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Abstract 

 

 

Multiple areas along the neuroaxis mediate pain modulation and perception. Dysfunction at 

any of these stations can have devastating consequences that result in pain chronification and 

in the surfacing of emotional and cognitive disturbances. In the past decade, it was 

demonstrated that these comorbidities frequently associated with chronic pain also manifest in 

the animal model, paving the way for further research on the underling pathophysiology. 

However, conflicting observations have been published probably as a result of experimental 

heterogeneity. This prompted us to further characterize emotional and cognitive behaviour 

alterations in a rodent model of chronic neuropathic pain – the spared nerve injury (SNI).  

 

In the first set of experiments, the effect of chronic neuropathic pain was studied in the context 

of ageing. We observed an age-related increase of anxiety-like behaviour in the elevated-plus 

maze (EPM), which was further augmented in young and old males, but not mid-aged SNI 

animals. On the contrary, only SNI mid-aged animals had a depressive-like phenotype in the 

forced-swimming test (FST) when compared to age-matched controls. SNI mid-aged animals 

had also an impaired ability to perform a reversal learning task when compared with the 

respective age-matched controls. In this task, the SNI lesion affected neither young nor old 

groups, although in the last, controls themselves had a poorer performance. In fact, in this 

cognitive domain ageing was a major determinant of incapacity. Ageing was also demonstrated 

to have a mild negative influence in the performance of a spatial working memory (WM) but not 

in a long-term spatial memory – Morris water maze (MWM). The SNI lesion had no observable 

effect in both WM and MWM.  

 

In the second set of experiments, the effect of pain lateralization was accessed in young rats. 

Left-sided (but not right-sided) SNI was shown to be anxiogenic in the EPM. On the contrary, 

right-sided (but not left-sided) SNI was detrimental in all prefrontal cortex (PFC)-dependent 

cognitive paradigms, namely WM, reversal learning (in the attentional-set shifting task; ASST) 

and response inhibition (impulsivity). Neither right- nor left-side SNI affected the performance in 

the MWM.  

 



	
  x	
  

These observations indicate that both the age of the animal at the pain onset as well as the 

location of pain are determinant in the behavioural outcome on emotional and cognitive 

paradigms. Additionally, our behavioural observations suggest that the PFC has a major role in 

the observed emotional and cognitive shifts occurring after SNI installation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
   xi	
  

Resumo 

 

 

A modulação e percepção da dor dependem da contribuição de várias áreas ao longo do 

neuro-eixo. A disfunção deste eixo pode resultar em consequências devastadoras que incluem 

a cronificação da dor e a manifestação de perturbações emocionais e cognitivas. Na última 

década, demonstrou-se que estas comorbilidades associadas a estados de dor crónica 

também se manifestavam no modelo animal, o que abriu novas perspectivas de investigação 

sobre os mecanismos subjacentes. No entanto, dados contraditórios têm vindo a ser 

publicados quanto à natureza destas manifestações. Este cenário esteve na base dos estudos 

desta tese, que pretenderam aprofundar a caracterização das alterações do comportamento 

emocional e cognitivo num modelo de dor crónica neuropática – o modelo SNI (spared nerve 

injury). 

 

No primeiro conjunto de experiências, o efeito da dor crónica foi estudado no contexto do 

envelhecimento. Com o envelhecimento observamos um aumento do comportamento do tipo 

ansioso no paradigma elevated-plus maze (EPM) e que este efeito era potenciado nos animais 

novos e velhos submetidos à lesão neuropática SNI. Pelo contrário, apenas o grupo de meia-

idade submetido ao SNI apresentava um comportamento do tipo depressivo no teste do 

forced-swimming (FST) quando comparado com o respectivo controlo da mesma idade. O 

mesmo grupo SNI de meia-idade mostrou também uma capacidade reduzida de 

aprendizagem reversa, o que não se verificava nos grupos de animais mais novos ou mais 

velhos embora, nestes últimos, os próprios controlos tenham tido um mau desempenho. De 

facto, neste paradigma o aumento da idade revelou-se um factor determinante de insucesso. 

O envelhecimento estava também associado a uma deterioração do desempenho numa tarefa 

de memória de trabalho (WM; working memory) não havendo no entanto qualquer influência 

na tarefa de memória de longo prazo (MWM; Morris water maze). A lesão SNI não teve 

qualquer influência no desempenho destes paradigmas pelos animais dos diferentes grupos 

etários.   

 

No segundo conjunto de estudos, avaliou-se o efeito da lateralidade da dor em animais jovens. 

