantification over one or several boolean
variables) is easily implemented; in the worst case, its complexity is
however exponential.

The use of BDDs within symbolic model checking techniques has however
allowed for systems with 1020 states and more to be analyzed [BCM+92].
For the first time, a significant number of realistic systems could be verified,
which led to a wider use of model checking techniques in industry. The
following examples show that the use of symbolic model checking techniques
has been successfully applied in different fields, enabling the discovery of
bugs that were difficult to find with traditional techniques.

• In [CGH+95], the authors report how they applied this technique to
verify the cache coherence protocol described in the IEEE FutureBus+.
Various potential errors in the design of the protocol were found that
had not been detected before.

• In [KLM91], the authors apply the same technique to check the cache
consistency protocol of the Encore Compute Corporation distributed
multiprocessor.

• In [DDHY92], it is reported how the cache coherence protocol of the
Scalable Coherent Interface was verified and several errors found.

• In [CAB+98], a preliminary version of the system requirement specifi-
cations of the Traffic Alert and Collision Avoidance System II was verified.

• In [CGM+98], a railway interlocking system was also verified.

Despite the advantages referred previously, the bottleneck of symbolic
model checking techniques is the amount of memory required for storing and
manipulating BDDs. The boolean functions necessary to represent the set of
states can grow exponentially. Numerous techniques such as decomposition,
abstraction and reduction have been proposed throughout the years to tackle
this problem but the full verification of many systems is still beyond the
capacity of BDD-based symbolic model checkers.
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Bounded model checking

Bounded Model Checking was introduced in 1999 by Biere et al [BCCZ99]
as a complementary technique to the one present previously based on BDD.
This method is called bounded because only states reachable within a bounded
number k of steps are explored. Figure 3.14 gives a high-level overview of
a bounded model checking technique. Essentially, the design under verifi-
cation is unwound k times and joined together with a property to form a
propositional formula, which is passed on to a Satisfiability Problem3 (SAT)
solver. The formula is satisfiable if and only if there is a trace of length k
that refutes the property. The technique is inconclusive if the formula is
unsatisfiable, as there may be counter-examples longer than k steps.

Figure 3.14: High level overview of Bounded Model Checking [DKW08]

Bounded model checking is defined in two main steps:

1. The sequential behavior of a transition system over a finite interval is
encoded as a propositional formula.

This propositional formula is formed as follows: given a transition sys-
tem M (which could be a Kripke structure), a temporal logic formula
φ and a user-supplied time bound k, a propositional formula [[M,φ]]k,
which will be satisfiable if and only if the formula f is valid along some
computation path of M .

2. The formula is given to a propositional decision procedure (a satisfia-
bility solver), to obtain a satisfying assignment or to prove that there

3Recall that satisfiability is the problem of determining if the variables of a given
formula can be assigned in such a way as to make the formula evaluate to true — Defini-
tion 23.



3.3. STATIC TECHNIQUES: FULLY-AUTOMATED 83

is none.

As claimed by the authors of the approach, the main advantages of this
technique are the following:

• It finds counter-examples very quickly, due to the depth-first nature
of SAT search procedures.

• It finds counter-examples of minimal length (contributing to a better
understanding of the counter-example).

• It uses much less space than BDD-based approaches.

• Unlike from BDD-based approaches, bounded model checking does not
need a manual selection of variable order.

• SAT procedures do not suffer from the space explosion problem of
the BDD-based approaches (modern SAT solvers can handle proposi-
tional satisfiability problems with hundreds of thousands of variables
or more). Experiments have shown that if k is small enough it out-
performs BDD-based techniques.

The disadvantages of bounded model checking are:

• The user has to provide a bound on the number of cycles that should
be explored. This implies that the method is incomplete if the bound
is not high enough. Even though this can be seen as a disadvantage,
BDD-based verification often requires a suitable, manual ordering for
BDD variables, or certain to be carried out abstractions.

• The types of properties that can currently be checked are very limited.
This means that one cannot be guaranteed a true or false decision for
every specification.

• Despite the fact that the method may be extended, it has thus far
only been used for specifications where fixpoint operations are easy to
avoid.

• It has not been shown that the method can consistently find long
counter-examples. This is because the length of the propositional for-
mula subject to satisfiability solving grows with each step.

Despite the disadvantages of this method, bounded model checking has
proved to be a valuable complement to verification techniques, being able to
find bugs and sometimes to determine correctness, in situations where other
verification techniques fail completely. During the last few years, there has
been a major increase in the reasoning power of SAT solvers. This allowed
bounded model checkers to handle instances with hundreds and thousands
of variables. Symbolic model checkers, on the other hand, only can check
systems with a few hundred of variables.
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3.4 Dynamic Techniques

As referred previously, dynamic verification is a technique that is applied
during the execution of software with the goal of checking its behavior at
runtime (dynamically), aiming at finding bugs.

In this section, we will discuss two particular dynamic techniques: run-
time verification and testing.

3.4.1 Runtime Verification

Runtime verification is an approach based on extracting information from
a running system, using such information to detect behaviors satisfying or
violating certain properties (possibly reacting to them). Currently, runtime
verification techniques are often presented with various alternative names,
such as runtime monitoring, runtime checking, runtime reflection, runtime
analysis, dynamic analysis, runtime or dynamic symbolic analysis, trace
analysis, log file analysis and so on. All these names referring to instances of
the same high-level concept, but used in the context of different communities.

Runtime verification avoids the complexity of traditional formal tech-
niques, such as model checking and theorem proving, by analyzing only
a set of execution traces and by working directly with the actual system.
Thus, this technique scales up relatively well when comparing it with model
checking that suffers from the state-space explosion problem. However, in
contrast to model checking, runtime verification has to deal with finite traces
only, as at an arbitrary point in time, the system will be stopped and so its
execution trace.

To check the desired properties, runtime verification specifications are
usually expressed in predicate formalisms, such as finite state machines, reg-
ular expressions, context-free patterns, linear temporal logics, or extensions
of these. However, in order to extract events from the program while it is
running, it is necessary to insert these specifications in the source code. This
technique is usually known as code instrumentation. Figure 3.15 depicts a
view of a runtime monitor.

Aspect-Oriented Programming [KLM+97] (AOP) have been recently rec-
ognized as a technique for defining program instrumentation in a modular
way. AOP generally promotes the modularization of crosscutting concerns.

Current challenges

One of the challenges posed to runtime verification is the runtime overhead.
Extracting events from the executing system and sending them to monitors
can generate a large runtime overhead if done naively. A good instrumenting
system is critical for any runtime verification tool.

Also, when monitoring parametric properties, the monitoring system
needs to keep track of the status of the monitored property with respect
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Figure 3.15: Runtime Monitor System.

to each parametric instance. The number of such instances is theoretically
unbounded and tends to be enormous in practice. An important challenge is
to find how to efficiently dispatch observed events to those instances which
need them. Another challenge is how to keep the number of such instances
small.

A recent approach to runtime verification is to use static analysis to re-
duce the amount of exhaustive monitoring. Static analysis can be performed
both on the property to monitor and on the system to be monitored. With
respect to the former, static analysis can reveal that: certain events are
unnecessary to monitor; the creation of certain properties can be delayed;
certain existing monitors will never trigger and thus can be garbage col-
lected. With respect to the latter, static analysis can detect code that can
never influence the monitors.

3.4.2 Testing

Testing, also known as Experimentation, is a phase of software verification
that involves the execution of a system or a component. Basically, a number
of test cases are chosen, where each test case consists of a set of test data.

The goal of this phase is to check that a software package:

• meets the business and technical requirements that guided its design
and development;

• has the correct behavior (it works as expected).

Although the tests phase can be performed at any time in the devel-
opment process, depending on the testing method employed (as will be
discussed below), it usually takes place after the requirements have been
defined and the coding process has been completed. Test Driven Develop-
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ment differs from traditional models, as the effort of testing is on the hands
of the developer and not in a formal team of testers (see Figure 3.16).

Figure 3.16: Test-driven Software development process.

3.4.3 Testing Methods

In the world of testing there are two predominant methodologies: white-box
and black-box. These approaches describe the point-of-view taken by a test
engineer when designing the test cases.

Black box

Black box testing (also called functional testing) ignores the internal mech-
anism of a system or component and focuses solely on the outputs generated
in response to selected inputs and execution conditions [Bei95, IEEE90].

This testing methodology looks at the available inputs for an application
and the expected output for each one of these inputs. It is not concerned with
the process used to achieve a particular output or any other internal aspect
of the application that may be involved in the transformation of an input
into an output. The basis of this strategy lies on the selection of appropriate
data for each functionality and testing it against the functional specifications
in order to check for normal/abnormal behavior of the application.

Basically, black box testing attempts to find errors in the external be-
havior of the code in the following categories:

• incorrect or missing functionality;
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• interface errors;

• errors in data structures used by interfaces;

• behavior or performance errors;

• initialization and termination errors.

Through this aid of testing, one hopes to be able to determine if the
program components work according to the specifications. However, it is
important to remark that no amount of testing is in general capable of
proving the absence of errors and defects in code.

One of the advantages of this method is its ease of use, as testers do
not have to concern themselves with the inside of an application. The test
only needs to be thorough with respect to the requirements specification,
and to take into account how the system should behave in response to each
particular action.

System Testing, User Acceptance Testing, and Beta Testing are examples
of methods that fall in the category of black box testing.

White box

White box testing (also called structural testing or glass box testing) takes
into account the internal mechanisms of a system or component [IEEE90].

According to Pressman [Pre86], with this testing technique, a software
engineer can design tests that:

• Exercise independent paths within a module or unit;

• Exercise logical decisions on both their true or false side;

• Execute loops at their boundaries and within their operational bounds;

• Exercise internal data structures to ensure their validity.

With white box testing, the code should be run with predetermined
inputs and it should be checked that it produces predetermined outputs.
Frequently, programmers write stubs and drivers. A driver is a software
module used to invoke a module under test and, often, provide test inputs,
control and monitor execution, and report test results [IEEE90] or more
simplistically a line of code that calls a method and passes that method a
value.

Essentially, the purpose of white box testing is to cover as many state-
ments, decision points, and branches in the code base as possible.

Unit testing, Integration testing and Regression testing are examples of
methods that falls in this category of white box testing.
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The main difference between black box and white box testing is the
area on which each of the methods focuses. While black box is focused on
results (if an action is taken and it produces the desired result, the process
to achieve that outcome is irrelevant), white box is focused on details (on
the internal working of a system, that all paths have been tested and that
the sum of all parts can contribute to the whole).

3.4.4 Testing Levels

Depending on the phase of the development process where they are per-
formed and on their coverage, tests can be grouped in different levels corre-
sponding to the grain of code to which they apply.

Unit testing

Unit testing is testing of individual hardware or software units or groups of
related units [IEEE90].

Unit testing [Ham04] or component testing refers to tests that check the
functionality of a specific piece of code. In object oriented programming
languages, this unit corresponds to a class. The minimal unit test includes
the constructors and destructors of the class.

The purpose of these unit tests is to check the conditional logic of one
piece of code; usually they are written by developers that work on code
(white box style method) to ensure that the functions behave as expected
— they write test cases for each scenario of the module and the expected
results.

Although a single unit test cannot check the functionality of a piece of
software, it assures that the individual parts work well independently of each
other. These tests help to find problems early in the development cycle.

Integration testing

Once the individual software modules have been tested, it is time to test
them combined in groups — this phase is called Integration Testing.

Integration testing is testing in which software components, hardware
components, or both are combined and tested to evaluate the interaction
between them [IEEE90].

This phase takes place after Unit Testing and before System Testing. The
idea is to take as input the modules that have been unit-tested before, group
them in larger collections, apply them to tests defined in an integration plan
test and deliver as output the integrated system, ready to the next phase —
System Testing.

Integration testing has the goal of verifying the interfaces between com-
ponents against a software design. These tests verify functional, performance



3.4. DYNAMIC TECHNIQUES 89

and reliability requirements of major design items. The tests are constructed
to check that all components within a group interact correctly.

Classic integration testing strategies include:

• Top-down: an incremental technique that begins by testing the top
level modules and progressively goes to the lower-level modules. Lower-
level modules are normally simulated by stubs4 which mimic their
functionality. As lower level code is added, stubs are replaced with
the actual components. Top Down integration can be performed and
tested in breadth first or depth first manner.

This technique has the advantage of provide early working module of
the program and so design defects can be found and corrected early.

The disadvantage is that stubs need to be written very carefully as
they will simulate setting of output parameters.

• Bottom-up: modules at the lowest levels are developed first and other
modules which go towards the main program are integrated and tested
one at a time. After the integration of lower-level modules, the next
level of modules will be formed and can be used for integration test-
ing. This approach is helpful only when all or most of the modules
of the same development level are ready. In this approach, lower-level
modules are tested extensively, thus making sure that highest-level
modules are tested properly.

• Big Bang: all or most of the modules are grouped to form a software
system or a major part of the system, and are tested as a unit. This
technique is very effective for saving time in the integration testing
process when applied to small systems, but in larger systems it can
prevent the testing team from achieving the goal of integration testing
because it may be hard to tell in which subsystem the defect lies when
a failure occurs. Once again, integration tests are white box tests
performed by the programmers.

System Testing

System testing is one of the most important phases of the complete testing
cycle.

System Testing is testing conducted on a complete, integrated system to
evaluate the system compliance with its specified requirements [IEEE90].

System Testing evaluates the system compliance with specific functional
and non-functional requirements (such as security, speed, accuracy, and re-

4A stub is a “false” program unit that stands for the real one, that is used (invoked)
by another component under test, but is not yet coded; the stubs pretend to be the actual
component.
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liability) and should require no knowledge of the inner design of the code or
logic (it is thus black box testing).

Essentially, this phase is an investigatory phase, where the focus is to test
not only the design, but also the behavior, the bounds defined in the soft-
ware/hardware requirements specification and according with expectations
of the costumer.

There are different types of testing that should be considered during
System testing, usually performed by specialized teams not including the
programmers: GUI software testing, Usability testing, Performance testing,
Compatibility testing, Error handling testing, Load testing, Volume testing,
Stress testing (testing conducted to evaluate a system or component at or
beyond the limits of its specification or requirements [IEEE90]), Security
testing, Scalability testing, Sanity testing (tests that determine whether it is
reasonable to proceed with further testing), Smoke testing (collection of tests
that are performed on a system prior to being accepted for further testing),
Exploratory testing, Ad hoc testing, Regression testing, Reliability testing,
Installation testing, Maintenance testing, Recovery testing, and Accessibility
testing.

Acceptance Testing

Once the application is ready to be released, the crucial step is Acceptance
Testing, also called User Acceptance Testing (UAT).

Acceptance testing is formal testing conducted to determine whether or
not a system satisfies its acceptance criteria (the criteria the system must
satisfy to be accepted by a costumer) and to enable to determine whether or
not to accept the system [IEEE90].

In this step, usually the final step before delivering the application, the
end users are the testers. This type of testing gives them the confidence
that the application being delivered meets their requirements. Real world
scenarios and perceptions relevant to the end users are used in this step,
which helps to find usability problems. A prerequisite to this phase is that
the application should be fully developed. Previous levels of testing (Unit,
Integration and System) are already completed before the User Acceptance
Testing is done. Thus, at this level, most of the technical bugs have already
been fixed.

To ensure a proper coverage of all the scenarios during testing, Test
Cases are created. The steps taken for UAT typically involve one or more of
the following:

• User Acceptance Test Planning: this planning outlines the UAT strat-
egy, describes the key focus areas, entry and exit criteria.

• Designing User Acceptance Test Cases: this step helps to ensure that
the UAT provides enough coverage of all the scenarios. Each Test Case
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describes in a simple language the steps to be taken to test something.

• Selecting a Team that will execute the Test Cases: this team is usually
a good representation of the real world end users.

• Executing Test Cases: the testing team executes the test cases and
may also perform additional random tests.

• Documenting the bugs found during UAT: the testing team reports
their comments and any defects or issues found during testing.

• Resolving the issues: the problems found during the testing are dis-
cussed and resolved with the consensus of end users.

Regression Testing

Regression testing is selective retesting of a system or component to verify
that modifications have not caused unintended effects and that the system or
component still complies with its specified requirements [IEEE90].

In other words, each time that a major code change occurs, regression
testing [KFN99] should be performed. It is a kind of white box integration
test.

A way to do this is by rerunning existing tests against the modified
code to determine whether the changes break anything that worked prior
to the change and by writing new tests where necessary. According to
Beizer [Bei90], the repetition of tests should reveal that the software’s be-
havior is unchanged.

One of the main reasons for regression testing is that it is often extremely
difficult for a programmer to understand how a change in one part of the
software will be echoed in other parts of the software. So, there are some
factors to consider during the process of regression testing. These include
the following (but are not limited to):

• Testing fixed bugs promptly.

• Watching for side effects of fixes — frequently, a fix for a problem in
one place inadvertently causes a software bug in another place.

• Writing a regression test for each bug fixed — in most software de-
velopment situations it is considered good practice that when a bug is
located and fixed, a test that exposes the bug is recorded and regularly
retested after subsequent changes to the program [HK].

• Making changes (small and large) to data and finding any resulting
corruption.
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Beta Testing

Beta testing is operational testing by potential and/or existing users/cos-
tumers at an external site not otherwise involved with the developers, to
determine whether or not a component or system satisfies the user/costumer
needs, and fits within the business process.

Beta testing is often employed as a form of external acceptance testing
for off-the-shelf software in order to acquire feedback from the market. The
advantages of running beta tests are [Gal04]:

• Identification of unexpected errors because the beta testers use the
software in different and unexpected ways.

• A wider population search for errors in a variety of environments (e.g.
different operating systems).

• Low costs because the beta testers generally obtain free software but
are not otherwise compensated.

The disadvantages of running beta tests are [Gal04]:

• Lack of systematic testing because each user uses the product in any
manner, at their choice.

• Low quality error reports because the users may not report errors or
these reports do not have enough detail.

• Much effort is necessary to examine error reports when there are many
beta testers.

Beta testing is important because it is almost impossible for developers to
test their software in all of the various conditions that might occur.

In term of its ability to guarantee software correctness, runtime verifica-
tion is weaker than formal methods but stronger than testing. Testing can
only guarantee the correctness of a limited set of inputs at implementation
time and it does not guarantee that the system will operate as expected
under untested inputs. Runtime verification allows for formal specification
and verification/testings of the properties that a system has imperatively to
satisfy.

3.5 Tools

After presenting an overview of software verification and the theoretical
foundations behind it, as well as the current approaches to this relevant but
complex topic, it is time to survey tools serving that purpose following the
different methods referred, in order to make clear that there is still scope for
new tools, in particular combining techniques that have not been combined
before.
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3.5.1 Program Verifiers

The list of tools presented in this section does not pretend to be an exhaus-
tive list of the existent program verifiers. Only the most relevant ones for
the work presented in this document are referred.

ESC/Java2

ESC/Java2 (formerly called ESC/Java) [FLL+02], that stands for Extended
Static Checking for Java, is a program checker, pioneered by Flanagan et al,
that attempts to find runtime errors in Java programs through the static
analysis of the source code. It is static because the checking is performed
without running the program and extended because it catches more errors
that are caught by conventional static checkers such as type checkers.

This checker is powered by a VCGen and takes advantage of automatic
theorem proving techniques to reason about the semantics of programs. This
allows ESC/Java2 to give warnings about many errors that are typical in
modern programming languages (null dereferences, array bound errors, type
cast errors, and so on) and also warns about synchronization errors in con-
current programs. The architecture of ESC/Java2 is depicted in Figure 3.17.

The annotation language used by ESC/Java2 is JML-based, but there
are some differences between the two languages, at both the syntactic and
the semantic levels. While JML is intended to allow full specification of pro-
grams, ESC/Java2 is intended only for light-weight specification. But they
have in common the fact the annotations appear like other Java declarations,
modifiers, or statements, but enclosed in Java comments that begin with an
@-sign.

ESC/Java2’s front-end acts like a normal Java compiler, but parses and
type checks ESC/Java2 annotations as well as Java source code. This front-
end produces an abstract syntax tree and a formula in first-order logic en-
coding information about the types and fields that procedures/methods in
that class use. After parsing and producing these intermediate results, the
front-end translates each procedure body into a simple language based on
Dijkstra’s Guarded Commands.

The next step is to generate the verification conditions for the resulting
guarded commands. The computation of these VCs is similar to the com-
putation of a weakest precondition, but ESC/Java2 VC-generation includes
optimizations to avoid the potential exponential growth inherent to a naive
weakest precondition computation [FS01, LMS08].

For each procedure, the next step invokes an automatic theorem prover
(Simplify) to check which VCs are provable or not. In the last step, the post-
processor processes the theorem prover’s output, producing warnings when
the prover is unable to discharge the verification conditions. When Simplify
fails to prove some VC, it finds and reports one or more counterexamples.
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Figure 3.17: ESC/Java2 architecture.

Although the analysis done by ESC/Java2 is neither sound nor complete,
this was intentional (in a pragmatic sense) as a way to reduce the number
of errors and/or warnings reported to the programmer and make ESC/Java2
a useful tool in practice. However, as a result of this imprecise analysis the
programmer may wrongly deduce that a correct program is incorrect (false
positives) or a wrong program can be erroneously considered correct (false
negatives).

Frama-C

Frama-C5, which stands for Framework for Modular Analysis of C programs,
is a set of static analyzers for C programs. The architecture of Frama-C,
which is depicted in Figure 3.18, is similar to the Eclipse architecture, in
the sense that it relies on a set of plugins. Due to the fact that the AST is
the core of Frama-C, it can be freely manipulated by different kinds of other
plugins. They can be divided into two major groups:

5Available at http://frama-c.com
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1. Code Analysis — it is possible to run the following analyzes over the
source code:

• Impact Analysis — highlights the locations in the source code
that are impacted by a given modification.

• Scope and Dataflow Analysis — allows the user to navigate the
dataflow of the program, from definition to use or from use to
definition.

• Variable Occurrence Browsing — allows the user to reach state-
ments where a given variable is used.

• Value analysis [CCM09] — this plugin allows the computation
of variation domains for variables. It uses abstract interpretation
techniques.

• Jessie — a deductive verification plugin based on weakest pre-
condition techniques. It allows to prove that the source code is
in accordance with to its specification (written in ANSI/ISO C
Specification Language — ACSL [BFH+08]), as explained below.

2. Code Transformation — it is possible to do the following transforma-
tions over the source code:

• Semantic Constant folding — using the results of the value anal-
ysis, this plugin replaces in the source code constant expressions
by their values. As it is based on semantic analysis, it is able to
do more of these simplifications than a syntactic analysis would
do.

• Slicing — given a slicing criterion, this plugin creates a copy of
the program and slices off those parts which are not necessary
according to that criterion.

• Spare code — removes code that does not contribute to the final
results of the program.

With respect to the Jessie VCGen, in order to check whether a program
is correct or not, in a first step, the Frama-C core processes the source code in
order to produce an abstract syntax tree in the C Intermediate Language (CIL)
format. The source code can possibly include annotations written in ACSL,
and this is reflected in the AST (if these annotations are not provided, Jessie
plugin can infer them [MM11]). Given the AST and its annotations, the
Jessie plugin produces code in its own format. From Jessie code, Why [FM07]
code is produced using the Jessie2Why tool. The Why VCGen reads this
code and produces a set of proof obligations which are exported to either
automatic provers or proof assistants.
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Figure 3.18: Frama-C architecture

Boogie

Boogie [BCD+05] is a program verification system that produces verification
conditions for programs written in an intermediate verification language,
also called Boogie. These verification conditions are then passed to the Z3
theorem prover, outputting as result an indication of whether the program
is correct or incorrect (in this case, it points out which annotations were
violated) or a timeout.

The architecture of Boogie is depicted in Figure 3.19. As can be seen,
Boogie has multiple front-ends for C#, C enriched with annotations, Dafny [Lei10]
(similarly to Boogie, Dafny is both an imperative object-based language and
a verifier) and Chalice [LMS09] (a language for specification and verification
of concurrency properties of programs). The Boogie language is a simple
language with procedures whose implementations are basic blocks consist-
ing mostly of four kinds of statements: assignments, asserts, assumes, and
procedure calls [LSS99].

Spec#

Spec# [BDF+08] is an extension of the object oriented language C# pro-
viding contracts to be added to methods, in the form of pre and postcondi-
tions as well as invariants. Spec# is also a compiler that statically enforces
non-null types and emits runtime checks for contracts and invariants. The
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Figure 3.19: Boogie architecture

architecture of Spec# is implicitly shown in Figure 3.19. The Spec# pro-
gramming system consists of the language, the compiler and the Boogie
verifier.

Spec# is different from standard compilers due to the fact that it does
not only produce executable code from a program written in the Spec# lan-
guage, but it also translates all specifications into a language-independent
format. Having the specifications available as separate compiled units al-
lows program analysis and verification tools to consume the specifications
without the need to either modify the Spec# compiler or to write a new
source-language compiler. The Spec# compiler targets the Microsoft .NET
Common Language Runtime — CLR [BP02] and attaches a serialized specifi-
cation to each program component for which a specification exists. It is due
to this fact that Boogie consumes compiled code rather than source code.

Code Contracts [FBL10] in the .NET Framework 4.0 have evolved with
Spec#. Code Contracts provides a language-agnostic way to express coding
assumptions in .NET programs, and is still a work in progress.

VCC

VCC [CDH+09], which stands for Verifying C Compiler, is a tool that aims
at proving the correctness of annotated concurrent C programs. The archi-
tecture of VCC is depicted in Figure 3.20.

Essentially, VCC accepts annotated C programs, and translates them
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into a set of logical formulas using the Boogie tool, which in turn are sent
to an automated SMT solver — Z3 [dMB08b] — to check their validity. If
VCC reports that it is unable to verify the correctness of one or more of
the formulas, the Model Viewer can be used to inspect how VCC thinks the
program might fail. If VCC reports a timeout then the Z3 Axiom Profiler can
be used to see which part of the program is causing the verifier to timeout
and where the prover is spending its time.

VCC was built thinking in the verification of Hyper-V, a layer of software
that sits directly on hardware and consists of 100 KLOC of kernel-level C
and x64 assembly code.

Figure 3.20: VCC architecture

3.5.2 Static Analysis Tools

Goanna

Goanna [RHJ+06] is a static analysis tool for C/C++ source code based on
model checking. It uses the NuSMV [CCGR00] model checker as the under-
lying verification engine, allowing the specification of user defined properties.

The CTL (Computation Tree Logic) model checking problem under the
Goanna tool is encoded in two. First, the atomic propositions of interest for
reasoning are defined , e.g., whether a variable is declared, used, or assigned
a value. For instance, for a variable named x these properties are respec-
tively declx, usedx and assignedx. A pattern matching approach is used to
relate certain patterns in a program’s abstract syntax tree with propositions
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of interest. In a second step the control flow graph of a program is automat-
ically extracted and labeled with the previously determined propositions.

GCC is used as a front end in the Goanna tool, as one of its features is
that it allows the AST of C/C++ programs to be output in an intermediate
language. The tool parses the AST and then on the one hand generates the
CFG from it, and on the other hand it matches patterns in the AST, which
constitute the atomic propositions of a CTL formula expressing the desired
property. The CFG is labeled with atomic propositions where their respective
patterns were matched. Once the patterns and the CTL formula have been
specified, the translation of the C/C++ source code into a suitable NuSMV
model and its checking are fully automatic.

Splint

Splint [EL02] is a lightweight static analysis tool for ANSI C. Splint statically
checks code by exploiting annotations6 added to libraries and programs that
document assumptions and intents. Splint finds potential vulnerabilities by
checking whether the source code is consistent with the properties implied
by the annotations.

As the main goal of Splint is to do as much useful checking as possible,
it is both unsound and incomplete. Splint thus produces both false positives
and false negatives. The intention is that the warnings are useful to pro-
grammers, but no guarantee is offered that all messages indicate real bugs
or that all bugs will be found. The tool can also be configured to suppress
particular messages and to weaken or strengthen assumption checking.

In order to make analysis fast and scalable to large programs, Splint as-
sumes certain compromises. The most important is to limit the analysis to
data flow within procedure bodies. Splint analyzes procedure calls using in-
formation from annotations that describe preconditions and postconditions.
Another compromise is that between flow-sensitive analysis, which considers
all program paths, and flow-insensitive analysis, which ignores control flow
(see section 2.2 for a discussion of strategies).

Splint analyzes loops using heuristics to recognize common idioms. This
allows it to correctly determine the number of iterations and bounds of many
loops without requiring loop invariants or abstract evaluation. Splint also de-
tects both stack and heap-based buffer overflow vulnerabilities [LE01]. The
simplest detection techniques just identify calls to often misused functions;
more precise techniques depend on function descriptions and program-value
analysis.

In addition to the built-in checks, Splint provides mechanisms for defining
new checks and annotations to detect new vulnerabilities or violations of
application-specific properties.

6The annotations refers to stylized C comments identified by an @ character following
the /* comment marker.
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Coverity Prevent

Coverity Prevent7 identifies security vulnerabilities and code defects in C,
C++, C#, and Java code. Coverity Prevent discovers code defects using a
combination of inter-procedural data flow analysis and statistical analysis
techniques [ALS06].

In the case of inter-procedural data flow analysis, Coverity Prevent ana-
lyzes each function and generates a context-sensitive summary for it. Each
summary describes all characteristics of the function that have important
implications for externally-observable behavior. Coverity Prevent calls these
summaries function models. During data flow analysis, these summaries are
used to determine the effects of function calls whenever possible. The tool
also performs false path pruning to eliminate infeasible paths from consider-
ation. This reduces computation costs and lowers the chances of generating
false positives.

In the case of statistical analysis, Coverity Prevent uses statistical infer-
ence techniques to detect important trends in the code. Using these con-
clusions, it then tries to discover statistically significant coding anomalies,
which may represent deviations from the software developers’ intentions.

3.5.3 Model Checking Tools

SPIN

SPIN [BA08] is a model checker whose main goal is to verify the correctness
of distributed software models. Initially it was used for the verification
of temporal logic properties of communication protocols specified in the
Promela language. Promela supports simple data-types, non-deterministic
assignment and conditionals, simple loops, thread creation, and message
passing.

SPIN generates dedicated C source code for checking each model in a
way that saves memory and improves performance. Furthermore, it offers
the following options to speed up the model-checking process:

• Partial order reduction;

• State compression;

• Bitstate hashing (a technique that instead of storing whole states, only
stores their hash codes in a bit field).

Java Pathfinder

Java Pathfinder (JPF) [BHPV00] is an execution-based model checker for
Java programs that modifies the Java Virtual Machine to implement a sys-
tematic search over different thread schedules.

7http://www.coverity.com
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In a first version, JPF translated Java code to PROMELA and used SPIN
for model checking [HP98]. However, the main problem of Promela relies on
the fact that it does not support dynamic memory allocation and therefore
is not well suited to modeling the Java language. So, to fill that gap, recent
versions of JPF skip the translation phase and analyze the Java bytecode
directly, and also handles a much larger class of Java programs than the first
implementation. This new approach brings significant advantages:

• The use of the JVM makes it possible to store the visited states, which
allows the model checker to use many of the standard reduction-based
approaches (partial order, abstraction, etc) to prevent state-explosion.

• As the visited states are stored, the model checker can use different
search-order heuristics without being limited by the requirements of
stateless search.

• The possibility to use techniques such as symbolic execution and ab-
straction to compute inputs that force the system into states that are
different from those previously visited allows for a high level of cover-
age.

JPF has been successfully used inside NASA to find subtle errors in sev-
eral Java components [BDG+04b].

SLAM

SLAM [BCLR04, BBC+06] automatically checks that a C program correctly
uses the interface to an external library. The SLAM analysis engine forms
the core of a new tool called Static Driver Verifier (SDV) that systematically
analyzes the source code of Windows device drivers against a set of rules
that define what it means for a device driver to properly interact with the
Windows operating system kernel.

The basic idea is that checking a simple rule against a complex C program
(such as a device driver) should be possible by simplifying the program
to make the analysis tractable. That is, it should be possible to find an
abstraction of the original C program that has all of the behavior of the
original program (plus additional behavior that is not relevant for checking
the rule of interest). Boolean programs [BR00b, BR00c] are the SLAM
solution for such an abstraction.

The SLAM automated process can be split in three steps: abstraction,
checking and refinement. In the first step, given a C program P and a
set of predicates E , the goal is to efficiently construct a precise Boolean
program abstraction B of P with respect to E . In the second step, given
a Boolean program B and an error state, the goal is to check whether or
not the error state is reachable. Finally, in the third step, if the Boolean
program B contains an error path and this path is a feasible execution path
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in the original program P, then the process has found a potential error. If
this path is not feasible in P then the Boolean program B is refined so as to
eliminate this false error path.

SLAM comprises the predicate abstraction tool C2BP [BPR01, BMMR01]
and the BDD-based model checker BEBOP [BR00a] for Boolean programs.

BLAST

The Berkeley Lazy Abstraction Software Verification Tool (BLAST) [HJMS03,
BHJM07] is an automatic verification tool for checking temporal safety prop-
erties of C programs. The task addressed by BLAST is checking whether
software satisfies the behavioral requirements of its associated interfaces.
BLAST employs Counter-Example-Guided-Automatic-Abstraction (CEGAR)
refinement to construct an abstract model that is then model-checked for
safety properties. The abstraction is constructed on the fly, and only up to
the requested precision.

Given a C program and a temporal safety property, BLAST
either statically proves that the program satisfies the safety prop-
erty, or provides an execution path that exhibits a violation of
the property (or, since the problem is undecidable, does not ter-
minate) [HJMS03].

Like SLAM, BLAST provides a language to specify reachability prop-
erties. Internally, C programs are represented as Control Flow Automata
(CFA), which resemble control flow graphs except that operators are placed
on the edges rather than vertices. The BLAST lazy abstraction algorithm
is composed of two phases. In the forward-search phase a reachability tree
is built, which represents a portion of the reachable, abstract state space of
the program. Each node of the tree is labeled by a vertex of the CFA and a
formula, called the reachable region, constructed as a boolean combination
of a finite set of abstraction predicates.

Initially the set of abstraction predicates is empty. The edges of the tree
correspond to edges of the CFA and are labeled by basic program blocks or
assume predicates. The reachable region of a node describes the reachable
states of the program in terms of the abstraction predicates, assuming exe-
cution follows the sequence of instructions labeling the edges from the root
of the tree to the node.

If the algorithm finds that an error node is reachable in the tree, then it
goes to the second phase, which checks if the error is real or a result of the
abstraction being too coarse. In the latter case, a theorem prover is asked to
suggest new abstraction predicates which rule out that particular spurious
counterexample. The program is then refined locally by adding the new
abstraction predicates only in the smallest subtree containing the spurious
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error; the search continues from the point that is refined, without touching
the part of the reachability tree outside that subtree.

VeriSoft

VeriSoft [God97] is a verification tool that tries to avoid state explosion by
discarding the states it visits. VeriSoft does not store the visited states,
allowing to repeatedly visit them and explore them. This method is state-
less and has to limit the depth of its search to eschew non-termination.

This tool was built for systematically exploring the state space of systems
composed of several concurrent processes executing arbitrary C/C++ code.
The purpose of the tool is to automatically detect coordination problems
between concurrent processes.

Essentially, VeriSoft takes as input the composition of several Unix pro-
cesses that communicate by means of message queues, semaphores and
shared variables that are visible to the VeriSoft scheduler. The scheduler
traps calls made to access the shared resources, and by choosing which pro-
cess will execute at each trap point, the scheduler is able to exhaustively
explore all possible interleavings of the execution.

The approach used by VeriSoft is however incomplete for transition sys-
tems that contain cycles.

SATABS

SATABS [CKSY04] is a model checking verification tool that uses a SAT-
solver to construct abstractions and for symbolic simulation of counter-
examples. This tool automatically generates and checks proof conditions
for array bound violations, invalid pointer dereferencing, division by zero,
and assertions provided by the user.

SATABS uses the SAT-based model checker Boppo [CKS05] to compute
the reachable states of the abstract program. Boppo relies on a Quantified
Boolean Formula (QBF) solver for fixed-point detection.

SATABS can verify concurrent programs that communicate via shared
memory.

CBMC

CBMC [CKY03] is a tool that implements the Bounded Model Checking
technique. It emulates a wide range of architectures and environments for
the design under test. It supports both little and big Endian memory models,
as well as header files needed for Linux, windows and Mac-OSX.

The main application of CBMC is for checking consistency of system-
level circuit models given in C or SystemC with an implementation given in
Verilog.
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Saturn

Saturn [XA05] is a specialized implementation of BMC tailored to the proper-
ties it checks. The authors of the tool have applied it to check two properties
of Linux Kernel code: Null-pointer dereferences and locking API conventions.
With these tests they have shown that the technique is sufficiently scalable
to analyze the entire Linux kernel. Soundness is relinquished for perfor-
mance: Saturn performs at most two unwindings of each loop (so bugs that
require more than two unwindings are missed).

Cmc

Cmc [MPC+02] is an execution based model checker for C programs that
explores different executions by controlling schedules at the level of the OS
scheduler. Cmc stores a hash of each visited state. Cmc has been used
to find errors in implementations of network protocols [ME04] and file sys-
tems [YTEM06].



Chapter 4

State-of-the-Art: Slicing

Divide each difficulty into as
many parts as is feasible and
necessary to resolve it.

René Descartes, 1596 — 1650

Since Weiser first proposed the notion of slicing in 1979 in his PhD the-
sis [Wei79], hundreds of papers have been proposed in this area. Tens of
variants have been studied, as well was algorithms to compute them. Dif-
ferent notions of slicing have different properties and different applications.
These notions vary from Weiser’s syntax-preserving static slicing to amor-
phous slicing which is not syntax-preserving; algorithms can be based on
dataflow equations, information flow relations or dependency graphs.

Slicing was first developed to facilitate program debugging [Mar93, ADS93,
WL86], but it is then found helpful in many aspects of the software devel-
opment life cycle, including software testing [Bin98, HD95], software met-
rics [OT93, Lak93], software maintenance [CLM96, GL91b], program com-
prehension [LFM96, HHF+01], component re-use [BE93, CLM95], program
integration [BHR95, HPR89b] and so on.

In this chapter, slicing techniques are presented including static slicing,
dynamic slicing and the latest slicing techniques. We also discuss the con-
tribution of each work and compare the major difference between them.

Structure of the chapter. In Section 4.1 is presented the concept of
program slicing and its variants. The relationship among the different slicing
techniques and the basic methods used to pose program slicing in practice
are also discussed. In Section 4.2 the basic slicing approaches are presented.
In Section 4.3 is reviewed the non-static slicing approaches. In Section 4.4
is reviewed the applications of program slicing. In Section 4.5 are presented
some tools using the program slicing approach.
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4.1 The Concept of Program Slicing

In this section it is presented the original static slice definition and also
its most popular variants. At the end of each subsection, the respective
concept will be clarified through. The examples are based on the program
introduced hereafter in subsection 4.1.1.

4.1.1 Program Example

Listing 4.1 below corresponds to a program, taken from [CCL98], that will
be used as the running example for all the next subsection aiming at illus-
trating each concept introduced. That program takes the integers n, test
and a sequence of n integers a as input and compute the integers possum,
posprod, negsum and negprod. The integers possum and negsum accu-
mulate the sum of the positive numbers and of the absolute value of the
negative numbers in the sequence, respectively. The integers posprod and
negprod accumulate the products of the positive numbers and the absolute
value of the negative numbers in the sequence, respectively. Whenever an
input a is zero, the greatest sum and the greatest product are reset if the
value of test is non zero. The program prints the greatest sum and the
greatest product computed.

main ( ) {
2 int a , t e s t , n , i , posprod , negprod , possum , negsum , sum , prod ;

s can f ( ”%d”,& t e s t ) ; s can f ( ”%d”,&n) ;
4 i = posprod = negprod = 1 ;

possum = negsum = 0 ;
6 while ( i <= n) {

s can f ( ”%d”,&a ) ;
8 i f ( a > 0) {

possum += a ;
10 posprod ∗= a ;

}
12 else i f ( a < 0) {

negsum −= a ;
14 negprod ∗= (−a ) ;

}
16 else i f ( t e s t ) {

i f ( possum >= negsum ) {
18 possum = 0 ;

}
20 else { negsum = 0 ; }

i f ( posprod >= negprod ) {
22 posprod = 1 ;

}
24 else {

negprod = 1 ;
26 }

}
28 i ++;

}
30 i f ( possum >= negsum ) {

sum = possum ;
32 }

else { sum = negsum ; }
34 i f ( posprod >= negprod ) {

prod = posprod ;
36 }

else { prod = negprod ; }
38 p r i n t f ( ”Sum: %d\n” , sum) ;

p r i n t f ( ”Product : %d\n” , prod ) ;
40 }

Listing 4.1: Program example
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4.1.2 Static Slicing

Program slicing, in its original version, is a decomposition technique that ex-
tracts from a program the statements relevant to a particular computation.
A program slice consists of the parts of a program that potentially affect the
values computed at some point of interest referred to as a slicing criterion.

Definition 53. A static slicing criterion of a program P consists of a pair
C = (p, Vs), where p is a statement in P and Vs is a subset of the variables
in P .

A slicing criterion C = (p, Vs) determines a projection function which
selects from any state trajectory only the ordered pairs starting with p and
restricts the variable-to-value mapping function σ to only the variables in
Vs.

Definition 54. Let C = (p, Vs) be a static slicing criterion of a program P
and T =< (p1, σ1), (p2, σ2), ..., (pk, σk) > a state trajectory of P on input
I. ∀i, 1 ≤ i ≤ k:

Proj′C(pi, σi) =

{
λ ifpi 6= p
< (pi, σi|Vs) > ifpi = p

where σi|Vs is σi restricted to the domain Vs, and λ is the empty string.

The extension of Proj′ to the entire trajectory is defined as the concate-
nation of the result of the application of the function to the single pairs of
the trajectory:

ProjC(T ) = Proj′C(p1, σ1)...P roj
′
C(pk, σk)

A program slice is therefore defined behaviorally as any subset of a pro-
gram which preserves a specified projections in its behavior.

Definition 55. A static slice of a program P on a static slicing criterion
C = (p, Vs) is any syntactically correct and executable program P ′ that is
obtained from P by deleting zero or more statements, and whenever P halts,
on input I, with state trajectory T , then P ′ also halts, with the same input
I, with the trajectory T ′, and ProjC(T ) = ProjC(T ′).

The task of computing program slices is called program slicing.
Weiser defined a program slice S as a reduced, executable program ob-

tained from a program P removing statements, such that S preserves the
original behavior of the program with respect to a subset of variables of
interest and at a given program point.

Executable means that the slice is not only a closure of statements, but
also can be compiled and run. Non-executable slices are often smaller and
thus more helpful in program comprehension.
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The slices mentioned so far are computed by gathering statements and
control predicates by way of a backward traversal of the program, starting
at the slicing criterion. Therefore, these slices are referred to as backward
slices [Tip95]. In [BC85], Bergeretti and Carré were the first to define a
notion of a forward slice. A forward slice is a kind of ripple effect analysis,
this is, it consists of all statements and control predicates dependent on the
slicing criterion. A statement is dependent of the slicing criterion if the
values computed at that statement depend on the values computed at the
slicing criterion, or if the values computed at the slicing criterion determine
if the statement under consideration is executed or not.

Both backward or forward slices are classified as static slices. Static
means that only statically available information is used for computing slices,
this is, all possible executions of the program are taken into account; no
specific input I is taken into account.