A lesão SNI esquerda, (mas não a direita), resultou no aumento do comportamento do tipo 



	
  xii	
  

ansioso no EPM. Pelo contrário, a lesão SNI direita, (mas não a esquerda), induziu um pior 

desempenho nos paradigmas de comportamento cognitivo, nomeadamente em todos aqueles 

com um componente prefrontal (prefrontal cortex; PFC): WM, aprendizagem reversa (no 

contexto de um paradigma de attentional-set shifting task; ASST) e controlo da resposta 

impulsiva. A lesão SNI, independentemente do lado onde era instalada, não teve qualquer 

efeito na execução do MWM. 

 

Os nossos dados indicam que, quer a idade do individuo aquando da instalação da neuropatia, 

quer o lado do corpo onde esta se localiza, influenciam o desempenho em paradigmas de 

comportamento emocional e cognitivo. Resulta também das nossas observações que o PFC 

tem um papel determinante nas alterações comportamentais observadas após a instalação da 

neuropatia.  
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1. INTRODUCTION 

 

 

1.1. Pain 

 

“It was once thought the mechanisms that subserve pain would be entirely revealed if we applied noxious stimuli 

to the skin and then mapped the pathways taken by the nerve impulses through the spinal cord and brain. 

Unfortunately, pain mechanisms are not as simple as this.” 

 

in The Challenge of Pain (Melzack and Wall, 1982) 

 

 

Written accounts on pain origins and treatments are as almost old as the invention of written 

word itself. Pain was regarded by ancient peoples as something controlled by superior forces 

on which the individual had little or no control. In fact, the word “Pain” has its roots in both 

Greek and Latin words poine and poena, meaning penalty or punishment (Finger, 1994). It 

was not until the seminal works of Max von Frey (1852-1932) and Friedrich Kiesow (1858-

1940) on the role of free nerve endings as “pain receptors” that pain started to be recognized 

has a separate modality, subserved with distinct physiological machinery (Finger, 1994). By 

the same period, Alfred Goldscheider (1858-1935) among others, defended the idea that the 

same receptors would simultaneously convey innocuous touch and pain sensation, the 

resulting outcome differing as a function of the stimulus intensity. Specificity and pattern 

theories, as they become recognized, bear strengths and weaknesses. On the one hand, the 

specificity model had a solid physiological basis but simultaneously imposed a fixed relation 

between stimulus intensity and pain perception. Innumerable descriptions of severely wounded 

soldiers from the battle field claiming to feel no pain (Beecher, 1959) or the evocation of pain 

triggered by light touch in patients suffering from causalgias1 would indicate differently (Baron 

et al., 2010). On the other hand, the pattern model accounted for summation phenomena but 

totally disregarded the role of free nerve endings. Melzack and Wall extensively discussed these 

points in their breakthrough article and advanced a new theory: the gate-control theory 

(Melzack and Wall, 1965). This model hypothesized that peripheral information related to light 

touch and pain sensation was modulated by specific interneurons located in the substantia 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Term coined by Silas Weir Mitchell (1829-1914), from the Greek words Kausus (heat) and algos (pain). 
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gelatinosa of the spinal cord dorsal horn (the gate) before reaching higher centers in the brain 

(figure 1). The ascending output from the dorsal horn resulted from the reciprocal interaction 

between these spinal interneurons and large-diameter (innocuous) or small-diameter 

(nociceptive) primary afferent fibers. In the first case this would result in an overall decrease of 

transmission (“closing the gate”) and in the second in a net increase (“opening the gate”). The 

gate-control theory was subsequently reanalysed, reformulated and restated in the light of new 

data incorporating, for instance, the contribution of descending information from the brain 

(Wall, 1978; Melzack and Wall, 1982; Lima, 1996; Wall, 1996). Importantly, the gate-control 

theory was the first pain model that integrated the notion of central modulation.  

 

 

 

Figure 1. The gate-control theory. (left) Explanatory diagram as published in the original article by Melzack and 

Wall (1965), showing the interaction between two peripheral systems of fibers, large-diameter (L) and small-

diameter (S) primary afferent neurons, and the substantia gelatinosa, on the first central transmission cells (T). 

The model provided a theoretical framework for the central modulation of the output of T based on balance 

between the two concurring systems. (right) A more complex version of the model integrating multiple ascending 

systems and the contribution of descending controls, was envisaged by Melzack and Casey (1968). 

 

 

Pain is currently defined by the International Association for the Study of Pain (IASP) 

Committee on Taxonomy as “an unpleasant sensory and emotional experience associated with 

actual or potential tissue damage, or described in terms of such damage” (Merskey et al., 

1979; Lindblom et al., 1986). As a sensorial experience pain is unique in many aspects. For 

instance, unlike other sensations that tend to adapt after continuous and uniform stimulation, 

pain does not adapt to the continuous presence of the nociceptive stimulus, tending in fact to 

get progressively worse (Cervero, 2009). IASP definition reflects not only this specificity but 

also the heterogeneity associated with pain manifestations.  
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1.2. Anatomofunctional organization of the nociceptive system 

 

“I have elsewhere put forward a view that there has been evolved in the skin ““a special sense of its own 

injuries””. There is considerable evidence that the skin is provided with a set of nerve-endings whose specific 

office it is to be amenable to stimuli that do the skin injury, stimuli that in continuing to act would injury it still 

further”  

Sherrington, 1903 

 

 

1.2.1. Nociceptors 

 

The set of nerve-endings mentioned by Sherrington (1903) would be coined a few years later 

by himself as nociceptors (Sherrington, 1906). Up-to-date literature defines the nociceptor as a 

primary afferent nerve fiber that is suited to encode relevant properties of the noxious stimulus 

(Djouhri et al., 2006; Treede, 2009; Dubin and Patapoutian, 2010). The complete absence of 

these structures in the brain or cartilage determines that pain cannot be elicited from these 

organs. On the contrary, pain is nearly the only sensation that can be elicited from the cornea, 

dura mater and dental pulp, indicating a predominance of nociceptors over other afferent 

terminals (Mense, 2009).  

 

The nociceptor is a pseudounipolar cell and shares with other primary sensory neurons the 

same basic organization (Woolf and Ma, 2007). They are predominantly unmyelinated (C-

fibers) or thinly myelinated (Aδ-fibers) but thick, heavily myelinated fibers (Aα/β), normally 

responsible for transmission of innocuous information, have also been reported to conduct 

noxious information (Djouhri and Lawson, 2004; Todd, 2009). Conditions associated with loss 

of function in thinly myelinated or unmyelinated fibers interfere with pain sensation while 

sparing light touch sensation, whilst pain is preserved in conditions selectively affecting large 

myelinated Aβ fibers (Raja et al., 1988; Scherer, 2006; Verhoeven et al., 2006). A similar 

effect can be elicited by ischemic compression of a limb resulting in the blockade of large 

myelinated fibers with concomitant loss of tactile but not pain sensation (Landau and Bishop, 

1953). The different degree of myelination of these two populations, C and Aδ, imposes that 

the latter conducts nerve impulse faster than the former therefore transmitting the so called 

“first pain”, i.e., the sharp pain that immediately follows a noxious pinch, pinprick or heat. 
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“Second pain”, on the other hand, is transmitted by the unmyelinated nociceptors in the form 

of a more diffuse, dull and burning sensation that persists after the “first pain” (Julius and 

Basbaum, 2001; Meyer et al., 2005; Basbaum et al., 2009; Porreca, 2010). The 

unmyelinated C-fiber population is morphofunctionally diverse. It has been shown that it 

consists of two major neurochemical groups (Hunt and Rossi, 1985; Snider and McMahon, 

1998; Craig, 2003; Mense, 2009; Todd, 2009). One group expresses neuropeptides like 

calcitonin gene-related peptide (CGRP), substance P (SP), galanin and somatostatin, whereas 

the other contains fluoride-resistant acid phosphatase activity (FRAP) and binds the plant lectin 

Griffonia simplicifolia isolectin B4 (IB4) (Nagy and Hunt, 1982). These two neural populations 

named peptidergic and non-peptidergic, respectively, differ in their terminations at the dorsal 

horn. Peptidergic afferent fibers project to lamina I and outer lamina II whereas non-peptidergic 

terminate mainly in inner lamina II (Coimbra et al., 1974; Braz et al., 2005; Basbaum et al., 

2009). Ascending pathways from these sites are segregated suggesting differential 

contributions to supraspinal pain processing (Braz et al., 2005). Peptidergic and non-

peptidergic populations are functionally distinct in terms of their electrophysiological proprieties 

(Stucky and Lewin, 1999) and, when selectively ablated, noxious heat and noxious mechanical 

pain sensitivity dissociate to a certain extent (Cavanaugh et al., 2009). A third population of 

nonpeptidergic unmyelinated afferents that do not bind IB4 and is sensitive to noxious cold has 

also been identified (Dhaka et al., 2008). 