Since the original version proposed by Weiser [Wei81], various slightly
different notions of program slices, which are not static, have been proposed,
as well as a number of methods to compute slices. The main reason for this
diversity is the fact that different applications require different program
properties of slices.

The last two concepts presented (dicing and chopping in section 4.1.9
and 4.1.10, respectively) are two variations on the slicing theme but very
related to slicing.

Listing 4.2 emphasizes the variable sum (in red color) and the variables
affect by its value (in blue color).

At a first glance, if we only focus at variable sum in program of List-
ing 4.1 it is easy to infer that its value depends on values of possum and
negsum. Listing 4.3 shows a static slice of the program in Listing 4.1 on
the slicing criterion C = (38, sum)1.

4.1.3 Dynamic Slicing

Korel and Laski [KL88, KL90] proposed an alternative slicing definition,
named dynamic slicing, where a slice is constructed with respect to only one
execution of the program corresponding just to one given input. It does not
include the statements that have no relevance for that particular input.

Definition 56. A dynamic slicing criterion of a program P executed on
input I is a triple C = (I, p, Vs) where p is a statement in P and Vs is a
subset of the variables in P .

Definition 57. A dynamic slice of a program P on a dynamic slicing cri-
terion C = (I, p, Vs) is any syntactically correct and executable program P’

1Whenever not ambiguous, statements will be referred by their line numbers.
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obtained from P by deleting zero or more statements, and whenever P halts,
on input I, with state trajectory T, then P’ also halts, on the same input I,
with state trajectory T’, and Proj(p,Vs)(T ) = Proj(p,Vs)(T

′).

main ( ) {
2 int a , t e s t , n , i , posprod , negprod , possum , negsum , sum , prod ;

s can f ( ”%d”,& t e s t ) ; s can f ( ”%d”,&n) ;
4 i = posprod = negprod = 1 ;

possum = negsum = 0 ;
6 while ( i <= n) {

s can f ( ”%d”,&a ) ;
8 i f ( a > 0) {

possum += a ;
10 posprod ∗= a ;

}
12 else i f ( a < 0) {

negsum −= a ;
14 negprod ∗= (−a ) ;

}
16 else i f ( t e s t ) {

i f ( possum >= negsum ) {
18 possum = 0 ;

}
20 else { negsum = 0 ; }

i f ( posprod >= negprod ) {
22 posprod = 1 ;

}
24 else {

negprod = 1 ;
26 }

}
28 i ++;

}
30 i f ( possum >= negsum ) {

sum = possum ;
32 }

else { sum = negsum ; }
34 i f ( posprod >= negprod ) {

prod = posprod ;
36 }

else { prod = negprod ; }
38 p r i n t f ( ”Sum: %d\n” , sum) ;

p r i n t f ( ”Product : %d\n” , product ) ;
40 }

Listing 4.2: Program with sum variable emphasized

main ( ) {
2 int a , t e s t , n , i , possum , negsum , sum ;

scan f ( ”%d”,& t e s t ) ; s can f ( ”%d”,&n) ;
4 i = 1 ;

possum = negsum = 0 ;
6 while ( i <= n) {

s can f ( ”%d”,&a ) ;
8 i f ( a > 0) {

possum += a ;
10 }

else i f ( a < 0) {
12 negsum −= a ;

}
14 else i f ( t e s t ) {

i f ( possum >= negsum ) {
16 possum = 0 ;

}
18 else { negsum = 0 ; }

}
20 i ++;

}
22 i f ( possum >= negsum ) {

sum = possum ;
24 }

else { sum = negsum ; }
26 p r i n t f ( ”Sum: %d\n” , sum) ;
}

Listing 4.3: A static slice of program in Listing 4.1
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Due to run-time handling of arrays and pointer variables, dynamic slicing
treats each element of an array individually, whereas static slicing considers
each definition or use of any array element as a definition or use of the
entire array [JZR91]. Similarly, dynamic slicing distinguishes which objects
are pointed to by pointer variables during a program execution.

In section 4.3, this concept of dynamic slicing will be detailed and algo-
rithms for its implementation will be also presented.

Listing 4.4 shows a dynamic slice of the program in Listing 4.1 on the slic-
ing criterion C = (I, 38, sum) where I =< (test, 0), (n, 2), (a1, 0), (a2, 2) >2.

1 main ( ) {
int a , t e s t , n , i , possum , negsum , sum ;

3 scan f ( ”%d”,& t e s t ) ; s can f ( ”%d”,&n) ;
i = 1 ;

5 possum = negsum = 0 ;
while ( i <= n) {

7 scan f ( ”%d”,&a ) ;
i f ( a > 0) {

9 possum += a ;
}

11 i ++;
}

13 i f ( possum >= negsum ) {
sum = possum ;

15 }
p r i n t f ( ”Sum: %d\n” , sum) ;

17 }

Listing 4.4: A dynamic slice of program in Listing 4.1

In the first loop iteration, hence the value of a is zero and so none of
the statements in the if expression is executed, the whole conditional branch
is excluded from the program slice. However, at the second loop iteration,
the if statement is executed and so is included in the program slice, being
excluded the else statements and the last else if statements.

Notice that the dynamic slicing in Listing 4.4 is a subprogram of the
static slice in Listing 4.3 — all the statements that will never be executed,
under the values of the input, are excluded.

4.1.4 Quasi-static Slicing

Venkastesh introduced in 1991 the quasi-static slicing in [Ven91], which is
a slicing method between static slicing and dynamic slicing. A quasi-static
slice is constructed with respect to some values of the input data provided
to the program. It is used to analyze the behavior of the program when
some input variables are fixed while others vary.

Definition 58. A quasi-static slicing criterion of a program P is a quadruple
C = (V ′i , I

′, p, Vs) where p is a statement in P ; Vi is the set of input variables
of a program P and V ′i ⊆ Vi; and I ′ is the input data just for the subset of
variables in V ′i .

2The subscripts refer to different occurrences of the input variable a within the different
loop iterations.
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Definition 59. A quasi-static slice of a program P on a quasi-static slicing
criterion C = (V ′i , I

′, p, V ) is any syntactically correct and executable pro-
gram P’ that is obtained from P by deleting zero or more statements, and
whenever P halts, on input I, with state trajectory T, then P’ also halts, on
input I, with state trajectory T’, and Proj(p,V )(T ) = Proj(p,V )(T

′).

Definition 60. Let Vi be the set of input variables of a program P and
V ′i ⊆ Vi. Let I ′ be an input for the variables in V ′i . A completion I of I ′ is
any input for the variables in Vi, such that I ′ ⊆ I.

Each completion I of I ′ identifies a trajectory T . We can associate I ′ with
the set of trajectories that are produced by its completions. A quasi-static
slice is any subset of the program which reproduces the original behavior on
each of these trajectories.

It is straightforward to see that the quasi-static slicing includes both the
static and dynamic slicing’s. Indeed, when the set of variables V ′i is empty,
quasi-static slicing reduces to static slicing, while for V ′i = Vi a quasi-static
slice coincides with a dynamic slice.

According to De Lucia in [Luc01], the notion of quasi static slicing is
closely related to partial evaluation or mixed computation [BJE88], a tech-
nique to specialize programs with respect to partial inputs. By specifying
the values of some of the input variables, constant propagation and simplifi-
cation can be used to reduce expressions to constants. In this way, the values
of some program predicates can be evaluated, thus allowing the deletion of
branches which are not executed on the particular partial input. Quasi static
slices are computed on specialized programs.

As told above, the need for quasi-static slicing arises from applications
where the value of some input variables is fixed while the behavior of the
program must be analyzed when other input values vary.

Listing 4.5 shows a quasi-static slice of the program in Listing 4.1 on the
slicing criterion C = (I ′, 38, sum) where I ′ =< (test, 0) >.

1 main ( ) {
int a , t e s t , n , i , possum , negsum , sum ;

3 scan f ( ”%d”,& t e s t ) ; s can f ( ”%d”,&n) ;
i = 1 ;

5 possum = negsum = 0 ;
while ( i <= n) {

7 scan f ( ”%d”,&a ) ;
i f ( a > 0) {

9 possum += a ;
}

11 else i f ( a < 0) {
negsum −= a ;

13 }
i ++;

15 }
i f ( possum >= negsum ) {

17 sum = possum ;
}

19 else { sum = negsum ; }
p r i n t f ( ”Sum: %d\n” , sum) ;

21 }

Listing 4.5: A quasi-static slice of program in Listing 4.1
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Hence the value of variable test is zero, the else if branch is excluded
from static slice. All the other conditional branches stay as part of the final
quasi-static slice.

4.1.5 Conditioned Slicing

Canfora et al presented the conditioned slicing in [CCL98]. A conditioned
slice consists of a subset of program statements which preserves the behavior
of the original program with respect to a slicing criterion for any set of
program executions. The set of initial states of the program that characterize
these executions is specified in terms of a first order logic formula on the
input.

Definition 61. Let Vi be the set of input variables of a program P , and F
be a first order logic formula on the variables in Vi. A conditioned slicing
criterion of a program P is a triple C = (F (Vi), p, Vs) where p is a statement
in P and Vs is the subset of the variables in P which will be analyzed in the
slice.

Definition 62. Let Vi be a set of input variables of a program P and F (Vi)
be a first order logic formula on the variables in Vi. A satisfaction for
F (Vi) is any partial input I to the program for the variables in Vi that
satisfies the formula F . The satisfaction set S(F (Vi)) is the set of all possible
satisfactions for F (Vi).

If V ′i is a subset of the input variables of the program P and F (V ′i ) is a
first order logic formula on the variables in V ′i , each completion I ∈ S(F (Vi))
of I ′ ∈ S(F (Vi)), identifies a trajectory T . A conditioned slice is any subset
of the program which reproduces the original behavior on each of these
trajectories.

Definition 63. A conditioned slice of a program P on a conditioned slic-
ing criterion C = (F (Vi), p, Vs) is any syntactically correct and executable
program P’ such that: P ′ is obtained from P by deleting zero or more
statements; whenever P halts, on input I, with state trajectory T, where
I ∈ C(I ′, V ′i ), I ′ ∈ S(F (Vi)), V

′
i is the set of input variables of P , and S is

the satisfaction set, then P’ also halts, on input I, with state trajectory T’,
and Proj(p,Vs)(T ) = Proj(p,Vs)(T

′).

A conditioned slice can be computed by first simplifying the program
with respect to the condition on the input (i.e., discarding infeasible paths
with respect to the input condition) and then computing a slice on the re-
duced program. A symbolic executor [Kin76] can be used to compute the
reduced program, also called conditioned program in [CCLL94]. Although
the identification of the infeasible paths of a conditioned program is in gen-
eral an undecidable problem, in most cases implications between conditions



4.1. THE CONCEPT OF PROGRAM SLICING 113

can be automatically evaluated by a theorem prover. In [CCL98] condi-
tioned slices are interactively computed: the software engineer is required
to make decisions that the symbolic executor cannot make.

Conditioned slicing allows a better decomposition of the program giving
human readers the possibility to analyze code fragments with respect to
different perspectives.

Actually, conditioned slicing is a framework of statement deleting3 based
methods, this is, the conditioned slicing criterion can be specified to obtain
any form of slice.

Listing 4.6 shows a conditioned slice of the program in Listing 4.1 on
the slicing criterion C = (F (Vi), 38, sum) where Vi = {n}

⋃
1≤i≤n{ai} and

F (Vi) = ∀i, 1 ≤ i ≤ n, ai > 0. The condition F imposes that all input values
for the variable a are positive. This allows to be discard from the static
slice of Listing 9.6 all the statements dependent on the condition a < 0 or
a == 0.

1 main ( ) {
int a , t e s t , n , i , possum , negsum , sum ;

3 scan f ( ”%d”,& t e s t ) ; s can f ( ”%d”,&n) ;
i = 1 ;

5 possum = negsum = 0 ;
while ( i <= n) {

7 scan f ( ”%d”,&a ) ;
i f ( a > 0) {

9 possum += a ;
}

11 i ++;
}

13 i f ( possum >= negsum ) {
sum = possum ;

15 }
p r i n t f ( ”Sum: %d\n” , sum) ;

17 }

Listing 4.6: A conditioned slice of program in Listing 4.1

4.1.6 Simultaneous Dynamic Slicing

Hall proposed the simultaneous dynamic slicing in [Hal95], which computes
slices with respect to a set of program executions. This slicing method is
called simultaneous dynamic program slicing because it extends dynamic
slicing and simultaneously applies it to a set of test cases, rather than just
one test case.

Definition 64. Let {T1, T2, ..., Tk} be a set of trajectories of length l1, l2, lk,
respectively, of a program P on input {I1, I2, ..., Ik}. A simultaneous dy-
namic slicing criterion of P executed on each of the input Ij, 1 ≤ j ≤ k, is
a triple C = ({I1, I2, ..., Ik}, p, Vs) where p is a statement in P and Vs is a
subset of the variables in P .

3Statement deletion means deleting a statement or a control predicate from a program.
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Definition 65. A simultaneous dynamic slice of a program P on a simul-
taneous dynamic slicing criterion C = ({I1, I2, ..., Ik}, p, V ) is any syntacti-
cally correct and executable program P’ that is obtained from P by deleting
zero or more statements, and whenever P halts, on input Ij, 1 ≤ j ≤ m,
with state trajectory Tj, then P’ also halts, on input Ij, with state trajectory
T ′j, and Proj(p,Vs)(Tj) = Proj(p,Vs)(T

′
j).

A simultaneous program slice on a set of tests is not simply given by the
union of the dynamic slices on the component test cases.

In [Hal95], Hall proposed an iterative algorithm that, starting from an
initial set of statements, incrementally builds the simultaneous dynamic
slice, by computing at each iteration a larger dynamic slice.

Listing 4.7 shows a simultaneous dynamic slice of the program in List-
ing 4.1 on the slicing criterion C = ({I1, I2}, 38, sum) where

I1 =< (test, 0), (n, 2), (a1, 0), (a2, 0) >

and

I2 =< (test, 1), (n, 2), (a1, 0), (a2, 2) >

1 main ( ) {
int a , t e s t , n , i , possum , negsum , sum ;

3 scan f ( ”%d”,& t e s t ) ; s can f ( ”%d”,&n) ;
i = 1 ;

5 possum = negsum = 0 ;
while ( i <= n) {

7 scan f ( ”%d”,&a ) ;
i f ( a > 0) {

9 possum += a ;
}

11 else i f ( a < 0) {}
else i f ( t e s t ) {

13 i f ( possum >= negsum ) {
possum = 0 ;

15 }
}

17 i ++;
}

19 i f ( possum >= negsum ) {
sum = possum ;

21 }
p r i n t f ( ”Sum: %d\n” , sum) ;

23 }

Listing 4.7: A simultaneous dynamic slice of program in Listing 4.1

4.1.7 Union Slicing

Beszedes et al [BFS+02, BG02] introduced the concept of union slice and
the computing algorithm. A union slice is the union of dynamic slices for
a finite set of test cases; actually is very similar to simultaneous dynamic
program slicing. A union slice is an approximation of a static slice and is
much smaller than the static one.

The union slicing criterion is the same as the considered in the simulta-
neous dynamic slicing.
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Definition 66. An union slice of a program P with different executions
using the inputs X = {I1, I2, ..., In}, with respect to a slicing criterion C =
(X, p, Vs), is defined as follows:

UnionSlice(X, p, Vs) =
⋃
Ik∈X

DynSlice(Ik, p, Vs)

where DynSlice(Ik, i, Vs) contains those statements that influenced the
values of the variables in V at the specific statement p.

Combined with static slices, the union slices can help to reduce the size
of program parts that need to be investigated by concentrating on the most
important parts first. The authors performed a series of experiments with
three medium size C programs. The results suggest that union slices are
in most cases far smaller than the static slices, and that the growth rate of
union slices (by adding more test cases) significantly declines after several
representative executions of the program. Thus, union slices are useful in
software maintenance.

Daninic et al [DLH04] presented an algorithm for computing executable
union slices, using conditioned slicing. The work showed that the executable
union slices are not only applicable for program comprehension, but also for
component reuse guided by software testing.

De Lucia et al [LHHK03] studied the properties of unions of slices and
found that the union of two static slices in not necessarily a valid slice, based
on Weiser’s definition of a static slice. They argue that a way to get valid
union slices is to propose algorithms that take into account simultaneously
the execution traces of the slicing criteria, as in the simultaneous dynamic
slicing algorithm proposed by Hall [Hal95].

Listing 4.8 shows an union slice of the program in Listing 4.1 on the slic-
ing criterion C = (I1

⋃
I2, 38, sum) where I1 =< (test, 0), (n, 2), (a1, 0), (a2, 2) >

and I2 =< (test, 0), (n, 3), (a1, 1), (a2, 0), (a3,−1) >.

1 main ( ) {
int a , t e s t , n , i , possum , negsum , sum ;

3 scan f ( ”%d”,& t e s t ) ; s can f ( ”%d”,&n) ;
i = 1 ;

5 possum = negsum = 0 ;
while ( i <= n) {

7 scan f ( ”%d”,&a ) ;
i f ( a > 0) {

9 possum += a ;
}

11 else i f ( a < 0) {
negsum −= a ;

13 }
i ++;

15 }
i f ( possum >= negsum ) {

17 sum = possum ;
}

19 p r i n t f ( ”Sum: %d\n” , sum) ;
}

Listing 4.8: An union slice of program in Listing 4.1
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4.1.8 Other Concepts

There are a number of other related approaches that use different definitions
of slicing to compute subsets of program statements that exhibit a particular
behavior. All these approaches add information to the slicing criterion to
reduce the size of the computed slices.

Constrained Slicing

Field et al introduce in [FRT95] the concept of constrained slice to in-
dicate slices that can be computed with respect to any set of constraints.
Their approach is based on an intermediate representation for imperative
programs, named PIM, and exploits graph rewriting techniques based on
dynamic dependency tracking that model symbolic execution. The slices
extracted are not executable. The authors are interested in the seman-
tic aspect of more complex program transformations rather than in simple
statement deletion.

Amorphous Slicing

Harman et al introduced amorphous slicing in [HBD03]. Amorphous
slicing removes the limitation of statement deletion as the only means of
simplification. Like a traditional slice, an amorphous program serves a pro-
jection of the semantics of the original program from which it is constructed.
However, it can be computed by applying a broader range of transformation
rules, including statement deletion.

Hybrid Slicing

Gupta et al presented the hybrid slicing in [GSH97], which incorporate
both static and dynamic information. They proposed a slicing technique
that exploits information readily available during debugging when comput-
ing slices statically.

4.1.9 Dicing

Dicing was a concept first introduced by Lyle et al in [LW86]. A program
dice is defined as the set difference between the static slices of an incorrect
variable and that of a correct variable, this is, the set of statements that
potentially affect the computation of incorrect variable while do not affect
the computation of the correct one. It is a fault location technique for
further reducing the number of statements that need to be examined when
debugging.

Later, in 1993, Chen et al [CC93], have proposed the dynamic program
dicing.
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4.1.10 Chopping

Chopping, introduced by Jackson [JR94], is a generalization of slicing.
Although expressible as a combination of intersections and unions of forward
and backward slices, chopping seems to be a fairly natural notion in its own
right.

Two sets of instances form the criterion: source, a set of definitions, and
sink, a set of uses. Chopping a program identifies a subset of its statements
that account for all influences of the source on the sink. A conventional
backward slice is a chop in which all the sink instances belong to the same
site, and the source set contains every variable at every site. A chop is
confined to a single procedure. The instances in source and sink must be
within the procedure, and chopping only identifies statements in the text of
the procedure itself.

After a survey of all the variants of the original slicing concept (static
slicing) and its most important variant — the dynamic slicing — will be
detailed in section 4.2 and 4.3 the original approach.

4.1.11 Relationships among Program Slicing Models

The slicing models discussed in the previous section can be classified ac-
cording to a partial ordering relation, called subsume relation, based on the
sets of program inputs specified by the slicing criteria. Indeed, for each of
these slicing models, a slice preserves the behavior of the original program
on all the trajectories identified by the set of program inputs specified by
the slicing criterion.

In 1998, Canfora et al [CCL98] presented the concept of subsume re-
lation.

Definition 67. A program slicing model SM1 subsumes a program slicing
model SM2 if for each slicing criterion defined according to SM2 there exists
an equivalent slicing criterion defined according to SM1 that specifies the
same set of program inputs.

A slicing model is stronger than the slicing models it subsumes, because
it is able to specify and compute slices with respect to a broader set of slicing
criteria. Consequently, any slice computed according to a slicing model can
also be computed with a stronger model. The subsume relation defines an
hierarchy on the statement deletion based.

According to their definition of subsumes relation, the conditioned slicing
subsumes any other model. Figure 4.1 shows the subsume hierarchy.

It is argued that the set of slicing models (static, dynamic, quasi-static,
simultaneous, conditioned) is partially ordered with respect to subsume re-
lation:
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Figure 4.1: Relationships between program slicing models

• Quasi-static slicing subsumes static slicing;

• Quasi-static slicing subsumes dynamic slicing;

• Simultaneous dynamic slicing subsumes dynamic slicing;

• Conditioned slicing subsumes quasi-static;

• Conditioned slicing subsumes simultaneous dynamic slicing; and

• There is no relation between static slicing and dynamic slicing and
between quasi-static slicing and simultaneous dynamic slicing.

In an attempt to formalize slicing concepts, Binkley et al defined a sub-
sume relation in terms of syntactic ordering and semantic equivalence [BDG+04a,
BDG+06]. This formalization establish a precise relationship between var-
ious forms of dynamic slicing and static slicing, counteracting the Canfora
affirmation that there is no relation between static and dynamic slicing.

4.1.12 Methods for Program Slicing

According to Tip [Tip95] classification, there are three major kinds of ap-
proaches in program slicing:

• Dataflow equations;

• Information-flow relations; and

• Dependency graph based approaches.

The Weiser’s original approach is a kind of method based on iteration of
dataflow equations. In this approach, slices are computed in an iterative
process, by computing consecutive sets of relevant statements for each node
in the CFG. The algorithm first computes directly relevant statements for
each node in the CFG, and then indirectly relevant statements are gradually
added to the slice. The process stops when no more relevant statements are
found.
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Information flow relations for programs presented by Bergeretti [BC85]
can also be used to compute slices. In this kind of approach, several types of
relations are defined and computed in a syntax-directed, bottom-up manner.
With these information-flow relations, slices can be obtained by relational
calculus.

The most popular kind of slicing approach, the dependency graph ap-
proach, was proposed by Ottenstein and Ottenstein [OO84] and restate the
problem of static slicing in terms of a reachability problem in a PDG. A slic-
ing criterion is identified with a vertex in the PDG, and a slice correspond to
all PDG vertices from which the vertex under consideration can be reached.
Usually, the data dependencies used in program slicing are flow dependencies
corresponding to the DEF and REF sets defined in section 2.1.

In these approaches using PDG, slicing can be divided into two steps. In
the first step, the dependency graph of the program are constructed, and
then the algorithm produce slices by doing graph reachability analysis over
it.

As defined in Section 2.1, a dependency graph is a directed graph using
vertexes to represent program statements and edges to represent dependen-
cies. So, the graph reachability analysis can be done by traversing edges
on the dependency graph from a node representing the slicing criteria. A
dependency graph can represent not only dependencies but also other re-
lations such as process communications and so on. Different slices can be
obtained by constructing different dependency graphs.

4.2 Static Slicing

In this section it is discussed the basic static slicing approaches. Each sub-
section is divided according to the methods presented in previous section.

4.2.1 Basic Slicing Algorithms

In this subsection, are presented algorithms for static slicing of structured
programs without non-scalar variables, procedures and interprocess commu-
nication.

Dataflow Equations

The original concept of program slicing [Wei81] was first proposed as the
iterative solution to a dataflow problem specified using the program’s control
flow graph (CFG).

Definition 68. A slice is statement-minimal if no other slice for the same
criterion contains fewer statements.
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Weiser argues that statement-minimal slices are not necessarily unique,
and that the problem of determining statement-minimal slices is undecid-
able.

Many researchers have investigated this problem, and various approaches
result in good approximations. Some techniques are based on data-flow
equations [KL88, LR87, Wei81] while others use graph representations of
the program [AH90, Agr94, BH93a, Bin93, CF94, HRB88, JR94].

An approximation of statement-minimal slices are computed in an iter-
ative process [Tip95], by computing consecutive sets of relevant variables
for each node in the CFG. First, the directly relevant variables are deter-
mined, by only taking data dependencies into account. Below, the notation
i→CFG j indicates the existence of an edge in the CFG from node i to node
j. For a slicing criterion C = (n, V ) (where n denotes the number line), the
set of directly relevant variables at node i of the CFG, R0

C(i) is defined as
follows:

• R0
C(i) = V , when i = n;

• For every i→C FGj, R
0
C(i) contains all variables v such that either

- v ∈ R0
C(j) and v 6∈ DEF (i);

- v ∈ REF (i) and DEF (i)
⋂
R0
C(j) 6= ∅.

From this, a set of directly relevant statements, S0
C , is derived. S0

C is
defined as the set of all nodes i which define a variable v that is relevant at
a successor of i in the CFG:

S0
C = {i|DEF (i)

⋂
R0
C(j) 6= ∅, i→CFG j}

Information-flow Relations

Bergeretti and Carré, in [BC85], proposed another approach that defines
slices in terms of information-flow relations derived from a program in a
syntax-directed fashion. The authors have defined a set of information-
flow relations for sequences of statements, conditional statements and loop
statements.

Dependency Graph based Approach

It were Karl Ottenstein and Linda Ottenstein [OO84] the first of many to
define slicing as a reachability problem in a dependency graph representation
of a program. They use the PDG for static slicing of single-procedure pro-
grams. The statements and expressions of a program constitute the vertices
of a PDG, and edges correspond to data dependencies and control depen-
dencies between statements (section 2.1). The key issue is that the partial
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ordering of the vertices induced by the dependency edges must be obeyed
so as to preserve the semantics of the program.

In the PDG’s of Horwitz et al [HPR88, HRB88] a distinction is made
between loop-carried and loop-independent flow dependencies. It is argued
that the PDG variant of [HPR88] is minimal in the sense that removing any of
the dependency edges, or disregarding the distinction between loop-carried
and loop-independent flow edges would result in inequivalent programs hav-
ing isomorphic PDGs.

The PDG variant considered in [OO84] shows considerably more detain
than that of [HRB88]. In particular, there is a vertex for each (sub)expression
in the program, and file descriptors appear explicitly as well.

In all dependency graph based approaches, the slicing criterion is iden-
tified with a vertex v in the PDG.

4.2.2 Slicing Programs with Arbitrary Control Flow

Dataflow Equations

In intraprocedural program slicing, the critical problem is to determine
which predicates to be included in the slice when the program contains
jump statements.

Lyle reports in [Lyl84] that the original slicing algorithm proposed by
Weiser was able to determine which predicates to be included in the slice
even when the program contains jump statements, It did not, however, make
any attempt to determine the relevant jump statements themselves to be
included in the slice. Thus, Weiser’s algorithm may yields incorrect slices
in the presence of unstructured control flow. Lyle presents a conservative
solution for dealing with goto statements. His algorithm produces slices
including every goto statement that has a non-empty set of active variables
associated with it.

Gallagher [Gal90, GL91b] also use a variation of Weiser’s method. In
the algorithm, a goto statement is included in the slice if it jumps to a label
of an included statement.

Jian, Zhou and Robson [JZR91] have also proposed a set of rules to
determine which jump statements to include in a slice.

Agrawal shows in [Agr94] that either Gallagher algorithm or Jian et al
algorithm does not produce correct slices in all cases.

Dependency Graph based Approach

Ball and Horwitz [BH93a, Bal93] and Choi and Ferrante [CF94] discov-
ered independently that conventional PDG-based slicing algorithms produce
incorrect results in the presence of unstructured control flow: slices may
compute values at the criterion that differ from what the original program
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does. These problems are due to the fact that the algorithms do not deter-
mine correctly when unconditional jumps such as break, goto, and continue
statements are required in a slice. They proposed two similar algorithms to
determine the relevant jump statements to include in a slice. Both of them
require that jumps be represented as pseudo-predicates and the control de-
pendency graph of a program be constructed from an augmented flow graph
of the program. However, Choi and Ferrante distinguish two disadvantages
of the slicing approach based on augmented PDGs (APDG). First, APDGs
requires more space than conventional PDGsand their construction takes
more time. Second, non-executable control dependency edges gives rise to
spurious dependencies in some cases.

In their second approach, Choi and Ferrante also proposed another al-
gorithm to construct an executable slice in the presence of jump statements
when a “slice” is not constrained to be a subprogram of the original one.
The algorithm constructs new jump statements to add to the slice to ensure
that other statement in it are executed in the correct order.

The main difference between the approach by Ball and Horwitz and the
first approach of Choi and Ferrante is that the latter use a slightly more
limited example language: conditional and unconditional goto’s are present,
but no structured control flow constructs. Although Choi and Ferrante argue
that these constructs can be transformed into conditional and unconditional
goto’s. Ball and Horwitz show that, for certain cases, this results in overly
large slices.

Both groups have been proposed two formal proofs to show that their
algorithms compute correct slices.

Agrawal [Agr94] proposed an algorithm has the same precision as that
of the above two algorithms. He observes that a conditional jump statement
of the form if P then goto L must be included in the slice if the predicate
P is in the slice because another statement in the slice is control dependent
on it. This algorithm is appealing in that it leaves the flow-graph and the
PDG of the program intact and uses a separate graph to store the additional
required information. It lends itself to substantial simplification, when the
program under consideration is a structured program. Also, the simplified
algorithm directly leads to a conservative approximation algorithm that per-
mits on-the-fly detection of the relevant jump statements while applying the
conventional slicing algorithms.

Harman and Danicic [HD98] defined an extension of Agrawal’s algo-
rithm that produces smaller slices by using a refined criterion for adding
jump statements (from the original program) to the slice computed using
Ottenstein’s algorithm for building and slicing the PDG [OO84].

Kumar and Horwitz [KH02] extended the previous work on program
slicing by providing a new definition of “correct” slices, by introducing a
representation for C-style switch statements, and by defining a new way to
compute control dependencies and to slice a PDG so as to compute more
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precise slices of programs that include jumps and switches.

4.2.3 Interprocedural Slicing Methods

Dataflow Equations

Weiser describes a two-step approach for computing interprocedural static
slices in [Wei81]. In the first step, a slice is computed for the procedure P
which contains the original slicing criterion. The effect of a procedure call on
the set of relevant variables is approximated using interprocedural summary
information [Bar78]. For a procedure P , this information consists of a set
MOD(P ) of variables that may be modified by P , and a set of USE(P )
of variables that may be used by P , taken into account any procedures
called by P . The fact of Weiser’s algorithm does not take into account
which output parameters are dependent on which input parameters is a
cause of imprecision. This is illustrated in program 4.9 listed below. The
Weiser’s interprocedural slicing algorithm will compute the slice listed in
program 4.10. This slice contains the statement int a = 17; due to the
spurious dependency between variable a before the call, and variable d after
the call.

void s impleAss ign ( int v , int w, int x , int y ) {
2 x = v ;

y = w;
4 }

6 main ( ) {
int a = 17 ;

8 int b = 18 ;
int c , d ;

10 s impleAss ign (a , b , c , d ) ;
p r i n t f ( ” Result : %d\n” , d) ;

12 }

Listing 4.9: Interprocedural sample program

void s impleAss ign ( int v , int w, int x , int y ) {
2 y = w;
}

4
main ( ) {

6 int a = 17 ;
int b = 18 ;

8 int c , d ;
s impleAss ign (a , b , c , d) ;

10 }

Listing 4.10: Weiser’s Interprocedural slice of program 4.9

In the second step of Weiser’s algorithm new criteria are generated for:

a) Procedures Q called by P ;

b) Procedures R that call P .

The two steps described above are repeated until no new criteria occur.
The criteria of a) consists of all pairs (nQ, VQ) where nQ is the last statement
of Q and VQ is the set of relevant variables in P which is in the scope of
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Q (where formals are substituted by actual). The criteria of b) consists
of all pairs (nR, VR) such that NR is a call to P in R, and VR is the set
of relevant variables at the first statement of P which is in the scope of
R (actuals are substituted by formals). The generation of new criteria is
formalized by way of functions UP (S) and DOWN(S) which map a set S
of slicing criteria in a procedure P to a set of criteria in procedures that
call P , and a set of criteria in procedures called by P , respectively. The
closure UP

⋃
DOWN*({C}) contains all criteria necessary to compute an

interprocedural slice, given an initial criterion C. Worst-case assumptions
have to be made when a program calls external procedures, and the source
code is unavailable.

Horwitz, Reps and Binkley report that Weiser’s algorithm for interpro-
cedural slicing is unnecessarily inaccurate because of what they refer to as
the “calling context” problem, i.e., the transitive closure operation fails to
account for the calling context of a called procedure. In a nutshell, the
problem is that when the computation ’descends’ into a procedure Q that is
called from a procedure Q, not only P . This corresponds to execution paths
which enter Q from P and exit Q to a different procedure P ′.

Tip [Tip95] conjecture that the calling context problem of Weiser’s al-
gorithm can be fixed by observing that the criteria in the UP sets are only
needed to include procedures that transitively call the procedure contain-
ing the initial criterion. Once this is done, only DOWN sets need to be
computed.

Hwang, Du and Chou [JDC88] proposed an iterative solution for inter-
procedural static slicing based on replacing recursive calls by instances of
the procedure body. The slice is recomputed in each iteration until a fixed
point is found (i.e., no new statement are added to a slice). This approach
do not suffer from the calling context problem because expansion of recur-
sive calls does not lead to considering infeasible execution paths. However,
Reps [RHSR94, Rep96] showed that for a certain family P k of recursive pro-
grams, this algorithm takes time O(2k), i.e., exponential in the length of the
program.

Dependency Graph based Approach

Interprocedural slicing as a graph reachability problem requires extending of
the PDG and, unlike the addition of data types or unstructured control flow,
it also requires modifying the slicing algorithm. The PDG modifications rep-
resents call statements, procedure entry, parameters, and parameter passing.
The algorithm change is necessary to correctly account for procedure calling
context.

Horwitzs, Reps and Binkley [HRB88] introduce the notion of System
Dependency Graph (SDG) for the dependency graphs that represents multi-
procedure programs. Figure 4.2 shows the SDG corresponding to the pro-



4.2. STATIC SLICING 125

gram 4.11 listed below.

void Add( int∗ a , int b) {
2 ∗a = ∗a + b ;
}

4
void Increment ( int z ) {

6 Add(&z , 1 ) ;
}

8
void A( int x , int y ) {

10 Add(&x , y ) ;
Increment(&y) ;

12 }

14 void main ( ) {
int sum = 0 ;

16 int i = 1 ;
while ( i < 11) {

18 A(&sum , i ) ;
}

20 p r i n t f ( ”Sum: %d\n” , sum) ;
}

Listing 4.11: Program Example

Interprocedural slicing can be defined as a reachability problem using
the SDG, just as intraprocedural slicing is defined as a reachability problem
using the PDG. The slices obtained using this approach are the same as those
obtained using Weiser’s interprocedural slicing method [Wei84]. However,
is approach does not produce slices that are as precise as possible, because
it considers paths in the graph that are not possible execution paths. For
example, there is a path in the SDG shown in Figure 4.2 from the vertex
of procedure main labeled “xin = sum” to the vertex of main labeled
“i = yout”. However this path corresponds to procedure Add being called
by procedure A, returning to procedure Increment, which is not possible.
The value of i after the call to procedure A is independent of the value of
sum before the call, and so the vertex labeled “xin = sum” should not be
included in the slice with respect to the vertex labeled “i = yout”. Figure 4.3
shows this slice.

To achieve more precise interprocedural slices, an interprocedural slice
with respect to vertex s is computed using two passes over the graph. Sum-
mary edges permit moving across a call procedure; thus, there is no need to
keep track of calling context explicitly to ensure that only legal execution
paths are traversed. Both passes operate on the SDG, traversing edges to
find the set of vertices that can reach a given set of vertices along certain
kinds of edges. Informally, if s is in procedure P then pass 1 identifies ver-
tices that reach s and are either in P itself or procedures that (transitively)
call P [BG96]. The traversal in pass 1 does not descend into procedures
called by P or its callers. Pass 2 identifies vertices in called procedures that
induce the summary edges used to move across call sites in pass 1.

The traversal in pass 1 starts from s and goes backwards (from target
to source) along flow edges, control edges, call edges, summary edges, and
parameter-in edges, but not along parameter-out edges. The traversal in
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Figure 4.2: Example system and its SDG
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Figure 4.3: The SDG from Figure 4.2 sliced with respect to the formal-out
vertex for parameter z in procedure Increment, together with the system
to which it corresponds.



128 CHAPTER 4. STATE-OF-THE-ART: SLICING

pass 2 starts from all vertices reached in pass 1 and goes backwards along
flow edges, control edges, summary edges, and parameter-out edges, but not
along call, or parameter-in edges. The result of an interprocedural slice of
a graph G with respect to vertex set S, denoted by Slice(G,S), consists of
the sets of vertices encountered during by pass 1 and pass 2, and the set of
edges induce by this vertex set.

Slice(G,S) is a subgraph of G. However it may be infeasible (i.e., it
may be not the SDG of any system). The problem arises when Slice(G,S)
includes mismatched parameters: different call-sites on a procedure include
different parameters. There are two causes of mismatches: missing actual-in
vertices and missing actual-out vertices. Making such systems syntactically
legal by simply adding missing parameters leaves semantically unsatisfactory
systems [Bin93]. In order to include the program components necessary
to compute a safe value for the parameter represented at missing actual-
in vertex v, the vertices in the pass 2 slice of G taken with respect to v
must be added to the original slice. A pass 2 slice includes the minimal
number of components necessary to produce a semantically correct system.
The addition of pass 2 slices is repeated until no further actual-in vertex
mismatches exist.

The second cause of parameter mismatches is missing actual-out vertices.
Because missing actual-out vertices represent dead-code no additional slicing
is necessary. Actual-out mismatches are removed by simply adding missing
actual-out vertices to the slice.

The details of this algorithm are given in [Bin93].
Several extensions of Horwitz-Reps-Binkley (HRB) algorithm have been

presented. Lakhotia [Lak92] adapted the idea of lattice theory to interproce-
dural slicing and presented a slicing algorithm based on the augmented SDG
in which a tag is contained for each vertex of SDG. Different from HRB algo-
rithm, this one only need one traverse on the SDG. Binkley extended HRB
algorithm to produce executable interprocedural program slices in [Bin93].

Clarke et al [CFR+99] extended HRB algorithm to VHDL (Very High
Speed Integrated Circuit Hardware Description Language), using an ap-
proach based on capturing the operational semantics of VHDL in traditional
constructs. Their algorithm first maps the VHDL constructs onto traditional
program language constructs and then slices using a language-independent
approach.

Orso et al [OSH01] proposed a SDG-based incremental slicing technique,
in which slices are computed based on types of data dependencies. They
classified the data dependencies into different types. The scope of a slice can
be increased in steps, by incorporating additional types of data dependencies
at each steps.

To the problem of SDG constructing, Forgacsy and Gyimóthy [FG97]
presented a method to reduce the SDG. Livadas and Croll [LC94] extended
the SDG and proposed a method to construct SDG directly from parser
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trees. Their algorithm is conceptually much simpler, but it cannot han-
dle recursion. Kiss [KJLG03] presented an approach to construct SDG from
the binary executable programs and proposed an algorithm to slice on them.
Sinha, Harrold and Rothermal [SHR99] extended the SDG to represented in-
terprocedural control dependencies. Their extension is based on Augmented
Control Flow Graph (ACFG), a CFG augmented with edges to represent in-
terprocedural control dependencies. Hisley et al [HBP02] extended the SDG
to threaded System Dependency Graph (tSDG) in order to represent non-
sequential programs.

Information-flow Relations

Bergeretti and Carré explains in [BC85] how the effect of procedure calls can
be approximated. Exact dependencies between input and output parameters
are determined by slicing the called procedure with respect to which output
parameter (i.e., the computation of the µ relation for the procedure). Then,
each procedure call is replaced by a set of assignments, where each output
parameter is assigned to a fictitious expression that contains the input pa-
rameters it depends on. As only feasible execution paths are considered,
this approach does not suffer from the calling context problem. A call to
a side-effect free function can be modeled by replacing it with a fictitious
expression containing all actual parameters. Note that the computed slices
are not truly interprocedural since no attempt is done to slice procedures
other than the main program.

4.2.4 Slicing in the Presence of Composite Datatypes and
Pointers

Dependency Graph based Approach

When slicing, there are two approaches to handle arrays. A simple approach
for arrays is to treat each array as a whole [Lyl84]. According to Lyle, any
update to an element of an array is regarded as an update and a reference
of the entire array. However, this approach leads to unnecessary large slices.
To be more precise requires distinguishing the elements of array. And this
needs dependency analysis.

The PDG variant of Ottenstein and Ottenstein [OO84] contains a vertex
for each sub-expression; special select and update operators serve to access
elements of an array.

Banerjee [Ban88] presented the Extended GDC Test. It can be applied
to analyze the general objects (multi-dimensional arrays and nested trape-
zoidal loops). The test is derived from number theory. The single equation
a1x1+a2x2+...+anxn = b has an integer solution if and only if gdc(ai) di-
vides b. This give us an exact test for single-dimensional arrays ignoring
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bounds. And it can be extended to multi-dimensional arrays.

In the presence of pointers, situations may occur where two or more vari-
ables refer to the same memory location. This phenomenon is commonly
called aliasing. Algorithms for determining potential aliases can be found
in [CBC93, LR92]. Slicing in the presence of aliasing requires a generaliza-
tion of the notion of data dependency to take potential aliases into account.
Tip [Tip95] have presented the definition of potentially data dependent.

Definition 69. A statement s is potentially data dependent on a statement
s′ if:

i) s defines a variable X ′;

ii) s′ uses a variable X;

iii) X and X ′ are potential aliases; and

iv) there exists a path from s to s′ in the CFG where X is not necessarily
defined.

Such paths may contain definitions to potential aliases of X.

A slightly different approach is pursued by Horwitz et al in [HPR89a].
Instead of defining data dependency in terms of potential definitions and
uses of variables, they defined this notion in terms of potential definitions
and uses of abstract memory locations.

However, Landi [Lan92] have shown that precise pointer analysis is un-
decidable. So the analysis has to do a trade-offs between cost and precision.
There are several dimensions that affect the trade-offs. How a pointer anal-
ysis addresses each of these dimensions helps to categorize the analysis.

Besides the data dependency, in the presence of pointers, the reaching
definition also need to be changed, and the l-valued expression have to be
taken into account.

Definition 70. An l-valued expression is any expression which may occur
as the left-hand side of an assignment.

Jiang [JZR91] presented an algorithm for slicing C programs with point-
ers and arrays. Unfortunately, the approach appears to be flawed. There
are statements incorrectly omitted, resulting in inaccurate slices.

4.3 Dynamic Slicing

In this section is is discussed the dynamic slicing approaches.
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4.3.1 Basic Algorithms for Dynamic Slicing

Dataflow Equations

It was Korel and Laski [KL88, KL90] who first proposed the notion of dy-
namic slicing. As it was defined in section 4.1.3, a dynamic slice is a part
of a program that affects the concerned variable in a particular program
execution. As only one execution is taken into account, dynamic program
slicing may significantly reduce the size of the slice as compared to static
slicing.

Most dynamic slices are computed with respect to an execution history
or trajectory. This history records the execution of statements as the pro-
gram executes. The execution of a statement produces an occurrence of
the statement in the trajectory. Thus, the trajectory is a list of statement
occurrences.

Two example execution histories are shown below for the program 4.12.
Superscripts are used to differentiate between the occurrences of a statement.
For example, statement 2 executes twice for the second execution producing
21 and 22.

1 scan f ( ”%d” , &n) ;
for ( i = 1 ; i < n ; i++) {

3 a = 2 ;
i f ( c1 ) {

5 i f ( c2 ) {
a = 4 ;

7 }
else {

9 a = 6 ;
}

11 }
z = a ;

13 }
p r i n t f ( ” Result : %d\n” , z ) ;

Listing 4.12: Two execution
histories

Execution history 1
Input n = 1, c1 and c2 both true:
< 11, 21, 31, 41, 51, 61, 121, 22, 141 >

Execution history 2
Input n = 2, c1 and c2 false on the
first iteration and true on the second:
< 11, 21, 31, 41, 121, 22, 32, 42, 51, 61,
122, 23, 141 >

In order to compute dynamic slices, Korel and Laski introduce three dy-
namic flow concepts which formalize the dependencies between occurrences
of statements in a trajectory.

Definition 71. Definition Use (DU). vi DU uj ⇔ vi appears before uj in
the execution history and there is a variable x defined at vi, used at uj, but
not defined by any occurrence between vi and uj.

This definition captures flow dependency that arise when one occurrence
represent the assignment of a variable and another use of that variable. For
example, in program 4.12 listed above, when c1 and c2 are both false, there
is a flow dependency from statement 3 to statement 12.

Definition 72. Test Control (TC). vi TU uj ⇔ u is control dependent on
v (in the static sense) and for all occurrences wk between vi and uj, w is
control dependent on v.
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This second definition captures control dependency. The only difference
between this definition and the static control dependency definition is that
multiple occurrence of predicates exist.

Definition 73. Identity Relation (IR). vi IR uj ⇔ v = u.

Dynamic slices are computed in an iterative way, by determining suc-
cessive sets Si of directly and indirectly relevant statements. For a slicing
criterion C = (Iq, p, V ) the initial approximation S0 contains the last defini-
tion of the variables in V in the trajectory, as well as the test actions in the
trajectory on which Iq is control dependent. Approximation Si+1 is defined
as follows:

Si+1 = Si
⋃
Ai+1

where Ai+1 consists of:

Ai+1 = Xp|Xp 6∈ Si, (Xp, Y t) ∈ (DU ∪ TC ∪ IR) for some Y t ∈ Si, p < q

The dynamic slice if obtained from the fixpoint SC of this process (as q
is finite, this always exists): any statement X for an instance Xp occurs in
SC will be in the slice.

Program 4.13 shows the Korel and Laski slice of the program shown in
program 4.12 taken with respect to (32, 2, {a}).

s can f ( ”%d” , &n) ;
2 for ( i = 1 ; i < n ; i++) {

a = 2 ;
4 }

Listing 4.13: A dynamic slice of the program listed in program 4.12 and its
execution history

This slice is computed as follows:
DU = {(11, 21), (31, 121), (61, 122), (122, 141)}
TC = {(21, 31), (21, 41), (21, 121), (21, 32), (21, 42), (21, 122),

(22, 32), (22, 42), (22, 122), (42, 51), (51, 61)}
IR = {(21, 22), (21, 23), (22, 23), (31, 32), (41, 42), (121, 122)}
S0 = {21}
S1 = {11, 21}
S2 = {11, 21}} = S1, thus the iteration ends.
S = {31}

⋃
{11, 21} = {11, 21, 31}.

Information-flow Relations

Gopal [Gop91] have proposed an approach were dynamic dependency rela-
tions are used to compute dynamic slices. He introduces dynamic versions of
Bergeretti and Carré information-flow relations. The λS relations contains
all pairs (v, e) such that statement e depends on the input value of v when
program S is executed. Relation µS contains all pairs (e, v) such that the
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output value of v depends on the execution of statement e. A pair (v, v′) is
in the relation ρS if the output value of v′ depends on the input value of v.
In this definitions it is presumed that S is executed for some fixed input.

For empty statements, assignments, and statement sequences Gopal’s
relations are exactly the same as for the static case.

Dependency Graph based Approach

Miller and Choi [MC88] first proposed the notion of dynamic dependency
graph. However, their method mainly concentrates on parallel program
debugging and flowback analysis4.

Agrawal and Horgan [AH90] developed an approach for using depen-
dency graphs to compute non-executable dynamic slices. Their first two
algorithms for computing dynamic slices are inaccurate. The initial ap-
proach uses the PDG and marks the vertices that are executed for a given
test. A dynamic slice is computed by computing a static slice in the sub-
graph of the PDG that is induced by the marked vertices. By construction,
this slice only contains vertices that are executed. This solution is imprecise
because it does not detect situations where there exists a flow edge in the
PDG between a marked vertex v1 and a marked vertex v2, but where the
definitions of v1 are not actually used at v2.

The second approach consists of marking PDG edges as the correspond-
ing dependencies arise during execution. Again, the slice is obtained by
traversing the PDG, but this time only along marked edges. Unfortunately,
this approach still produces imprecise slices in the presence of loops be-
cause an edge that is marked in some loop iteration will be present in all
subsequent iterations, even when the same dependency does not recur.

This approach computes imprecise slices because it does not account for
the fact that different occurrences of a statement in the execution history
may be (transitively) dependent on different statements. This observation
motivate their third solution: create a distinct vertex in the dependency
graph for each occurrence of a statement in the execution history. This
kind of graph is referred as Dynamic Dependency Graph (DDG). A dynamic
slicing criterion is identified with a vertex in the DDG, and a dynamic slice
is computed by determining all DDG vertices from which the criterion can
be reached.

A dynamic slice can now be defined in terms of a variable, an execution
history, and an occurrence of a statement in the execution history. The slice
contains only those statements whose execution had some effect on the value
of the variable at the occurrence of the statement in the execution history.

4Flowback analysis is a powerful technique for debugging programs. It allows the
programmer to examine dynamic dependencies in a program’s execution history without
having to re-execute the program.
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Figure 4.4: The DDG for the example listed in program 4.12.

Figure 4.4 shows the DDG for program 4.12, considering the slice on
variable z at statement 14, where c1 and c2 false on the first iteration and
true on the second.

Goswami and Mall [GM02] presented a dynamic algorithm based on
the notion of compact dynamic dependency graph (CDDG). The control
dependency edges of the CDDG are constructed statically while the data-
flow dependency edges are constructed dynamically.

Mund et al [MMS03] found that CDDG-based approaches may not pro-
duce correct result in some cases. They proposed three intraprocedural
dynamic slicing methods, two based on marked PDG and another based on
their notion of Unstructured Program Dependency Graph (UPDG) which can
be used for unstructured programs. Their first method also based on the
marking and unmarking of edges, while the other two based on the runtime
marking and unmarking of nodes. It is claimed that all the three algorithms
are precise and more space and time efficient than former algorithms.

Zhang et Gupta [ZG04] found that different dynamic dependency could
be expressed by one edge in the dependency graph. They presented a prac-
tical dynamic slicing algorithm which is based upon a novel representa-
tion of the dynamic dependency graph that is highly compact and rapidly
traversable.

Further, Zhang et al [ZGZ04] studied the statistical characteristics of dy-
namic slices by experiments. Based on the forward slicing methods, they in-
troduced a way of using reduced ordered binary decision diagrams (roBDDs)
to represent a set of dynamic slices. Within this technique, the space and
time requirements of maintaining dynamic slices are greatly reduced. Thus,
the efficiency of dynamic slicing can be improved.
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4.3.2 Slicing Programs with Arbitrary Control Flow

Dependency Graph based Approach

Korel [Kor97a, Kor97b] used a removable block based approach to handle
jump statements in dynamic program slicing. This approach can produce
correct slices in the presence of unstructured programs.

Huynh and Song [HS97] then extended the forward dynamic slicing
method presented in [KY94] to handle jump statements. However, their
algorithm can handle unstructured programs having only structured jumps.

Mund, Mall and Sarkar [MMS03] proposed a notion of jump depen-
dency. Based on this notion, they build the Unstructured Program Depen-
dency Graph (UPDG) as the intermediate representation of a program. Their
slicing algorithm based on UPDG can produce precise slices.

Faragó and Gergely [FG02] handled jump statements for the forward
dynamic slicing by building a transformed D/U structure for all relevant
statements. This method can be applied to goto, break, continue and switch
statements of C programs.

4.3.3 Interprocedural Slicing Methods

Dependency Graph based Approach

Several approaches have been presented concerning on interprocedural dy-
namic slicing.

In [ADS91], Agrawal et al consider dynamic slicing of procedures with
various parameter-passing mechanisms. Call-by-value parameter-passing is
modeled by a sequence of assignments f1 = a1; ...; fn = an;5 which is exe-
cuted before the procedure is entered. In order to determine the memory
cells for the correct activation record, the USE (see section 2.1) sets for the
actual parameters ai are determined before the procedure in entered, and
the DEF sets for the formal parameters fi after the procedure is entered.

For Call-by-value-result parameter passing, additional assignments of
formal parameters to actual parameters have to be performed upon exit
from the procedure.

Call-by-reference parameter-passing does not require any actions specific
to dynamic slicing, as the same memory cell is associated with corresponding
actual and formal parameters ai and fi.

Notice that in this approach dynamic data dependencies based on def-
initions and uses of memory location are used. This way, two potential
problems are avoided. First, the use of global variables inside procedures
does not pose any problems. Second, no alias analysis is required.

5It is assumed that a procedure P with formal parameters f1, ..., fn is called with actual
parameters a1, ..., an
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Kamkar et al [KSF92, KFS93b] further discussed the problem of in-
traprocedural dynamic slicing. They proposed a method that primarily
concerned with procedure level slices. That is, they study the problem of
determining the set of call sites in a program that affect the value of a
variable at a particular call site.

During execution, a dynamic dependency summary graph is constructed.
The vertices of this graph, referred to as procedure instances, correspond
to procedure activations annotated with their parameters. The edges of
the summary graph are either activations edges corresponding to procedure
calls, or summary dependency edges. The latter type reflects transitive data
and control dependencies between input and output parameters of procedure
instances.

A slicing criterion is defined as a pair consisting of a procedure instance,
and an input or output parameter of the associated procedure. After con-
structing the summary graph, a slice with respect to a slicing criterion is
determined in two steps. First, the parts of the summary graph from which
the criterion can be reached is determined; this subgraph is referred to as
an execution slice. Vertices of an execution slice are partial procedure in-
stances, because some parameters may be “sliced away”. An interprocedural
program slice consists of all call sites in the program for which a partial in-
stance occurs in the execution slice.

4.3.4 Slicing in the Presence of Composite Datatypes and
Pointers

Dataflow Equations

Korel and Laski [KL90] consider slicing in the presence of composite vari-
ables by regarding each element of an array, or field of a record as a dis-
tinct variable. Dynamic data structures are treated as two distinct entities,
namely the pointer itself and the object being pointed to. For dynamically
allocated objects, they propose a solution where a unique name is assigned
to each object.

Dependency Graph based Approach

Agrawal et al [ADS91] present a dependency graph based algorithm for
dyanmic slicing in the presence of composite datatypes and pointers. Their
solution consist of expressing DEF and USE sets in terms of actual memory
locations provided by the compiler. The algorithm presented is similar to
that for static slicing in the presence of composite datatypes and pointers
by the same authors.

Faragó [FG02] also discussed the problem of handling poniters, arrays
and structures for C programs when doing forward dynamic slicing. Abstract
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memory locations are used in this method and program instrumentation is
used to extract these locations.

4.4 Applications of Program Slicing

As discussed in the previous sections, program slicing is a well-recognized
technique that is used mainly at source code level to highlight code state-
ments that impact upon other statements. Slicing has many applications
because it allows a program to be simplified by focusing attention on a sub-
computation of interest for a chosen purpose. In this section we present
some of the applications of program slicing.

4.4.1 Debugging

The original motivation for program slicing was to aid the location of faults
during debugging activities. The idea was that the slice would contain the
fault, but would not contain lines of code that could not have caused the
failure observed. This is achieved by setting the slice criterion to the variable
for which an incorrect value is observed.

Clearly slice cannot be used to identify bugs such as missing initialization
of a variable. If the original program does not contain a line of code the slice
will not contain it either. Although slicing cannot identify omission errors,
Harman have argued that slicing can be used to aid the detection of such
errors [HBD03].

In debugging, one is often interested in a specific execution of a program
that exhibits anomalous behavior. Dynamic slices are particular useful here
because they only reflect the actual dependencies of that execution, resulting
in smaller slices than static ones. In his thesis, Agrawal discussed how static
and dynamic slicing can be used for semi-automated debugging of programs.
He proposed an approach where the user gradually ’zooms out’ from the
location where the bug manifested itself by repeatedly considering larger
data and control slices.

Slicing is also useful in algorithmic debugging [FSKG92]. An algorithm
debugger partially automates the task of localizing a bug by comparing the
intended program behavior with the actual program behavior. The intended
behavior is obtained by asking the user whether or not a procedure (program
unit) behaves correctly. Using the answers given by the user, the location
of the bug can be determined at the unit level.

Debugging was also the motivation for program dicing and latter pro-
gram chopping (see section 4.1.10). Dicing uses the information that some
variables fail some tests, while other variables pass all tests, to automatically
identify a set of statements likely to contain the bug [LW87]. The technique
of program chopping identifies the statement that transmit values from a
statement t to a statement s. A program chop is useful in debugging when
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a change at t causes an incorrect result to be produced at s. The statements
in chop(t, s) are the statements that transmit the effect of the change at t
to s. Debugging attention should be focused here. In the absence of pro-
cedures, chop(t, s) is simply the intersection of the forward slice taken with
respect to t and the backward slice taken with respect to s can be viewed
as a generalized kind of program dice.

4.4.2 Software Maintenance

Software maintainers are faced with the upkeep of programs after their initial
release and experiment the same problems as program integrators: under-
standing existing software and making changes without having a negative
impact on the unchanged part.

Gallagher and Lyle [GL91b] use the notion of decomposition slice of
programs. A decomposition slice with respect to a variable v consists of
all statements that may affect the observable value of v at some point; it is
defined as the union of slices with respect to v at any statement that outputs
v, and the last statement of the program. Essentially, they decompose a
program into a set of components (reduced programs), and each of them
captures part of the original program’s behavior. The main observation
of [GL91b] is that independent statements in a slice do not affect the data
and control flow in the complement. This results in the follow guidelines for
modification:

• Independent statements may be deleted from a decomposition slice;

• Assignments to independent variables may be added anywhere in a
decomposition slice;

• Logical expressions and output statements may be added anywhere in
a decomposition slice;

• New control statements that surround any dependent statements will
affect the complement’s behavior.

Slicing can also be used to identify reusable functions [CLLF94, CCLL94,
CLM95, CLM96, LV97]. Canfora et al presented a method to identify func-
tional abstraction in existing code [CLLF94]. In this approach, program
slicing is used to isolate the external functions of a system and these are
then decomposed into more elementary components by intersection slices.
They also found that conditioned slice could be used to extract procedures
from program functionality.

4.4.3 Reverse Engineering

Besides above application in software maintenance, program slicing can be
used in reverse engineering [BE93, JR94]. Reverse engineering concerns the
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problem of comprehending the current design of a program and the way this
design differs from the initial development. This involves abstracting out of
the source code, the design decisions and rationale from the initial develop-
ment (design recognition) and understanding algorithms chosen (algorithm
recognition).

Beck and Eichmann [BE93] applied program slicing techniques to re-
verse engineering by using it to assist in the comprehension of large soft-
ware systems, through traditional slicing techniques at the statement level,
and through a new technique, interface slicing, at the module level. A de-
pendency model for reverse engineering should treat procedures in a mod-
ular fashion and should be fine-grained, distinguishing dependencies that
are due to different variables. Jackson and Rollins [JR94] proposed an im-
proved PDG that satisfies both, while retaining the advantages of PDG. They
proposed an algorithm to compute chopping from their dependency graph
which can produce more accurate results than algorithms based directly on
the PDG.

4.4.4 Program Comprehension

Program comprehension is a vital software engineering and maintenance
activity. It is necessary to facilitate reuse, inspection, maintenance, reverse
engineering, reengineering, migration, and extension of existing software
systems.

Slicing revealed to be helpful in the comprehension phase of maintenance.
De Lucia et al [LFM96] used conditioned slicing to facilitate program com-
prehension. Quasi-static slicing can also be used in program comprehension.
These techniques share the property that a slice is constructed with respect
to a condition in addition to the traditional static slicing and thus can give
the maintainer the possibility to analyze code fragments with respect to
different perspectives.

Indeed, slicing can be used in many aspects of program comprehension:
Harman, Sivagurunathan and Daninic [HSD98, SHS02] used program slic-
ing in understanding dynamic memory access properties. Komondoor and
Horwitz [KH01] presented an approach that use PDG and slicing to find du-
plicate code fragments in C programs. Henrard et al [HEH+98] made use of
program slicing in database understanding. Korel and Rilling used dynamic
slicing to help understand the program execution [KR97].

4.4.5 Testing

Software maintainers are also faced with the task of regression testing:
retesting software after a modification. This process may involve running
the modified program on a large number of test cases, even after the small-
est of changes. Although the effort required to make a small change may
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be minimal, the effort required to retest a program after such a change
may be substantial. Several algorithms based on program slicing have been
proposed to reduce the cost of regression testing.

A program satisfies a conventional data flow testing criterion if all def-use
pairs occur in a successful test.

Duesterwald, Gupta and Soffa [DGS92] propose a more rigorous testing
criterion, based on program slicing: each def-use pair must be exercised
in a successful test; moreover it must be output influencing, i.e., have an
influence on at least one output value. A def-use pair is output-influencing
if it occurs in an output slice (a slice with respect to an output statement).
It is up to user, or an automatic test generator to construct enough tests
such that all def-use pairs are tested.

Kamkar, Shahmerhi and Fritzon [KFS93a] extended the previous work
to multi-procedure programs. To this end, they define appropriate notions of
interprocedural def-use pairs. The interprocedural dynamic slicing method
of [KFS93b, KSF92] is used to determine which interprocedural def-use pairs
have an effect on a correct output value, for a given test. The summary-
graph presentation is slightly modified by annotating vertices and edges with
def-use information. This way, the set of def-use pairs exercised by a slice
can be determined efficiently.

In [GHS92], Gupta, Harrold and Soffa describe an approach to regression
testing where slicing techniques are used. Backward and forward slices serve
to determine the program parts affected by the change, and only tests which
execute affected def-use pairs need to be executed again. Conceptually, slices
are computed by backward and forward traversals of the CFG of a program,
starting at the point of modification.

In [BH93b], Bates and Horwitz used a variation of the PDG notion
of [HPR89b] for incremental program testing. Bates and Horwitz presented
test selection algorithms for all the vertices and flow-edges test data ade-
quacy criterion. They proved that statements in the same class are exercised
by the same tests. This work only considers single procedure programs.

Binkley [Bin97] presented two complementary algorithms for reducing
the cost of regression testing that operate on programs with procedures and
procedure calls.

4.4.6 Measurement

Cohesion and coupling are two important metrics in software measure-
ment.

Cohesion is an attribute of a software unit that measures the “relat-
edness” of the unit. It has been qualitatively characterized as coincidental,
logical, procedural, communicational, sequential and functional; coinciden-
tal is the weakest and functional is the strongest.
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Several approaches using program slicing to measure cohesion have been
presented.

It was Longworth [Lon85] the first to study the use of program slicing
as indicator of cohesion.

Ott and Thuss [OT89] then noted the visual relationship that exists
between the slices of a module and its cohesion as depicted in a slice profile.
Certain inconsistencies noted by Longworth were eliminated through the
use of metric slices [OB92, Ott92, OT93, Thu88]. A metric slices takes into
account both uses and used by data relationships; that is, they are the union
of Horwitz et al’s backward and forward slices.

Bieman and Ott [BO93] examined the functional cohesion of procedures
using a data slice abstraction. A data slice is a backward and forward static
slice that uses data tokens rather than statements as the unit of decom-
position. Their approach identifies the data tokens that lie on more than
one slice as the “glue” that bind separate components together. Cohesion is
measured in terms of the relative number of glue tokens, tokens that lie on
more that one data slice, and super-glue tokens, tokens that lie on all data
slices in a procedure, and the adhesiveness of the tokens.

Coupling is the measure of how one module depends upon or affects
the behavior of another. Harman et al [HOSD] proposed a method of using
program slicing to measure coupling. It is claimed that this method produce
more precise measurement than information flow based metrics.

4.5 Tools using Program Slicing

In this section we present some tools that uses program slicing to aid at
program understanding and comprehension.

4.5.1 CodeSurfer

As referred in subsection 2.5.3, CodeSurfer [Gra08b] is a static analysis
tool designed to support advanced program understanding based on the
dependency-graph representation of a program. CodeSurfer is thus named
because it allows surfing of programs akin to surfing the web [AT01].

CodeSurfer builds an intermediate representation called the system de-
pendency graph (SDG— see section 2.1). The program slices are computed
using graph reachability over the SDG. CodeSurfer’s output goes through
two preprocessing steps before slicing begins [BGH07].

The first identifies intraprocedural strongly connected components (SCCs)
and replaces them with a single representative vertex. The key observation
here is that any slice that includes a vertex from an SCC will include all the
vertices from that SCC; thus, there is a great potential for saving effort by
avoiding redundant work [BH03]. Once discovered, SCC formation is done
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by moving all edges of represented vertices to the representative. The edge-
less vertices are retained to maintain the mapping back to the source. While
slicing, the slicer need never encounter them.

The second preprocessing step reorders the vertices of each procedure
into topological order. This is possible because cycles have been removed
by the SCC formation. Topological sorting improves memory performance
— in particular, cache performance [BH03]. After preprocessing, two kinds
of slices are computed: backward and forward interprocedural slicing.

Operations that highlight forward and backward slices show the impact
of a given statement on the rest of the program (forward slicing), and the
impact of the rest of a program on a given statement (backward slicing).
Operations that highlight paths between nodes in the dependency graph
(chops) show ways in which the program points are interdependent (or in-
dependent).

4.5.2 JSlice

JSlice [WR08, WRG] was the first dynamic slicing tool for Java programs.
This slicer proceeds by traversing a compact representation of a bytecode
trace and constructs the slice as a set of bytecodes; this slice is then trans-
formed to the source code level with the help of Java class files. This slicing
method is complicated by Java’s stack-based architecture which require to
simulate a stack during trace traversal.

Since the execution traces are often huge, the authors of the tool develop
a space efficient representation of the bytecode stream for a Java program
execution. This compressed trace is constructed on-the-fly during program
execution. The dynamic slicer performs backward traversal of this com-
pressed trace directly to retrieve data/control dependencies, that is, slicing
does not involve costly trace decompression.

4.5.3 Unravel

Unravel [LWG+95] is a static program slicer developed at the National In-
stitute of Standards and Technology as part of a research project. It slices
ANSI-C programs. The limitations of Unravel are in the treatment of unions,
forks, and pointers to functions. The tool is divided into three main com-
ponents:

• a source code analysis component to collect information necessary for
the computation of program slices;

• a link component to connect information from separate source files
together;

• and an interactive slicing component: to extract program components
that the software quality assurance auditor can use; and to extract
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program statements for answering questions about the software being
audited.

By combining program slices with logical set operations, Unravel can identify
code that is executed in more than one computation.

4.5.4 HaSlicer

HaSlicer [Rod06, RB06] is a prototype of a slicer for functional programs
written in Haskell. The tool was built for the identification of possible coher-
ent components from monolithic code. It covers both backward and forward
slicing using a Functional Dependency Graph (FDG), an extension to func-
tional languages of PDG.

In [RB06] the authors discuss how the tool can be used to component
identification through the extraction process from source code and the in-
corporation of a visual interface over the generated FDG to support user
interaction.

4.5.5 Other Tools

There are other tools that use program slicing: CodeGenie [LBO+07, Lop08]
is a tool that implements a test-driven approach to search for code avail-
able on large-scale code repositories in order to reuse the fragments found;
and GDB-Slice6 which implements a novel efficient algorithm to compute
slices in GDB (GNU Project debugger) through the GCC (GNU C Compiler
Collection) [GABF99].

6http://www.sed.hu/gdbslice/



144 CHAPTER 4. STATE-OF-THE-ART: SLICING



Chapter 5

State-of-the-Art:
Visualization

...thought is impossible without
an image.

Aristotle, 384-322 BC

Nowadays, software systems are growing in terms of size and complexity
and their development and maintenance usually involves team work (many
people contributing for the same system, but in different parts). This makes
the task of programming, understanding and modifying software more dif-
ficult, especially when dealing with code written by others. Knowledge of
code decays as the software ages and the original programmers and design
team move on to new assignments. The design documents are usually out
of date because they have not been maintained, leaving the code as the only
guide to system behavior. Thus, it is a very time consuming and tedious
task to understand complex system behavior from code. Therefore, tools for
supporting and making easier these tasks have become essential.

One key aspect to help engineers to deal with complexity and to increase
programmers productivity is through Software Visualization (SV). Along the
last two decades, several techniques and tools became available to support
tasks such as analysis, specification/modeling, coding, testing, debugging,
maintenance and understanding. These activities can be assisted through
various aspects of software visualization, including visual modeling, visual
database query, visual programming, algorithm animation, program visual-
ization, data visualization, and document visualization.

The reason why a chapter on visualization is included in this document
is due to the need of finding a powerful visual way to present the seman-
tic/conditional slices produced. As it will be shown along the chapter, dis-
playing the slices of a program in a visual way, instead of textual, is not
a novelty. However, due to the complexity of the slicing algorithms that
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will be presented in the next chapters, and because usually in Program Ver-
ification visualization techniques are not used, it was considered of great
aid to include them is the PhD work here reported. In this context, it was
taken profit of the visualization techniques for both components: slicing and
verification processes; also animation features were employed.

Structure of the chapter. In Section 5.1, the area of software visu-
alization is characterized: some definitions of SV are presented, and the
process of extract information to visualize is also discussed. Because along
the years many taxonomies came up in an attempt to classify this area, in
Section 5.2, a brief overview of the most important taxonomies is presented.
In Section 5.3, are discussed the main techniques employed along the years
to display information. Section 5.4 presents some of the application fields
and tools of SV.

5.1 Characterizing Software Visualization

Software visualization use graphical techniques to make software visible
through the display of programs, program artifacts (use cases, class dia-
grams, and so on), and program behavior. The essential idea is that the
visual representations can make the process of understanding software eas-
ier. Pictures of the software can help project members to remember the
code and new members to discover how the code works.

In [Zha03], Kang Zhang discusses how each phase of software engineer-
ing process can be influenced by SV techniques. Figure 5.1 depicts the
relationship between each phase and some visualization artifacts.

During the first phase, software managers use different data visualization
resources, such as Gantt charts, to outline the project scheduling and the
different milestones.

In the second phase, for the requirement analysis and specifications, the
use of state charts and class diagrams is common.

In the third phase, when the overall software architecture is established
through system and software design, visual modeling techniques can play
an important role by using various types of architectural diagrams, such
as class diagrams and collaborative diagrams. Visual languages as well as
animation techniques can also be particular useful to the explanation of an
algorithm’s behavior.

In the fourth and fifth phases, the software domain can be coded via
visual programming. Both unit testing and integrating testing may be done
through the use of program slicing techniques and be visualized through pro-
gram visualization artifacts based on graph formalisms, such as call graphs
and dependence graphs.
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Figure 5.1: Software Engineering Process and Software Visualization Role

In the next phase, software documentation can give a contribute for
quality assurance of any software product. A graph showing the software’s
documentation as an intuitive road map, could be useful for tutorial, guiding
or diagnostic purposes.

In the final phase, the longest in software life cycle, visualization tech-
niques can be used to reveal bugs or requirement errors. Program under-
standing and analysis could be achieved more effectively through graphical
representations. Also, performance evaluation and comparison can be con-
ducted effectively through data visualization (also called statistical visual-
ization). Program visualization differs from data visualization in the sense
that the in the former visualizations correspond directly to the program se-
mantics (e.g. nodes in a call graph represent procedure/functions and edges
represent call relationships) and in the latter correspond to program mea-
surements (a segment in a pie chart is significant only in its size and what
it measures).

Along the years, the term software visualization has many meanings
depending on the author. Below there are some definitions for software
visualization than can be found in literature.
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“ Software visualization is the use of crafts of typography, graphic design,
animation, and cinematography with modern human-computer interaction
and computer graphics technology to facilitate both human understanding
and effective use of computer software.

John Stasko et al
Software visualization: programming as a multimedia experience [SDBP98]

“ Software visualization refers to the use of various visual means in ad-
dition to text in software development. The forms of development means
include graphics, sound, color, gesture, animation, etc.

Kang Zhang
Software Visualization: From Theory to Practice [Zha03]

“ Software visualization encompasses the development and evaluation of
methods for graphically representing different aspects of software, including
its structure, its abstract and concrete execution, and its evolution.

SoftVis conference site
http: // www. st. uni-trier. de/ ~ diehl/ softvis/ org/ softvis10/

“ ... Program visualization is defined as a mapping from programs to
graphical representations.

Gruia-Catalin Roman and Kenneth C. Cox
Program Visualization: The Art of Mapping Programs to Pictures [RC92]
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“ ... we define software visualization as the mappings from software to
graphical representations.

Rainer Koschke
Software visualization for Reverse Engineering [Kos02]

For the purposes of this document, software visualization can be taken to
mean any form of program visualization that is used after the software has
been written as an aid to understanding. It will be considered the following
definition of SV:

“ Software visualization is a discipline that makes use of of various forms
of imagery to provide insight and understanding and to reduce complexity
of the existing software system under consideration.

Claire Knight and Malcolm Munro
Comprehension with[in] Virtual Environment Visualisations [KM99]

Thus, in addition to program (source code), artifacts like requirements
and design documentation, changes to source code and bug reports could
be used. Along the years different methods and uses of computer graphical
representations were investigated in order to explore the various aspects of
software (e.g. its static structure, its concrete and abstract execution, and
its evolution). According to [Die07], SV researchers are concerned with:

• Visualize the structure: structure means the static parts and relations
of the systems (those that can be computed without running the pro-
gram). These parts includes the program code and its data structures,
the static call graph, and the organization of the program into mod-
ules.

• Visualize the behavior : behaviors refers to the execution of the pro-
gram with real and abstract data and comprises the visualization of
control and data flow.

• Visualize the evolution of the software: evolution refers to the process
where the program code changes to extend the functionality of the
system or to remove bugs.
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Figure 5.2: Venn diagram showing the relationships between the various
forms of software visualization [BBI98]

This is directly related with the discussion taken by Ball and Eick
in [BE96], when they refer that there are three basic properties of soft-
ware to be visualized: software structure, runtime behavior and the code
itself.

As previously referred, SV can be defined as the discipline of generating
visual representations for various aspects of software as well as its develop-
ment process. Figure 5.2 shows the relationships between the various forms
of software visualization, according to Price’s perspective [BBI98].

According to Price et al, program visualization is the visualization of
actual program code or data structures in either static or dynamic forms.
Once again, there is no consensus about this definition. Consider the fol-
lowing examples to illustrate the left part of the Venn diagram (program
visualization):

• Static code visualization: it can include some kind of graphical layout
illustrating call graphs or control flow graphs.

• Static data visualization: it can display the content of data structures
(like linked lists) as a “boxes and arrows” diagram.

• Data animation: it might use the same diagram as in previous item
(data visualization= but with the content of boxes and the arrows
changing along the program execution.
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• Code animation: it might simply highlight lines of code in the IDE as
they are being executed.

The authors consider that both visual programming and programming by
demonstration/example are not subsets of program visualization but they
have a partial overlap with it. Visual programming can be described as the
kind of programming that seeks to make programs easier to specify by using
a graphical notation for the language constructors and their interconnec-
tion. Programming by demonstrations or by example is related with visual
programming and it is defined as the specification of a program with user
demonstrated examples.

The goal of algorithm visualization is to show abstractly how a pro-
gram operates through the “visualization of higher level abstractions which
describe software” [BBI98]. This category is also divided into static and
dynamic visualizations:

• Static algorithm visualization: it often consists of a snapshot, a trace
of one execution of the algorithm.

• Algorithm animation: it shows how an algorithm works by depicting
its fundamental operations, graphically or resorting to the ear (usually
sound). It might show the swap of two items as a smooth animation.

But the creation of images in software visualization is only the last step
in the visualization pipeline (Figure 5.3). To display graphical objects as-
sociated to some information, there is the need to collect the information
intended to show and analyze it in order to filter according to a specific goal.
The information produced by one stage is used as input by the next stage:

Data acquisition: different information sources related to the software is
usually available: besides the source code, there is the documentation, the
software model, test results and mailing lists. Various methods to extract
and gather the relevant data from these sources are used (in Chapter 2 some
of these techniques were discussed).

Analysis: after gather the extracted data, and because usually it is too
much information to display without any kind of treatment, there is the need
to perform different kinds of analysis and filtering (slicing — see Chapter 4
for more details about this subject — or statistical methods are reduction
operations that can be done).

Visualization: once the information is gathered and filtered, it can be
mapped onto a visual model, i.e., transformed into graphical information,
and then rendered onto the screen. In interactive visualizations, the user
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Figure 5.3: Visualization pipeline

can control the previous steps of the pipeline on the basis of the graphical
output produced earlier.

According to Young and Munro [YM98] there is a list of desirable prop-
erties in a software visualization system to make it “good”. These properties
are:

• Simple navigation with minimum disorientation: the visualization should
be structured and should include features to lead the user in navigating
the visualization.

• High information content : “Visualizations should present as much in-
formation as possible without overwhelming the user”.

• Low visualization complexity, well structured : well structured infor-
mation should result in easier navigation. Low complexity trades-off
with high information content.

• Varying levels of detail : granularity, abstraction, information content
and type of information should vary according to the users interests.

• Good use of visual metaphors: metaphors are a way to provide cues
to understanding.

• Approachable user interface: the user interface should be flexible and
intuitive, and should avoid unnecessary overheads.

• Integration with other information sources: it is desirable to be able
to link between the visualization and the original information it rep-
resents (the source code).

• Good use of interactions: interaction provides mechanisms for gaining
more information and maintaining information.
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• Suitability of information: “a good level of automation is required in
order to make the visualizations of any practical worth”.

Albeit its intrinsic importance, SV topic is so broad and complex that
several researchers have proposed taxonomies to classify software visualiza-
tion research and tools. Next section is devoted to a brief overview of such
taxonomies.

5.2 Taxonomies

On one hand, SV taxonomies allow to compare systems; on the other hand,
SV taxonomies are useful to understand all the issues that must be taken
into account.

Along the years, many researchers come up with valid taxonomies to help
classify, quantify and describe different types of software visualization. Each
taxonomy emphasizes different SV aspects, for instance specific software
characteristics, human activities, and so on.

In this section, an overview of the most important SV taxonomies are
presented.

Brown [Bro88] introduced a visualization approach focused on anima-
tions. He describes his proposal using three main axes: Content, Transfor-
mation and Persistence.

The first is concerned with the way followed for representing the program.
This characteristic is divided in Direct (in which the source code is directly
represented using graphical artifacts) and Synthetic (in this case a source
code abstraction is graphically depicted).

The second refers to the animation process used in the visualization. It
can be Discrete (a series of snapshots are shown) or Incremental (a smooth
technique is employed to produce the transition between snapshots).

Finally, Persistence is related with the possibility of holding the process
history.

Myers [Mye90] introduced a taxonomy for program visualization which
identifies six regions arranged in a 2 × 3 matrix as depicted in Figure 5.4.
His simple taxonomy has two main axes:

• The kind of object that the visualization system attempts to illustrate.

• The type of information shown.

The first component consists of data, code and algorithms, and the sec-
ond one is concerned with the static and dynamic information. The combi-
nation of these axes produces the following visualization sorts:

• Data-static: it follows the same approach that for static code visual-
izations. The main idea consists in presenting in a suitable way the
system data objects and their values.
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Figure 5.4: Myers taxonomy

• Data-dynamic: similar code-dynamic visualizations, it consists of an-
imations aimed at showing the variables and their values at runtime.
This topic is concerned with the strategies for depicting how data
changes through the time.

• Code-static: visualizations such as flowcharts.

• Code-dynamic: software animations and strategies to show the code
segment used in one specific execution.

• Algorithm-static: generation of snapshots of algorithms.

• Algorithm-dynamic: algorithm animations for presenting an integral
dynamic view of each component used at runtime.

Price et al introduced a more comprehensive taxonomy in [PBS93].
Their taxonomy is based upon a tree structure where each leaf provides
a different and orthogonal classification criterion. Figure 5.5 depicts the
two level taxonomy (to see the details about this second level and subjacent
levels, please read [PBS93]).

The first level of this taxonomy contains six categories:

• Scope: What is the range of programs that the software visualization
system may take as input for visualization? Scope relates to the source
program and the specific intent of the software visualizer.

• Content: What subset of information about the software is visualized
by the software visualization system? Content describes the particular
aspects of the software that is visualized.

• Form: What are the characteristics of the output of the system (the
visualization)? Form is concerned with the elements used in the visu-
alization (e.g. graphical elements, colors, views, etc.).

• Method: How the implementation is specified and how the system
works? Method is concerned with the strategies used to specify the
visualization (e.g. fixed, customizable, etc).
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Figure 5.5: Price et al taxonomy
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Figure 5.6: Roman and Cox taxonomy

• Interaction: How does the user of the system interact with it and con-
trol it? Interaction is concerned with the techniques used to control
the visualization (e.g. navigation, temporal control mapping, etc).

• Effectiveness: How well does the system convey to the user? Effective-
ness gives the characteristics to assess the visualization quality.

Another taxonomy is the one defined by Roman and Cox [RC93], based
on their earlier work [RC92], and it uses four criteria based in the SV model
depicted in Figure 5.6:

• Scope: What aspect of the program is visualized? Scope describes the
program aspects to visualize.

• Abstraction: What kind of information is conveyed by the visualiza-
tion? Abstraction describes the visualization specification degree.

• Specification Method: How the visualization is constructed? Specifica-
tion method explains which are the mechanisms used by the animator
for building the visualization.

• Technique: How is the graphical representation used to convey the
information? Technique is concerned with the effectiveness of the
information presentation.

Later on, in 2002, Maletic et al in [MMC02], proposed a realignment to
the existing taxonomies in order to reflect the new challenges and issues of
the recent software, in particular, software engineer tasks of large-scale de-
velopment and maintenance. They proposed a five dimensioned taxonomy
to classify software visualization systems and these dimensions reflect the
why, who, what, where and, how of the software visualization. The authors
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Dimension Roman and Cox [RC92] Price et al [PBS93]

Task F.1. Purpose

Audience F.1. Purpose

Target
Scope A. Scope
Abstraction B. Content

Representation

Specification Method C. Form
Interface D. Method
Presentation E. Interaction

F. Effectiveness

Medium Form

Table 5.1: Overview of the relations between the proposed dimensions and
the criteria defined in the taxonomies of Roman and Cox and Price et al
respectively [MMC02].

argue that this taxonomy accommodates a larger spectrum of software vi-
sualization systems than the other taxonomies defined so far (for example,
algorithm animation and visual programming tools).

They pose the five dimensions through the following questions:

• Tasks: why is the visualization needed?

• Audience: Who will use the visualization?

• Target: what is the data source to represent?

• Representation: how to represent it?

• Medium: where to represent the visualization?

The authors also discuss how these dimensions could be mapped into the
ones presented by Roman and Cox and by Price et al. Table 5.1 displays
this mapping. At the end, the authors analyze a set of software visualization
systems and categorize them under this taxonomy.

In 2008, Beron et al proposed a new taxonomy towards Program Com-
prehension [BdCP+08]. According to the authors, the existing taxonomies
do not cover the kind of visualization required by Software Visualization
systems concerned with Program Comprehension. In particular, these tax-
onomies do not incorporate dimensions to assess the visualizations oriented
for both Problem and Program Domains.

The authors proposed an extended taxonomy based on six main dimen-
sions:

• Scope: concerned with the Problem Domain characterization. It is
divided into the following categories: stimulus/response, concepts/re-
lations, subsystem relations, and behavior.
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• Specification Method : concerned with how to link the Problem Domain
with the Program Domain components. It is divided into the following
approaches: ad-hoc, rigorous and formal.

• Kind of Creation: concerned with the strategy used to create the Prob-
lem Domain visualization. It is divided into manual, semi-automatic
and automatic.

• Abstraction Level : concerned with the level of detail devoted to show
the Problem Domain characteristics. It is divided into direct, struc-
tural and synthesized.

• Interface: concerned with artifacts used to display the Problem Do-
main visualizations. It is divided into kind of interface (textual, graph-
ical or hybrid), type of interaction (classical or innovative) and vocab-
ulary (textual, iconic or hybrid).

• Cognitive Models: concerned with the cognitive factors. It is divided
into Cognitive Model components (internal and external knowledge,
mental model, assimilation process and dangling unit), and learning
strategies (top-down, bottom-up and hybrid).

Although some of these dimensions are similar to those defined previ-
ously for Program Domain, their means are significantly different. Figure 5.7
depicts the complete taxonomy.

More recently, in 2010, Karavirta et al [KKMN10, KKM06] extended
the Price’s taxonomy to cope with algorithm animation languages (a formal
language description that specifies an algorithm animation). Their extended
taxonomy is based on four main dimensions (see Figure 5.8):

• Visualization: concerned with the variety of supported object types
(the building blocks used in the animation), and the ways to position
and style the objects.

• Dynamics: concerned with level and versatility of the language fea-
tures that can be used to modify the visualization and thus create the
animation.

• User Interaction: concerned with the level and type of interaction
provided to the end user.

• MetaLanguage: concerned with the properties of the language not
directly related to algorithm animation but still helpful in the process
of creating useful animation content.

The authors consider that this taxonomy is useful for comparing different
languages with each other and understanding their strengths and limitations.
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Figure 5.7: Beron et al taxonomy
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Figure 5.8: Karavirta et al taxonomy (parcial)

5.3 Techniques

Along the years, the techniques used to display information evolved signifi-
cantly.

In the beginning of computers era, computer programs were convention-
ally represented as sequences of 0s and 1s. Despite the fact that modern
computers today still use this form, nowadays computer programs are writ-
ten using high level languages — the binary language is now represented
using English keywords. Also, currently modern programming environments
use other elements such as collapsible items, pictures, and animated tracking
(e.g. debugging).

Furthermore, considerable efforts were done in the field of software vi-
sualization in order to display information in a natural and intuitive way,
to help the user to better understand and get insights about the data being
visualized.

Because textual representations are a poor and limited way to visualize a
program (imagine the case of large programs composed by millions of lines of
code), researchers continually strived to find better visualization techniques.
Computer programs as graph representations became a popular way to show
different perspectives of a program.

Essentially, visualization techniques can be divided in: textual and graph-
ical. In both of these techniques, static or dynamic techniques could be used
to get the information needed to display.

Some approaches to software visualization were reviewed and hereafter
presented (with the purpose of choose the technology to use in the imple-
mentation of GamaSlicer).