 

On its peripheral extremity, the nociceptor is usually an unencapsulated free nerve ending that 

branches from the main axon (Dubin and Patapoutian, 2010). This is the case for all C-fibers 

but not for Aδ-fibers as some, for instance, innervate D-hairs afferents (Mense, 2009; Todd, 

2009). The repertoire of transduction molecules expressed at the periphery confers to the 

nociceptor the modality (thermal, mechanical or chemical) and the range of sensibility 

(Basbaum et al., 2009). In contrast to innocuous receptors, nociceptors can frequently be 

activated by more than one type of stimulus, i.e. they are polymodal (Ringkamp and Meyer, 

2009). Coherently with its primary function, the threshold of a nociceptor is set below the 

tissue damage intensity signalling imminent tissue damage (Treede, 2009). Adequate stimuli 

include extreme temperatures (> 40°C–45°C or < 15°C), intense pressure and an array of 

potentially harmful substances (Raja et al., 1988; Dubin and Patapoutian, 2010). These 

nociceptive morphofunctional units are phylogenetically conserved across animal species 

6



suggesting a paramount biological asset for species survival (Andrew and Greenspan, 1999; 

Lewin and Moshourab, 2004; Foulkes and Wood, 2008). 

 

1.2.2. Ascending nociceptive transmission 

 

Primary afferents terminate in the spinal cord dorsal horn arranged in a modality specific 

manner (Todd, 2009). Marginal zone and substantia gelatinosa, which according to Rexed’s 

nomenclature (1954) correspond to spinal cord laminae I and II, receive the majority of 

nociceptive afferents, with a smaller part terminating in the deep dorsal horn (lamina V). 

Deeper laminae III-V receive mainly primary afferents involved in low-threshold signalling, 

namely, tactile, hair and proprioceptive sensation (Todd, 2009). Conversely, inputs from 

descending projections arising from various areas of the brain (see section 1.2.3.) target dorsal 

horn neurons and participate in the endogenous modulation of the spinal nociceptive 

transmission (Millan, 2002; Gebhart, 2004; Vanegas and Schaible, 2004; Almeida et al., 

2006; Pertovaara and Almeida, 2006). Dorsal horn spinal cord neural population is composed 

by two main types of neurons classified according to their axonal projections: i. neurons with 

short axons that communicate locally designated as interneurons; ii. neurons with long axons 

that communicate supraspinally, designated as projection neurons (Todd, 2009). Projection 

neurons are not uniformly distributed within a spinal cord segment. The vast majority 

concentrates in lamina I and the remaining disperses in deeper laminae and gray matter 

around the central canal, although segmental heterogeneity has also been observed (Al-Khater 

et al., 2008). Most of these lamina I projection neurons express the neurokinin 1 receptor 

(NK1r) for SP. Similarly, laminae III and IV neurons whose dorsal dendrites extend to lamina I 

express NKr1 as well (Ding et al., 1995; Li et al., 1996; Marshall et al., 1996; Li et al., 1997; 

Li et al., 1998; Todd et al., 2000; Spike et al., 2003). This is anatomically coherent with the 

termination site of peptidergic primary afferent terminals mentioned in the previous section 

(1.2.1.). Coherently, saporin derived ablation of NK1r expressing cells leads to a decreased 

mechanical and thermal hyperalgesia in several models of inflammatory and neuropathic pain 

(Mantyh et al., 1997; Nichols et al., 1999), in accordance with the expected role of lamina I 

afferent terminals on pain. 
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Based on supraspinal termination targets of spinal projection neurons, a number of tracts are 

defined that include the spinothalamic, spinoreticular, spinomesencephalic, cervicothalamic, 

spinohypothalamic and spinothelencephalic (Basbaum and Jessel, 2000; Tracey, 2004; Lima, 

2009). The spinothalamic tract is in all aspects the most studied tract being therefore the 

archetype of the nociceptive ascending pathway. It is classically divided in two major ascending 

systems, the lateral (or neospinothalamic) responsible for the sensory-discriminative properties 

of pain and the medial (or paleospinothalamic) related with its affective-motivational aspects, 

which terminate in the posterior lateral sensory nuclei and in the medial nuclei of the 

thalamus, respectively (see figure 2; Melzack and Casey, 1968; Treede et al., 1999; Treede, 

2002; Lima, 2009). Lateral thalamic neurons project thereafter to the primary and secondary 

somatosensory cortex, whereas medial thalamic send information, among other cortical areas, 

to the anterior cingulate cortex (Treede et al., 1999; Treede, 2002; Lima, 2009). Spinal cord 

and thalamic neurons that are part of the lateral tract have small receptive fields and encode 

accurately the noxious stimulus properties (Kenshalo et al., 1979; Kenshalo et al., 1980; 

Peschanski et al., 1980), while those neurons integrating the medial system possess large 

receptive fields and the activity pattern does not encode the stimulus properties (Giesler et al., 

1981). These anatomofunctional properties of the lateral and medial systems reflect their 

involvement in the sensory-discriminative and affective-motivational aspects of the nociceptive 

ascending transmission.  