5.3.1 Nassi and Shneiderman Diagram

Was in the 70s that the search for graphical techniques started to appear
with the work of Nassi and Shneiderman [NS73]. They proposed a diagram
in a rectangular form subdivided into smaller rectangles that represent in-
structions. A conditional instructions is separated by two triangles repre-
senting the alternatives (yes/no). The flow of program is representing by
going down the rectangle. These diagrams are also called structograms, as
they show the program structure. Figure 5.9 depicts an example of this



5.3. TECHNIQUES 161

Figure 5.9: Nassi-Shneiderman diagram for Factorial program

flowcharts, representing the computation of a factorial number. A condi-
tional and a loop are represented. This picture was built using a tool called
Structurizer and is available at http://structorizer.fisch.lu/.

Although very naive, this so simple approach to the visual representation
of the control flow of a program, two motives make it worth of mentioning.
It was the first attempt with very poor graphical resources. Nowadays this
kind of visualization was recovered by Scratch, [MSABA10] one of the most
recent Visual Programming Languages.

5.3.2 Information Murals

An information mural is a graphical representation of a large information
space that fits entirely within a view. This technique is generally useful
for visualizing trends and patterns in the overall distribution of informa-
tion. In this technique, two main categories can be found: line and pixel
representations; and execution mural.

Line and Pixel representations This technique was developed by Ball
and Eick to visualize program text, text properties and relationships [BE96].
Each line of the program text is reduced to a single row of pixels, where
length and indentation corresponds to the original code.

They generalize this technique to increase the information density by a
factor of ten. Each column represents a single file. Each line of code uses
color-coded pixels ordered from left to right in rows within the columns.
Figure 5.10 depicts an example of line (top) and pixel (bottom) representa-
tion.

Execution Murals Execution murals is a technique introduced by Jerd-
ing and Stasko that provides a quick insight of the various phases of the
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Figure 5.10: Line and pixel representation of a program using Ball and Eick
technique
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Figure 5.11: Execution mural of message traces for an object-oriented pro-
gram

execution of object-oriented programs [JS98]. Figure 5.11 shows an execu-
tion mural of message traces. The upper portion of the view is the focus
area where a sub-set of the messages can be examined in detail. The bottom
portion of the view is a navigational area that includes a mural of the entire
message trace, and a navigation rectangle indicating where the focus area
fits in the entire execution.

5.3.3 Graphs

Graphs are one of the most common representations in software visualiza-
tion. Usually, nodes represent block and instructions and edges indicate
the flow. Different types of graphs where proposed along the years in order
to show different perspectives of a program, depending of the goal of the
analysis being done:

• Abstract Syntax Tree (see Definition 1)

• Control Flow Graph (see Definition 2)

• System Dependence Graph (see Definition 9)

• Call Graph (see Definition 10)

• Value Dependence Graph (see Definition 11)

• Module Dependence Graph (see Definition 12)

• Trace Flow Graph (see Definition 14)

All these kind of graphs face a problem with respect to visualization:
where to place each node in order to obtain the maximum readability and
effectiveness. Several aesthetic criteria concerning graph layout have been
investigated in this context [PCJ96]:
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• Crossing minimization: a graph should be drawn with as few crossings
as possible.

• Bends minimization: edges should have as few bends as possible.

• Area minimization: the area of the drawing should be small and there
should be a homogeneous density or an even distribution of the nodes.

• Length minimization: shorter edges are more easy to follow. It should
be minimized the total edge length and the length of the longest edge.

• Angle maximization: small angles between outgoing edges and in
bends make it difficult to discriminate the edges.

• Symmetries: symmetries in the underlying graph should be reflected
in the diagram.

• Clustering : for large graphs, parts of the graph which are strongly
interconnected — called clusters — should be drawn separate from
other parts. Edges drawn in a cluster should be shorter than those
connecting different clusters.

Graph drawing techniques differ in the kinds of graphs they are suitable
for and in the basic principles underlying the drawing algorithm.

Following are briefly described some of the most important graph layout
algorithms used in the most popular software visualization systems. The
images shown to illustrate each one of the layouts are either produced by
yFiles1 or by Nevron2 tools.

• Orthogonal layout : the edges run either horizontally or vertically and
edge inclination must have an angle of 90 degrees. The goal with
this kind of layout is to minimize the number of edges crossings and
deviations (see Figure 5.12).

• Force-directed Layout (also called Force-based Layout): the nodes are
placed in a way so that all the edges are of more or less equal length
and there are as few crossing edges as possible. They are usually se-
lected for undirected graphs and are specially target for simulating
physical and chemical models. The force-directed algorithms assign
forces amongst the set of edges and the set of nodes. The most com-
mon is to assign forces as if the edges were springs and the nodes are
electrically charged particles. The entire graph is then simulated as
if it was a physical system. The electrical force repels the vertices
which are close to each other. This is repeated iteratively until the

1Available at http://www.yworks.com
2Available at http://www.nevron.com.
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system comes to an equilibrium state; i.e., their relative positions do
not change anymore from one iteration to the next (see Figure 5.13).

Another common forces are magnetic (edges are interpreted as mag-
netic needles that align themselves according to a magnetic field) and
gravitational (all nodes are attracted to the bary center of all the other
nodes).

• Hierarchical Layout : the nodes are placed in hierarchically arranged
layers such that the (majority of) edges of the graph show the same
overall orientation, for example, top-to-bottom. Additionally, the or-
dering of the nodes within each layer is chosen in such a way that the
number of edge crossings is small (see Figure 5.14).

• Tree Layout : used for directed graphs that have a unique root element
(trees). Starting with the root node the nodes are arranged either from
top to bottom, left to right, right to left, or bottom to top. The edges
of a graph can either be routed as straight lines or in an orthogonal
fashion (see Figure 5.15).

• Radial Layout : organizes the graph in concentric circles of nodes. The
vertices are placed in the center and their descendants are placed on
the next circle and so on. It produces a straight line graph drawing
(see Figure 5.16).

Other graph layouts (as well as variations of the ones presented) can be
used depending of the purpose of the analysis: hyperbolic layout, symmetric
layout, circular layout and so on.

But the problem of displaying a graph becomes more complex when
a visualization system evolves from static visualizations to dynamic ones
(graph animation systems).

Usually, during an animation process using graphs, it is necessary to add
and delete edges and nodes. The naif approach, to display a sequence of
graphs, is to re-calculate the whole layout in each update. This results in an
additional aesthetic criterion known as preserving the mental map. Mental
map refers to the abstract structural information that a user forms when
looking at the layout of a graph [DG02]. Is this mental map that facilitates
the navigation in the graph and its comparison with other graphs. So, an
obvious challenge is how to display each one of these graphs in order to
preserve the basic layout.

In [DGK00], Dieh et al proposed a solution: given a sequence of n graphs
they compute a global layout suitable for each one of the n graphs. In the
simplest case, this global layout can match with the super-graph of all graphs
in the sequence. This approach is called Foresighted Layout.

A general problem associated with most of the current graph layout
techniques is that they do not scale. In general, it is almost impossible to
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create a graph with thousands of nodes and keep its consistence or try to
minimize edge crossings.

Thus, often the most common and practical solution is to layout a span-
ning tree for the graph. A spanning tree is a technique that segments a large
graph in smaller ones. A list of algorithms to compute spanning trees for
graphs can be found in [Jun07].

5.3.4 Visual Metaphors

Other common technique used in SV systems are the metaphors. A metaphor
can be defined as “a rhetorical figure whose essence is understanding and
experiencing one kind of thing in terms of another” [LJ80]. Metaphors might
be abstract geometrical shapes or they might be real-word entities. While
it is true that a user would be more familiar with a real-world metaphor,
the visual complexity of the metaphor should not affect the effectiveness of
the visualization. The goal of such metaphors is to evoke mental images
to better memorize concepts and to exploit analogies to better understand
structures or functions. The goal of software visualization is not to produce
neat computer images, but computer images which evoke mental images for
comprehending software better. “Finding new metaphors thus will not just
produce better visualizations, but it will also improve the way we talk about
systems.” [Die07]

When using metaphors they should be:

• Consistent: the mapping from software artifacts to the representations
should be consistent throughout the visualization. Multiple software
artifacts cannot be mapped into the same metaphor. Similarly, a soft-
ware artifact cannot be mapped to multiple metaphors.

• Semantically rich: the metaphors should be rich enough to provide
mappings for all aspects of the software that need to be visualized.
There should be enough objects or equivalent representations in the
metaphor for the software entities that need to be visualized.

For geographic information, maps are widely used to display spatial
information. Thus, the map metaphor is often applied to display multi-
dimensional abstract information by selecting two of the dimensions to span
the 2D space as well.

The landscape metaphor span the 3D space and represents abstract en-
tities or relations using hills, valleys, rivers and streets. The city metaphor,
which can be seen as part of the landscape metaphor, represents abstract
entities and relations by houses, buildings, towers and streets.

Relational information is often represented by the galaxy or solar sys-
tem metaphor. Such visualization can be produced using the force-directed
layout algorithm (see subsection 5.3.3).
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In the sequel it will be presented a short list of systems that follow
this approach and produce different implementations for this metaphoric
concept.

CallStax, by Young and Munro [YM98] was one of the first attempts
to produce visualizations using abstract 3D geometrical shapes. CallStax
showed the visualization of the calling structure of C code (essentially the
same information as a call graph) with colored stacks of blocks showing the
routes through the graph.

FileVis [You99], creates a view of the software system where source code
files are represented individually as floating platforms around a central point
which represents the connectivity of the source code files.

ImsoVision [MLMD01] is a system that creates in a cave a 3D visualiza-
tion of classes, their properties, their dependencies and aggregations. As the
cave is a room where the visualization is projected on the walls, the user can
enter the room and interact with the 3D scene. Classes are represented by
platforms, methods by columns, and attributes by spheres put on the top of
the platforms. The platforms of sub-classes are placed next to their super-
classes. Dependencies and aggregations are shown as flat edges. Different
properties are represented by colors.

Software Landscapes [BNDL04] uses islands instead of platforms and
skyscrapers instead of simple columns.

In Software World [KM99], the world represent the software system as
a whole, a country represents a package, a city represents a file, a district
within a city represents a class, and a building represents a method. The
size of the building indicates the number of lines of code, the doors represent
its parameters, the windows represent the variables declared in the method,
and the color of the building indicates whether the method is private or
public.

CodeCity [WL07] also follows the approach of representing a software
system as a city.

Vizz3D3 is an open-source tool where houses represent and edges indicate
function calls. The size of the house corresponds to the number of lines
of code. The platforms represent directories or files containing functions.
Icons show additional information. For example, a garbage can indicate
dead code, a wheel indicates access to global variables and a lock indicates
security issues. Flames used as icons and as textures of houses indicate that
the McCabe’s cyclomatic complexity exceeds a threshold.

Next section is dedicated to the application fields and tools of software
visualization.

3http://vizz3d.sourceforge.net/
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Figure 5.12: Orthogonal Layout produced by Nevron

Figure 5.13: Force-Directed Layout produced by Nevron
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Figure 5.14: Hierarchical Layout produced by yFiles

Figure 5.15: Tree Layout produced by Nevron

5.4 Applications and Tools

Based on concepts and developments in information visualization, usability,
and software engineering, many systems were developed targeting different
goals. In this section, some of the application fields and tools of SV are
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Figure 5.16: Radial Layout produced by Nevron

presented.
Because the range of tools currently available is too extensive, the list

of tools hereafter cited do not intend to be exhaustive. The ones referred
in this section (in particular, subsections 5.4.3 and 5.4.4) are related with
the work reported in this document (tools that allows to visualize slices of
programs and animate algorithms).

5.4.1 Program Comprehension

Brooks defined comprehension as the reconstruction of the domain knowledge
used by the initial developer [Bro77]. The comprehension of software systems
both during and after development is a crucial component of the software
process.

In particular, the understanding of legacy systems is essential for further
development, maintenance and re-engineering of the system. Usually, the
system’s architecture is poorly documented and so, the only trustworthy
source of information is the system implementation. Thus, the architecture
has to be retrieved and preferentially in an automated way — program
analysis is a way to automatize this task. But, the results of such analysis
must be presented in a form that is intuitive to the engineer. Therefore, the
program analysis can be combined with software visualization to attain a
more effective comprehension of the system.

According to Oliveira et al [OPdCB10], an effective program compre-
hension is reached when it is possible to view and relate what happens when
the program is executed, synchronized with its effects in the real world
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concepts. This enables the interconnection of program’s meaning at both
problem and program domains. To sustain this statement the authors pro-
posed a tool, Alma2, which provides and synchronizes views at both domains.
Alma2 takes a program, written in a Domain Specific Language (DSL), and
animates it (trough an abstract interpretation), displaying in a synchronized
mode what happens internally during the execution of each statement and
what are the effects of the execution over a graphical representation of the
problem domain. Thus, Alma2 enables to study the behavior of domain spe-
cific programs, observing the synchronized visualizations of both domains.

Rilling and Mudur [RM05] proposed a SV system, MetaViz, that uses
program slicing (as discussed in Chapter 4, slicing enables to focus on a spe-
cific aspect of a given program) for deriving program-structure attributes
and 3D techniques to help visualization-based analysis of source code struc-
ture. Through MetaViz the authors demonstrate that the use of 3D visuals
intuitively comprehensible, actually communicate information about relative
component complexity. Thus, they have shown that this technique enhance
comprehension of the program structure.

Marcus et al [MFM03] proposed a software visualization system, sv3D,
based on 3D metaphors to represent large software systems and related
analysis data. The tool extends SeeSoft pixel representation [ESS99] to a 3D
space. Besides this extension, they added new representations coupled with
advanced user interaction facilities. Some of these enhancements include:

• Creation of 3D renderings of the raw data.

• Mapping of software artifacts and their attributes to the 3D metaphors,
at different abstraction levels.

• Moreover, the system accepts a simple and flexible input in XML for-
mat, enabling the output of various analysis tools can be translated
to sv3D input format.

With sv3D the authors brought together results from information visualiza-
tion, human computer interaction, and program comprehension.

Lanza et al [LDGP05] proposed a system, CodeCrawler, that is mainly
targeted to visualize object-oriented systems. It provides visualizations of
polymetric views4, visualizations of software enriched with information such
as software metrics and other source code semantics. According to the au-
thors, polymetric views help to understand the structure and detect prob-
lems of a software system in the initial phases of a reverse engineering pro-
cess.

Another work targeting the comprehension of object-oriented systems
was conducted by Pacione [Pac04], where he proposes a visualization model

4Polymetric Views are visualizations of a graph enriched with metrics.
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based on multiple levels of abstraction, multiple facets, and/or the inte-
gration of static and dynamic information facilities. The model include a
five-level abstraction scale for software comprehension. These levels are:

1. The first level (microscopic), focus on intra-object interaction and ac-
tivity diagram — behavior facet.

2. The second level focus on inter-class structure and class diagram —
structure facet, and inter-object interaction, object diagram — behav-
ior facet.

3. The third level focus on system architecture and component diagram
— structure facet, and component interaction, reflection model —
behavior facet.

4. The fourth level focus on system deployment and deployment diagram
— structure facet.

5. The fifth level focus on business behavior and use case diagram —
behavior facet.

Designed to speed program comprehension, SHriMP tool (that stands
for Simple Hierarchical Multi-Perspective) uses multiple views of software
architecture [SM95]. It can be considered both a tool and a technique.
It was designed to enhance the visualization and exploration of software
architectures. SHriMP currently has three main applications:

• Jambalaya: a plugin created for the Protégé tool (an ontology editor),
that uses SHriMP to visualize ontologies and knowledge bases.

• Creole: an Eclipse plugin that uses SHriMP to explore Java code visu-
ally.

• Stand-Alone SHriMP: a stand-alone Java application that visualizes
graph based data formats such as GXL, RSF, XML, XMI.

Buchsbaum et al [BCH+01] examined the effectiveness of visualization
techniques as an aid to software infrastructure comprehension at industrial
level. Their results help to formulate the general requirements for software
visualization and program comprehension tools.

5.4.2 Software Evolution

The visualization of the evolution of a system can be attained, at least
partially, through visualizing its version history. This typically involves
visualizing metrics such as number of lines of code in a particular version of
a file included in the system, the percentage of growth and the percentage
of change in the system, and also change complexity measures [GME05].
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A relevant work in version history visualization is presented by Gall et
al [GJR99]. They use color and third dimension techniques to visualize
software release histories. Some of metrics that they visualize include size
of the system in terms of lines of code, age in terms of version numbers, and
error-proneness in terms of defect density5.

Their system is composed by three main entities:

• Time: the visualization is grouped according to the release sequence
number. A snapshot of the system at the time of each release enables
the end user to see the evolution of files between releases.

• Structure: the system is decomposed into subsystems, that in their
turn are decomposed into modules and each modules comprises the
source code files.

• Attributes: include version number, size, change complexity and defect
density.

The kind of technology they used to build their system comprises Java
and the Virtual Reality Modeling Language (VRML) to render and navigate
the 3D spaces. The system offers features to the end user navigate trough
the visualization and extract information about the structure of the entire
system for a release or focus on a particular subsystem.

Lanza and Ducasse [DL05, DLB04] also study the evolution of classes
in a system using a combination of SV and software metrics. The kind of
visualization provided is 2D, with rows representing the classes in a system
and columns denoting the version of the system. The first column would
represent version 1 of the system, the second version 2, and so on. The
number of methods in the class decides the width of each rectangle repre-
senting a class, while the number of instance variables in the classes decides
the height of the rectangle. This metaphor allows easy visualization of the
number of classes in the system, the most recent ones that were added to the
system, and the growth or stagnation phases in the evolution of the system.

Eick et al [EGK+02] also studied the challenge of code’s change. They
propose a sequence of visualizations and visual metaphors to help engineers
to understand and manage the software change process. Some of these
metaphors include matrix views, cityscapes, bar and pie charts, data sheets,
and networks. Multiple views are combined to form perspectives that both
enable discovery of high-level structure in software change data and allow
effective access to details of those data.

Caudwell [Cau10] proposed a visualization system, Gource, to show the
development history of software projects as an interactive animation. Soft-
ware development is displayed by Gource as an animated tree with the root

5Defect Density is the number of confirmed defects detected in software/component
during a defined period of development/operation divided by the size of the software/-
component.
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directory of the project at its center. Directories appear as branches with
files as leaves. Developers can be seen working on the tree at the times
they contributed to the project. This project is still in development and is
available at http://code.google.com/p/gource/.

D’Ambros [D’A10] also proposed recently a tool, Commit 2.0, to generate
visualizations of the performed changes at different granularity levels, and
let the user enrich them with annotations. The basis of his tool is based on
the argument that developers write commit comments to document changes
and as a means to communicate with the rest of the development team. The
commit-related data contained in software repositories supports software
evolution and reverse engineering activities. Originally the tool was devel-
oped for the SmallTalk Pharo IDE but currently it is developed for Eclipse
IDE by Roberto Minelli6.

A number of software projects use versioning systems, also known as
Software Configuration Management tools (SCM), such as SVN and CVS, to
handle code evolution. Developers use SCMs as means of synchronization
among them and to document changes through commit comments. Cur-
rently, there is a movement to develop tools for visualization of versioning
systems. Some of these tools are: CVSViewer3D [XPM06] (a tool which
extracts, processes and displays information from CVS repositories); Chro-
nia [GKSD05] (uses the mapping between the changes and the author iden-
tifiers from CVS log-files to define a measurement of code ownership); CVS-
grab [VRD04] an open framework for visual data mining of CVS repositories;
and so on.

5.4.3 Visualization of Program Slices

In [BE94], Ball et al present SeeSlice, an interactive browsing tool to better
visualize the data generated by slicing tools. The SeeSlice interface facilitates
the visualization by making slices fully visible to user, even if they cross the
boundaries of procedures and files.

In [GO97], Gallagher et al propose an approach in order to reduce the
visualization complexity by using decomposition slices (see subsection 4.4.2,
on page 4.4.2). The decomposition slice visualization implemented in Sur-
geon’s Assistant [Gal96] visualizes the inclusion hierarchy as a graph using
the VCG (Visualization of Compiler Graphs) [San95].

In [DKN01], Deng et al present Program Slice Browser, an interactive and
integrated tool which main goal is to extract useful information from a com-
plex program slice. Some of the features of such tool are: adaptable layout
for convenient display of a slice; multi-level slice abstractions; integration
with other visualization components, and capabilities to support interaction
and cross-referencing within different views of the software.

6http://atelier.inf.usi.ch/ minellir/commit20.html
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In [Kri04], Krinke presents a declarative approach to layout Program
Dependence Graphs (PDG) that generates comprehensible graphs of small
to medium size procedures. The authors discussed how a layout for PDG
can be generated to enable an appealing presentation. The PDG and the
computed slices are shown in a graphical way. This graphical representation
is combined with the textual form, as the authors argue that is much more
effective than the graphical one. The authors also solved the problem of loss
of locality in a slice, using a distance-limited approach. With their approach,
they aimed at answering the following questions: 1) why a statement is
included in the slice?, and 2) how strong is the influence of the statement
on the criterion?

In [Bal01], Balmas presents an approach to decompose System Depen-
dence Graphs in order to have graphs of manageable size: groups of nodes
are collapsed into one node. The system implemented provides three possible
decompositions to be browsed and analyzed through a graphical interface:
nodes belonging to the same procedure; nodes belonging to the same loop;
nodes belonging to the two previous ones.

5.4.4 Algorithms Visualization/Animation

Algorithm visualization/animation can both help instructors to explain and
learners to understand algorithms, software engineering principles and prac-
tices [Hun02].

Usually, algorithm animation involves to show the values of parameters
and variables at a certain state, and a visual representation of the objects
being animated. Details can be shown at different levels of abstraction,
omitting in each analysis/comprehension step the irrelevant details. Smooth
transitions between different states can make it easier to follow the way how
the algorithm works trough graphical representations of data structures.
Graphs and Abstract Syntax Trees are common data structures used in
algorithm animation.

Baloian et al [BBL05] proposed an approach to developing algorithm
visualization that seeks to construct context-independent interfaces allow-
ing the learner to interactively control and explore the actions in the algo-
rithm. The proposed approach replaces standard control using mouse clicks
on graphical displays with a concept called Concept Keyboards (CK). In-
stead of using the traditional keyboard (which is mostly used to process
text and each key is labeled with a specific character or number), they use
a customized keyboard with a reduced number of keys targeting specifically
the control of algorithm visualization and animation.

ALMA [dCHP07] is a general purpose visualizer and animator that takes
as input an abstract representation (a decorated Abstract Syntax Tree).
Program execution is simulated step-by-step by rewriting the tree, which
is displayed after each step to produce an animation. The tool relies upon
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a dedicated front-end that converts input programs of a concrete program-
ming language into the generic internal representation. ALMA2 (previously
referred) is its successor and improves it by adding information about the
problem domain.

Balsa [BS84] was one of the first algorithm animation systems. This is an
interactive animation system that supports multiple simultaneous views over
data structures handled by one or more algorithms, providing the capability
to display multiple algorithms executing simultaneously.

Tango [Sta90] introduced the path-transition paradigm for animation de-
sign using smooth animations. Tango visualizations are seen as mappings
from program events to animation actions. The occurrence of an event will
trigger a smooth animation of one or more graphical objects.

Zeus [Bro92] was also one of the first major interactive software visual-
ization systems. It supports multiple synchronized views and allows users to
edit those views, change a data item representation, or control the program
execution. Zeus is a multi-threaded system, which makes it appropriate for
animating parallel programs.

Leonardo [CDFP00] is an integrated environment that allows the user to
edit, compile, execute, and animate general-purpose C programs. Leonardo
automatically detects visual events during the execution of programs and
optimizes the creation of visualizations following an incremental approach.

The Animal [RSF00] algorithm animator system allows the user to jump
to any point within the animation in either direction. It provides three ways
of generating animations: using scripting, using a Java-based API, or using
a GUI.

Jawaa [PR98] is an algorithm visualization system that offers general
graphic primitives and effects. The user can view the animation as a slide
show without breaks between steps or on a step-by-step basis.

Other applications of software visualization include software security [CA04,
Yoo04, Ma04, YVQ+10], software architectures [FDJ98, SB08, SFFG10],
data mining [Kei02, BDW05] and fault localization [RCB+03].



Chapter 6

Verification Graphs

A fact is a simple statement that
everyone believes. It is innocent,
unless found guilty. A hypothesis
is a novel suggestion that no one
wants to believe. It is guilty,
until found effective.

Edward Teller, 1908 — 2003

Every program implicitly asserts a theorem to the effect that if certain
input conditions are met then the program will do what its specification
or documentation says it will. Making that theorem true is not merely
a matter of luck or patient debugging; writing a correct program can be
greatly aided by a logical analysis of what it is supposed to do. Including
the specification in the form of annotations within the program has been a
successful approach in part because it makes the verification process easier.

This idea of including information (specifications) about how the pro-
gram should behave, was born in the eighties the Design-by-Contract (DbC)
software development method. DbC [Mey86, Mey92] is a metaphor on how
elements of a software system collaborate with each other, on the basis of
mutual obligations and benefits. The metaphor comes from business life,
where a “client” and a “supplier” agree on a “contract”.1

In terms of programming, this means that the programmer (the “sup-
plier”) should include in their code the “client” requirements. Usually this is
done through the use of preconditions, postconditions and invariants. These
annotations spread over the code represent the “contract”.The contract for
a software component can be regarded as a form of enriched software docu-
mentation that fully specifies the behavior of that component. In terms of
verification terminology, a contract for a component is simply a pair con-

1Retrieved from http://www.eiffel.com/developers/design_by_contract.html in
May, 2011.
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sisting of a precondition and a postcondition. It certifies the results that
can be expected after execution of the component, but it also constrains the
input values of the component.

In this context of including the contracts in the code, the broad adop-
tion of annotation languages for the major programming languages rein-
forces the perceived importance of using this approach of DbC, which facil-
itates modular verification and certified code reuse. These annotation lan-
guages include for instance the Java Modeling Language (JML) [BCC+05];
Spec# [BRLS04], a formal language for C# API contracts; and the AN-
SI/ISO C Specification Language (ACSL) [BCF+10]. The reader is referred
to [HLL+09] for a fairly recent survey on specification languages.

As was discussed in Chapter 3, one way to verify the correctness of a
program is through the use of Verification Condition Generators (VCGens).
These VCGens read a piece of code together with a specification and compute
a set of verification conditions (VCs) that are then sent to a theorem prover.
If all the verification conditions of a program are correct, then the program
is said to be correct. This approach can of course be used to establish the
correctness of the code with respect to the contracts embedded in it.

However, when using these VCGens, it may be hard to establish a con-
nection between the set of generated VCs and the source code. Thus, in
case one of these VCs be incorrect, the discovery of which statements (or
which execution paths) are leading to the incorrectness of the program may
be impossible.

For instance, consider the fragment of a program used to calculate the
income taxes in the United Kingdom2 (method TaxesCalculation in List-
ing 6.1). Consider as precondition P = age ≥ 18 and as postcondition
Q = personal > 5750. A careful observation of the method allows one to
detect problems, as in some circumstances the result value of personal can
in fact be less than 5750. If one decides to check whether the program is
correct or not using a standard VCGen algorithm like the one presented
in subsection 3.2.3, the result is a single VC, too big and complex to be
understandable (the resulting verification condition is shown in Figure 6.1).
It could be hard to understand what is causing the incorrectness of the
program just by looking at the VC and the output of the prover.

In this chapter we introduce an alternative way to verify if a program is
correct through the use of Control Flow Graphs (Definition 2 on page 9).
In particular, the properties of labeled CFGs (CFGs whose edges have labels
corresponding to assertions propagated from the specification of a given
block) are studied in the context of contract-annotated procedures. It is
shown how these graphs can be used for generating verification conditions
in a way that:

2The complete source code of this program can be found in [HHF+02] and has been
used as a benchmark test for slicing algorithms based on assertions.
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i f ( age >= 75) then
2 per sona l := 5980

else
4 i f ( age >= 65) then

per sona l := 5720
6 else

per sona l := 4335
8

i f ( ( age >= 65) and ( income > 16800) ) then
10 t := per sona l − ( ( income − 16800) /2)

else
12 i f ( t > 4335) then

per sona l := t + 2000
14 else

per sona l := 4335

Listing 6.1: Program TaxesCalculation

((age ≥ 18)→ (((age ≥ 75)→ ((((age ≥ 65) ∧ (income > 16800))→ ((((5980−
((income− 16800)/2)) > 4335)→ (((5980− ((income− 16800)/2)) + 2000) > 5750))

∧ ((!((5980− ((income− 16800)/2)) > 4335))→ (4335 > 5750)))) ∧ ((!((age ≥ 65)

∧ (income > 16800)))→ true))) ∧ ((!(age ≥ 75))→ (((age ≥ 65)→ ((((age ≥ 65)

∧ (income > 16800))→ ((((5720− ((income− 16800)/2)) > 4335)→ (((5720−
((income− 16800)/2)) + 2000) > 5750)) ∧ ((!((5720− ((income− 16800)/2)) > 4335))

→ (4335 > 5750)))) ∧ ((!((age ≥ 65) ∧ (income > 16800)))→ true))) ∧ ((!(age ≥ 65))

→ ((((age ≥ 65) ∧ (income > 16800))→ ((((4335− ((income− 16800)/2)) > 4335)

→ (((4335− ((income− 16800)/2)) + 2000) > 5750)) ∧ ((!((4335− ((income− 16800)/2))

> 4335))→ (4335 > 5750)))) ∧ ((!((age ≥ 65) ∧ (income > 16800)))→ true)))))))

Figure 6.1: Verification condition for the UKTakesCalculation program

1. combines forward propagation of preconditions and backward-propa-
gation of postconditions, thus bringing together the advantages of for-
ward and backward reasoning;

2. allows for a closer relation with error paths;

3. can be implemented either based on pre-defined strategies or interac-
tively (user-guided VC generation);

4. lends itself to visualization applications.

Structure of the chapter. Section 6.1 recalls some basic definitions and
introduces the notation that will be used hereafter. Properties about the
verification conditions generated using weakest precondition or strongest
postcondition propagation are discussed and it is shown how both strategies
can be combined. Finally, the setting necessary to consider a total correct-
ness scenario is introduced. In Section 6.2, the definition of Labeled Control
Flow Graph and its construction is introduced. In Section 6.3, the notion of
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Verification Graph is presented and the process of verifying a program in an
interactive way through the use of these graphs is discussed. An example is
also presented.

6.1 Verification Conditions

To illustrate the ideas that will be presented, recall the language defined in
Figure 3.3 on page 58. Its syntax is defined in two levels: first blocks (or
sequences) of commands are formed, which can be seen as standard programs
of a While programming language. Then procedures consisting of a block
of code annotated with a precondition and a postcondition (that form the
procedure’s specification, or contract) are constructed. Commands include
a procedure call in addition to skip, assignment, conditional branching and
loops.

Occurrences of variables in the precondition and postcondition of a pro-
cedure refer to their values in the pre-state and post-state of execution of
the procedure respectively. Each block is additionally annotated with loop
invariants. The language of annotated assertions (used for writing invariants
and contracts) extends boolean expressions with implication and first-order
quantification. Defining the syntax of assertions as a superset of boolean ex-
pressions is a common practice in specification languages based on contracts
(such as SPARK [Bar03]), since it facilitates the task of writing annotated
code.

A program is then a non-empty set of (mutually recursive) procedure
definitions3. For the sake of simplicity only parameterless procedures will be
considered, that share a set of global variables, but the ideas presented here
can be adapted to cope with parameters (passed by value or by reference), as
well as return values of functions. Note that a program defined in this way is
close to the notion of class in object-oriented programming, with procedures
and global variables playing the role of methods and class attributes. But
of course other notions like the creation of class instances or inheritance are
absent from this analogy.

A program is well-formed if the name of every procedure defined in it is
unique and the program is closed with respect to procedure invocation. We
will write PN(Π) for the set of names of procedures defined in program Π.
The operators pre, post, and body will be used to refer to a procedure’s
precondition, postcondition, and body command, respectively, i.e. given the
procedure definition pre P post Q proc p = S with p ∈ PN(Π), one has
preΠ(p) = P , postΠ(p) = Q, and bodyΠ(p) = S. The program name will
be omitted when clear from context.

3Operationally, an entry point would have to be defined for each such program, but
that is not important for our current purpose.
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Weakest Preconditions and Strongest Postconditions. Recall from
Section 3.2 that one way to obtain a verification condition for a program S
(a formula whose validity implies the partial correctness of S with respect
to a specification consisting of precondition P and postcondition Q) is to
use Dijkstra’s weakest liberal precondition [Dij76a] predicate transformer:
wlp.S.Q designates the weakest precondition that will lead to Q being true
in the final state, if the execution of S terminates. The verification condition
for S to meet its specification can then be written as P → wlp.S.Q. In this
work it is assumed that every loop is annotated with a user-provided in-
variant ; in the presence of a loop invariant, the different required conditions
(the invariant is initially true, it is preserved by loop iterations, and upon
termination of the loop it is stronger that the desired postcondition) can be
combined in a single formula to give the weakest precondition of each loop.
This requires the use of universal quantifiers over state variables, to isolate
the different conditions.

Following Section 3.2, we use a different approach that produces a set of
independent verification conditions, avoiding the introduction of quantifiers.
This approach requires calculating a notion of precondition that is related to
wlp, but differs in that the weakest precondition of a loop is simply defined
as being its invariant, regardless of whether termination is guaranteed or
not. Figure 6.2 recalls the definition of the function wprec corresponding
to this notion. Figure 6.2 also contains the definition of the function spost,
corresponding to the symmetric notion of strongest postcondition that will
be true in the final state of the program S when its execution starts in a state
satisfying P . Throughout the remaining chapters whenever the weakest
precondition or strongest postcondition of a program is referred, it is meant
the conditions calculated by these functions.

A final remark: the definitions of weakest precondition and strongest
postcondition for the procedure call command in Figure 6.2 take into ac-
count the adaptation between the procedure’s contract and the postcondi-
tion/precondition required in the context in which the procedure is called.
In the absence of auxiliary variables, the following would be sufficient:

wprec(call p, Q) = pre(p) spost(call p, P ) = post(p) (6.1)

VCw(call p, Q) = {post(p)→ Q} VCs(call p, P ) = {P → pre(p)} (6.2)

But of course auxiliary variables are essential, since they allow to specify
how the output of a procedure is related to its input. In their presence a
single verification condition should be generated for each call; it is no longer
possible to separate pre(p) and post(p) as above. This makes it necessary
to rename and universally quantify program variables occurring in one of
the pre-state or post-state, to distinguish occurrences of the same variable
in the two states – a syntactic treatment of states which is avoided in the
remaining clauses of the VCGen. On the other hand auxiliary variables are
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wprec(skip, Q) = Q

wprec(x := e,Q) = Q[e/x]

wprec(if b then St else Sf , Q) = (b→ wprec(St, Q)) ∧ (¬b→ wprec(Sf , Q))

wprec(while b do {I}S,Q) = I

wprec(call p, Q) = ∀xf . (∀yf . pre(p)[yf/y]→ post(p)[yf/y, xf/x])→ Q[xf/x]

wprec(C;S,Q) = wprec(C,wprec(S,Q))

VCw(skip, Q) = ∅
VCw(x := e,Q) = ∅

VCw(if b then St else Sf , Q) = VCw(St, Q) ∪ VCw(Sf , Q)

VCw(while b do {I}S,Q) = {I ∧ b→ wprec(S, I), I ∧ ¬b→ Q} ∪ VCw(S, I)

= {I ∧ ¬b→ Q} ∪ VCGw(I ∧ b, S, I)

VCw(call p, Q) = ∅
VCw(C;S,Q) = VCw(C,wprec(S,Q)) ∪ VCw(S,Q)

spost(skip, P ) = P

spost(x := e, P ) = ∃ v. P [v/x] ∧ x = e[v/x]

spost(if b then St else Sf , P ) = spost(St, b ∧ P ) ∨ spost(Sf ,¬b ∧ P )

spost(while b do {I}S, P ) = I ∧ ¬b
spost(call p, P ) = ∃xf . P [xf/x] ∧ (∀yf . pre(p)[yf/y, xf/x]→ post(p)[yf/y])

spost(C;S, P ) = spost(S, spost(C,P ))

VCs(skip, P ) = ∅
VCs(x := e, P ) = ∅

VCs(if b then St else Sf , P ) = VCs(St, P ) ∪ VCs(Sf , P )

VCs(while b do {I}S, P ) = {P → I, spost(S, I ∧ b)→ I} ∪ VCs(S, I ∧ b)
= {P → I} ∪ VCGs(I ∧ b, S, I)

VCs(call p, P ) = ∅
VCs(C;S, P ) = VCs(C,P ) ∪ VCs(S, spost(C,P ))

where y is a sequence of the auxiliary variables of p
x is a sequence of the program variables occurring in body(p)
xf and yf are sequences of fresh variables
The expression t[e/x], with x = x1, . . . , xn and e = e1, . . . , en,

denotes the parallel substitution t[e1/x1, . . . , en/xn]

Figure 6.2: Verification conditions for blocks of commands with procedure
call
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local to a procedure and have also to be renamed to avoid capture.

Our definitions adapt to our context the rule proposed by Kleymann [Kle99]
as an extension to Hoare logic. The reader is referred to that paper for de-
tails and a discussion of different approaches to adaptation.

To sum up, there are two well-established methods for producing sets
of verification conditions, based respectively on weakest precondition and
strongest postcondition calculations. Verifying the behavior of programs is
of course in general an undecidable problem, and as such automation is
necessarily limited. Typical tools require the user to provide additional
information, in particular loop invariants, and one could be tempted to
think that the only interesting problem of program verification is automating
the generation of invariants: if appropriate annotations are provided, then
generating and proving verification conditions should be straightforward.

The Case for Forward Propagation. The forward propagation of as-
sertions was a key part of Floyd’s inductive assertion method for reasoning
about programs [Flo67]. Strongest postcondition calculations also propagate
assertions forward, and have been repeatedly advocated as a tool to assist
in different software engineering tasks [PD95, GC95]. Mike Gordon [GC10]
has more recently argued for the advantages of forward reasoning, pointing
out the similarities between strongest postcondition calculations and sym-
bolic execution, a method for analyzing and checking properties of programs
based on simulating their execution with symbolic input values [PV09]. An
account of verification conditions based on forward propagation provides an
interesting link with techniques based on symbolic execution.

A more recent work [JB10] presents another argument for the use of for-
ward propagation: in some situations it allows for the verification conditions
to be simplified while they are computed, using standard optimizations like
constant propagation and even dead code elimination.

Consider for instance the program x := 10; y := 5 ∗ x. Its VCs can be
calculated using instead the program x := 10 ; y := 50. And for the program
x := 10 ; y := 5∗x ; if y > 0 then S1 else S2, they can be calculated instead
from x := 10 ; y := 50 ; S1. The resulting VCs are significantly simpler.

The resurgent use of strongest postconditions in a number of recent
papers is also due to the fact that it is now known how to compute them in
a way that is uncluttered by existential quantifiers, and moreover produces
VCs that are at least as small as those generated for the same program
using backward propagation (and arguably smaller, if simplifications such
as mentioned above are carried out).

Verification Conditions for Partial Correctness. As discussed in Chap-
ter 3, in this thesis verification conditions are calculated based on Hoare
logic [Hoa69] rather than guarded commands and predicate transformers. In
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this approach the verification conditions required for the partial correctness
of the program S with respect to specification (P,Q) are the side conditions
of a derivation (or proof tree) of the logic. If the verification conditions are
all valid, then it is possible to construct a derivation with the Hoare triple
{P}S {Q} as conclusion, in which case S is (partially) correct.

The derivations with a given conclusion are not unique; although they
do not need to be explicitly constructed in order for the side conditions to
be obtained, some strategy is still necessary to direct the process. In this
chapter two such strategies will be used, based on weakest preconditions
and on strongest postconditions respectively. Technically, these strategies
are responsible for selecting intermediate conditions for the sequence rule
of Hoare logic: when considering a derivation for the triple {P}S1 ; S2 {Q},
this rule states that two derivations should be recursively considered, for the
triples {P}S1 {R} and {R}S2 {Q} for some condition R. Our first strategy
sets R to be wprec(S2, Q); the second strategy sets R to be spost(S1, P ).

Each of these strategies results in a different set of verification conditions,
as previous stated in Definitions 50 and 52 of Chapter 3:

VCGw(P, S, Q) = {P → wprec(S,Q)} ∪ VCw(S,Q)

and

VCGs(P, S, Q) = VCs(S, P ) ∪ {spost(S, P )→ Q}

where the functions VCw and VCs are also defined in Figure 6.2. These aux-
iliary functions are responsible for traversing the implicit derivations and
collecting the side conditions along the way. These traversals are based
uniquely on one of the conditions given in the specification (the postcon-
dition and precondition respectively); an additional formula involving the
other condition must then be added to this set.

Finally, the generation of verification conditions should of course be
sound with respect to the operational semantics of the language: if they
are all valid then this should constitute a guarantee that the program is
indeed correct with respect to its specification (P,Q):

If either |= VCGw(P, S, Q) or |= VCGs(P, S, Q) and S is executed in a state
that satisfies P , then if S terminates the final state satisfies Q.

This is easy to prove for such a simple language, with respect to a standard
evaluation semantics. The reader is directed to [FP11] for a proof, and also
for more details on verification conditions and their relation to Hoare logic
and Dijkstra’s predicate transformers.

A correspondence result between both strategies can be stated as follows.

Lemma 1. For every precondition P , postcondition Q, and program S,

|= VCGw(P, S, Q) iff |= VCGs(P, S, Q)
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Proof. By induction on the structure of S. For the case where S is

while b do {I}Sb

the following is used as induction hypothesis: |= VCGw(I ∧ b, Sb, I) iff
|= VCGs(I ∧ b, Sb, I).

Since the language under consideration has integer variables only, verify-
ing the correctness of programs can be achieved by applying the VCGen and
exporting the resulting proof obligations to a proof tool capable of reasoning
with integer arithmetics.

Observe that this is not a fully automated method since it requires users
to provide the annotations (recall the discussion about the automated and
the manual/semi-automatic techniques in Chapter 3). Furthermore, unde-
cidability of first-order logic means that interactive proof may be necessary4,
but it must also be noted that the power of automatic proof has progressed
significantly in recent years. Real-language implementations of many stan-
dard algorithms can now be proved fully automatically, which is certainly
a great advance with respect to what could be achieved, say, ten years ago.
Recent approaches build in particular on advances in SMT solvers5 (that
combine useful programming theories), and also on combinations of auto-
matic provers (for the easy proofs) and interactive proof assistants (for the
hard parts).

Combining Backward and Forward Propagation. As mentioned be-
fore, the set of VCs given by Definitions 50 and 52 is not unique. A more
general method, which allows us to verify the correctness of a given block of
code using weakest preconditions for part of the block and strongest post-
conditions for the remaining commands, will now be considered.

Let S = C1 ; . . . ; Cn, 1 ≤ k ≤ n. A dedicated notation will be used for
the weakest precondition of a suffix of S and the strongest postcondition of
a prefix of S, as well as for the (partial correctness) verification conditions
of both, as follows.

4In the scope of program verification, failure of automatic proof does not mean a
program is not correct, it just means that interactive proof should be used instead to
clarify whether a given proof obligation is indeed invalid or not.

5A brief introduction to SMT is given in Appendix B.
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wpreck(S,Q) = wprec(Ck ; Ck+1 ; . . . ; Cn, Q)

wprecn+1(S,Q) = Q

VC
w
k (S,Q) = VCw(Ck ; Ck+1 ; . . . ; Cn, Q)

VC
w
n+1(S,Q) = {}

spost0(S, P ) = P

spostk(S, P ) = spost(C1 ; . . . ; Ck−1 ; Ck, P )

VC
s
k(S, P ) = VCs(C1 ; . . . ; Ck−1 ; Ck, P )

VC
s
0(S, P ) = {}

Then, it is defined:

VCGk(P, S, Q) = VC
s
k(S, P ) ∪ {spostk(S, P )→ wpreck+1(S,Q)}

∪ VC
w
k+1(S,Q)

Note that VCGw(P, S, Q) = VCG0(P, S, Q); we also define the following,
entirely based on strongest postconditions:

VCGs(P, S, Q) = VCGn(P, S, Q)

The following lemma states some facts about the combined generation
of VCs. It implies that we can equivalently use any value of k to generate
verification conditions.

Lemma 2. Let (P,Q) be a specification and S = C1 ; . . . ; Cn a program.

1. for k ∈ {0, . . . , n},

|= VCGw(P, S, Q) iff |= VC
s
k(S, P ), spostk(S, P )→ wpreck+1(S,Q),

VC
w
k+1(S,Q),

2. If Ck = if b then St else Sf for some k ∈ {1, . . . , n}, then

|= VCGw(P, S, Q) iff |= VC
s
k−1(S, P ),

VCGw(spostk−1(S, P ) ∧ b, St, wpreck+1(S,Q)),

VCGw(spostk−1(S, P ) ∧ ¬b, Sf , wpreck+1(S,Q)),

VC
w
k+1(S,Q)
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3. If Ck = while b do {I}Sb for some k ∈ {1, . . . , n}, then

|= VCGw(P, S, Q) iff |= VC
s
k−1(S, P ), spostk−1(S, P )→ I,

VCGw(I ∧ b, Sb, I),

I ∧ ¬b→ wpreck+1(S,Q),

VC
w
k+1(S,Q)

Proof. 1. Applying repeatedly the definitions of wprec, VCw, spost, VCs,
and Lemma 1:

|= P → wprec(S,Q), VCw(S,Q)

iff |= P → wprec(C1,wprec(C2 ; . . . ; Cn, Q)),

VCw(C1,wprec(C2 ; . . . ; Cn, Q)), VCw(C2 ; . . . ; Cn, Q)

iff |= VCs(C1, P ), spost(C1, P )→ wprec(C2 ; . . . ; Cn, Q),

VCw(C2 ; . . . ; Cn, Q)

iff |= VCs(C1, P ), spost(C1, P )→ wprec(C2,wprec(C3 ; . . . ; Cn, Q)),

VCw(C2,wprec(C3 ; . . . ; Cn, Q)),

VCw(C3 ; . . . ; Cn, Q)

iff |= VCs(C1, P ), VCs(C2, spost(C1, P )),

spost(C2, spost(C1, P ))→ wprec(C3 ; . . . ; Cn, Q),

VCw(C3 ; . . . ; Cn, Q)

iff |= VCs(C1 ; C2, P ),

spost(C1 ; C2, P )→ wprec(C3 ; . . . ; Cn, Q),

VCw(C3 ; . . . ; Cn, Q)

. . .

iff |= VCs(C1 ; . . . ; Ck, P ),

spost(C1 ; . . . ; Ck, P )→ wprec(Ck+1 ; . . . ; Cn, Q),

VCw(Ck+1 ; . . . ; Cn, Q)

2. Using the definition of the VCGen and Lemma 2 (1), one has the
following

|= VCGw(P, S, Q)

iff |= VC
s
k−1(S, P ), spostk−1(S, P )→ wpreck(S,Q), VC

w
k (S,Q)

iff |= VC
s
k−1(S, P ),

spostk−1(S, P )→ (b→ wprec(St,wpreck+1(S,Q)))∧
(¬b→ wprec(Sf ,wpreck+1(S,Q))),

VCw(St,wpreck+1(S,Q)), VCw(Sf ,wpreck+1(S,Q)), VC
w
k+1(S,Q)
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iff |= VC
s
k−1(S, P ), spostk−1(S, P ) ∧ b→ wprec(St,wpreck+1(S,Q)),

VCw(St,wpreck+1(S,Q)),

spostk−1(S, P ) ∧ ¬b→ wprec(Sf ,wpreck+1(S,Q)),

VCw(Sf ,wpreck+1(S,Q)), VC
w
k+1(S,Q)

iff |= VC
s
k−1(S, P ), VCGw(spostk−1(S, P ) ∧ b, St, wpreck+1(S,Q)),

VCGw(spostk−1(S, P ) ∧ ¬b, Sf , wpreck+1(S,Q)), VC
w
k+1(S,Q)

3. We reason as follows, again using the definition of the VCGen and
Lemma 2 (1)

|= VCGw(P, S, Q)

iff |= VC
s
k−1(S, P ), spostk−1(S, P )→ wpreck(S,Q), VC

w
k (S,Q)

iff |= VC
s
k−1(S, P ), spostk−1(S, P )→ I, I ∧ b→ wprec(Sb, I),

I ∧ ¬b→ wpreck+1(S,Q),VCw(Sb, I), VC
w
k+1(S,Q)

iff |= VC
s
k−1(S, P ), spostk−1(S, P )→ I, VCGw(I ∧ b, Sb, I),

I ∧ ¬b→ wpreck+1(S,Q), VC
w
k+1(S,Q)

Verification Conditions for Total Correctness. In a total correctness
setting the verification conditions are further required to grant termination
of programs. In our language expression evaluation always terminates, so
what is required is that every loop in a given program terminates. For this
it is required that each loop contains an additional annotation, an integer
expression called a loop variant :

Comm 3 C ::= . . . | while b do {A, e}S

If for every loop in the program the value of the respective variant is ini-
tially non-negative and strictly decreases with each iteration, the program
is guaranteed to terminate. The VCGen of Figure 6.2 can be extended to
cope with total correctness by simply modifying the verification conditions
of loops. The function VCwt (resp. VCst ) has the same definition as VCw

(resp. VCs) except for the case of loops, which is given as follows for a loop
annotated with invariant I and variant ev:
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VCwt (while b do {I, ev}S,Q) = {I ∧ b→ ev ≥ 0, I ∧ b ∧ ev = x0

→ wprec(S, I ∧ ev < x0), I ∧ ¬b→ Q}
∪ VCwt (S, I ∧ ev < x0)

VCst (while b do {I, ev}S, P ) = {I ∧ b→ ev ≥ 0, P → I,

spost(S, I ∧ b ∧ ev = x0)→ I ∧ ev < x0}
∪ VCst (S, I ∧ b ∧ ev = x0)

Note that the weakest precondition and strongest postcondition func-
tions wprec and spost are still defined as before. Note also the use of an
auxiliary variable x0 to store the initial value of the variant (regarding an
arbitrary loop iteration), which then allows us to force the postcondition
ev < x0. Now let

VCGwt (P, S,Q) = {P → wprec(S,Q)} ∪ VCwt (S,Q)

and

VCGst (P, S,Q) = VCst (S, P ) ∪ {spost(S, P )→ Q}

The resulting VCGens are sound with respect to total correctness, i.e.

If either |= VCGwt (P, S,Q) or |= VCGst (P, S,Q) and S is executed in a state
that satisfies P , then S terminates, and moreover the final state satisfies Q.

Note that it is immediate from the definitions of VCwt and VCw (resp. VCst
and VCs) that

|= VCGwt (P, S,Q) implies |= VCGw(P, S, Q), and

|= VCGst (P, S,Q) implies |= VCGs(P, S, Q)

which is in accordance with the fact that total correctness is a stronger
notion than partial correctness. In fact, in practice the total correctness of
a program is often established by first proving its partial correctness and
then additionally checking that it terminates on initial states satisfying the
precondition.

The following lemma states that the weakest precondition and the strongest
postcondition strategies are equivalent for calculating total correctness ver-
ification conditions:

Lemma 3. For every precondition P , postcondition Q, and program S,

|= VCGwt (P, S,Q) iff |= VCGst (P, S,Q)
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Proof. By induction on the structure of S. For the case where S is

while b do {I, ev}Sb

, the following is used as induction hypothesis: |= VCGwt (I∧b∧ev = x0, Sb, I∧
ev < x0) iff |= VCGst (I ∧ b ∧ ev = x0, Sb, I ∧ ev < x0).

6.2 Labeled Control Flow Graphs

This chapter introduces the notion of control flow graph annotated with
pairs of assertions and properties of these Labeled Control Flow Graphs
(LCFG) are studied. It will be explained how they can be used as a basis
for the interactive generation of verification conditions. In the next chapter,
another application of these graphs will be presented.

Before the formal definition of LCFG, it is necessary to introduce the
notions of subprogram and local specification.

Definition 74 (Subprogram and Local Specification). Let S be a program
and (P,Q) a specification for it. Ŝ is a subprogram of S, and (P̂ , Q̂) is
its local specification — written as (P̂ , Ŝ, Q̂) b (P, S,Q). The b relation is
defined inductively as follows.

• (P, S,Q) b (P, S,Q);

• If (P1, S1, Q1) b (P, S,Q) and (P2, S2, Q2) b (P1, S1, Q1) then
(P2, S2, Q2) b (P, S,Q).

• If S = C1 ; . . . ; Cn and Ci = if b then St else Sf for some i with
1 ≤ i ≤ n, then

– (sposti−1(S, P ) ∧ b, St,wpreci+1(S,Q)) b (P, S,Q)

– (sposti−1(S, P ) ∧ ¬b, Sf ,wpreci+1(S,Q)) b (P, S,Q)

• If S = C1 ; . . . ; Cn and Ci = while b do {I}Sb for some i with 1 ≤
i ≤ n, then (I ∧ b, Sb, I) b (P, S,Q).

As expected, subprograms of a correct program are correct with respect
to their local specifications.

Lemma 4. Let S, Ŝ be programs and (P,Q) a specification such that (P̂ , Ŝ, Q̂) b
(P, S,Q), i.e. Ŝ is a subprogram of S with local specification (P̂ , Q̂). If |=
VCGw(P, S, Q) then |= VCGw(P̂ , Ŝ, Q̂).



6.2. LABELED CONTROL FLOW GRAPHS 191

Proof. By induction on the definition of the b relation. The first two
cases are trivial. If S = C1 ; . . . ; Cn and Ci = if b then St else Sf
for some i ∈ {1, . . . , n}, Lemma 2 (2) yields |= VCGw(sposti−1(S, P ) ∧
b, St, wpreci+1(S,Q)) and |= VCGw(sposti−1(S, P )∧¬b, Sf , wpreci+1(S,Q)),
as desired. Finally, if S = C1 ; . . . ; Cn and Ci = while b do {I}Sb for some
i ∈ {1, . . . , n}, Lemma 2 (3) yields |= VCGw(I ∧ b, Sb, I).

Definition 75 (Labeled Control Flow Graph). Given a program S, pre-
condition P and postcondition Q such that S = C1 ; . . . ; Cn, the labeled
control flow graph LCFG(S, P,Q) of S with respect to (P,Q) is a labeled
directed acyclic graph (DAG) whose edge labels are pairs of logical assertions
on program states. To each command C in the program S we associate an
input node IN (C) and an ouput node OUT (C). The graph is constructed
as follows:

1. Each command Ci in S will be represented by one (in the case of skip
and assignment commands) or two nodes (for conditional and loop
commands):

• If Ci is skip or an assignment command, there is a new node Ci
in the graph.
We set IN (Ci) = OUT (Ci) = Ci.

• If Ci = if b then St else Sf , there is two new nodes if (b) and fi
in the graph.
We set IN (Ci) = if(b) and OUT (Ci) = fi.

• If Ci = while b do {I}S or Ci = while b do {I, ev}S, there is
two new nodes do(b) and od in the graph.
We set IN (Ci) = do(b) and OUT (Ci) = od.

2. Let LCFG(S, P,Q) also contain two additional nodes START and
END.

3. Let LCFG(S, P,Q) contain an edge (OUT (Ci), IN (Ci+1)) for i ∈ {1, . . . , n−
1}, and two additional edges (START , IN (C1)) and (OUT (Cn),END).
The labels of these edges are set as follows:

lb (START , IN (C1)) = (spost0(S, P ),wprec1(S,Q))

= (P,wprec1(S,Q));

lb (OUT (Ci), IN (Ci+1)) = (sposti(S, P ),wpreci+1(S,Q));

lb (OUT (Cn),END) = (spostn(S, P ),wprecn+1(S,Q)) = (spostn(S, P ), Q).

4. For i ∈ {1, . . . , n}, if Ci = if b then St else Sf , we recursively
construct the graphs

LCFG(St, b ∧ sposti−1(S, P ),wpreci+1(S,Q))
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and

LCFG(Sf ,¬b ∧ sposti−1(S, P ),wpreci+1(S,Q))

These graphs are grafted into the present graph by removing their
START nodes and setting the origin of the dangling edges to be in both
cases the node IN (Ci), and similarly removing their END nodes and
setting the destination of the dangling edges to be the node OUT (Ci).

5. For i ∈ {1, . . . , n}, if Ci = while b do {I}S, we recursively construct
the graph

LCFG(S, I ∧ b, I)

or

LCFG(S, I ∧ b ∧ ev = x0, I ∧ ev < x0)

if a loop variant is present, i.e. Ci = while b do {I, ev}S.

This graph is grafted into the present graph by removing its START
node and setting the origin of the dangling edge to be the node IN (Ci),
and similarly removing its END node and setting the destination of
the dangling edge to be the node OUT (Ci).

Clearly every subprogram Ŝ of S is represented by a subgraph of LCFG(S, P,Q)
delimited by a pair of nodes START/END , if /fi , or do/od . Let us denote
these nodes respectively by IN (Ŝ) and OUT (Ŝ). The basic intuition of la-
beled CFGs is that for every pair of consecutive commands Ĉi, Ĉi+1 in Ŝ,
there exists an edge (Ĉi, Ĉi+1) in LCFG(S, P,Q) whose label consists of the
strongest postcondition of the prefix of Ŝ ending with Ĉi, and the weakest
precondition of the suffix of Ŝ beginning with Ĉi+1, with respect to the local
specification (P̂ , Q̂) of Ŝ propagated from (P,Q).

If |= VCGw(P̂ , Ŝ, Q̂) then every edge in the subgraph representing Ŝ
has a label (φ, ψ) such that |= φ → ψ, as a consequence of Lemma 2 (1).
Moreover, by Lemma 4, if |= VCGw(P, S, Q) then this must be true for every
subprogram Ŝ of S, and thus every edge in the graph LCFG(S, P,Q) has a
label (φ, ψ) such that |= φ→ ψ.

If loops are annotated with variants, this is taken into account when
constructing the subgraph corresponding to the loop’s body (point 5 of the
definition). So we now have that |= VCGwt (P, S,Q) implies |= φ → ψ for
every label (φ, ψ) in the graph.

To illustrate this concept, Figure 6.3 shows the LCFG for program 6.2
with respect to the specification (y > 10, x ≥ 0), where we simplify the
strongest postconditions calculation for the sake of readability.
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1 i f ( y > 0) then
x := 100 ;

3 x := x+50;
x := x−100

5 else
x := x−150;

7 x := x−100;
x := x+100

Listing 6.2: Example for LCFG

6.3 Verification Graphs

In this section the notion of Verification Graph and its properties are studied.
In particular, it is shown how the LCFG previously introduced can be used
for interactive verification.

Definition 76 (Verification Graph and Edge Conditions). Let Π be a pro-
gram and p ∈ PN(Π) a procedure of Π. Then the verification graph of p,
VC (p), is the graph LCFG(body(p),pre(p),post(p)). A formula φ → ψ
such that (φ, ψ) is the label of an edge in the verification graph of p will be
called an edge condition of p. EC(p) will denote the set of Edge Conditions
of procedure p.

Naturally, we may also speak of the set of verification graphs of a program
Π, which is the set of verification graphs of all its procedures.

After defining the concept of Verification Graph, it is possible to prove
the following lemmas:

Lemma 5. Let S be a block of commands and P , Q assertions.
Then VCGw(P, S, Q) ⊆ EC(LCFG(S, P,Q)).

Proof. We prove that

(i) P → wprec(S,Q) ∈ EC(LCFG(S, P,Q)) and

(ii) VCw(S,Q) ⊆ EC(LCFG(S, P,Q)).

(i) is a straightforward consequence of the construction of LCFGs in
Definition 75, point 3, since the label of the outgoing edge from node START
is (P,wprec(S,Q)). (ii) is proved by induction on the structure of S. skip,
assignment, and procedure call are trivial cases.

If S is if b then St else Sf , the graph will include (according to point 4 of
the definition) the subgraphs LCFG(St, b∧P,Q) and LCFG(Sf ,¬b∧P,Q),
and thus by induction hypothesis VCw(St, Q) ⊆ EC(LCFG(S, P,Q)) and
VCw(Sf , Q) ⊆ EC(LCFG(S, P,Q)) as desired.

If S is while b do {I}Sb, the graph will include (according to point
5 of the definition) the subgraph LCFG(Sb, I ∧ b, I), and thus by induc-
tion hypothesis VCw(Sb, I) ⊆ EC(LCFG(S, P,Q)). Note also that accord-
ing to point 3 the outgoing edge from the node OUT (S) (Cod) has label
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Figure 6.3: LCFG for program 6.2 with respect to the specification (y >
10, x ≥ 0)

lb ((spost(S, P ), Q),=)(I ∧ ¬b,Q), and again by point 3 the first edge in
the graph LCFG(Sb, I ∧ b, I) will have the label (I ∧ b,wprec(Sb, I)). Thus
VCw(S,Q) ⊆ EC(LCFG(S, P,Q)).

Finally, if the block S is a sequence of (more than one) commands C ; S′,
the graph LCFG(S, P,Q) clearly has as subgraphs LCFG(C,P,wprec(S′, Q))
and LCFG(S′,wprec(S′, Q), Q) (except for the absence of the END node of
the former and the START node of the latter), from which it follows by
induction hypothesis that VCw(C,wprec(S′, Q)) ⊆ EC(LCFG(S, P,Q)) and
VCw(S′, Q) ⊆ EC(LCFG(S, P,Q)) as desired.

Lemma 6. Given a procedure p, let G be its verification graph, and more-
over let S = C1 ; . . . ; Ci−1 ; Ci ; Ci+1 ; . . . ; Cn be a block of commands of p
with local specification (P,Q), i.e. (P, S,Q) b (pre(p),body(p),post(p)).
Then

• the label of the incoming edge into the node IN (Ci) is
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(sposti−1(S, P ),wpreci(S,Q));

• the label of the outgoing edge from the node OUT (Ci) is
(sposti(S, P ),wpreci+1(S,Q)).

Proof. Straightforward consequence of the construction of the graph in Def-
inition 75. First note that graphs corresponding to subblocks of body(p)
are constructed (points 4 and 5 of the definition) based on their local speci-
fications, following Definition 74. Thus S will be represented by a subgraph
LCFG(S, P,Q) of G. The lemma then follows from point 3 of Definition 75.

Lemma 5 implies that the verification graph of a procedure contains a
set of verification conditions for it (generated using weakest preconditions
exclusively). In fact all the other edge conditions are valid when this set is
valid:

Proposition 1. For any procedure p,

|= VCGw(pre(p), body(p), post(p)) iff |= EC(p)

Proof. By Lemma 5 one has that VCGw(pre(p), body(p), post(p)) ⊆ EC(p),
which proves the if part. For the reverse implication, first note that by
Lemma 4 every block of commands of p has valid VCs with respect to its
local specification, and thus as a consequence of Lemmas 6 and 2, for every
command C in the body of p one has that the labels of the incoming edge
into the node IN (C) and of the outgoing edge from the node OUT (C) are
pairs of assertions (φ, ψ) such that |= φ→ ψ.

What is obtained is a control flow graph annotated with assertions (the
edge conditions) from which different sets can be picked whose validity is
sufficient to guarantee the correctness of the procedure. Each particular
set corresponds to one particular verification strategy, mixing the use of
strongest postconditions and weakest preconditions. The reason why there
are different choices is that many edge conditions in the same graph are
equivalent. Let us now try to characterize in precise terms these equiva-
lences.

Every block of code in a procedure is represented as a set of paths in
its verification graph (a single path if the block contains no branching), and
the label of each edge in the path consists of the strongest postcondition of
a prefix and the weakest precondition of a suffix of the block, with respect
to its local specification. Now it is easy to see that in the case of atomic
commands, the labels of adjacent edges correspond to equivalent assertions,
and in the case of conditional commands it is the conjunction of labels of
the branching edges that is equivalent to the adjacent edge.
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Proposition 2. In the conditions of Lemma 6, let (pi, qi) be the label of the
incoming edge into node IN (Ci) and (po, qo) the label of the outgoing edge
from node OUT (Ci) in G. Then the following hold:

1. If Ci is of the form skip or x := e or call q, then

|= pi → qi iff |= po → qo

(note that IN (Ci) and OUT (Ci) are here the same node).

2. If Ci is of the form if b then St else Sf , let (pti, q
t
i), (pfi , q

f
i ) be the

labels of the outgoing edges from IN (Ci) and (pto, q
t
o), (pfo , q

f
o ) the labels

of the incoming edges into OUT (Ci), corresponding to the then and
else branch respectively. Then

|= pi → qi iff |= pti → qti and |= pfi → qfi

|= po → qo iff |= pto → qto and |= pfo → qfo

Proof. Let U = sposti−1(S, P ) and V = wpreci+1(S,Q). Following Lemma 6
and the definitions of weakest precondition and strongest postcondition, we
have

pi → qi ≡ U → wprec(Ci, V )

po → qo ≡ spost(Ci, U)→ V

1. U → wprec(Ci, V ) ≡ spost(Ci, U)→ V holds when Ci is skip, x := e,
or call q.

2. By definition of weakest precondition/ strongest postcondition and
propositional equivalences, we have

pi → qi ≡ (b ∧ U → wprec(St, V )) ∧ (¬b ∧ U → wprec(Sf , V ))

po → qo ≡ (spost(St, b ∧ U)→ V ) ∧ (spost(Sf ,¬b ∧ U)→ V )

The labels of the branching edges are set by Definition 75.

The subgraphs LCFG(St, b ∧ sposti−1(S, P ),wpreci+1(S,Q)) and
LCFG(Sf ,¬b ∧ sposti−1(S, P ),wpreci+1(S,Q)) are constructed in
point 4, and by point 3 one then has

pti → qti ≡ b ∧ U → wprec(St, V )

pfi → qfi ≡ ¬b ∧ U → wprec(Sf , V )

pto → qto ≡ spost(St, b ∧ U)→ V

pfo → qfo ≡ spost(Sf ,¬b ∧ U)→ V
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This proposition implies that in a block not containing loops and con-
ditionals, it is equivalent to check the validity of any edge condition in the
block’s path in the verification graph. If the block contains conditionals, it
is indifferent to verify (i) an edge condition in the path before the condi-
tional, or (ii) two edge conditions, one for each branch path, or (iii) an edge
condition in the path after the conditional.

One way to formalize this is to assign a status to each edge. Colors green
and black will be used for this. The idea is that the edges whose conditions
are known to be valid (because they have been checked with a prover) are
set to green, and we let this “checked” status propagate along the edges of
the verification graph. If all edges become green then the procedure has
been successfully verified.

Definition 77 (Edge Color in a Verification Graph). Given a procedure
p let E be the set of edges of its verification graph and consider a subset
A ⊆ EC(p) of its edge conditions. The function colorA : E → {black, green}
is defined as follows, where we write

O
(φ,ψ)→ D

for the edge with source O, destination D, and label (φ, ψ)
(the label may be omitted when not relevant).

• If φ→ ψ ∈ A, then colourA(O
(φ,ψ)→ D) = green

• If O corresponds to an atomic command and colourA(N → O) = green
for some node N , then colourA(O → D) = green

• If D corresponds to an atomic command and colourA(D → N) = green
for some node N , then colourA(O → D) = green

• If O is an “if ” node and colourA(N → O) = green for some node N ,
then colourA(O → D) = green (note there are two such D for each
node)

• If D is an “if ” node and colourA(D → N1) = green and colourA(D →
N2) = green for some nodes N1, N2, then colourA(O → D) = green

• If O is an “fi” node and colourA(N1 → O) = green and colourA(N2 →
O) = green for some nodes N1, N2, then colourA(O → D) = green

• If D is an “fi” node and colourA(D → N) = green for some node N ,
then colourA(O → D) = green (note there are two such O for each
node)
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• Otherwise colourA(O → D) = black

The green color propagates freely through atomic command nodes in
either direction. In branching nodes, it propagates from outside the con-
ditional command into both branches; in the reverse direction, it will only
propagate outwards when both branch edges are green.

Proposition 3. Let p be a procedure, E the set of edges of its verification
graph, and A ⊆ EC(p) such that |= A. If colourA(e) = green for every e ∈ E
then |= VCGw(pre(p), body(p), post(p))

Proof. Every green edge has a valid associated condition. This can be shown
by induction on the cardinality of the set of green edges, since the associated
condition of every edge added to this set is either valid by hypothesis or
equivalent to the condition of some edge already in the set (according to
Proposition 2). The result then follows from Proposition 1.

A third color red could be additionally considered, for edges whose condi-
tions have been proved to be invalid. For interactive verification, this would
have the advantage of identifying the segments of the code where problems
exist. red would also propagate freely across atomic command nodes; it
would not propagate into conditional branches (since only one branch is
known to have an invalid VC), but it would propagate outwards from any
conditional branch (without requiring the other branch to also be red). In
Chapter 9 it will be explained how these ideas have been incorporated in a
an interactive tool for program verification.

While loops have not yet been discussed. Each loop is represented by
a pair of nodes do, od , and a path or set of paths from the former to the
latter, corresponding to the loop’s body. In do and od nodes there exists
no equivalence between the edge conditions of the incoming and outgoing
edges. Consider the subgraph

A
(φ1,ψ1)→ do

(φ2,ψ2)→ . . .
(φ3,ψ3)→ od

(φ4,ψ4)→ B

Then φ1 → ψ1 is the loop initialization VC, φ2 → ψ2, . . . , φ3 → ψ3 are
invariant preservation VCs, and φ4 → ψ4 is the VC ensuring that the post-
condition is granted by the invariant. Unlike the case of atomic command or
branching nodes, in the presence of do / od nodes it is necessary to establish
independently the validity of these VCs. In terms of coloring, these nodes
block the propagation of the green color.

A consequence of this is that in the presence of an arbitrary path

A
(φ1,ψ1)→ B → . . .→ C

(φ2,ψ2)→ D

if the path contains no loop nodes, then φ1 → ψ1 ≡ φ2 → ψ2, otherwise
the equivalence does not hold: each loop introduces the need to prove three
independent VCs.
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Example

As an example consider the following procedure partstep

pre p ≤ j ∧ j < r ∧ p− 1 ≤ i ∧ i < j
post p ≤ j ∧ j ≤ r ∧ p− 1 ≤ i ∧ i < j
proc partstep =

if A[j] < x+ 1 then
i := i+ 1 ;
tmp := A[i] ;
A[i] := A[j] ;
A[j] := tmp

else skip ;
j := j + 1

Its verification graph is shown in Figure 6.4, left, where:

P = p ≤ j ∧ j < r ∧ p− 1 ≤ i ∧ i < j

P1 ≡ A[j] < x+ 1 ∧ p ≤ j ∧ j < r ∧ p− 1 ≤ i ∧ i < j

P2 ≡ A[j] < x+ 1 ∧ p ≤ j ∧ j < r ∧ p− 1 ≤ i− 1 ∧ i− 1 < j

P3 ≡ A[j] < x+ 1 ∧ p ≤ j ∧ j < r ∧ p− 1 ≤ i− 1 ∧ i− 1 < j ∧ tmp = A[i]

P4 ≡ A[i] < x+ 1 ∧ p ≤ j ∧ j < r ∧ p− 1 ≤ i− 1 ∧ i− 1 < j ∧A[i] = A[j]

P5 ≡ A[i] < x+ 1 ∧ p ≤ j ∧ j < r ∧ p− 1 ≤ i− 1 ∧ i− 1 < j ∧A[j] = tmp

P6 ≡ ¬(A[j] < x+ 1) ∧ p ≤ j ∧ j < r ∧ p− 1 ≤ i ∧ i < j

P7 ≡ ( A[i] < x+ 1 ∧ p ≤ j ∧ j < r ∧ p− 1 ≤ i− 1 ∧ i− 1 < j ∧A[j] = tmp)

∨ (¬(A[j] < x+ 1) ∧ p ≤ j ∧ j < r ∧ p− 1 ≤ i ∧ i < j)

P8 ≡ ( A[i] < x+ 1 ∧ p ≤ j − 1 ∧ j − 1 < r ∧ p− 1 ≤ i− 1 ∧ i− 1 < j − 1 ∧A[j − 1] = tmp)

∨ (¬(A[j − 1] < x+ 1) ∧ p ≤ j − 1 ∧ j − 1 < r ∧ p− 1 ≤ i ∧ i < j − 1)

Q = p ≤ j ∧ j ≤ r ∧ p− 1 ≤ i ∧ i < j

Q1 = p ≤ j + 1 ∧ j + 1 ≤ r ∧ p− 1 ≤ i ∧ i < j + 1

Q2 = p ≤ j + 1 ∧ j + 1 ≤ r ∧ p− 1 ≤ i+ 1 ∧ i+ 1 < j + 1

Q3 = (A[j] < x+ 1→ p ≤ j + 1 ∧ j + 1 ≤ r ∧ p− 1 ≤ i+ 1 ∧ i+ 1 < j + 1)

∧ (¬(A[j] < x+ 1)→ p ≤ j + 1 ∧ j + 1 ≤ r ∧ p− 1 ≤ i ∧ i < j + 1)

Note that the contract of the procedure does not describe everything
that the procedure does; in particular it only establishes the bounds of the
variables j and i.

To prove that the local verification conditions of p are valid, one can
choose to prove for instance any of P → Q3, or P8 → Q, or both P1 → Q2

and P6 → Q1. Now consider a second procedure that invokes partstep as
follows.
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Figure 6.4: Example verification graph: procedures partstep and partition
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pre 0 ≤ p ∧ p ≤ r
post p ≤ i+ 1 ∧ i+ 1 ≤ r
proc partition =
x := A[r] ;
j := p ;
while j < r do {p ≤ j ∧ j ≤ r ∧ p− 1 ≤ i ∧ i < j}

call partstep
tmp := A[i+ 1] ;
A[i+ 1] := A[r] ;
A[r] := tmp ;

Its verification graph is shown in Figure 6.4, right. Establishing the
conditional correctness of the program consisting of these two procedures
would imply proving the following in addition to the previous condition:

• P → Q8 or P1 → Q7 or P2 → Q6, and

• P3 → Q5 or P4 → Q4, and

• P5 → Q3 or P6 → Q2 or P7 → Q1, or P8 → Q.

Note in particular that P3 → Q5 and P4 → Q4 correspond to the preserva-
tion of the loop invariant, which implies reasoning with the contract of the
partstep procedure (which in fact corresponds precisely to the preservation
of the invariant).

In Chapter 9, it will be shown with concrete examples how this approach
of verifying a program by employing verification graphs can be used to dis-
cover the incorrect statements in a program.
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Chapter 7

Assertion-based Slicing

I assert that nothing ever comes
to pass without a cause.

Jonathan Edwards, 1703-1758

Program slicing [Wei81], as discussed in Chapter 4, is a well-established
activity in software engineering. It plays an important role in program
comprehension, since it allows software engineers to focus on the relevant
portions of code (with respect to a given criterion). The basic idea is to
isolate a subset of program statements that

• either directly or indirectly contribute to the values of a set of variables
at a given program location, or

• are influenced by the values of a given set of variables.

Other statements are considered extraneous with respect to the given crite-
rion and can be removed, enabling engineers to concentrate on the analysis
of just the relevant ones. The first approach corresponds to backward forms
of slicing, whereas the second corresponds to forward slicing.

Work in this area has focused on the development of progressively more
effective, useful, and powerful slicing techniques, and has led to the use of
these techniques in many application areas including program debugging,
software maintenance, software reuse, and so on.

Program verification, as discussed in Chapter 3, on the other hand, is an
apparently unrelated activity whose goal is to establish that a program per-
forms according to some intended specification. Typically, what is meant
by this is that the input/output behavior of the implementation matches
that of the specification (this is usually called the functional behavior of
the program), and moreover the program does not ‘go wrong’, for instance
no errors occur during evaluation of expressions (the so-called safety be-
havior). As has been discussed in Chapter 6, modern program verification

203
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systems are based on algorithms that examine a program and generate a
set of verification conditions that are sent to an external theorem prover for
checking. If all the conditions generated from a program can be proved, then
the program is guaranteed to be correct with respect to the specification.

One point of contact that has been identified between slicing and verifica-
tion is that traditional dependency-based slicing, applied a priori, facilitates
the verification of large programs. This chapter explores the idea that it
makes sense to slice programs based on semantic, rather than syntactic,
criteria – the contracts used in DbC and program verification are excellent
candidates for such criteria.

A typical example of a situation in which one could wish to calculate
the slice of a program based on a specification is the reuse of annotated
code. Suppose one is interested in reusing a module whose advertised con-
tract consists of precondition P and postcondition Q, in situations in which
a stronger precondition P ′ is known to hold, or else the desired postcondi-
tion Q′ is weaker than the specified Q. Then from a software engineering
perspective it would be desirable to eliminate, at source-level, the code that
may be extraneous with respect to the specification (P ′, Q′).

From now on the expression “assertion-based slicing” will be used to re-
fer to slicing methods based on the axiomatic semantics of programs, taking
as criteria assertions (preconditions and/or postconditions) annotated in the
programs. This includes precondition-based slicing, postcondition-based slic-
ing, and specification-based slicing. Assertion-based slicing is more powerful
and flexible than syntactic slicing, since the criteria can be as expressive as
any set of first-order formulas on the initial and final states of the program.
One of the first forms of slicing based on program semantics was conditioned
slicing [CCL98], a form of forward slicing. This was shown to subsume both
static and dynamic notions of dependency-based slicing, since the initial
state of execution is constrained by a first-order formula that can be used
to restrict the set of admissible initial states to exactly one (corresponding
to dynamic slicing), or simply to identify a relevant subset of the state to be
used as slicing criterion (as in static slicing). The same applies to backward
slicing: using a postcondition as slicing criterion instead of a set of variables
is clearly more expressive. Naturally, this expressiveness comes at a cost,
since semantic forms of slicing are harder to compute.

Although the basic ideas have been published for over 10 years now,
assertion-based slicing is still not very popular – in particular we are not
aware of working tools that implement the ideas. The widespread usage of
code annotations as explained above is however an additional argument for
promoting it.

This chapter reviews (and clarifies aspects of) previous work in this area,
sets a basis for slicing programs annotated with loop invariants and variants,
and studies properties and applications of such slices. Moreover, new ideas
are introduced, which allow us to develop an algorithm for specification-
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based slicing that improves on previous algorithms in two aspects: the iden-
tification of sequences of statements that can be safely removed from a
program (without modifying its semantics), and the selection of the biggest
set of such sequences. Note that removable sequences may overlap, so this is
not a trivial problem. This problem is solved by giving another application
to the LCFG introduced in the previous chapter. While in Chapter 6 LCFGs
were used as verification graphs, this Chapter introduces the notion of slice
graph, which contains as subgraph the control flow graph of every slice of the
program. This allow us to define a slicing algorithm that can be applied to
calculate precondition-, postcondition-, and specification-based slices, but
the focus will be on the latter, since the first two are particular cases.

One of the claims made in this chapter is that this new algorithm pro-
duces minimal slices. Note that the algorithm is optimal in a relative sense,
since the test for removable subprograms involves first-order formulas whose
validity must be established externally by some proof tool. Undecidability of
first-order logic destroys any hope of being able to identify every removable
subprogram automatically, since some valid formulas may not be proved.

Auxiliary Notation. Throughout the chapter, the following notation will
be used to denote the sequence of commands S′ obtained from S by removing
a subsequence of commands. For 1 ≤ i ≤ j ≤ n,

remove(i, j, S) =

{
skip if i = 1 and j = n,
C1 ; . . . ; Ci−1 ; Cj+1 ; . . . ; Cn otherwise.

In this chapter we will often use the word “program” to refer to a block of
commands, rather than in the sense of Chapter 3 (a set of mutually-recursive
procedures).

Structure of the chapter. In Section 7.1 previous work in this area is re-
viewed, including a discussion of aspects of the existing algorithms regarding
their precision and minimality of the calculated slices. Section 7.2 formalizes
the notions introduced in the previous section. Sections 7.3 and 7.4 contain
the main technical contributions: first, the properties of specification-based
slicing are studied and a precise test for identifying removable blocks of code
is proposed, as well as a principle for slicing subprograms of a program; later
we introduce the setting for a graph-based algorithm that computes mini-
mal slices of a program with respect to a given specification. Section 7.5
discusses in detail one particular application of assertion-based slicing: the
elimination of redundant code. In Section 7.6, other forms of slicing that
have some points in common with the ones presented are reviewed.
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x := x + 100 ;
2 x := x + 50 ;

x := x − 100

Listing 7.1: Example for postcondition-based slicing (1)

7.1 Assertion-based Slicing

In this section the notions of slicing based on preconditions and postcondi-
tions are discussed, as well as algorithms for calculating them. Other related
approaches are discussed in Section 7.6, in particular the notions of forward
and backward conditioned slice.

As referred above, the expression assertion-based slicing will be used to
encompass postcondition-based, precondition-based, and specification-based
forms of slicing, which will be considered in turn in what follows. It is
important to keep in mind the distinction between the definition of some
form of slicing (which states when a program is a slice of another based
on a given criterion), and algorithms for computing such slices. The fact
that definitions and algorithms have often been introduced simultaneously
in the same papers may cause some confusion between the two. Typically
a definition admits more than one slice based on the same criterion, and an
algorithm computes one particular slice in accordance with the definition.

This section is intended to introduce the reader to the key concepts
of slicing based on assertions, but also to identify some limitations in the
published work, which will be solved in the rest of the chapter.

7.1.1 Postcondition-based Slicing

The idea of slicing programs based on their specifications was introduced by
Comuzzi et al [CH96] with the notion of predicate slice (p-slice), also known
as postcondition-based slice. To understand the idea of p-slices, consider a
program S and a given postcondition Q. It may well be the case that some
of the commands in the program do not contribute to the truth of Q in the
final state of the program, i.e. their presence is not required in order for
the postcondition to hold. In this case, the commands may be removed. A
crucial point here is that the considered set of executions of the program is
restricted to those that will result in the postcondition being satisfied upon
termination. In other words, not every initial state is admissible – only those
for which the weakest precondition of the program with respect to Q holds.

Consider for instance program in Listing 7.1. The postcondition Q =
x ≥ 0 yields the weakest precondition x ≥ −50. If the program is executed
in a state in which this precondition holds and the commands in lines 2
and 3 are removed from it, the postcondition Q will still hold. To convince
ourselves of this, it suffices to notice that after execution of the instruction
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1 x := x−150;
x := x+100;

3 x := x+100

Listing 7.2: Example for postcondition-based slicing (2)

in line 1 in a state in which the weakest precondition is true, the condition
x ≥ 50 will hold, which is in fact stronger than Q.

To be more systematic, for a program of the form C1 ; . . . ; Cn with
postcondition Q, if |= wpreci(S,Q)→ wprecj(S,Q), with i < j, the sequence
Ci ; . . . ; Cj−1 can be removed. In particular, if |= wpreci(S,Q) → Q, the
sequence Ci ; . . . ; Cn can be removed. For the previous example one have

wprec3(S,Q) = x ≥ 100,

wprec2(S,Q) = x ≥ 50,

wprec1(S,Q) = x ≥ −50.

Now observe that |= wprec2(S,Q) → Q, which means that the instructions
in lines 2 to 3 can in fact be removed: the postcondition Q will still hold for
the sliced program when it is executed in a state satisfying x ≥ −50.

P-slices are of course not unique. For instance since |= wprec3(S,Q)→ Q
as well, one could have chosen to remove only the instruction in line 3.
Informally it can be said that given a set of slices of a program with respect
to the same postcondition, the best slice is the one in which the highest
number of instructions is removed.

It is also important to understand that not only suffixes of a sequence
of commands may be removed. Consider the postcondition Q = x ≥ 0 for
program in Listing 7.2, which yields the following weakest preconditions

wprec3(S,Q) = x ≥ −100,

wprec2(S,Q) = x ≥ −200,

wprec1(S,Q) = x ≥ −50

Note that although 6|= wprec1(S,Q) → Q, the commands in lines 1 and 2
can be removed because |= wprec1(S,Q) → wprec3(S,Q). If the statement
in line 3 is executed in a state in which x ≥ −50 then the postcondition
x ≥ 0 will hold.

Please notice that in the limit, the set of executions that leads to the
postcondition being satisfied may be empty (if the weakest precondition of
the program is a contradiction, say x < 0 ∧ x > 10), in which case there
exist no slices – the formal definition to be given below will clarify this
point. Another extreme situation occurs when the postcondition is a valid
assertion, say x < 0 ∨ x > −10, in which case the entire program is seen as
irrelevant, and admits as a slice the trivial program skip.
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Calculating p-slices

It is easy to see how p-slices of a sequence of commands S = C1 ; . . . ; Cn
can be computed with respect to a postcondition Q. The first step is of
course to calculate the weakest preconditions wpreci(S,Q), for 1 ≤ i ≤ n,
and to store this information, say in the abstract syntax tree of S.

The next step is to iterate the following basic procedure that attempts
to remove the subsequence Ci ; . . . ; Cj−1, with 1 ≤ i < j ≤ n:

• If |= wpreci(S,Q)→ wprecj(S,Q) then slice S to remove(i, j − 1, S)

This involves a trade-off between the number of proof obligations gener-
ated (each of which results in a call to the prover) and the potential number
of lines that will be removed from the program. Suppose for instance one
limit ourselves to removing suffixes of the initial program. The smallest such
slice can be calculated with a linear number of calls to the prover (on the
length of S), by fixing j = n+ 1 (thus wprecj(S,Q) = Q). It suffices, in the
second step above, to initialize i = 1, and then execute the following loop:
the prover is invoked with the formula wpreci(S,Q) → Q; if unsuccessful
then i is incremented and a new iteration of the loop takes place; otherwise
the algorithm stops. The resulting slice is C1 ; . . . ; Ci−1.

Notice that this is of course a conservative approach: failure of the prover
to establish the validity of the first-order formula wpreci(S,Q) → Q does
not mean that the formula is not valid, but this uncertainty implies that
removing the sequence Ci ; . . . ; Cn might result in a program that is not a
slice of S, so the algorithm proceeds to the next candidate suffix.

As previously said, it is now easy to understand that the same program
may contain more than one removable subsequences, including prefixes, suf-
fixes, and sequences that are neither prefixes nor suffixes. Moreover, these
removable sequences may well overlap. Thus it is clear that no linear-time
algorithm can possibly detect all removable sequences leading to the smallest
slice.

The Original Quadratic Time Algorithm

The algorithm proposed by Comuzzi runs in quadratic time on the length
of the sequence. The algorithm first tries to slice the entire program by
removing its longest removable suffix, and then repeats this task, considering
successively shorter prefixes of the resulting program, and removing their
longest removable suffixes. Schematically:

for j = n+ 1, n, . . . , 2

for i = 1, . . . , j − 1

if valid
(
wpreci(S,Q)→ wprecj(S,Q)

)
then S ← remove(i, j − 1, S)
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For instance in a program with 999 statements the following pairs (i, j)
would be considered in this order:

(1, 1000), (2, 1000), . . . , (999, 1000), (1, 999), (2, 999), . . . , (998, 999), (1, 998), . . .

This algorithm may fail to remove the longest sequence. Consider that

|= wprec1(S,Q)→ wprec800(S,Q)

and

|= wprec700(S,Q)→ wprec900(S,Q)

Two subsequences may be sliced off, consisting respectively of commands
1 to 799 and 700 to 899. The algorithm will consider (and remove) the
shorter sequence first, and in doing so will eliminate the possibility of the
longer sequence being considered, since line 800 will be removed (and it may
happen that wprec1(S,Q) is not stronger than any remaining wpreck(S,Q)).
The resulting slice is thus not minimal.

An Improved Quadratic Algorithm

An alternative to Comuzzi’s algorithm can be described as follows. Start
with the entire program and consider in turn successively shorter sequences
as candidates to be removed. Thus in the 999 statements program, sequences
in the order (1, 1000), (1, 999), (2, 1000), (1, 998), (2, 999), (3, 1000), (1, 997),
. . . will be considered. This would certainly remove the longest removable
sequence.

This algorithm is however not optimal either. Consider the case in which

|= wprec1(S,Q)→ wprec400(S,Q)

|= wprec600(S,Q)→ wprec1000(S,Q)

and

|= wprec200(S,Q)→ wprec800(S,Q)

. The longest sequence will be sliced off (600 program lines), but this will
preclude the possibility of eliminating two shorter sequences that would to-
gether consist of 800 program lines: removing the larger contiguous sequence
does not necessarily result in the smallest slice.

It should now be clear that considering all sequences in any given order
cannot guarantee that the minimal slice is computed.

The same is true for precondition-based and specification-based slices,
discussed below. In Section 7.4 it will be shown that this problem can in
general be formulated as a graph problem, which is one of the contributions
of this PhD work.
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1 x := x+100;
x := x−200;

3 x := x+200

Listing 7.3: Example for precondition-based slicing

7.1.2 Precondition-based Slicing

Chung and colleagues [CLYK01] later introduced precondition-based slicing
as the dual notion of postcondition-based slicing. The idea is still to remove
statements whose presence does not affect properties of the final state of
a program. The difference is that the considered set of executions of the
program is now restricted directly through a first-order condition on the
initial state. Statements whose absence does not violate any property of the
final state of any such execution can be removed. This is the same as saying
that the assertion calculated as the strongest postcondition of the program
(resulting from propagating forward the given precondition) is not weakened
in the computed slice.

As an example of a precondition-based slice, consider now Listing 7.3,
and the precondition P = x ≥ 0. The effect of the first two instructions is to
weaken the precondition. If these instructions are sliced off and the resulting
program is executed in a state in which P holds, whatever postcondition held
for the initial program will still hold for the sliced program.

To be systematic, for a program of the form C1 ; . . . ; Cn with pre-
condition P , if |= sposti(S, P ) → spostj(S, P ), with i < j, the sequence
Ci+1 ; . . . ; Cj can be removed. In particular, if |= P → spostj(S, P ), the
sequence C1 ; . . . ; Cj can be removed. For the previous example we have

spost1(S, P ) = ∃v.v ≥ 0 ∧ x = v + 100 ≡ x ≥ 100,

spost2(S, P ) = ∃v.v ≥ 100 ∧ x = v − 200 ≡ x ≥ −100,

spost3(S, P ) = ∃v.v ≥ −100 ∧ x = v + 200 ≡ x ≥ 100

Please notice that |= P → spost2(S, P ), thus the first two commands
can be sliced off. Similarly to postcondition-based slicing, this is not limited
to removing prefixes (even though only prefixes are considered by the linear
time algorithm proposed in [CLYK01]). In the same example program, since
in fact

|= spost1(S, P )→ spost3(S, P )

it could be alternatively slice off lines 2 and 3 of the program, which shows
that removable sequences may overlap.

As a final example, consider a program containing branching, Listing 7.4
(top). Again slicing the program involves computing its strongest postcon-
dition with respect to a given precondition P . Both branches consist of
sequences of commands; even if the conditional command itself cannot be
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1 i f ( x >= 0) then
x := x+100;

3 x := x−200;
x := x+200

5 else
x := x−150;

7 x := x−100;
x := x+100

9
−−−−−−−−−−−−−−−−−

11
i f ( x >= 0) then

13 x := x+200
else

15 sk ip

Listing 7.4: Example for precondition-based slicing

sliced off, it may well be the case that the branch subprograms can be
sliced. To this effect, the precondition is strengthen with the boolean condi-
tion and its negation respectively, and slice each branch with respect to these
strengthened preconditions. Let S1 be x :=x+100; x := x-200; x := x+200

and S2 be x := x-150; x := x-100; x := x+100. S1 will be sliced with
respect to P1 = P ∧ x ≥ 0 and S2 with respect to P2 = P ∧ x 6≥ 0.

Now let P be x ≥ 0. Then P1 ≡ x ≥ 0 and P2 is a contradiction,
which means that |= P2 → spost(S2, P2). Consequently, S2 will be sliced to
skip. This makes sense, since the precondition eliminates the possibility of
execution of the else branch of the conditional. On the other hand the then
branch is just the previous example (Listing 7.3). Thus program on top of
Listing 7.4 can be precondition-sliced with respect to x ≥ 0 as shown at the
bottom of this Listing.

7.1.3 Specification-based Slicing

A specification-based slice can be calculated when both a precondition P and
a postcondition Q are given for a program S. The set of relevant executions
is restricted to those for which Q holds upon termination when the program
is executed in a state satisfying P . Programs resulting from S by removing
a set of statements, and which are still correct regarding (P,Q), are said to
be specification-based slices of S with respect to (P,Q).

The method proposed in [CLYK01] to compute such slices is based on
a theorem proved by the authors, which states that the composition, in
any order, of postcondition-based slicing (with respect to postcondition Q)
and precondition-based slicing (with respect to precondition P ) produces a
specification-based slice with respect to (P,Q). As an example recall the
program in Listing 6.2, page 193, and here transcribed in Listing 7.5, and
the specification (y > 10, x ≥ 0). Precondition-based slicing will slice both
sequences inside the conditional by strengthening the precondition y > 10
with the condition y > 0 and its negation respectively. In the second case
this yields a contradiction, which will result in the else branch sequence
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1 i f ( y > 0) then
x := 100 ;

3 x := x+50;
x := x−100

5 else
x := x−150;

7 x := x−100;
x := x+100

9
−−−−−−−−−−−−−−−−

11
i f ( y > 0) then

13 x := 100
else

15 sk ip

Listing 7.5: Example for specification-based slicing

1 x := x∗x ;
x := x+100;

3 x := x+50

Listing 7.6: Example for specification-based slicing

being completely sliced off. The then sequence branch is not affected.
Postcondition-based slicing with respect to x ≥ 0 will then produce the
sliced program shown at the bottom of the listing.1

Although this method does compute specification-based slices, it does
not compute minimal slices, as can be seen by looking at program in List-
ing 7.6 with specification (>, x ≥ 100). One have:

spost0(S, P ) = >
spost1(S, P ) = ∃v.x = v ∗ v
spost2(S, P ) = ∃w.(∃v.w = v ∗ v) ∧ x = w + 100 ≡ ∃v.x = v ∗ v + 100

spost3(S, P ) = ∃w.(∃v.w = v ∗ v + 100) ∧ x = w + 50 ≡ ∃v.x = v ∗ v + 150

and

wprec4(S,Q) = x ≥ 100 = Q

wprec3(S,Q) = x ≥ 50

wprec2(S,Q) = x ≥ −50

wprec1(S,Q) = >

It is obvious that the postcondition is satisfied after execution of the instruc-
tion in line 2, which means that if line 3 is removed the sliced program will
still be correct with respect to (>, x ≥ 100). However, precondition-based
and postcondition-based slicing both fail in removing this instruction, since
no forward implications are valid among the sposti(S, P ) or the wpreci(S,Q).

1In fact [CLYK01] advocates replacing the entire conditional command by one of the
branches when the other branch is sliced to skip, but it is debatable whether this trans-
formation can still be considered as a form of slicing.
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skip � C1 ; . . . ; Cn

C1 ; . . . ; Ci−1 ; Cj+1 ; . . . ; Cn � C1 ; . . . ; Ci ; . . . ; Cj ; . . . ; Cn

(1 < i ≤ j ≤ n or 1 ≤ i ≤ j < n)

C′i � Ci

(i ≤ i ≤ n)
C1 ; . . . ; C′i ; . . . ; Cn � C1 ; . . . ; Ci ; . . . ; Cn

S′1 � S1 S′2 � S2

if b then S′1 else S′2 � if b then S1 else S2

S′ � S

while b do {I}S′ � while b do {I}S

Figure 7.1: Definition of relation “is portion of”

Composing precondition-based and postcondition-based slicing will of course
not solve this fundamental flaw. In Section 7.3 it is shown that the precise
identification of removable statements requires the simultaneous use of both
preconditions and postconditions; trying to identify removable statements
using only preconditions or only postconditions may fail.

7.2 Formalization of Assertion-based Slicing

In this section the notions of slicing discussed in the previous section are
formalized. A program S′ is a specification-based slice of S if it is a portion
of S and moreover S can be refined to S′ with respect to a given specification
(a semantic notion). The notions of precondition-based and postcondition-
based slice can be defined as special cases of this notion.

From now on, S′ � S will be written with the meaning that program S′

results from S by removing some statements. S′ is said to be a portion or a
reduction of S.

Definition 78 (Portion-of relation). The · � · relation is the reflexive tran-
sitive closure of the relation generated by the set of axioms and rules given
in Figure 7.1.

Note that since Figure 7.1 defines an anti-symmetric relation, · � · is a
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partial-order. As will be shortly seen, slices of a program S are portions of
S that satisfy additional constraints.

Definition 79 (Assertion-based slices). Let S be a program and (P,Q) a
specification consisting of precondition P and postcondition Q. The program
S′ is said to be

• a specification-based slice of S with respect to (P,Q), written S′ /(P,Q)

S, if S′ � S and

|= VCGw(P, S, Q) implies |= VCGw(P, S′, Q)

• a precondition-based slice of S with respect to P , if S′ /(P,spost(S,P )) S;

• a postcondition-based slice of S with respect to postcondition Q if

S′ /(wprec(S,Q),Q) S.

Observe that it only makes sense to calculate specification-based slices of
correct programs; if S is not correct with respect to (P,Q) then any portion
of it is a slice with respect to (P,Q). This does not however mean that
techniques based on these forms of slicing cannot be applied to incorrect
programs: they can be used on subprograms (proved correct) of incorrect
programs. For instance, in Section 7.5 it will be discussed how postcondition-
based slicing can be used for debugging purposes.

Notice also that the definitions of precondition-based and postcondition-
based slicing are very strong, as the following lemma shows.

Lemma 7.

1. If S′ is a precondition-based slice of S with respect to P , then for any
assertion Q, S′ /(P,Q) S

2. If S′ is a postcondition-based slice of S with respect to Q, then for
any assertion P , S′ /(P,Q) S

Proof. We prove 1 (the proof of 2 is similar). We assume |= VCGw(P, S, Q),
and thus by Lemma 1 |= spost(S, P ) → Q, VCs(S, P ), and have to prove
that |= VCGw(P, S′, Q). Since S′ is a precondition-based slice of S with
respect to P , by Lemma 1 we have that

|= spost(S, P )→ spost(S, P ), VCs(S, P )

implies

|= spost(S′, P )→ spost(S, P ), VCs(S′, P )

The left-hand side follows from our assumptions, and thus

|= spost(S′, P )→ Q, VCs(S′, P )

which by the same lemma is equivalent to |= VCGw(P, S′, Q).
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Observe at this point that there are several differences between the def-
initions previously presented and those used in [CH96, CLYK01]. A first
difference concerns all the above notions of slicing: previous notions require
the weakest precondition (resp. strongest postcondition) to be exactly the
same in the sliced program as in the original program, whereas now it allows
to be weaker (resp. stronger), which is more coherent with the idea of the
slice refining the behavior of the original program.

A second difference concerns specifically the definitions of precondition-
based and postcondition-based slicing only. While the definitions given
in [CLYK01] are based on implicative assertions relating the strongest post-
conditions (resp. weakest preconditions) of both programs, they are now
explicitly defined as particular cases of specification-based slices, which is
more convenient given our treatment of iteration through the use of an-
notated invariants. The following lemma makes the relation between both
definitions explicit, for the case of programs without iteration.

Lemma 8. Let S′ be a program containing no loops. Then

1. If S′ � S and |= spost(S′, P )→ spost(S, P ), then S′ /(P,spost(S,P )) S.

2. if S′ � S and |= wprec(S,Q)→ wprec(S′, Q), then S′ /(wprec(S,Q),Q) S

Proof.

1. Note that VCGs(P, S, spost(S, P )) = spost(S, P )→ spost(S, P ), which
is valid, and VCGs(P, S′, spost(S, P )) = spost(S′, P ) → spost(S, P ).
Thus |= VCGs(P, S, spost(S, P )) implies |= VCGs(P, S′, spost(S, P ))
and by Lemma 1 we have that |= VCGw(P, S, spost(S, P )) implies
|= VCGw(P, S′, spost(S, P ))

2. Similar to 1.

The definitions above are formulated in a partial correctness setting,
which means that terminating programs admit non-terminating programs
as specification-based slices, and vice versa (it is easy to see that remov-
ing a single instruction from the body of a terminating loop may make it
non-terminating, and vice versa). Termination-sensitive notions of slicing
will now be introduced, by shifting from a partial correctness to a total cor-
rectness setting. A terminating program does not admit non-terminating
programs as termination-sensitive slices.

Definition 80 (Termination-sensitive assertion-based slices). Let S be a
program and (P,Q) a specification consisting of precondition P and post-
condition Q. The program S′ is said to be
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• a termination-sensitive specification-based slice of S with respect to
(P,Q), written S′ J(P,Q) S, if S′ � S and moreover

|= VCGwt (P, S,Q) implies |= VCGwt (P, S′, Q)

• a termination-sensitive precondition-based slice of S with respect to P
if S′ J(P,spost(S,P )) S;

• a termination-sensitive postcondition-based slice of S with respect to
Q if S′ J(wprec(S,Q),Q) S.

In the same way that, when verifying a program, one may proceed by
first checking its partial correctness and then its termination to ensure to-
tal correctness, one may assert that S′ is a termination-sensitive slice of
the totally correct program S by checking that S′ /(P,Q) S and additionally
checking that S′ terminates.

7.3 Properties of Assertion-based Slicing

In abstract terms, given a program S = C1 ; . . . ; Cn with specification
(P,Q), an assertion-based slicing algorithm must be able to

1. Identify subprograms that could be removed from the program being
sliced, while preserving its correctness with respect to a given spec-
ification. More concretely, the algorithm must decide for every i, j
if

remove(i, j, S) /(P,Q) S

holds, and then proceed recursively to identify removable subprograms
of each Ci.

2. Select, among the set of statements identified as removable, the com-
bination (or one of the combinations) that results in the best slice
according to some criterion (the most obvious is the smallest number
of program lines). Although this has been considered more seriously
in the work of Comuzzi and colleagues on postcondition-based slicing,
it applies to all three forms of slicing considered so far.

This section is devoted to point 1; the second point will be considered in
Section 7.4.

The currently available algorithms for precondition-based and postcon-
dition-based slicing check the validity of a formula relating the propagated
conditions near the statements i and j. This seemed to be a good test of
whether the sequence of commands between i and j could be removed, but
in Section 7.1 it was shown that for precondition-based slicing the method
used in previous work fails to identify statements that should be removed
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because they do not contribute to the final state of the program, in any
of the executions specified by the precondition. The failure occurs when
the commands are made irrelevant by other instructions that occur later in
the program, and thus cannot be detected by the prescribed method. The
bottom line is that using Lemma 8 to design precondition or postcondition-
based slicing algorithms is in fact misleading. The problem can be solved
by simply observing our definition of these slices (Definition 79), which are
given as particular cases of specification-based slices. For instance given a
precondition P , it suffices to calculate the strongest postcondition of the
program with respect to P and then calculate a specification-based slice of
S with respect to (P, spost(S, P )).

For specification-based slicing, the algorithm of [CLYK01] considers se-
quentially the propagation of preconditions and postconditions. But in Sec-
tion 7.1.3 it was shown that first slicing with preconditions and later with
postconditions (or vice versa) may fail to remove statements which can be
removed, according to the definition. It will be now shown that using precon-
ditions and postconditions simultaneously allows for a precise identification
of removable statements.

7.3.1 Removable Commands

Let us start by generalizing Lemma 1. This lemma states that there exist
two equivalent ways to calculate verification conditions for a given program
and specification: one based on weakest preconditions and another based
on strongest postconditions. It will be now shown that for a given program
this can be generalized: one can equally generate verification conditions by
breaking the sequence of commands at any point, resulting in a prefix and
a suffix of the initial command. The set of verification conditions is given
as the union of the verification conditions of the suffix (computed using
weakest preconditions) and of the prefix (using strongest postconditions).
An additional verification condition relates the strongest postcondition of
the prefix and the weakest precondition of the suffix.

The first point in the Lemma 2, page 186, formalizes this idea. Its
significance is that, according to the following proposition, it can be decided
when the sequence Ci ; . . . ; Cj can be removed by considering the prefix
C1 ; . . . ; Ci−1 and the suffix Cj+1 ; . . . ; Cn.

Proposition 4. Let (P,Q) be a specification, S = C1 ; . . . ; Cn a program,
and i, j, integers such that 1 ≤ i ≤ j ≤ n.

If |= sposti−1(S, P )→ wprecj+1(S,Q) then remove(i, j, S) /(P,Q) S

Proof. remove(i, j, S) is clearly a portion of S. Now let us assume that
|= VCGw(P, S, Q); we need to prove that |= VCGw(P, remove(i, j, S), Q).
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Applying Lemma 2 (1) to S with k = i− 1 and k = j we get respectively:

|= VCGw(P, S, Q) iff |= VC
s
i−1(S, P ), sposti−1(S, P )→ wpreci(S,Q),

VC
w
i (S,Q)

|= VCGw(P, S, Q) iff |= VC
s
j(S, P ), spostj(S, P )→ wprecj+1(S,Q),

VC
w
j+1(S,Q)

Thus |= VC
s
i−1(S, P ) and |= VC

w
j+1(S,Q). Now it suffices to apply Lemma 2

(1) to the program remove(i, j, S) with k = i− 1.
Since remove(i, j, S) = C1 ; . . . ; Ci−1 ; Cj+1 ; . . . ; Cn, this yields the fol-

lowing, which we apply from right to left.

|= VCGw(P, remove(i, j, S), Q) iff |= VC
s
i−1(S, P ),

sposti−1(S, P )→ wprecj+1(S,Q),

VC
w
j+1(S,Q)

Please notice that since

|= VCGw(P, S, Q) implies |= sposti−1(S, P )→ wpreci(S,Q)

and
|= spostj(S, P )→ wprecj+1(S,Q)

the following also hold:

If |= wpreci(S,Q)→ wprecj+1(S,Q) then remove(i, j, S) /(P,Q) S

(7.1)

If |= sposti−1(S, P )→ spostj(S, P ) then remove(i, j, S) /(P,Q) S (7.2)

However, the latter conditions are both stronger than the one in the proposi-
tion, which means that using them as tests could fail to identify some remov-
able subprograms. This is in accordance with the examples in Section 7.1,
which have shown that simply propagating P forward and Q backward, and
checking for implications between the propagated spostk(S, P ) and then for
implications between the propagated wpreck(S,Q), while sound, might re-
sult in slices that are not minimal. The method proposed in the literature
calculates slices using these stronger tests, and this is the reason why they
fail, for instance in Listing 7.6. To illustrate our point with the latter pro-
gram it suffices to notice that since |= spost2(S, P ) → wprec4(S,Q), the
command C3 can be removed according to the test of Proposition 4.

Proposition 4 in fact provides us with the weakest condition for slicing
programs, since the initial program is assumed to be correct with respect to
the given specification the reverse implication also holds:
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Proposition 5. Let (P,Q) be a specification, S = C1 ; . . . ; Cn a program
such that |= VCGw(P, S, Q), and i, j, integers such that 1 ≤ i ≤ j ≤ n.

If remove(i, j, S) /(P,Q) S then |= sposti−1(S, P )→ wprecj+1(S,Q)

Proof. It suffices to prove that VCGw(P, remove(i, j, S), Q) implies
|= sposti−1(S, P )→ wprecj+1(S,Q). Again applying Lemma 2 (1) to remove(i, j, S)
with k = i− 1 yields the following, which we now apply from left to right.

|= VCGw(P, remove(i, j, S), Q)

iff

|= VC
s
i−1(S, P ), sposti−1(S, P )→ wprecj+1(S,Q), VC

w
j+1(S,Q)

This is a guarantee that our test identifies all removable subsequences
of commands of a correct program – note that implications (7.1) and (7.2)
cannot be reversed in this way.

Finally, note that the results in this section apply equally in the scope
of total correctness and termination-sensitive slicing (the proofs are similar,
using Lemma 3 instead of Lemma 1). In particular, Lemma 2 (1) and (2)
hold with VCGwt (resp. VC

w
t , VC

s
t ) substituted for VCGw (resp. VC

w
, VC

s
).

(3) is stated as follows: if Ck = while b do {I, ev}Sb for some k ∈ {1, . . . , n},
then

|= VCGwt (P, S,Q) iff |= VC
s
t [k − 1](S, P ), spostk−1(S, P )→ I,

I ∧ b→ ev ≥ 0,

VCGwt (I ∧ b ∧ ev = x0, Sb, I ∧ ev < x0),

I ∧ ¬b→ wpreck+1(S,Q), VC
w
t [k + 1](S,Q)

Proposition 4 applies with · J(P,Q) · substituted for · /(P,Q) · (removing
any subsequence from a terminating sequence of commands cannot result
in a non-terminating sequence, so this is not surprising). Proposition 5 also
applies, with VCGwt substituted for VCGw.

7.3.2 Slicing Subprograms

Let us now consider how the subprograms of S can be sliced with respect
to a specification. Recall that conditional branching and loop commands
are structurally composed of sequences of commands. These sequences (but
not their subsequences) are called subprograms of the program under con-
sideration. According to Definition 74 and the subsequent Lemma 4, given
a specification (P,Q) for a program, to each of its subprograms is associated
a local specification, which is obtained by propagating P and Q.

The following proposition states that slicing a subprogram of a program
with respect to its local specification results in a slice of the program.
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Proposition 6. Let S, Ŝ be programs such that (P̂ , Ŝ, Q̂) b (P, S,Q). More-
over let Ŝ′ be a portion of Ŝ, i.e. Ŝ′ � Ŝ, and S′ the program that results
from replacing Ŝ by Ŝ′ in S.

1. If Ŝ′ /(P̂ ,Q̂) Ŝ then S′ /(P,Q) S

2. If |= VCGw(P, S, Q) and S′ /(P,Q) S then Ŝ′ /(P̂ ,Q̂) Ŝ

Proof. (1) Clearly S′ must be a portion of S. The refinement aspect is
proved by induction on the definition of b as follows.

• If Ŝ = S the result holds trivially, with S′ = Ŝ′.

• Let (P1, S1, Q1) b (P, S,Q) and (P̂ , Ŝ, Q̂) b (P1, S1, Q1). Moreover
let S′1 be the program that results from replacing Ŝ by Ŝ′ in S1. Then
by induction hypothesis one has that Ŝ′ /(P̂ ,Q̂) Ŝ implies S′1 /(P1,Q1) S1.

Now let S′ denote the result of replacing S1 by S′1 in S. Then again
by induction hypothesis one has that S′1 /(P1,Q1) S1 implies S′ /(P,Q) S.

Note that S′ can also be seen as the result of replacing Ŝ by Ŝ′ in S,
thus we are done since Ŝ′ /(P̂ ,Q̂) Ŝ implies S′ /(P,Q) S.

• Let S = C1 ; . . . ; Ci−1 ; if b then Ŝ else Sf ; Ci+1 ; . . . ; Cn. We
assume |= VCGw(P, S, Q); using Lemma 2 (2), this implies

|= VC
s
i−1(S, P ), VCGw(sposti−1(S, P ) ∧ b, Ŝ, wpreci+1(S,Q)),

VCGw(sposti−1(S, P ) ∧ ¬b, Sf , wpreci+1(S,Q)), VC
w
i+1(S,Q)

and since Ŝ′ /(sposti−1(S,P )∧b,wpreci+1(S,Q)) Ŝ, this in turn implies

|= VC
s
i−1(S, P ), VCGw(sposti−1(S, P ) ∧ b, Ŝ′, wpreci+1(S,Q)),

VCGw(sposti−1(S, P ) ∧ ¬b, Sf , wpreci+1(S,Q)), VC
w
i+1(S,Q)

Now observe that since

S′ = C1 ; . . . ; Ci−1 ; if b then Ŝ′ else Sf ; Ci+1 ; . . . ; Cn

again by Lemma 2 (2) one has |= VCGw(P, S′, Q). The case when Ŝ
is the else branch is similar.

• Let S = C1 ; . . . ; Ci−1 ; while b do {I} Ŝ ; Ci+1 ; . . . ; Cn. We assume
|= VCGw(P, S, Q); using Lemma 2 (3), this implies

|= VC
s
i−1(S, P ), sposti−1(S, P )→ I, VCGw(I ∧ b, Ŝ, I),

I ∧ ¬b→ wpreci+1(S,Q), VC
w
i+1(S,Q)
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and since Ŝ′ /(I∧b,I) Ŝ, this in turn implies

|= VC
s
i−1(S, P ), sposti−1(S, P )→ I,

VCGw(I ∧ b, Ŝ′, I), I ∧ ¬b→ wpreci+1(S,Q), VC
w
i+1(S,Q)

Now observe that since

S′ = C1 ; . . . ; Ci−1 ; while b do {I} Ŝ′ ; Ci+1 ; . . . ; Cn

again by Lemma 2 (3) one has |= VCGw(P, S′, Q).

(2) Ŝ′ is a portion of Ŝ; for the refinement aspect it suffices to prove that |=
VCGw(P, S′, Q) implies VCGw(P̂ , Ŝ′, Q̂). Again this is proved by induction
on the definition of b. We illustrate this for the conditional case, with S =
C1 ; . . . ; Ci−1 ; if b then Ŝ else Sf ; Ci+1 ; . . . ; Cn. We have by Lemma 2
(2) that

|= VC
s
i−1(S, P ), VCGw(sposti−1(S, P ) ∧ b, Ŝ′, wpreci+1(S,Q)),

VCGw(sposti−1(S, P ) ∧ ¬b, Sf , wpreci+1(S,Q)), VC
w
i+1(S,Q)

and thus |= VCGw(sposti−1(S, P ) ∧ b, Ŝ′, wpreci+1(S,Q)).

Recall that terminating programs admit non-terminating programs as
specification-based slices, since termination-insensitive slicing merely forces
the preservation of the loop invariants. In particular, since skip /(I∧b,I) S
always holds (because |= I ∧ b → I), for any P , Q, and I one has that
while b do {I} skip /(P,Q) while b do {I}S. Consequently, any program
admits as a slice the program that results from removing the body of every
loop.

Of course, this does not apply in a total correctness setting. Again, if one
substitutes · J(P,Q) · for · /(P,Q) · and VCGwt for VCGw, the previous results
are valid also in the context of termination-sensitive slicing (the proofs are
similar). It suffices to consider an extra case in the definition of subprogram,
for loops annotated with variants, as follows:

• If S = C1 ; . . . ; Cn and Ci = while b do {I, ev}Sb for some i with
1 ≤ i ≤ n, then (I ∧ b ∧ ev = x0, Sb, I ∧ ev < x0) b (P, S,Q).

The proposition can be used to further slice a program by slicing its
subprograms with respect to their local specifications. Conditional branches
are sliced by propagating the postcondition inside both branches, as well as
the precondition strengthened with the boolean condition and its negation,
respectively. In the case of a loop with invariant I and condition b, it suffices
to use as specification for the body of the loop, the assertions (I ∧ b, I), or
(I ∧ b ∧ ev = x0, I ∧ ev < x0) for termination-sensitive slicing.



222 CHAPTER 7. ASSERTION-BASED SLICING

This can be used in the following two scenarios. If the program is be-
ing sliced to remove redundant code, using a specification with respect to
which it has been proved correct, then the loop annotations are adequate
to prove correctness, and the proposition allows the removal of redundant
code to proceed inside loops (each loop body can be sliced with respect to
the preservation of its invariant and the strict decrease of its variant).

In a specialization / reuse scenario, the program is being sliced based on
a weaker specification than the one with respect to which it was originally
proved correct. In this scenario, it may well be the case that the loop invari-
ants annotated in the program are stronger than they need to be – they have
been used to establish correctness with respect to a stronger specification
than the one now being used. In order to allow the slicing process to pro-
ceed usefully inside loop bodies, the user should first replace the invariants
by weaker versions that are sufficient for proving correctness with respect
to the new specification, and only then use Proposition 6 to slice the loop
bodies with these weaker invariants.

Optimization Criterion. The above discussion raises a question con-
cerning the criterion to be used for comparing the quality of different slices
of the same program. The criterion that was implicit in Section 7.1 consid-
ered the total number of commands or lines of code in a slice. Note that for
programs consisting only of atomic commands (i.e. for sequences of skip
and assignment commands) the number of commands and lines (assuming
one command per line) are the same. In the presence of commands contain-
ing subprograms however, this is not so, since our program syntax dictates
that a loop or a conditional are a single command, regardless of the length of
their body / branch subprograms. A more appropriate measure (i.e. closer
to the notion of “lines of code”) is the number of atomic commands and
boolean conditions.

Based on this criterion, selecting the minimal slice of a given program
S = C1 ; . . . ; Cn implies taking into consideration the number of commands
and boolean conditions of each subprogram Ŝ of S – it makes no sense to just
count the number (between 1 and n) of top-level commands in each slice of
S. Moreover, since each Ŝ can be sliced with respect to its local specification
following Proposition 6, the general structure of a slicing algorithm should
be to slice S only after slicing each of its subprograms with respect to its
local specification. Only then can the minimal slice of S be selected.

7.3.3 Intermediate Conditions

A major difference between the notions of slicing based on assertions and
traditional notions based on dependencies is that in the latter the slicing
criterion always includes a line number k; in forward slicing ask for instruc-
tions not dependent on the values at line k of a given set of variables to be



7.4. SLICE GRAPHS 223

removed; in backward slicing it is the instructions on which the values of
the variables at line k do not depend that are removed.

This can be mimicked in the current context by introducing an inter-
mediate assertion to be taken into account for calculating a slice. Let us
briefly explain how the framework under consideration can be extended in
this direction.

Definition 81 (Specification-based Slice with Intermediate Condition). Let
S = C1 ; . . . ; Cn be a program, (P,Q) a specification, and R an assertion
such that |= spost(C1 ; . . . ; Ck, P )→ R and |= R→ wprec(Ck+1 ; . . . ; Cn, Q).
We say that the program S′ = S′1 ; S′2 is a slice of S with respect to the
specification (P,Q) and intermediate condition R at position k, written
S′ /(P,R,k,Q) S, if

S′1 /(P,R) C1 ; . . . ; Ck and S′2 /(R,Q) Ck+1 ; . . . ; Cn

Although Definition 81 is sufficient to illustrate the idea, it can be gen-
eralized so that the intermediate condition regards some subprogram of S.
Multiple intermediate conditions can also be admitted.

Naturally, such slices are particular cases of specification-based slices –
the intermediate assertion simply restricts the definition further with respect
to the specification. The following lemma is straightforward to prove using
Lemma 2 (1).

Lemma 9. If S′ /(P,R,k,Q) S then S′ /(P,Q) S.

Intermediate assertions can be used with the practical goal of facilitat-
ing automatic proofs by inserting conditions that are obviously true at the
given line, which may allow more commands to be sliced off. But they also
enrich the power of specification-based slicing, allowing one to slice frag-
ments of the code with respect to local conditions, possibly even omitting
part of the global specification. An extreme case is to compute a slice con-
sisting of a postcondition-based slice of a prefix of a program, followed by a
precondition-based slice of a suffix, as in

S′ /(wprec(C1 ; ... ;Ck,R),R,k,spost(Ck+1 ; ... ;Cn,R)) S.

In this case the intermediate condition is the only slicing criterion con-
sidered.

7.4 Slice Graphs

In the previous chapter, the application of labeled control flow graphs for
the interactive generation of verification conditions was explored. In this
chapter the same annotated graphs are used as the basis for the definition
of slice graphs.
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In a slice graph, the removable sequences of commands are associated
with edges added to the initial control flow graph.

Definition 82 (Slice Graph). Consider a program S and a specification
(P,Q) such that |= VCGw(P, S, Q) (in which case we assume loops are not
annotated with variants) or |= VCGwt (P, S,Q). The slice graph SLCG(S, P,Q)
of S with respect to (P,Q) is obtained from the labeled control flow graph
LCFG(S, P,Q) by inserting additional edges as follows.

For every subprogram Ŝ = Ĉ1 ; . . . ; Ĉn, with (P̂ , Ŝ, Q̂) b (P, S,Q),

• If |= P̂ → Q̂, a new skip node is inserted in the graph, together with
two edges (IN (Ŝ), skip) and (skip,OUT (Ŝ)), both with label (P̂ , Q̂).

• For all j ∈ {1, . . . , n} if |= P̂ → wprecj+1(Ŝ, Q̂), an edge

(IN (Ŝ), IN (Ĉj+1)) with label (P̂ ,wprecj+1(Ŝ, Q̂)) is inserted;

• For all i ∈ {1, . . . , n}, if |= sposti−1(Ŝ, P̂ )→ Q̂, an edge

(OUT (Ĉi−1),OUT (Ŝ)) with label (sposti−1(Ŝ, P̂ ), Q̂) is inserted;

• For all i, j ∈ {1, . . . , n} such that i < j, if
|= sposti−1(Ŝ, P̂ ) → wprecj+1(Ŝ, Q̂), an edge (OUT (Ĉi−1), IN (Ĉj+1))

with label (sposti−1(Ŝ, P̂ ),wprecj+1(Ŝ, Q̂)) is inserted;

Note that this construction is purely based on the LCFG of S: P̂ , Q̂,
sposti−1(Ŝ, P̂ ), and wprecj+1(Ŝ, Q̂) can be read from labels of edges in the
subgraph corresponding to the subprogram being considered. For each sub-
program, first-order conditions are generated for every pair of edges such
that the first precedes the second in the graph (the order in which this is
done is irrelevant). If the validity of some condition cannot be established,
the corresponding edge will not be added to the graph, in accordance with
the requirement that slicing must be conservative.

As an example, Figure 7.2 partially shows the slice graph for program
in Listing 6.2 with respect to the specification (y > 10, x ≥ 0). Removable
sequences are signaled by the thick edges (and one skip node) that are
added to the initial labeled CFG. Many edges are omitted to lighten the
presentation of the graph; two edges are missing in the then branch (from
x := 100 to x := x− 100 and from x := x+ 50 to fi), and in the else branch
five edges are missing – since the first component of every label in this path
is a contradiction, an edge is inserted from each node to every reachable
node in the else branch).

For any given subprogram Ŝ of S, the slice graph contains as subgraph
the LCFG of every slice of Ŝ with respect to its local specification, and
consequently also the LCFG of the program that results from replacing in
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Figure 7.2: Example slice graph (extract). Thick lines represent edges that
were added to the initial CFG, corresponding to “shortcut” subprograms
that do not modify the semantics of the program. These paths have the
same origin and destination nodes as other longer paths corresponding to
removable sequences
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S any subprogram by one if its slices. The following result formalizes this
fact.

Lemma 10. In the conditions of Definition 82, let i, j be integers such
that 1 ≤ i ≤ j ≤ n, and S′ the program resulting from replacing Ŝ by
remove(i, j, Ŝ). Then

1. If |= VCGw(P, S, Q),

remove(i, j, Ŝ) /(P̂ ,Q̂) Ŝ

iff the graph LCFG(S′, P,Q) is a subgraph of SLCG(S, P,Q).

2. If |= VCGwt (P, S,Q),

remove(i, j, Ŝ) J(P̂ ,Q̂) Ŝ

iff the graph LCFG(S′, P,Q) is a subgraph of SLCG(S, P,Q).

Proof. We prove 1 (the proof of 2 is similar, since propositions 4 and 5
also apply for termination-sensitive slicing, as explained at the end of Sec-
tion 7.3.1).
(Only if part) By Proposition 5, |= sposti−1(Ŝ, P̂ )→ wprecj+1(Ŝ, Q̂). Clearly
the graph LCFG(S′, P,Q) is equal to LCFG(S, P,Q), with the exception of
a subgraph that is no longer present, and is replaced by an edge (or two
edges and a skip node). Moreover these new edges are present in the graph
SLCG(S, P,Q), following Definition 82.

(If part) We prove that |= VCGw(P̂ , remove(i, j, Ŝ), Q̂) (note that |=
VCGw(P̂ , Ŝ, Q̂) must hold, following Lemma 4). The graph LCFG(S′, P,Q)
is the same as LCFG(S, P,Q), except for the subgraphs corresponding to
the commands removed inside Ŝ.
If LCFG(S′, P,Q) is a subgraph of SLCG(S, P,Q) then the edge or edges
that short-circuit the subgraph corresponding to the removed commands can
only have been introduced (by Definition 82) because |= sposti−1(Ŝ, P̂ ) →
wprecj+1(Ŝ, Q̂), and Proposition 4 allows us to conclude the proof.

A consequence of the previous result is that all slices of a program are
represented in its slice graph, and no other portions of S are.

Proposition 7. Let S, S′ be programs such that S′ � S. Then

1. If |= VCGw(P, S, Q),

S′ /(P,Q) S

iff

the control flow graph LCFG(S′, P,Q) is a subgraph of SLCG(S, P,Q).
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2. If |= VCGwt (P, S,Q),

S′ J(P,Q) S

iff

the control flow graph LCFG(S′, P,Q) is a subgraph of SLCG(S, P,Q).

Proof. We prove 1 (the proof of 2 is similar, since Proposition 6 also applies
for termination-sensitive slicing, as explained in Section 7.3.2).
(Only if part) The slice S′ is a portion of S, which is obtained by removing
some top-level commands of S and doing this recursively for some of the
subprograms of S. By Proposition 6 (2), all the commands removed in ev-
ery subprogram of S must result in slices regarding the local specification
of the corresponding subprogram. Consider any sequencing of these subpro-
gram slicing operations; the proof proceeds by induction on the length of
this sequence using Lemma 10 (from left to right).
(If part) It is clear that in any control-flow graph that is a subgraph of
SLCG(S, P,Q), each edge (or pair of edges with a skip node) that is not
present in the initial graph LCFG(S, P,Q) has been added relative to a
certain subprogram of S and short-circuits some commands in that subpro-
gram. We consider any sequencing of these extra edges; the proof proceeds
by induction on the length of this sequence, using Lemma 10 (from right to
left) and Proposition 6 (1).

The slice graph then represents the entire set of specification-based slices
of S, and obtaining the minimal slice is simply a matter of selecting the
shortest subsequences using the information in the graph.

Slicing Algorithms. A consequence of the previous result is that the
problem of determining the minimal slice of a given program S with respect
to the specification (P,Q) can be reduced to determining the minimal control
flow graph contained in the slice graph G = SLCG(S, P,Q).

Consider the case of programs without loops or conditionals, consisting
only of atomic commands. Figure 7.3 shows the slice graphs for the two
problematic examples presented in Section 7.1. It is clear that for such
programs the control flow graph of the minimal slice (i.e. the slice containing
the smallest number of atomic commands) can be determined by a standard
(unweighted) shortest paths algorithm (basically a breadth-first traversal,
executed in linear time on the size of the graph). This CFG contains of
course a single path from START to END .

For programs containing loops, the same algorithm can be used. Fol-
lowing our remarks on slicing subprograms in Section 7.3, determining a
minimal slice of a program implies determining the minimal slices of its sub-
programs, but from the point of view of slice graphs this is irrelevant: when
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Figure 7.3: Example slice graphs
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facing a while loop, the shortest path algorithm will have to cross from the
do node to the od node, and will naturally determine the minimal slice of
the loop body subprogram.

Conditional commands pose a more substantial problem. Simply ap-
plying a shortest paths algorithm would select one of the branches of the
conditional; what is required is to slice both branches with respect to their
local specifications, and then take into account the total number of lines of
code of both branches, when slicing the sequence of commands containing
this conditional. One way to do this, combining a weighted shortest paths
algorithm with graph rewriting, is sketched as follows:

1. Assign a weight of 1 to every edge of the slice graph G.

2. For all conditional commands that do not contain any conditional
commands as subprograms,

(i) run a shortest paths algorithm on the subgraphs of G correspond-
ing to both branches of the conditional, and let x = 1 + l + r,
where l and r are the sum of the weights of the resulting paths
in the then and else branch respectively;

(ii) replace both these subgraphs by a single edge with origin if and
destination fi , with weight x;

3. More conditional commands containing no branching in their subpro-
gram graphs may now have been created; if so, repeat from step 2.

Some mechanism must additionally be used to keep track of the rewritten
subgraphs, to allow the slice to be read back from the final graph.

Finally, we stress again that the notion of minimality implicit in this
discussion is relative, since it is meant with respect to a slice graph: the
proof tool may have failed or timed out in checking some valid condition,
and thus an edge that should have been included in the graph is missing;
the resulting slice will only be as good as the graph.

Intermediate Assertions. Computing slices in the presence of interme-
diate assertions as introduced in Section 7.3.3 requires no major modifica-
tions in our setting. It suffices to locate in the slice graph the edge (Ck, Ck+1)
with label (φ, ψ), and replace it by two new edges (Ck,New) and (New , Ck+1)
with labels (φ,R) and (R,ψ) respectively, where New is a new node inserted
in the graph. The standard algorithm will then compute a slice taking the
intermediate condition into consideration.
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7.5 Removing Redundant Code

Redundant code is code that does not produce any effect: removing it results
in a program that behaves in the same way as the original. Note that it
is said “the code does not produce any effect” in the sense of observable
effects on the final state. Removing redundant code may of course result
in code that is different regarding the execution traces; in particular the
resulting code may be faster to execute. A major application of precondition-
based slicing is the removal of conditionally redundant code, i.e. code that is
redundant for executions of the program specified by a given precondition.
Naturally, redundant code is a special case of conditionally redundant code
(i.e., true is considered as precondition).

Examples of redundancies include sequences of instructions like x :=
x−200 ; x := x+200, as in Listing 7.3. Previously in Section 7.1 it was shown
that precondition-based slicing with respect to the precondition x ≥ 0 indeed
removed these two instructions. It is however clear that the instructions
should be removable also for executions not allowed by this precondition.
Let us now consider how this can be done.

A first attempt could be to slice the program with respect to the pre-
condition >. For Listing 7.3 we would have

spost1(S,>) = ∃v.x = v + 100 ≡ >,
spost2(S,>) = ∃v.x = v − 200 ≡ >,
spost3(S,>) = ∃v.x = v + 200 ≡ >

the entire program can now be sliced off, since its calculated postcondition
is a valid assertion – not the intended goal. What is missing here is a way
to record the initial state, to be able to compare the values of variables in
different states using the initial values as a reference. For this purpose one
was resort to auxiliary variables, that are used in assertions only, not in the
code. The use of these variables makes postcondition calculations resemble a
symbolic execution of the code, in which the values of the variables after the
execution of each command are related to the initial values through equality
formulas.

Let us slice the same program with respect to the precondition x = x0,
where the auxiliary variable x0 is used to record the initial value of x:

spost1(S, x = x0) = ∃v.v = x0 ∧ x = v + 100 ≡ x = x0 + 100,

spost2(S, x = x0) = ∃v.v = x0 + 100 ∧ x = v − 200 ≡ x = x0 − 100,

spost3(S, x = x0) = ∃v.v = x0 − 100 ∧ x = v + 200 ≡ x = x0 + 100

Notice that the precondition does not restrict the set of executions, since
x0 is not a program variable. Since |= spost1(S,>) → spost3(S,>), the
statements in lines 2 and 3 of the program can be sliced off, because they
are redundant and unnecessary in any execution of the program.
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1 x := y + 2 ;
x := y ∗ 2 ;

Listing 7.7: Example for dead code elimination by precondition-based slicing

Two particular forms of redundant code are unreachable code, which
is not executed, and dead code, which is executed but produces no effect,
because the final values of variables do not depend on its results. An example
of unreachable code is the block S2 in if 10 > 5 then S1 else S2; an example
of dead code is the first instruction in Listing 7.7. Unreachable code and
dead code elimination are typically part of the optimizations performed
by compilers, using control flow and data flow analyses. Specification-base
slicing allows for conditional versions of these notions, eliminating code that
is unreachable or dead for a given set of executions. Conditional unreachable
code elimination was already exemplified with Listing 7.4 in Section 7.1.2
– unreachable code is eliminated because (for the given initial states) its
presence does not influence the final state of the program. Precondition-
based slicing can thus be used to study the control flow of a program.

Let us now consider an example of (unconditional) dead code elimination.
So far slices were identified by checking the validity of implicative formulas
involving propagated strongest postconditions. As hinted in the previous
section, this technique cannot eliminate all types of redundant code, as this
example will also illustrate. Let S be the program in Listing 7.7. Clearly,
in every execution of this program, the first statement is dead since its
effect is cancelled by the second statement. To slice this program using the
precondition x = x0 ∧ y = y0 we compute the strongest postconditions as
follows:

spost0(S, x = x0 ∧ y = y0) = x = x0 ∧ y = y0

spost1(S, x = x0 ∧ y = y0) = ∃v.v = x0 ∧ y = y0 ∧ x = y + 2

≡ x = y0 + 2 ∧ y = y0,

spost2(S, x = x0 ∧ y = y0) = ∃v.v = y0 + 2 ∧ y = y0 ∧ x = y ∗ 2

≡ x = y0 ∗ 2 ∧ y = y0

Note that, since 6|= spost0(S, x = x0 ∧ y = y0)→ spost1(S, x = x0 ∧ y = y0),
the first statement cannot be sliced off. Clearly, it would be impossible
to reach the conclusion that this statement is dead by relating the calcu-
lated strongest postconditions only, since spost0(S, x = x0 ∧ y = y0) and
spost1(S, x = x0∧y = y0) are calculated without even looking at subsequent
commands.

The traditional precondition-based slicing algorithm is then unable to re-
move all redundant code, specifically when a “look ahead” would be required
to reach the conclusion that a given statement can be removed.
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x := y+2;
2 i f ( a > 0)

then x := y ∗2 ;
4 else sk ip ;

z := x+1

Listing 7.8: Example for redundant code elimination by specification-based
slicing

As explained previously, specification-based slicing combines strongest
postcondition with weakest precondition computations, and it will now be
shown that it can be used to properly eliminate redundant code. Let S be
a program with variables x1, . . . , xn. In order to remove unnecessary code
taking into account every execution of S, it suffices to slice S with respect
to the following specification (the xi0 are auxiliary variables).

(x1 = x1
0, . . . , x

n = xn0 , spost(S, x1 = x1
0, . . . , x

n = xn0 ))

Following Definition 79 (2), the result will still be a precondition-based
slice – the problem of the previous attempt was not in the definition of
precondition-based slice, but in the method used to compute these slices.

To illustrate this consider again program in Listing 7.7, and compute
a precondition-based slice with respect to x = x0 ∧ y = y0, followed by a
postcondition-based slice with respect to the strongest postcondition:

spost(S, x = x0 ∧ y = y0).

It was seen before that the first step is unable to remove any statements in
this example. The calculated postcondition is

Q = spost(S, x = x0 ∧ y = y0) ≡ x = y0 ∗ 2 ∧ y = y0

Let us now calculate weakest preconditions using the above as postcondition:

wprec2(S,Q) = y ∗ 2 = y0 ∗ 2 ∧ y = y0,

wprec1(S,Q) = y ∗ 2 = y0 ∗ 2 ∧ y = y0

Now since |= wprec1(S,Q) → wprec2(S,Q), the statement in line 1 can
indeed be removed, as would be expected.

Listing 7.8 is a further example of a precondition-based slice that will be
calculated as a specification-based slice, following the ideas outlined above
(it is taken from [CCL98], see Section 7.6). The idea is to slice this program
with respect to the precondition a > 0. Clearly the else branch is dead, and
if it was not already skip it would be replaced by skip in the computed
slice, since it will not be executed with this precondition. The goal here is
to illustrate something else: since the then branch will be executed, the first
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statement in the program will not produce any effect, since the final value
of x will be given by the statement in line 3. It is thus a dead statement
that should be eliminated.

Let S be the above program and P be x = x0 ∧ y = y0 ∧ z = z0 ∧ a =
a0 ∧ a > 0. In order to eliminate redundant code a slice of this program
with respect to the specification (P, spost(S, P )) will be calculated. We
start by propagating the precondition forward using strongest postcondi-
tion calculations, and then propagate backward the strongest postcondi-
tion, using weakest precondition calculations. This is shown in Figure 7.4
(these assertions are also shown in Figure 7.5 in a simplified way). Clearly
6|= spost0(S, P ) → spost1(S, P ), but |= wprec1(S, P ) → wprec2(S, P ), thus
the first command in the program can be eliminated.

These examples further motivate one decision in this chapter: to focus
on methods for calculating specification-based slices. Whenever the spec-
ification consists of a precondition (resp. postcondition) only, it will be
completed by computing the strongest postcondition (resp. weakest pre-
condition) of the program with respect to it. Computing precondition or
postcondition-based slices as special cases of specification-based slices al-
lows for a more precise identification of removable statements.

7.6 Related Approaches

In this section other forms of slicing that have some points in common with
assertion-based slicing are reviewed.

Semantic Slicing

One of the most successful lines of work in the area of slicing has been con-
ducted by Ward and colleagues. This line has focused on semantic forms
of slicing, in the sense that slices are obtained by combining syntactic op-
erations with classic semantics-preserving program transformations such as
loop unrolling and constant propagation. The results are both practical (a
commercially-available workbench has been developed) and theoretical. In
particular, the recent paper [War09] provides a clarifying analysis of slicing
properties and definitions proposed by different authors (both syntactic and
semantic). The PhD work here reported clearly stands on the semantic side,
but a fundamental difference with respect to other work on semantic slicing
is that it is focused on code annotated with assertions. The slicing criteria
are exclusively provided by such assertions.

Conditioned Slicing

Shortly after the definition of postcondition-based slicing by Comuzzi and
Hart, Canfora et al [CCL98] introduced the notion of conditioned slicing,
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Forward propagation of precondition P :

spost0(S, P ) = x = x0 ∧ y = y0 ∧ z = z0 ∧ a = a0 ∧ a > 0
spost1(S, P ) = x = y0 + 2 ∧ y = y0 ∧ z = z0 ∧ a = a0 ∧ a > 0
spost(x := y ∗ 2, a > 0 ∧ spost1(S, P )) = a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ z = z0

∧a = a0 ∧ a > 0
spost(skip,¬a > 0 ∧ spost1(S, P )) = ¬a > 0 ∧ x = y0 + 2 ∧ y = y0 ∧ z = z0

∧a = a0 ∧ a > 0
spost2(S, P ) = (a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ z = z0

∧a = a0 ∧ a > 0)
∨ (¬a > 0 ∧ x = y0 + 2 ∧ y = y0 ∧ z = z0

∧a = a0 ∧ a > 0)
spost3(S, P ) = (a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ z = y0 ∗ 2 + 1

∧a = a0 ∧ a > 0)
∨ (¬a > 0 ∧ x = y0 + 2 ∧ y = y0

∧z = y0 + 2 + 1 ∧ a = a0 ∧ a > 0)

Backward propagation of postcondition spost3(S, P ):

wprec4(S, P ) = spost3(S, P ) = (a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ z = y0 ∗ 2 + 1
∧a = a0 ∧ a > 0)

∨ (¬a > 0 ∧ x = y0 + 2 ∧ y = y0

∧z = y0 + 2 + 1 ∧ a = a0 ∧ a > 0)
wprec3(S, P ) = (a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ x+ 1 = y0 ∗ 2 + 1

∧a = a0 ∧ a > 0)
wprec(x := y ∗ 2,wprec3(S, P )) = (a > 0 ∧ y ∗ 2 = y0 ∗ 2 ∧ y = y0

∧y ∗ 2 + 1 = y0 ∗ 2 + 1 ∧ a = a0 ∧ a > 0)
∨ (¬a > 0 ∧ y ∗ 2 = y0 + 2 ∧ y = y0

∧y ∗ 2 + 1 = y0 + 2 + 1 ∧ a = a0 ∧ a > 0)
wprec(skip,wprec3(S, P )) = (a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ x+ 1 = y0 ∗ 2 + 1

∧a = a0 ∧ a > 0)
∨ (¬a > 0 ∧ x = y0 + 2 ∧ y = y0 ∧ x+ 1 = y0 + 2 + 1

∧a = a0 ∧ a > 0)
wprec2(S, P ) = (a > 0→ (a > 0 ∧ y ∗ 2 = y0 ∗ 2 ∧ y = y0

∧y ∗ 2 + 1 = y0 ∗ 2 + 1 ∧ a = a0 ∧ a > 0)
∨ (¬a > 0 ∧ y ∗ 2 = y0 + 2 ∧ y = y0

∧y ∗ 2 + 1 = y0 + 2 + 1 ∧ a = a0 ∧ a > 0))
∧ (¬a > 0→ (a > 0 ∧ x = y0 ∗ 2 ∧ y = y0

∧x+ 1 = y0 ∗ 2 + 1 ∧ a = a0 ∧ a > 0)
∨ (¬a > 0 ∧ x = y0 + 2 ∧ y = y0 ∧ x+ 1 = y0 + 2 + 1

∧a = a0 ∧ a > 0))
wprec1(S, P ) = (a > 0→ (a > 0 ∧ y ∗ 2 = y0 ∗ 2 ∧ y = y0

∧y ∗ 2 + 1 = y0 ∗ 2 + 1 ∧ a = a0 ∧ a > 0)
∨ (¬a > 0 ∧ y ∗ 2 = y0 + 2 ∧ y = y0

∧y ∗ 2 + 1 = y0 + 2 + 1 ∧ a = a0 ∧ a > 0))
∧ (¬a > 0→ (a > 0 ∧ y + 2 = y0 ∗ 2 ∧ y = y0∧

y + 2 + 1 = y0 ∗ 2 + 1 ∧ a = a0 ∧ a > 0)
∨ (¬a > 0 ∧ y + 2 = y0 + 2 ∧ y = y0

∧y + 2 + 1 = y0 + 2 + 1 ∧ a = a0 ∧ a > 0))

Figure 7.4: Propagated conditions for the program in Listing 7.8
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spost0(S, P ) ≡ x = x0 ∧ y = y0 ∧ z = z0 ∧ a = a0 ∧ a > 0
spost1(S, P ) ≡ x = y0 + 2 ∧ y = y0 ∧ z = z0 ∧ a = a0 ∧ a > 0
spost(x := y ∗ 2, a > 0 ∧ spost1(S, P )) ≡ a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ z = z0 ∧ a = a0

spost(skip,¬a > 0 ∧ spost1(S, P )) ≡ ⊥
spost2(S, P ) ≡ a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ z = z0 ∧ a = a0

spost3(S, P ) ≡ a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ z = y0 ∗ 2 + 1
∧a = a0

wprec4(S, P ) = spost3(S, P ) ≡ a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ z = y0 ∗ 2 + 1
∧ a = a0

wprec3(S, P ) ≡ a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ x+ 1 = y0 ∗ 2 + 1
∧a = a0

wprec(x := y ∗ 2,wprec3(S, P )) ≡ a > 0 ∧ y ∗ 2 = y0 ∗ 2 ∧ y = y0

∧y ∗ 2 + 1 = y0 ∗ 2 + 1 ∧ a = a0

wprec(skip,wprec3(S, P )) ≡ a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ x+ 1 = y0 ∗ 2 + 1
∧a = a0

wprec2(S, P ) = a > 0 ∧ y ∗ 2 = y0 ∗ 2 ∧ y = y0

∧y ∗ 2 + 1 = y0 ∗ 2 + 1 ∧ a = a0

wprec1(S, P ) = a > 0 ∧ y ∗ 2 = y0 ∗ 2 ∧ y = y0

∧y ∗ 2 + 1 = y0 ∗ 2 + 1 ∧ a = a0

Figure 7.5: Simplified conditions for the program in Listing 7.8

together with a tool to calculate such slices. Similarly to precondition-based
slicing, conditioned slicing uses preconditions as a means to specify a set of
initial states for computing a forward slice. The main points to understand
about conditioned slicing are

1. The precondition is used in combination with traditional slicing tech-
niques based on dependency analysis. Code will be removed either
because it is unreachable (not executed when the program is started
in a state in which the precondition holds), or because it is dead (the
precondition eliminates dependencies involving it). Consider the fol-
lowing example from Canfora’s paper:

1 x := y+2;
i f ( a > 0)

3 x := y ∗2 ;
z := x+1

A conditioned slice of this program based on any precondition P such
that |= P → a > 0 results in line 1 being eliminated, since line 3
will certainly be executed and cancel the effect of line 1. This example
shows a fundamental difference between conditioned slicing and earlier
notions of slicing exclusively based on control and data dependencies.
Clearly static dependencies alone cannot be used to implement condi-
tioned slicing, since the instruction in line 4 depends on all previous
instructions. The algorithm proposed by the authors is based on sym-
bolic execution, which allows for the relevant dependency paths to be
identified. A theorem prover is called externally to guide the symbolic
execution.

2. In the context of traditional, dependency-based slicing, there are two
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standard types of forward slicing: static, which considers every possible
execution (i.e. all initial states), and dynamic, which is concerned with
a single execution (a concrete initial state) of the program. The latter
can be generalized to cope with a set of concrete executions, but an
interesting aspect of conditioned slicing is that it subsumes all these
notions, since a characterization of the set of initial states by a first-
order condition can be used to admit any initial state (if the condition
is >), or just a concrete initial state (if the condition is a conjunction
of equality formulas, each equating a program variable to a constant),
or any other intermediate set of initial states.

3. The similarities between precondition-based slicing and conditioned
slicing should be clear: even though the latter is based on dependencies
and the former on weakest preconditions and strongest postconditions,
both are capable of eliminating conditionally unreachable and condi-
tionally dead code. These are examples of code that is redundant with
respect to a given precondition, but note that the notion of redundancy
is different in both cases: whereas in precondition-based slicing this
is code that, if removed, results in a program whose strongest post-
condition will not be weakened with respect to the initial program, in
conditioned slicing this is code that does not contribute to the values
of a given set of variables. Precondition-based slicing removes other
forms of redundancy that conditioned slicing cannot remove, since
they can only be detected at a semantic level. Listing 7.4 shows a
good example to illustrate this point: while conditioned slicing with
x ≥ 0 would eliminate the else branch, it would not remove the two
assignment commands inside the then branch, which are removed by
precondition-based slicing.

4. Conditioned slicing criteria are not however limited to a precondition
P : a slicing criterion consists additionally of a subset X of the program
variables, as well as a specific program line k. The program statements
eliminated are those that do not affect the value of any variable in X
at line k, for executions starting in states satisfying P . Precondition-
based slicing does not subsume conditioned slicing, since it does not
take into account these criteria, inherited from standard dependency-
based forms of slicing.

5. For conditioned slicing criteria that focus on the final state of the
program (i.e. k is the last line), precondition-based slicing can be
said to be a stronger form of slicing than conditioned slicing, since
it eliminates code using semantic criteria that cannot be expressed in
terms of dependencies.
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Backward Conditioned Slicing

Backward conditioning was introduced by Fox and colleagues [FDHH01] as
the symmetric notion of conditioned slicing. A slicing criterion includes a
postcond Q that is used in the following way: statements whose presence
forces ¬Q to hold in the final state (i.e. if they are present ¬Q will hold
after every execution) are removed.

The technique is intended as the dual of conditioned slicing: whereas
(forward) conditioned slicing eliminates the code that will surely not be
executed when the given precondition holds, backward conditioned slicing
eliminates the code that cannot be executed if the given postcondition is
to be satisfied in the final state, i.e. it eliminates statements that prevent
the given postcondition from being true. The technique is introduced with
program comprehension as main application. The authors also propose an
algorithm for implementing backward conditioned slicing, based on symbolic
execution and an external theorem prover.

A second paper [HHF+01] combines forward and backward conditioned
slicing, based on a precondition P and a postcondition Q: it eliminates
code that leads to Q being false when the program is executed in states
satisfying P . The motivation of the latter work is the application to program
verification. The idea here is that in order to check if a program is correct
w.r.t. a specification (P,Q), one may compute its conditioned slice w.r.t.
(P,¬Q). If the program is correct this slice will be empty, since all execution
paths lead to Q being true, and all instructions will thus be removed. If the
program is not correct, the instructions that remain in the slice are those
that may for some initial states lead to ¬Q being true. Such instructions
should carefully be considered since they are directly contributing to the
program being incorrect.

This forward/backward form of conditioned slicing cannot be formu-
lated as specification-based slicing with respect to a specification. While a
specification-based slice S′ of program S with respect to (P,Q) is correct
with respect to (P,Q), a conditioned slice S′′ with respect to (P,Q) is char-
acterized by not being correct with respect to (P,¬Q). Another way to put
this is that while we require VCGw(P, S′, Q) to be valid, VCGw(P, S′′, Q)
must instead be satisfiable. For instance the command x := x+10 with pre-
condition x > 10 and postcondition x ≤ 20 should be sliced to skip, since
|= VCGw(x > 10, x := x+10, ¬(x ≤ 20)) and 6|= VCGw(x > 10, skip, ¬(x ≤
20)), i.e. the formulas VCGw(x > 10, skip, x ≤ 20) are satisfiable.
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Chapter 8

Contract-based Slicing

Every law is a contract between
the king and the people and
therefore to be kept.

John Selden, 1584-1654

The main goal of this chapter is to attempt to answer the following
question:

How can assertion-based slicing, formally introduced in the
previous chapter, be applied in the context of a multi-procedure
program?

Since a program is a set of procedures carrying their own contract specifica-
tions, it makes sense to investigate how the contract information can be used
to produce useful slices at the level of individual procedures, and globally
at the level of programs.

It will be shown that given any assertion-based slicing algorithm, a
contract-based slice can be calculated by slicing the code of each individ-
ual procedure independently with respect to its contract (this will be called
an open slice), or taking into consideration the calling contexts of each pro-
cedure inside a program (which will be called a closed slice). Both notions
are studied, and then a more general notion of contract-based slice, which
encompasses both open and closed slices as extreme cases, is introduced.

Throughout the chapter, it will be considered that a program is a non-
empty set of mutually recursive procedure definitions that share a set of
global variables, following the principles introduced in Chapter 3. Opera-
tionally, an entry point would have to be defined for each such program,
but that is not important for the current purpose. For the sake of simplic-
ity only parameterless procedures will be considered. A shared set of global
variables are used for input and output, but the ideas presented here could

239
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be adapted to cope with parameters passed by value or reference, as well as
return values.

Structure of the Chapter. Sections 8.1 and 8.2 introduce contract-
based slicing in their more specific (open and closed) and general forms
respectively; Section 8.3 then shows how a contract-based slicing algorithm
(working at the inter-procedural level) can be synthesized from any given
assertion-based slicing algorithm (working at the intra-procedural level).

8.1 Open / Closed Contract-based Slicing

In this section, both notions of open and closed contract-based slicing are
introduced.

The first approach consists in simply slicing each procedure based on its
own contract information. The idea is to eliminate all extraneous code that
may be present and does not contribute to making the procedure fulfill its
contract.

Definition 83 (Open Contract-based Slice). Given programs Π, Π′ such
that |= Verif(Π) and PN(Π) = PN(Π′), we say that Π′ is an open contract-
based slice of Π, written Π′ /o Π, if for every procedure p ∈ PN(Π) the
following holds: preΠ′(p) = preΠ(p); postΠ′(p) = postΠ(p); and

bodyΠ′(p) /(pre(p),post(p)) bodyΠ(p)

i.e. the body of each routine in Π′ is a specification-based slice (with respect
to its own annotated contract) of that routine in Π.

As expected, open contract-based slicing produces correct programs:

Proposition 8. If |= Verif(Π) and Π′ /o Π then |= Verif(Π′).

Proof. Straightforward from Definitions 83 and 51.

Let slice be a specification-based slicing algorithm that given a block S
and a specification (P,Q) produces a slice S′ of S with respect to (P,Q),
i.e., slice(S, P,Q) /(P,Q) S

′. It is straightforward to lift it to an algorithm
that calculates contract-based slices.

Definition 84. Let Π be a program, p ∈ PN(Π) and

procsliceo(p)
.
= pre (preΠ(p))

post (postΠ(p)

proc p = slice(bodyΠ(p),preΠ(p),postΠ(p))

Then progsliceo(Π)
.
= { procsliceo(p) | p ∈ PN(Π) }.
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Proposition 9. For any program Π such that |= Verif(Π), progsliceo(Π)/oΠ.

Proof. Straightforward from Definitions 83 and 84.

As was the case with assertion-based slicing, one may want to calculate
open contract-based slices just to make sure that a program (already proved
correct) does not contain irrelevant code. This notion of slice of a program
assumes that all the procedures are public and may be externally invoked
– the program is open. But consider now the opposite case of a program
whose procedures are only invoked by other procedures in the same program,
which we thus call a closed program (this makes even more sense if one
substitutes class for program and method for procedure in this reasoning). In
this situation, since the set of callers of each procedure is known in advance
(it is a subset of the procedures in the program), it is possible that weakening
the procedures’ contracts may still result in a correct program, as long as the
assumptions required by each procedure call are all still respected. In other
words the procedures may be doing more work than is actually required.
Such a program may then be sliced in a more aggressive way, defined as
follows.

Definition 85 (Closed Contract-based Slice). Let Π, Π′ be programs such
that |= Verif(Π) and PN(Π) = PN(Π′). Π′ is a closed contract-based slice
of Π, written Π′ /c Π, if |= Verif(Π′) and additionally for every procedure
p ∈ PN(Π)

1. |= preΠ′(p)→ preΠ(p) (strengthening the precondition);

2. |= postΠ(p)→ postΠ′(p) (weakening the postcondition); and

3. bodyΠ′(p) /(preΠ′ (p),postΠ′ (p)) bodyΠ(p) (the body of the procedure is
an assertion-based slice of the original one with respect to the new
specification).

In general weakening the contracts of some procedures in a correct pro-
gram may result in an incorrect program, since the correctness of each pro-
cedure may depend on the assumed correctness of other procedures; thus
the required condition |= Verif(Π′) in the definition of closed contract-based
slice.

As a very simple example, consider a program Π containing the pro-
cedure FactFib where preΠ(FactFib) is x ≥ 0 and postΠ(FactFib) is fa =
fact(x)∧fi = fib(x), where the logical functions fact and fib capture axiomat-
ically the Factorial and Fibonacci functions. If every call made in Π to this
procedure only makes use of the calculated value fa of factorial, then the
program Π′ can contain a weaker contract for FactFib, with postΠ′(FactFib)
being fa = fact(x). Since the resulting program would still be correct and
|= postΠ(FactFib)→ postΠ′(FactFib) (and the preconditions are the same),
Π′ would be a closed contract-based slice of Π.
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8.2 Contract-based Slicing: General Case

Clearly the notion of closed contract-based slice admits trivial solutions:
since all contracts can be weakened, any precondition (resp. postcondition)
can be set to false (resp. true), and thus any procedure body can be sliced to
skip. A more interesting and realistic notion is obtained by fixing a subset
of procedures of the program, whose contracts must be preserved. All other
contracts may be weakened as long as the resulting program is still correct.

Definition 86 (Contract-based Slice). Let Π, Π′ be programs such that
|= Verif(Π), PN(Π) = PN(Π′) and S ⊆ PN(Π); Π′ is a contract-based
slice of Π, written Π′ /S Π, if the following all hold:

1. |= Verif(Π′).

2. for every procedure p ∈ S,

• preΠ′(p) = preΠ(p)

• postΠ′(p) = postΠ(p)

• bodyΠ′(p) /(preΠ(p),postΠ(p)) bodyΠ(p)

3. for every procedure p ∈ PN(Π) \ S,

• |= preΠ′(p)→ preΠ(p);

• |= postΠ(p)→ postΠ′(p); and

• bodyΠ′(p) /(preΠ′ (p),postΠ′ (p)) bodyΠ(p)

This notion is very adequate to model the process of slicing when applied
to code reuse. When the program (or class) Π is reused, some of its proce-
dures may not need to be public, since they will not be externally invoked
(but they may be invoked by other, public procedures in the program). In
this case the contracts of the private procedures may be weakened according
to their usage inside the program, i.e. the actual required specification for
each private procedure may be calculated from the set of internal calls, since
it is guaranteed that no external calls will be made to private procedures.
The user may then want to reflect this in the annotated contracts, in order
to produce a contract-based slice stripped of the redundant code. Private
procedures whose contracts are not required internally may indeed see their
bodies sliced to skip.

Even for closed programs this notion makes more sense than the ide-
alized Definition 85. Since its procedures are not invoked externally from
other programs’ procedures, every closed program will naturally have a main
procedure to be executed as an entry point, whose contract is fixed (cannot
be weakened).
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8.3 A Contract-based Slicing Algorithm

Again any specification-based slicing algorithm (at the command block level)
can be used for calculating contract-based slices according to Definition 86.
A contract-based slice of program Π can be calculated by analyzing Π in
order to obtain information about the actual preconditions and postcondi-
tions that are required of each procedure call, and merging this information
together. Specifically, it is possible to calculate for each procedure the dis-
junction of all required preconditions and the conjunction of all required
postconditions; this potentially results in a weaker contract with respect to
the annotated contract of the procedure, which can thus be used to slice
that procedure.

To implement this idea for a given program Π we consider a preconditions
table Tpre that associates to each procedure p ∈ PN(Π) a precondition,
initialized with Tpre[p] = ⊥, and a postconditions table Tpost that associates
to each procedure p ∈ PN(Π) a postcondition, initialized with Tpost[p] = >.
The algorithm executes the following steps to produce progsliceS(Π) for a
given set of procedures S ⊆ PN(Π).

1. Calculate Verif(Π) based on the weakest preconditions and while doing
so, for every invocation of the form wprec(call p, Q) set Tpost[p] :=
Tpost[p] ∧Q.

2. Calculate Verif(Π) based on the strongest postconditions and while
doing so, for every invocation of the form spost(call p, P ) set Tpre[p] :=
Tpre[p] ∨ P .

3. For p ∈ PN(Π)\S let

procsliceS(p)
.
= pre Tpre[p]

post Tpost[p]
proc p = slice(body(p), Tpre[p], Tpost[p])

4. Then

progsliceS(Π) = { procsliceo(p) | p ∈ S } ∪
{ procsliceS(p) | p ∈ PN(Π)\S }

To see that for any program Π such that |= Verif(Π), progsliceS(Π) /S Π,
it suffices to show that the postconditions calculated for the procedures in
the slice are weaker than the initial postconditions, and that the program
produced has valid verification conditions. The first part is a consequence
of the contents of table Tpost after step 1 one of the algorithm and the fact
that the verification conditions Verif(Π) are all valid.
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The second part is relatively easy for this particular algorithm because
the preconditions in the contracts are preserved. Since the verification con-
ditions of the initial program are all valid, it suffices to prove that the verifi-
cation conditions of the slice Π′ are entailed by those of the initial program
Π. This is not an immediate consequence for an arbitrary weakening of the
postconditions in the contracts, but it is true for the particular postcon-
ditions that are present in the sliced program’s contracts, since for every
calculation wprec(call p, Q) or VCw(y := fcall f(x), Q), the postconditions
postΠ′(p) and postΠ′(f) are of the form Q1 ∧ . . . ∧ Qk, where Qj = Q for
some j ∈ {1, . . . , k}.
Note that step 1 (or 2) can be skipped, in which case Tpost[p] (resp. Tpre[p])
should be set to post(p) (resp. pre(p)), and slicing will be less aggressive,
based on preconditions or postconditions only.

In Chapter 9, page 269, the application of this contract-based slicing
algorithm will be illustrated with a program containing a procedure p that
calculates a number of different outputs given an input array; this program
is reused in a context in which no external calls are made to p, and two
internal procedures do call p, but some of the information computed by p is
not required by either of the calls. Then some statements of p can possibly
be sliced off.



Chapter 9

GamaSlicer tool

It doesn’t matter how beautiful
your theory is, it doesn’t matter
how smart you are. If it doesn’t
agree with experiment, it’s
wrong.

Attributed to Richard Phillips
Feynman, 1918-1988

This chapter introduces GamaSlicer, a tool whose main goal is to illus-
trate that all the concepts introduced in previous chapters work in practice.
GamaSlicer includes both traditional and interactive verification functional-
ity (it is a Verification Conditions Generator) and also a highly parameteriz-
able semantic slicer for Java programs annotated in JML. It includes all the
published algorithms (precondition-based slicing, postcondition-based slic-
ing, specification-based slicing and their variants) as well as the new ones
introduced in Chapters 7 and 8. On one hand, the tool can be useful to
detect possible errors in the program through the use of the interactive ver-
ification of the program. On the other hand, the tool can be useful for
comparing the effectiveness of slicing algorithms; it allows users to perform
different workflows, such as:

• First verifying a program with respect to a given specification; then
slicing it with respect to that specification to check if there are irrele-
vant commands (with respect to that specification).

• From a verified program, producing a specialization by weakening the
specification and slicing the program with respect to the weaker spec-
ification. This may be useful in a program reuse context, in which a
weaker contract is required for a component than the actually imple-
mented contract.

245



246 CHAPTER 9. GAMASLICER TOOL

In this chapter, examples of the different features of GamaSlicer will be
shown as well as the results produced. Concerning the novelties of this tool,
at least the following can be listed:

• A VCGen, where the user can control in a step-by-step fashion the
generation of the proof obligations.

• An interactive VCGen, where the user can control which parts of the
program he wants to verify.

• A slicer that implements the previous published algorithms using spec-
ifications to slice a program, and the new algorithms and slicing defi-
nitions proposed along this document.

• A slicing algorithm animator, where the user can have also control
over the animation and see the effects of each step.

Structure of the chapter. Section 9.1 introduces the architecture of Ga-
maSlicer and discussed some concerning its design. In Section 9.2, through
an example, it is explained how works the process of verifying a program
in a interactive way. In Section 9.3, through several examples, the different
features offered by GamaSlicer with respect to slicing are illustrated.

9.1 GamaSlicer Architecture

The architecture of GamaSlicer1, inspired by that of a compiler (or generally
speaking a language processor), is depicted in Figure 9.1. It is composed
of the following blocks: a Java/JML front-end (a parser and an attribute
evaluator) — see Appendix A for more details about JML; a verification
conditions generator; a slicer; and a labeled control flow graph (LCFG) vi-
sualizer/animator for both the Verification Graphs and Slice Graphs.

Since the underlying logic of slicing algorithms as well as the VCGen is
first-order logic, the tool outputs proof obligations written in the SMT-Lib
(Satisfiability Modulo Theories library) language. It was chosen SMT-Lib
since it is nowadays the language employed by most provers used in program
verification, including, among many others, Z3 [dMB08a], Alt-Ergo [CCK06],
and Yices [DdM06] — see Appendix B for more details about SMT.

After uploading a file containing a piece of Java code together with a
JML specification, the code is recognized by the front-end (an analyzer pro-
duced automatically from an attribute grammar with the help of ANTLR
parser generator [Par07]), and it is transformed into an Abstract Syntax
Tree (AST — Definition 1). The choice of an Intermediate Representation

1Version 1.0 is available online at http://gamaepl.di.uminho.pt/gamaslicer. Version
2.0 was released as a desktop version available for download at the same URL.
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Figure 9.1: GamaSlicerarchitecture

(an AST) as the core makes the tool language independent, that is, all the
features can be applied to another source language if a front-end for it is
built. This way, all the modules (VCGen, slicer and visualizer/animator)
work over this representation traversing it and transforming it through pat-
tern matching. Some of the patterns currently supported are displayed in
Table 9.1 — please notice the similarity between these patterns and the
abstract syntax of commands defined in Figure 3.3 (Chapter 3).

During this first step, the analysis and intermediate representation of
the source code, an Identifier Table is also built.

The intermediate information that becomes available at each step is dis-
played in a window distributed by nine main tabs (as can be seen in Fig-

SKIP the skip command
ASSIGN left right assignment command
STATEMENTS S1 ... Sn sequence of commands
IF (CONDITION b) conditional statement

(THEN St)

(ELSE Sf)

WHILE (LOOP INVARIANT i) loop command annotated with an
(LOOP TEST b) invariant
(STATEMENTS S)

CALL (NAME f) call of a procedure
(ARGUMENTS arg1 ... argn)

Table 9.1: Some of the patterns recognized by GamaSlicer
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ure 9.2):

• Tab 1 : contains the Java/JML source program to be analyzed.

• Tab 2 : contains the syntax tree (AST) generated by the front-end.

• Tab 3 : contains the Identifier Table built during the analysis phase.

• Tab 4, Tab 5 and Tab 6 : these three tabs are used to verify the correct-
ness of code with respect to contracts. The first two are used during
the standard verification process through a VCGen.

In tab 4, the rules applied along the generation of the verification
conditions are displayed in tree format.

In tab 5, the generated SMTcode is shown; also a table with the ver-
ification status of each formula (sat, unsat, unknown) after calling a
theorem-prover will be displayed.

Tab 6 is used to perform an interactive verification of a program.

• Tab 7 : in this tab, the user can select which slicing algorithm wants
to apply. After applying contract-based slicing algorithms to the orig-
inal program, it will contain the new program produced by the slicer;
notice that useless statements identified by the slicer are not actually
removed, but shown in red and strike-out style.

• Tab 8 : displays the labeled control flow graph (LCFG) as the visual rep-
resentation of the program, giving an immediate and clear perception
of the program complexity, with its procedures and the relationships
among them.

• Tab 9 : in this tab, the user can select which algorithm to animate.
The algorithm selected will be animated through the use of the LCFG,
allowing the user to control the animation process.

The first version of GamaSlicer was built as a web-based tool. The main
idea was to make it as an online laboratory available for everyone and freeing
the user of any kind of installation. This online laboratory is still available
at http://gamaepl.di.uminho.pt/gamaslicer/ but does not include all
the features of the last version.

The main challenge found was when we needed to include the visualiz-
er/animator. There are some graph libraries available web-based, but they
either do not allow any kind of customization (addition of edges on a graph,
shape changing, etc) or they were not compatible with the framework so far
developed.

As a first approach, a graph library was developed based on Dot lan-
guage, from Graphviz2, for Silverlight [Mac10]. A first version of this li-
brary is available at http://dot2silverlight.codeplex.com/. However,

2http://graphviz.org/
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this approach proved to be not so good, since Silverlight is not fast in ren-
dering the graph and it does not work well in all browsers and operation
systems (OS).

This way, it was decided to upgrade GamaSlicer to a desktop version,
since there were interesting graph libraries to use (different libraries were
tried, and the one that fitted better for our purposes was Graph#3 — the
source code is available and thus allows to do any kind of customization).
With this upgraded version, the user has of course to install the tool but it
is faster than the first version (currently, only Windows OS is available).

Next sections detail the three main features of the tool: VCGen, Slicer
and Animator/Visualizer.

9.2 Verifying

As mentioned previously, GamaSlicer provides two modes for verifying the
correction of a given program according to its JML contract. First, the tra-
ditional VCGen approach is described (based on two steps, the generation
of a first-order logic formula and its verification by a prover); then, the in-
teractive version, an innovative result of this PhD work based on verification
graphs, is presented.

Traditional approach As discussed in Chapter 3, the verification in-
frastructure consists of a program logic used to assert the correctness of
individual procedures, from which a VCGen algorithm is derived.

With respect to the traditional approach, GamaSlicer allows the verifi-
cation of a program using the standard method that relies on the algorithm
that uses the weakest precondition strategy (Definition 51 on page 74) or
using the one that uses the strongest postcondition strategy (Definition 52
on page 75).

To verify a program, after uploading a Java program properly annotated
in JML, it is possible to invoke the GamaSlicer VCGen module.

As explained above, this VCGen is implemented as a tree-walker eval-
uator that traverses the AST to generate the verification conditions, using
a tree-pattern matching strategy. Before applying any tree pattern match-
ing rules, a tree traversal is done to look for methods with contracts; this
search returns a set of subtrees, and the VCGen algorithm is applied to each
one. Through the tree pattern matching process, each time a tree matches
a pattern, it is transformed and marked as visited.

At the end, the transformed AST (now with verification conditions at-
tached to the nodes) is traversed by the SMT code generator (another tree-
walker evaluator) to produce SMT proof obligations.

3http://graphsharp.codeplex.com/
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/∗@
2 @ p r e d i c a t e i s f a c t ( i n t e g e r n , i n t e g e r r ) ;

@∗/
4

/∗@ axiom i s f a c t 0 :
6 @ i s f a c t (0 , 1 ) ;

@∗/
8

/∗@ axiom i s f a c t n :
10 @ (\ f o r a l l i n t n , f ;

@ i s f a c t (n−1, f ) ==> i s f a c t (n , f ∗n) ) ;
12 @∗/

14 /∗@ axiom f a c t f u n c t i o n a l :
@ (\ f o r a l l i n t n , f1 , f 2 ;

16 @ i s f a c t (n , f 1 ) ==> i s f a c t (n , f 2 ) ==> f 1==f2 ) ;
@

18 @∗/

20 public class Fac to r i a l 1 {
/∗@ r e q u i r e s n >= 0;

22 @ ensure s i s f a c t (n , \ r e s u l t ) ;
@∗/

24 private int f a c t f ( int n)
{

26 int f = 1 , i = 1 ;

28 //@ l o o p i n v a r i a n t i<=n+1 && i s f a c t ( i −1, f ) ;
while ( i <= n) {

30 f = f ∗ i ;
i = i + 1 ;

32 }
return f ;

34 }
}

Listing 9.1: Factorial program annotated in JML

GamaSlicer allows the user to follow the generation of this set of verifi-
cation conditions in a step-by-step fashion.

As an example, please consider that we have the Factorial program prop-
erly annotated — Listing 9.2 and Figure 9.2.

Once this program is successfully parsed, it becomes available, as previ-
ously explained, the Identifier Table (Figure 9.3) and the AST (Figure 9.4).
At this point we can move to the VCGen tab and go step-by-step through
the verification process. The first step is to chose the strategy to use on the
generation of the verification conditions (using a weakest precondition or a
strongest postcondition strategy). Once this generation starts, the sequence
of rules applied to the program are presented in a tree form in order to make
easier the comprehension of the process (Figure 9.5) — the arguments used
in the weakest precondition function as well as in the auxiliary function are
shown too. When there are no more rules to apply, it is possible to generate
the set of verification conditions in SMT-LIB language, which will be dis-
played in the SMT tab. At this moment, we can check the validity of these
VCs calling the automatic theorem prover (currently Z3 theorem prover is
being used). At the end, the results outputted by the prover are displayed
in a tabular form (see bottom of Figure 9.6). Analyzing these results it is
possible to conclude if the program is correct or not (in this case the Factorial
program is correct).
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Figure 9.2: Factorial program annotated in JML
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Figure 9.3: Identifier Table of the Factorial program in Listing 9.1
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Figure 9.4: AST of the Factorial program in Listing 9.1
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Figure 9.5: Verifying the Factorial program
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Figure 9.6: Verification Conditions for the Factorial program
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1 public class UKTaxesCalculation
{

3 public int age , income ;
public int personal , t ;

5
/∗@ r e q u i r e s ( age >= 18) ;

7 ensure s ( p e r s ona l > 5750) ;
@∗/

9 public void TaxesCalcu lat ion ( )
{

11 i f ( age >= 75) { per sona l = 5980; }
else i f ( age >= 65) { per sona l = 5720; }

13 else { per sona l = 4335; }

15 i f ( ( age >= 65) && ( income > 16800) )
{

17 t = per sona l − ( ( income−16800) /2) ;
i f ( t > 4335) { per sona l = t + 2000; }

19 else { per sona l = 4335; }
}

21 }
}

Listing 9.2: Class TaxesCalculation

Interactive approach Chapter 6 introduced the notion of control flow
graph annotated with pairs of assertions (LCFG) and how these graphs could
be used to conduct the verification process in a more interactive way. These
graphs were called verification graphs.

A LCFG is nothing more than a control flow graph annotated with as-
sertions (the edge conditions) from which we can pick different sets whose
validity is sufficient to guarantee the correctness of the procedure. Each
particular set corresponds to one particular verification strategy, mixing the
use of strongest postconditions and weakest preconditions.

From a technical point of view, the LCFG of a program can be con-
structed in three steps: first building the unlabeled CFG, from the syn-
tax tree of the program; then assigning the first component of the la-
bels by traversing the graph from START to END ; and finally assign-
ing the second component by traversing the graph in the reverse direc-
tion. In each of these traversals the label of each edge can be calculated
locally from the labels of the (one or two) previous edges. In particu-
lar, for 1 ≤ k ≤ n we have spostk(S, P ) = spost(Ck, spostk−1(S, P )) and
wpreck(S,Q) = wprec(Ck,wpreck+1(S,Q)).

To illustrate the process of an interactive verification, please recall the
program presented in the beginning of Chapter 6 used to calculate the
income taxes in the United Kingdom. This program, written now using
Java/JML notation, is shown again in Listing 9.2, considering as precondi-
tion P = age ≥ 18 and as postcondition Q = personal > 5750.

If we verify the correctness of this program using the traditional ap-
proach, the VCGen module of GamaSlicer will produce a single formula to
be sent to the prover and the result will be that the program is incorrect
(Figure 9.7). Using this traditional approach, to understand which state-
ments are leading to the incorrectness, the user must debug the program



9.2. VERIFYING 257

Figure 9.7: SMT code for the verification conditions of TaxesCalculation

manually. However, this is not the desirable way. Although the considered
program is of small size, when dealing with larger programs this process
becomes hard, boring and error prone. An interactive verification may help
us to find the statements that prevent the program from being correct.

Let us start by visualizing the verification graph for the program under
consideration. The result is the one in Figure 9.8. Now let us zoom-in on the
subgraph corresponding to the second conditional statement in the method,
and select the last edge inside the then branch. The edge condition sent to
the prover is:

∃v0 : age ≥ 65 && income > 16800 && t > 4335
&& personal == t+ 2000→ personal > 5750

which the prover identifies as being valid.4 Thus, the edges inside the
branch and the assignment statement are shown in green and the if /fi nodes
remain black (Figure 9.9), accordingly to the coloring rules in Definition 77
on page 197. This means that the statements inside the then branch are not
the cause of failure. If we now pick the last edge inside the else branch, the
following condition is sent to the prover:

∃v0 : age ≥ 65 && income > 16800 && t > 4335
&& personal 6= t+ 2000→ personal > 5750

The result returned by the prover is now that the condition is not valid.
Thus, the edges inside the branch, the assignment node, and the if /fi nodes
all become red (Figure 9.10 — recall that although Definition 77 does not
include the red color, it is here considered for visualization purposes, to help
on the identification of segments of the code where a problem exists. At this
step, we learn that the statement in this path is causing the procedure to
be incorrect.

In fact this is not the only problem in this procedure. Repeating this
process for the inner conditional inside the first one, we can observe that

4In fact it is the negation of this formula that is sent to the SMT solver, which returns
unsat, meaning that the original formula is valid.
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the statement personal = 5720 is also preventing the program from being
correct.

In order to assist the user, during the interactive verification of a pro-
gram, several features are available in order to make this process more in-
tuitive and user friendly.

Once an edge is chosen (by clicking on it), the condition sent to the prover
is shown in a Verification list, at the bottom of the window (Figures 9.9
and 9.10). The user is free to expand/collapse this list. When clicking
on a list item, the edges/nodes related with the condition are momentarily
highlighted. Also, in order to keep track of the edge conditions previously
considered, complementing the Verification list, an history of images (also
expandable/collapsable) is shown on the right (Figures 9.9 and 9.10). Once
the selected condition has been processed, and according to the result re-
turned by the prover, the current edge is colored: red if the prover returned
false, green in case of true and yellow when the returned value is unknown.

Nodes in the graph will also be displayed in color, as follows: a node is
shown in green if all its incoming and outgoing edges are green; it is shown
in red if at least one of its incoming and outgoing edges is red; it is shown in
black otherwise (i.e. no red edges and at least one black edge). For instance
when an if node is shown in green, this means that the edge condition of the
incoming edge is valid, i.e. the precondition of the corresponding conditional
command poses no problems.

This interactive approach is thus useful when a program is incorrect and
we want to detect which part of the program is causing such problems. In the
traditional approach it could be hard to come up with the same conclusion
just observing the generated verification conditions.
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Figure 9.8: Verification Graph for the TaxesCalculation program
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Figure 9.9: Verifying the Edge Conditions of Verification Graph for the
TaxesCalculation program (1)

Figure 9.10: Verifying the Edge Conditions of Verification Graph for the
TaxesCalculation program (2)
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9.3 Slicing and Visualizing/Animating

The first aim that led to the design and implementation of GamaSlicer was
precisely to provide a tool for the visualization of annotated programs and
their semantic slices, as well as, for the animation of the slicing process —
the lack of a similar tool (helpful for maintenance and teaching) was detected
while reviewing the state of the art (Chapters 2 and 4). This section explains
the contribution resulting from the present PhD work to this aim.

9.3.1 Assertion-based Slicing

GamaSlicer implements the precondition-, postcondition- and specification-
based slicing algorithms (the original version and the new one). For the
latter, it also provides an animator enabling the user to see the algorithm
performing in a step-by-step mode through the animation of the LCFG.

To illustrate how this works on GamaSlicer, let us start with precondi-
tion-based slicing (postcondition-based works in a similar way).

Please recall the program used in Chapter 7, now written in Java/JML
notation in Listing 9.3.

After submitting and parsing this source code, we can start by the slicing
operation, choosing the precondition-based slicing algorithm. As expected,
the statements in lines 18–20 were sliced off since the precondition P = y >
10 makes the statements in the else branch useless. The result exhibited in
GamaSlicer is depicted in Figure 9.11.

Now suppose that we are interested in using both the precondition and
the postcondition to slice the program, i.e., we intend to apply a specification-
based slicing. This time, the resulting program is even smaller, since the
statements in lines 14 and 15 are also sliced off (after line 13 the postcon-
dition is met and thus all the statements after can be deleted). The result
produced by GamaSlicer is depicted in Figure 9.12.

Consider now the annotated component in Listing 9.4 (for the sake of
simplicity, a small procedure was deliberately selected).

Computing the weakest precondition and the strongest postcondition
pair for each statement in the procedure 9.4, we obtain:

spost0 = x ≥ 0 wprec1 = x > 0
x = x + 100

spost1 = ∃v.v ≥ 0 ∧ x = v + 100 wprec2 = x > 100
x = x - 200

spost2 = ∃v.v ≥ 0 ∧ x = v − 200 wprec3 = x > 300
x = x + 200

spost3 = ∃v.v ≥ 0 ∧ x = v + 100 wprec4 = x > 100

(notice that sp0 ≡ P and wp4 ≡ Q)

The specification-based slicing algorithm looks for valid implications
among the spi and the wpj , for 0 ≤ i ≤ 3 and 1 ≤ j ≤ 4. For that, it
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1 public class I f s l i c i n g
2 {
3 int x , y ;
4 public I f s l i c i n g ( ) {}
5
6 /∗@ r e q u i r e s y > 10 ;
7 @ ensure s x >= 0;
8 @∗/
9 public void t e s t IF ( )

10 {
11 i f ( y > 0)
12 {
13 x = 100 ;
14 x = x + 50 ;
15 x = x − 100 ;
16 }
17 else {
18 x = x − 150 ;
19 x = x − 100 ;
20 x = x + 100 ;
21 }
22 }
23 }

Listing 9.3: Example for precondition and specification-based slicing

1 /∗@ r e q u i r e s x >= 0;
2 @ ensure s x > 100 ;
3 @∗/
4 public int changeX ( ) {
5 x = x + 100 ;
6 x = x − 200 ;
7 x = x + 200 ;
8 }

Listing 9.4: Simple sequence of assignments

will test the implications: sp0 → wp2, sp1 → wp3, sp0 → wp4, sp1 → wp3,
. . . , sp2 → wp4.

For a larger procedure, it becomes harder to identify this set of impli-
cations and specially difficult to understand which statements can be elimi-
nated (remember that a statement sequence can be discarded whenever an
implication is true). In this context, the main idea behind the animator of
GamaSlicercame up: to use the same LCFG used in the interactive verification
to display the implications and animate the verification process.

Submitting the program to GamaSlicer and starting by the animation of
the specification-based slicing algorithm, its initial LCFG will be displayed
— the layout of this graph corresponds to a global graph layout (suitable
for all the animation process) and will be the one used during all the slicing
phases, avoiding extra effort to interpret changes in the nodes localization.

Graph animation, which consists in showing a sequence of n graphs, is
not a novelty but it still presents some interesting challenges [DG02]. The
naive approach is to re-calculate the whole layout in each update. However,
this can lead to some confusion as it does not preserve the mental map of
the user who is following the animation. Mental map refers to the abstract
structural information that a user forms when looking at the layout of a
graph, which facilitates the navigation in the graph and its comparison with
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other graphs. An obvious challenge is how to display each graph in the
sequence while preserving the basic layout. In GamaSlicer it was adopted a
solution to this problem known as foresighted layout as proposed in [DGK00]
(also referred in subsection 5.3.3 of Chapter 5). Given a sequence of n
graphs, a global layout is computable, suitable for each one of the n graphs.
In the simplest case, this global layout can match the super-graph of all
graphs in the sequence.

Once the global layout is computed and displayed, it is possible to step
forward. The arrow that corresponds to the implication being tested is
highlighted — starting in black and finishing in a color that depends on the
proof result — see Figure 9.13. The proof obligation being tested is also
shown. If the implication evaluates to true, then the (green) arrow is added
to the graph. At the end of the step, the proof is added to the textual
history (displayed on bottom) and the complete snapshot of the graph is
added to the image history (displayed on the upper-right corner).

A backward step allows the user to recover the animation track and gives
a clear perception between the previous and current state.

After all slicing steps (all steps are depicted in Figures 9.13 to 9.19), the
shortest-path among all the green paths from Start to Stop nodes is com-
puted and displayed. The statements to be sliced off are then highlighted.
See Figure 9.20.

The animation process ends up displaying the final slice graph that de-
scribes the program obtained, as shown in Figure 9.21.

Through this process, the user can check which implications led to the
sliced statements, and thus understand the final result.

Figure 9.11: Precondition-based slicing applied to program in Listing 9.3



264 CHAPTER 9. GAMASLICER TOOL

Figure 9.12: Specification-based slicing applied to program in Listing 9.3

Figure 9.13: Animating specification-based slicing applied to program in
Listing 9.4 (Step 1)
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Figure 9.14: Animating specification-based slicing applied to program in
Listing 9.4 (Step 2)

Figure 9.15: Animating specification-based slicing applied to program in
Listing 9.4 (Step 3)
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Figure 9.16: Animating specification-based slicing applied to program in
Listing 9.4 (Step 4)

Figure 9.17: Animating specification-based slicing applied to program in
Listing 9.4 (Step 5)



9.3. SLICING AND VISUALIZING/ANIMATING 267

Figure 9.18: Animating specification-based slicing applied to program in
Listing 9.4 (Step 6)

Figure 9.19: Animating specification-based slicing applied to program in
Listing 9.4 (Step 7)
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Figure 9.20: Animating specification-based slicing applied to program in
Listing 9.4 (Step 8 — Shortest Path)

Figure 9.21: Animating specification-based slicing applied to program in
Listing 9.4 (Step 9 — Final Slice Graph)
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9.3.2 Contract-based Slicing

In this section it is illustrated the concept of contract-based slice introduced
in Chapter 8.

Consider as an example an extract from a class Π in Listing 9.5 con-
taining an annotated method, called OpersArrays, which computes several
array operations: the sum of all elements, the sum of all the even elements,
the iterated product, and the maximum and minimum. Π contains two other
methods Average and Multiply; the former computes the average of the
elements belonging to the array, and the latter multiplies the product of
the array by a parameter y. The code contains appropriate contracts for all
methods, as well as loop invariants. All 3 methods are correct with respect
to their contracts – we assume this has been established beforehand.

Moreover suppose that OpersArrays is a private method, i.e. in a given
context it is known that it will not be invoked externally. As can be observed
in Listing 9.5: method Average calls the method OpersArrays and then uses
the calculated value of the variable summ; and Multiply calls OpersArrays

and then uses the value of variable productum.
In this context, it makes sense to calculate a contract-based slice of

this class with S = {Average, Multiply}, which will result in the method
OpersArrays being stripped of the irrelevant code.

In order to calculate progsliceS(Π), Tpost is first initialized as

Tpost[OpersArrays] := >

After performing the first step of the algorithm we set

Tpost[OpersArrays] := > && Q1 && Q2

where (calculations omitted)

Q1 =
summ

length
==

sum{int i in(0 : length); a[i]}
length

Q2 =0 ≤ i ≤ y && q == i× productum

So, as the component OpersArrays is called twice in the context of the
two previous components, the result is the weaker postcondition

> && Q1 && Q2.

The final step in the calculation of the slice using table T gives us

progslicec(Π)
.
= {procsliceo(Average), procsliceo(Multiply),

procsliceS(OpersArrays)}
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1 int summ, sumEven , productum , maximum, minimum ;
2 int [ ] a = new int [ 1 0 0 ] ;
3 int l ength = 100 ;
4
5 /∗@ ensure s \ r e s u l t == (\sum i n t i ; 0 <= i && i < l e n g t h ; a [ i ] ) / l e n g t h ;
6 @∗/
7 public double Average ( )
8 {
9 OpersArrays ( ) ;

10 double average = summ / length ;
11 return average ;
12 }
13
14 /∗@ r e q u i r e s y >= 0;
15 ensure s \ r e s u l t == (\ produc t i n t i ; 0 <= i && i < l e n g t h ; a [ i ] ) ∗y ;
16 @∗/
17 public int Mult ip ly ( int y )
18 {
19 int q = 0 , i = 0 ;
20 OpersArrays ( ) ;
21 x = productum ;
22 /∗@ l o o p i n v a r i a n t (0 <= i ) && ( i <= y ) && ( q == ( i ∗x ) ) ;
23 @∗/
24 while ( i < y )
25 {
26 q = q + x ;
27 i = i + 1 ;
28 }
29 return q ;
30 }
31
32 /∗@ ensure s (summ == (\sum i n t i ; 0 <= i && i < l e n g t h ; a [ i ] ) ) &&
33 ( productum == (\ produc t i n t i ; 0 <= i && i < l e n g t h ; a [ i ] ) ) &&
34 ( sumEven == (\sum i n t i ; 0 <= i && i < l e n g t h ;
35 ( ( a [ i ] % 2) == 0 ? a [ i ] : 0) ) ) &&
36 (maximum == (\max i n t i ; 0 <= i && i < l e n g t h ; a [ i ] ) ) &&
37 (minimum == (\min i n t i ; 0 <= i && i < l e n g t h ; a [ i ] ) ) ;
38 @∗/
39 private void OpersArrays ( )
40 {
41 maximum = a [ 0 ] ;
42 minimum = a [ 0 ] ;
43 summ = 0 ;
44 sumEven = 0 ;
45 productum = 1 ;
46 int n = 0 ;
47
48 /∗@ l o o p i n v a r i a n t (n <= l e n g t h ) &&
49 (summ == (\sum i n t i ; 0 <= i && i < n ; a [ i ] ) ) &&
50 ( productum == (\ produc t i n t i ; 0 <= i && i < n ; a [ i ] ) ) &&
51 ( sumEven == (\sum i n t i ; 0 <= i && i < n ;
52 ( ( a [ i ] % 2) == 0 ? a [ i ] : 0) ) ) &&
53 (maximum == (\max i n t i ; 0 <= i && i < n ; a [ i ] ) ) &&
54 (minimum == (\min i n t i ; 0 <= i && i < n ; a [ i ] ) ) ;
55 @∗/
56 while (n < l ength )
57 {
58 summ = summ + a [ n ] ;
59 productum = productum ∗ a [ n ] ;
60 i f ( ( a [ n ] % 2) == 0) { sumEven = sumEven + a [ n ] ; }
61 i f ( a [ n ] > maximum) { maximum = a [ n ] ; }
62 i f ( a [ n ] < minimum) { minimum = a [ n ] ; }
63
64 n=n+1;
65 }
66 }

Listing 9.5: Annotated method OpersArrays
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1 public void OpersArrays ( )
2 /∗@ ensure s (summ == (\sum i n t i ; 0 <= i && i < l e n g t h ; a [ i ] ) ) &&
3 ( productum == (\ produc t i n t i ; 0 <= i && i < l e n g t h ; a [ i ] ) )
4 @∗/
5 {
6 summ = 0 ;
7 productum = 1 ;
8 n = 0 ;
9 /∗@ l o o p i n v a r i a n t (n <= l e n g t h ) &&

10 (summ == (\sum i n t i ; 0 <= i && i < n ; a [ i ] ) ) &&
11 ( productum == (\ produc t i n t i ; 0 <= i && i < n ; a [ i ] ) )
12 @∗/
13 while (n < l ength )
14 {
15 summ += a [ n ] ;
16 productum = productum ∗ a [ n ] ;
17
18 n=n+1;
19 }
20 }

Listing 9.6: Sliced method OpersArrays

Calculating

slice(body(OpersArrays),pre(OpersArrays), Tpost[OpersArrays])

results in cutting the statements present in lines 40, 41, 43, and 59-61 after
removing from the invariant the predicates in lines 50–53, which contain
only occurrences of variables that do not occur in Tpost[OpersArrays].

The final sliced method is shown in Listing 9.6. The other two methods
remain unchanged.

GamaSlicer also implements this algorithm in an interactive mode. At
the beginning, after the selection of this functionality, the initial postcon-
ditions table is set (see Figure 9.22). During the first step (the calculation
of the verification conditions), each time a function call is found, the re-
spective line in the source code as well as the entry of the procedure in the
table are highlighted (see Figures 9.23 and 9.24). At the end, when no more
calls are found, the user selects the application of the contract-based slicing
algorithm to the original program using the new postconditions (step 2). As
result, the lines to be removed from the original program are highlighted.
The final program is shown in Figure 9.25.
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Figure 9.22: The initial postconditions table
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Figure 9.23: Changing postconditions table when a function call is found
(1)
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Figure 9.24: Changing postconditions table when a function call is found
(2)
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Figure 9.25: Final program with the lines to be removed highlighted
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Chapter 10

Conclusion

I love to travel, but I hate to
arrive.

Albert Einstein, 1879 — 1955

This thesis delves into the problematics of slicing programs based on
their semantics rather than in their syntax. This idea was presented in
Chapter 7. It was shown how the forward propagation of preconditions
and the backward propagation of postconditions can be combined in a new
slicing algorithm that is more precise than the existing specification-based
algorithms. The algorithm is based on (i) a precise test for removable state-
ments, and (ii) the construction of a slice graph, a program control flow graph
extended with semantic labels and additional edges that “short-circuit” re-
movable commands. It improves on previous approaches in two aspects: it
does not fail to identify removable commands; and it produces the small-
est possible slice that can be obtained (in a sense that was made precise).
Iteration is handled through the use of loop invariants and variants to en-
sure termination. Applications of these forms of slicing were also discussed,
including the elimination of (conditionally) unreachable and dead code. A
comparison with other related notions was also given.

The notion of assertion-based slicing was then generalized to programs
with multiple procedures under the concept of contract-based slicing in
Chapter 8 — both open and closed versions were proposed as a way to
remove code unnecessary to the correctness of a given program. The moti-
vation was to bring to the inter-procedural level the power of assertion-based
slicing, which we believe has great application potential and will surely be-
come more popular in coming years, profiting from advances in verification
and automated proof technology.

A master thesis, entitled “Contracts and Slicing for Safety Reuse”, was
developed in close connection with the work reported in this document,
but it explored a different facet of slicing programs based on their con-
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tracts: it focuses on the verification of every call to an annotated compo-
nent, checking if the actual calling context preserves the callee precondition.
The Caller-based Slicing algorithm and examples can be seen in more de-
tail in [Are10, AdCHP11]. Currently, in order to consider a more realist
language and produce more accurate results, JavaPathFinder Symbolic Ex-
ecutor [BHPV00] is being integrated in the tool (see also subsection 3.5.3
for more details about JavaPathFinder).

The thesis also includes contributions in the area of Program verification.
As discussed, the verification problem considered here could be stated as the
problem of determining whether a program Π meets its specification. If Π
is a large program, it can be decomposed into smaller pieces (procedures),
each of which will be annotated with a local specification pair (P ′, Q′), also
called a contract (its own entry and exit invariants). The procedures will
be verified separately, and Π will then be considered correct if all their
procedures are correct with respect to their contracts.

However, when dealing with an incorrect program, it is difficult to find
which statements are causing the incorrectness through the traditional ver-
ification approach. Chapter 6 introduced an application of labeled control
flow graphs as verification graphs, a structure to organize a set of verifica-
tion conditions in which the propagation of logical information forward and
backward is interactively commanded by the user. By visualizing the labeled
control flow graph of a procedure, the user can select the edge conditions to
be sent to the prover, and thus keep track of valid and invalid conditions.
This way, the user can easily identify the erroneous paths.

The main applications of LCFGs in this thesis were thus for: interac-
tive verification as shown in Chapter 6, giving the user the power to guide
the generation of VCs; and for slicing as shown in Chapter 7. We remark
however that verification graphs contain all the different sets of VCs that
can be obtained for a block of code combining forward and backward prop-
agation, and moreover the VCs are organized in a way that facilitates the
association with execution paths: an edge condition is valid if and only if no
execution path containing that edge produces an error. These are interest-
ing properties in themselves, and we believe that in addition to interactive
verification, LCFGs can be used as the basis for defining VCGens based on
different strategies, combining forward and backward propagation of asser-
tions. This is a topic that has not been explored in the literature, but which
seems to combine the best of the two standard approaches to the generation
of verification conditions.

In order to prove the validity of all these ideas, the GamaSlicer tool
was developed. It implements all the assertion- and contract-based slicing
algorithms as well as a visualizer/animator for the slicing algorithms and
for the interactive VCGen.



279

GamaSlicer can be a useful teaching tool, since it allows students to ob-
serve step-by-step how verification conditions are generated. For example,
since loop invariants and procedure contracts are annotated into the code,
the only arbitrary choice is in the rule for the sequence command C1 ; C2,
in which an intermediate assertion R must be guessed. This is the moti-
vation for introducing a strategy for the construction of proof trees, based
on the notion of weakest precondition. This gives a mechanical method for
constructing derivations, which can alternatively be written as a VCGen.

GamaSlicer can also be used to help in detecting and fixing errors, both
in annotations and in code, since it exhibits in a versatile and user-friendly
tree fashion all the rules used to generate the proof obligations; this output
can optionally be obtained by executing the VCGen algorithm step-by-step.
The proof obligations, written in the SMT-Lib language, are also displayed,
allowing the user to analyze the formulae and their verification status.

Another contribution of GamaSlicer is for program comprehension: slic-
ing a method according to different contracts (by weakening the original
contract) allows one to understand the relation between each code section
and each part of the initial contract.

An extension to GamaSlicer, GamaPolar, was developed under the con-
text of the master thesis mentioned above. It implements a new slicing
algorithm called caller-based slicing that basically consists in a two-pass al-
gorithm where: the first step is the implementation of the traditional back-
ward slicing with a slicing criterion concerning the call under consideration,
and its arguments (the ones that are also present on the callee precondi-
tion); and the second step is to verify if the statements that result from the
first step will respect the contract with the callee. The tool produces a set
of errors and warnings about the (possible) violations with respect to the
precondition under consideration.

After summarizing the main novelties of the PhD work here reported, some
uses that evidence their contribution will be described.

Applications. The applications of both assertion-based slicing and contract-
based slicing are multiple.

In particular, with respect to postcondition-based slicing, Comuzzi and
Hart, in their paper, give a number of examples of its usefulness, based on
their experience as software developers and maintainers. Their emphasis
is on applying slicing to relatively small fragments of big programs, using
postconditions corresponding to properties that should be preserved by these
fragments. Suppose one suspects that a problem was caused by some prop-
erty Q being false at line k of a program S with n lines of code. We can
take the subprogram Sk consisting of the first k lines of S and slice it with
respect to the postcondition Q. This may result in a suffix of Sk being sliced
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off, say from lines i to k, which means that in order for Q to hold at line k, it
must also hold at line i. The resulting slice is where the software engineers
should now concentrate in order to find the problem (a similar reasoning
applies if the sequence of lines removed is not a suffix of Sk).

A related situation occurs when the property must deliberately be vio-
lated in some part of the code. This is typical for instance of code running
as a thread of a concurrent program, with Q being true outside a critical
section executed by the thread at some point, and false inside that section.
Q is true before entering the critical section and will be true after leaving
it, so postcondition-based slicing can be used to study the correct behavior
of the code with respect to that section. Similarly, the property may corre-
spond to some invariant of a data structure, say a balanced binary search
tree that will temporarily be unbalanced (or even inconsistent) while a new
element is being inserted.

Safety properties may also be studied in this way. Examples include for
instance

• array accesses u[e], with safety property “the value of expression e
stands between 0 and N − 1”, with N the allocated size of the array;

• pointer dereferencing accesses ∗p with safety property “p points to a
properly allocated memory region”;

• procedure invocations, with safety property “the precondition of the
invoked procedure is satisfied”.

With respect to specification-based slicing, it may be useful to apply
it to code already annotated with specifications, following the principles of
design by contract. For code that has been developed in this way, it is cheap
to apply specification-based slicing techniques, based on the specification
information that is already present in the code.

A first application in this context is the elimination of unnecessary code.
A piece of software that has already been proven correct with respect to a
specification may well contain code that is not actually playing any useful
role regarding that specification. This unnecessary code that may have been
introduced during development is not detected by the verification process
itself, but slicing the program with respect to the proven specification will
hopefully remove such code.

A different application is concerned with code that has been verified
but is now being used in a specialized context, i.e. the specification that is
required for a given use of the code is actually weaker (because a stronger
precondition is present, and/or a weaker postcondition is required) than the
proven specification. A typical situation is software reuse. For instance,
consider a library containing a procedure that implements a traversal of
some data structure, and collects a substantial amount of information in that
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traversal. It may be the case that for a given project one wants to reuse this
procedure without requiring all the information collected in the traversal.
In this case the procedure will be invoked with a weaker specification, and
it makes sense to produce a specialized version to be included in the current
project. A specification-based slice can be computed to this effect.

Future work. With respect to future work, several ways can be pursued:

• It would be interesting to see how our work on verification graphs
relates with the study of the effects of splitting verification condi-
tions [LMS08]. The authors have shown that splitting VCs (i.e. hav-
ing a bigger number of smaller conditions) can lead to substantial im-
provements with respect to the performance of the SMT prover, and
also with respect to the quality of the error messages produced when
verification fails. Verification graphs may offer a method for defining
criteria for systematically splitting VCs.

• One very simple extension, which would increase even more the ad-
vantages of interactive VC generation, would be to give the user the
possibility to insert assertions at arbitrary points of the verification
graph. An intermediate assertion simultaneously creates a verifica-
tion condition (the assertion must hold at the point where it is in-
serted), and provides additional context information that can be used
in subsequent VCs. Technically it suffices to consider a new command
assertφ, which has no operational effect, and:

wprec(assertφ,Q) = φ spost(assertφ, P ) = φ

VCw(assertφ,Q) = {φ→ Q} VCs(assertφ, P ) = {P → φ}

• Another interesting thing to add to verification graphs would be an
online annotation editing facility. The programs considered along this
document are annotated with contracts and loop invariants. The edge
conditions are generated taking these annotations as inputs. It makes
sense for an interactive tool to allow annotations to be modified on-
line, which does not require parsing the program and reconstructing
the verification graph. Only the modified annotation must be parsed,
and then the edge conditions must be recalculated according to the
verification strategy selected by the user.

• With respect to assertion-based and contract-based slicing algorithms,
one obligatory step will be to calculate weakest preconditions using
Flanagan and Saxe’s algorithm [FS01], which avoids the potential ex-
ponential explosion in the size of the conditions generated, keeping the
algorithm presented within quadratic time. Alternatives to strongest
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postcondition calculations will also be explored, to eliminate the use of
existential quantifiers. One such alternative is the notion of update, as
used prominently in the dynamic logic of the KeY system [ABB+05].

• One main challenge is to produce a robust tool for intermediate code
of a major verification platform, such as Why or Boogie. This would
allow us to test the ideas with realistic code, since several verification
tools for languages like C, Java, or C# are based on these platforms.

Currently, a master thesis, entitled “GamaBoogie, a Contract-based
Slicer for Boogie Programs”, is being developed to explore such idea.
A preliminary study of Boogie has been done resulting in a visualizer
to help in the understanding of Boogie programs, and also the trans-
formation that programs suffer when translating them from languages
like C# or C to Boogie. The tool being developed is an extension to
GamaSlicer and has the name of GamaBoogie.

I hope to have given enough arguments in favor of the use of specifica-
tions as slicing criteria to obtain semantics-based slices, and that this is a
worthwhile field deserving more research.



Appendix A

Java Modeling Language

JML is a formal language that allows to specify both the syntactic interface
of Java code (e.g. visibility and other modifiers, type checking information,
etc) and its behavior (describes what should happen at runtime when the
code is used).

A JML specification is written in special Java annotated comments,
which start with an at-sign (@) and usually are written before the header of
the method they specify. Thus, comments starting either with /∗@ . . .@∗/ or
//@ are considered JML annotations. Different from traditional comments,
a formal specification in JML is machine checkable since these specifications
represent boolean expressions (assertions). Checking the specification can
help isolate errors before they propagate too far.

Similar to Eiffel [Mey87], the language that first came up with the Design-
by-Contract approach, JML uses Java’s expression to write the assertions,
such as preconditions, postconditions and invariants. However, because
these expressions lack some expressiveness to the writing of behavioral spec-
ifications, JML uses extended Java expressions. Some of these extensions
are listed in Table A.1 and they include: a notation for describing the result
of a method (\result), different types of implication, a way of referring
to the pre-state value of an expression (\old(.)), several kinds of quanti-
fiers (universal quantifier — \forall, existencial quantifier — \exists, and
generalized quantifiers — \sum, \product, \min, \max).

The quantifiers \sum, \product, \max and \min are quantifiers that re-
turn respectively the sum, product, maximum and minimum of their body
expressions when the quantified variables satisfy the given range expressions.
For example, an expression (\sum int x; 1 <= x && x <= 6; x) denotes
the sum of values between 1 and 6 inclusive (i.e. 21).

JML uses a requires clause to specify the client’s obligation, an ensures
clause to specify the programmer’s obligation; and a loop invariant clause
to specify the properties that need to be checked at each loop iteration.
Other kind of clauses are available in JML (for instance, JML allows the
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Syntax Meaning

\result result of method call
a ==> b a implies b
a <== b a follows from b (i.e. b implies a)
a <==> b a if and only if b
a <=!=> b not (a if and only if b)
\old(E) value of E in pre-state

Table A.1: Some of JML’s extension to Java expressions

1 //@ r e q u i r e s x >= 0;
2 /∗@ ensure s \ r e s u l t >= \ o l d ( x ) ;
3 @∗/
4 public int Sum( int x ) {
5 int i = 0 , sum = 0 ;
6
7 /∗@ l o o p i n v a r i a n t 0 <= i && i <= x &&
8 @∗/
9 while ( i <= x) {

10 sum += i ;
11 }
12 return sum ;
13 }

Listing A.1: JML specification to describe the method’s behavior

specification of what exceptions a method may throw) but they are left out
of scope, since are not be used in the context of the work here reported. More
information about JML can be found in [LC03] and [LBR06]. Listing A.1
shows an example of a JML specification describing the behavior of a method
through the use of a precondition and a postcondition. Additionally, a loop
invariant is added.

Figure A.1 shows a fragment of the Java grammar extended to deal with
JML specifications.
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MethodDeclaration → MethodSpecification Type Ident

FormalArgs CompoundStatement

MethodSpecification → RequiresClause* EnsuresClause*

RequiresClause → /*@ requires Expression ; @*/

EnsuresClause → /*@ ensures Expression ; @*/

CompoundStatement → { Statement+ }

Statement → CompoundStatement | ...

| Maintaining* while ( Expression ) Statement

Maintaining → /*@ loop invariant Expression ; @*/

Expression → ImpliesExpression

| ImpliesExpression (<==> | <=!=>) EqualityExpression

ImpliesExpression → LogicalOrExpression

| LogicalOrExpression ( (==> | <== ) LogicalOrExpression )+

LogicalOrExpression → LogicalAndExpression

| LogicalAndExpression || LogicalOrExpression

LogicalAndExpression → EqualityExpression

| EqualityExpression && LogicalAndExpression

EqualityExpression → RelationExpression

| RelationExpression (== | !=) RelationExpression

RelationExpression → AdditiveExpression

| AdditiveExpression ( < | <= | >= | >) AdditiveExpression

AdditiveExpression → MultExpression

| MultExpression (+ | -) AdditiveExpression

MultExpression → UnaryExpression

| UnaryExpression (* | / | %) MultExpression

UnaryExpression → CastExpression | (- | !) UnaryExpression

CastExpression → DereferenceExpression | ( Type ) UnaryExpression

DereferenceExpression → PrimaryExpression | ...

PrimaryExpression → Ident | Literal | super | true | false

| this | null | ( Expression )
| JmlPrimary

JmlPrimary → \old(Expression) | \result | ...

Figure A.1: Fragment of the Java grammar extended with JML specifica-
tions
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Appendix B

Satisfiability Modulo
Theories

As discussed in Chapter 3, satisfiability is the problem of determining if a
formula expressing a constraint has a model.

Problems as software verification, planning, scheduling, graph manipu-
lation, and many others, can be described in terms of satisfiability. While
many of these problems can be encoded as Boolean formulas and solved using
Boolean SATisfiability solvers (usually called SAT solvers), other problems
need the expressiveness of equality, arithmetic, datatype operations, arrays,
and quantifiers. Such kind of problems can be handled by solvers for theory
satisfiability or Satisfiability Modulo Theories, or SMT for short.

For instance, in formal methods involving integers, we are only interested
in showing that the formula

∀x ∀y (x < y → x < y + y)

is true in those interpretations in which the symbol < denotes the usual
ordering over the integers and + denotes the addition function.

Satisfiability Modulo Theories rely on the fact that a formula is valid
in a theory T exactly when no interpretation of T satisfies the formula’s
negation.

Thus, SMT solvers are SAT solvers enriched with background theories
(such as arithmetic, arrays, uninterpreted functions, and so on) with the goal
of check the satisfiability of first-order formulas with respect to some logical
theory T of interest. SMT differs from the general automated deduction
area in the sense that the background theory T does not need to be finitely
or first-order axiomatizable. Since specialized inference methods are used
for each theory, these methods can be implemented in solvers that are more
efficient than general purpose theorem provers.

In order to provide standard descriptions of background theories used in
the SMT systems, promote common input and output languages for SMT
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1 ( f o r a l l ( x Int ) ( f o r a l l ( y Int ) ( i m p l i e s (< x y ) (< x (+ y y ) ) ) )
)

Listing B.1: Example of a SMT formula

solvers, and establish and make available to the research community a large
library of benchmarks for SMT solvers, Ranise and Tinelli developed the
Satisfiability Modulo Theories Library (SMT-LIB) [BST10a]. A subset of
the SMTLib standard language is presented in Figure B.1 — the full lan-
guage description can be found in [BST10b]. The SMT-LIB language syntax
is similar to that of the LISP programming language, and every expression
is an S-expression (either a non-parenthesis token or a — possibly empty —
sequence of S-expressions enclosed in parentheses).

The codification of the formula exemplified above using the SMT-LIB
language would be as shown in Listing B.1.

This standard language is now supported by dozens of solvers: Alt-
Ergo [CCK06], CVC3 [BT07], MathSAT, Yices [DdM06], Z3 [dMB08a], among
many others1.

Although the term “Satisfiability modulo theories” born less than 10
years ago, its impact on the industry is significant and can be measured
by the use of SMT solvers: Microsoft uses Z3; Intel is using solvers such
as MathSAT and Boolector for processor verification and hardware equiva-
lence checking; other companies that are known to use SMT solvers include
Galois Connection, Praxis, GrammaTech, NVIDIA, Synopsis, MathWords,
etc. SMT solvers are now engines in numerous industrial applications, some
of which (like scheduling) are outside the scope of deductive reasoning and
formal verification – the original home community.

1For a more complete list of SMT solvers please check at http://smtlib.org/, Solvers
entry.
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benchmark → ( benchmark name attribute+ )

attribute → :logic logic name

| :assumption formula

| :formula formula

| :extrafuns ( fun symb decl+ )

| :extrapreds ( pred symb decl+ )

formula → ( connective formula+ )

| ( quant symb quant var+ formula )

| ( let ( var term ) formula )

| ( flet ( fvar formula ) formula )

connective → not | implies | if then else
| and | or | xor | iff

quant symb → exists | forall

quant var → ( var sort symb )

Figure B.1: Fragment of the SMT-LIB grammar
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[LDGP05] Michele Lanza, Stéphane Ducasse, Harald Gall, and Martin
Pinzger. Codecrawler: an information visualization tool for
program comprehension. In Proceedings of the 27th interna-
tional conference on Software engineering, ICSE ’05, pages
672–673, New York, NY, USA, 2005. ACM.

[LE01] David Larochelle and David Evans. Statically detecting likely
buffer overflow vulnerabilities. In SSYM’01: Proceedings of
the 10th conference on USENIX Security Symposium, pages
14–14, Berkeley, CA, USA, 2001. USENIX Association.

[Lei10] K. Rustan M. Leino. Dafny: An automatic program verifier
for functional correctness. In Edmund M. Clarke and Andrei
Voronkov, editors, LPAR (Dakar), volume 6355 of Lecture
Notes in Computer Science, pages 348–370. Springer, 2010.

[LFB06] Dawn J. Lawrie, Henry Feild, and David Binkley. Leveraged
quality assessment using information retrieval techniques. In
ICPC ’06: Proceedings of the 14th IEEE International Con-
ference on Program Comprehension, pages 149–158, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[LFM96] Andrea De Lucia, A. R. Fasolino, and M. Munro. Understand-
ing function behaviors through program slicing. In Proceedings
of the 4th Workshop on Program Comprehension, pages 9–18,
1996.

[LFY+06] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and Samuel P.
Midkiff. Statistical debugging: A hypothesis testing-based ap-
proach. IEEE Transactions on Software Engineering, 32:831–
848, 2006.

[LHHK03] Andrea De Lucia, Mark Harman, Robert Hierons, and Jens
Krinke. Unions of slices are not slices. In Proceedings of the
European Conference on Software Maintenance and Reengi-
neering (CSMR 2003), 2003.



BIBLIOGRAPHY 317

[LJ80] George Lakoff and Mark Johnson. Metaphors We Live By.
University Of Chicago Press, first edition edition, Abril 1980.

[LLWY03] Arun Lakhotia, Junwei Li, Andrew Walenstein, and Yun
Yang. Towards a clone detection benchmark suite and re-
sults archive. In IWPC ’03: Proceedings of the 11th IEEE In-
ternational Workshop on Program Comprehension, page 285,
Washington, DC, USA, 2003. IEEE Computer Society.

[LMFB06] Dawn Lawrie, Christopher Morrell, Henry Feild, and David
Binkley. What’s in a name? a study of identifiers. In ICPC
’06: Proceedings of the 14th IEEE International Conference
on Program Comprehension, pages 3–12, Washington, DC,
USA, 2006. IEEE Computer Society.

[LMS08] K. Rustan M. Leino, Michal Moskal, and Wolfram Schulte.
Verification condition splitting. Microsfot Research, 2008.

[LMS09] K. Rustan Leino, Peter Müller, and Jan Smans. Verification of
Concurrent Programs with Chalice, pages 195–222. Springer-
Verlag, Berlin, Heidelberg, 2009.

[Lon85] H. D. Longworth. Slice-based program metrics. Master’s the-
sis, 1985.

[Lop08] Crista Lopes. Codegenie. http://sourcerer.ics.uci.edu/

codegenie/, 2008.

[LR87] Hareton K. N. Leung and Hassan K. Reghbati. Comments on
program slicing. IEEE Trans. Softw. Eng., 13(12):1370–1371,
1987.

[LR92] William Landi and Barbara G. Ryder. A safe approxi-
mate algorithm for interprocedural aliasing. SIGPLAN Not.,
27(7):235–248, 1992.

[LSL96] Hongjun Lu, Rudy Setiono, and Huan Liu. Effective data
mining using neural networks. IEEE Trans. on Knowl. and
Data Eng., 8(6):957–961, 1996.

[LSS99] K. Rustan M. Leino, James B. Saxe, and Raymie Stata.
Checking java programs via guarded commands. In Proceed-
ings of the Workshop on Object-Oriented Technology, pages
110–111, London, UK, 1999. Springer-Verlag.

[Ltd92] TA Consultancy Services Ltd. Malpas training course. TACS/
9093/15, August 1992.



318 BIBLIOGRAPHY

[Luc01] Andrea De Lucia. Program slicing: Methods and applications.
In First IEEE International Workshop on Source Code Analy-
sis and Manipulation, pages 142–149. IEEE Computer Society
Press, Los Alamitos, California, USA, Novembro 2001.

[LV97] Filippo Lanubile and Giuseppe Visaggio. Extracting reusable
functions by flow graph-based program slicing. IEEE Trans-
actions on Software Engineering, 23(4):246–259, April 1997.

[LW86] Jim Lyle and Mark Weiser. Experiments on slicing-based de-
bugging tools. In Proceedings of the 1st Conference on Empir-
ical Studies of Programming, pages 187–197, Norwood, New
Jersey, 1986. Ablex publishing.

[LW87] Jim Lyle and Mark Weiser. Automatic bug location by pro-
gram slicing. In Proceedings of the Second International Con-
ference on Computers and Applications, pages 877–883, 1987.

[LWG+95] Jim Lyle, D. Wallace, J. Graham, Keith Gallagher, J. Poole,
and David Binkley. Unravel: A case tool to assist evaluation
of high integrity software, 1995.

[Lyl84] James Robert Lyle. Evaluating variations on program slicing
for debugging (data-flow, ada). PhD thesis, College Park, MD,
USA, 1984.

[Ma04] Kwan-Liu Ma. Visualization for security. SIGGRAPH Com-
put. Graph., 38:4–6, November 2004.

[Mac10] Matthew MacDonald. Pro Silverlight 4 in C#. Pro to Expert
Series. Apress, 2010.

[Mar93] Kamkar Mariam. Interprocedural dynamic slicing with ap-
plications to debugging and testing. PhD thesis, Linkoping
University, Sweden, 1993.

[Mar03] Andrian Marcus. Semantic-driven program analysis. PhD
thesis, Kent, OH, USA, 2003. Director-Jonathan I. Maletic.

[MC88] B. P. Miller and Jong-Deok Choi. A mechanism for efficient
debugging of parallel programs. SIGPLAN Not., 23(7):135–
144, 1988.

[McG82] Andrew D. McGettrick. Program Verification Using ADA.
Cambridge University Press, New York, NY, USA, 1982.

[McM92] Kenneth Lauchlin McMillan. Symbolic model checking: an ap-
proach to the state explosion problem. PhD thesis, Pittsburgh,
PA, USA, 1992.



BIBLIOGRAPHY 319

[ME04] Madanlal Musuvathi and Dawson R. Engler. Model checking
large network protocol implementations. In In Proceedings
of the First Symposium on Networked Systems Design and
Implementation, pages 155–168, 2004.

[Mer00] Stephan Merz. Model checking: A tutorial overview. In
Franck Cassez, Claude Jard, Brigitte Rozoy, and Mark Der-
mot Ryan, editors, Proceedings of the 4th Summer School on
Modeling and Verification of Parallel Processes, volume 2067
of Lecture Notes in Computer Science, pages 3–38. Springer-
Verlag, 2000.

[Mey86] Bertrand Meyer. Design by contract. Technical Report TR-
EI-12/CO, Interactive Software Engineering Inc., 1986.

[Mey87] Bertrand Meyer. Eiffel: programming for reusability and ex-
tendibility. SIGPLAN Not., 22:85–94, February 1987.

[Mey92] Bertrand Meyer. Applying “design by contract”. Computer,
25(10):40–51, 1992.

[MFM03] Andrian Marcus, Louis Feng, and Jonathan I. Maletic. Com-
prehension of software analysis data using 3d visualization.
In Proceedings of the 11th IEEE International Workshop on
Program Comprehension, IWPC ’03, pages 105–, Washington,
DC, USA, 2003. IEEE Computer Society.

[Mic08a] Microsoft. Design guidelines for class library de-
velopers. http://msdn.microsoft.com/en-us/library/

czefa0ke(VS.71).aspx, 2008.

[Mic08b] Microsoft. Fxcop. http://msdn.microsoft.com/en-us/

library/bb429476(VS.80).aspx, 2008.

[MLL05] Michael Martin, Benjamin Livshits, and Monica S. Lam. Find-
ing application errors and security flaws using pql: a program
query language. SIGPLAN Not., 40(10):365–383, 2005.

[MLMD01] Jonathan I. Maletic, Jason Leigh, Andrian Marcus, and Greg
Dunlap. Visualizing object-oriented software in virtual re-
ality. In Proceedings of the 9th international workshop on
program comprehension (IWPC’01, pages 26–35, Washington,
DC, USA, 2001. IEEE Computer Society.

[MM01] Andrian Marcus and Jonathan I. Maletic. Identification of
high-level concept clones in source code. In ASE ’01: Proceed-
ings of the 16th IEEE international conference on Automated



320 BIBLIOGRAPHY

software engineering, page 107, Washington, DC, USA, 2001.
IEEE Computer Society.

[MM11] Yannick Moy and Claude Marché. Jessie plugin tuto-
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