 

Nociceptive ascending pathways are traditionally believed to target the contralateral brain. This 

is mostly true for the spinothalamic pathways described above but cannot be generalized to all 

the ascending systems. The vast majority of ascending tracts project in a bilateral fashion, with 

variable contralateral or ipsilateral contribution (Lima, 2009). Moreover, it became clear in 

studies using retrograde tracers that the sidedness of a particular tract can actually vary 

according to the spinal cord origin level and/or laminae (Al-Khater et al., 2008). The functional 

implications of this lateralized organization have been a matter of debate particularly in those 

aspects referring to frequency, threshold, modulation and functional impact of pain.  Merskey 

and Watson in 1979 based on a systematic review of the literature available at the time, 

concluded that pain, when lateralized, occurred mostly on the left side (Merskey and Watson, 

1979). The authors attributed the lateralized effect to a diminished efficiency of the right 

hemisphere in processing sensory information. Subsequently, Hall and colleagues tested this 
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hypothesis and concluded that pain frequencies were identical on both sides (Hall et al., 

1981). Ensuing research favored this view (Campbell et al., 1985; Margolis et al., 1985) the 

sole exception being the trigeminal neuralgia that presents a clear bias toward the right side 

(Katusic et al., 1990). This result is not, however, extensible to other facial pain conditions 

(Lam and Remick, 1988; Harness and Chase, 1990). Similarly, side-related differences in the 

threshold to painful stimulation were initially reported (Wolff and Jarvik, 1964; Wolff et al., 

1965; Haslam, 1970; Murray and Safferstone, 1970; Gobel and Westphal, 1987) but these 

did not find support in other studies (Newton and Mumford, 1972; Seltzer et al., 1992; Schiff 

and Gagliese, 1994; Gagliese et al., 1995). Lateralized organization of pain pathways has 

however been suggested to have implications for pain-related emotional arousal, with left pain 

resulting in greater emotional disturbance (Schiff and Gagliese, 1994; Gagliese et al., 1995).  
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Figure 2. Main ascending and descending pain pathways (Basbaum et al., 2009). Primary afferent terminals 

transmit nociceptive information from the periphery to projection neurons at the dorsal horn of the spinal cord. 

Information reaching the somatosensory cortex via thalamus and prefrontal cingulate/insular cortices via 

amygdala (Amy), originates in different populations of projection neurons. These pathways are related respectively 

with the sensory/discriminative and emotional/affective components of pain. The ascending nociceptive input is 

modulated by the periaqueductal gray/rostral ventromedial medulla (PAG/RVM) descending axis that acts upon 

the spinal projection neurons and terminal axons of peripheral sensory fibers. 

 

 

Progressively, a small number of brain areas have been shown to present a marked pain 

processing lateralization. This is the case of frontal operculum (acute painful laser radiant heat 

pulses in the human; Schlereth et al., 2003) and amygdala (Amy) (persistent inflammatory 

pain in the rat; Carrasquillo and Gereau, 2008; Ji and Neugebauer, 2009). In both cases, 

independently of stimulation side, the activation/processing in the brain was biased toward the 

left and right sides, respectively.  

 

1.2.3. Descending modulation of pain 

 

Beecher observations of extensively wounded soldiers (Beecher, 1959) with minimal pain 

complaints anticipated a non canonical relation between injury and perceived pain as predicted 

by the specificity theory. By the same period, the first observations of cortical modulation of 

spinal cord and trigeminal sensory information (Hagbarth and Kerr, 1954; Hernandez-Peon 

and Hagbarth, 1955) started to unveil the existence of an endogenous pain control system. In 

a seminal work, Reynolds reported that complete analgesia could be elicited through electrical 

stimulation of the periaqueductal gray (PAG) allowing an open abdomen surgery in rat without 

the support of any chemical anaesthetic (Reynolds, 1969). Soon it became clear that other 

sites were also involved in descending inhibition of pain, including the Raphe Magnus nucleus 

and adjacent reticular formation [rostral ventromedial medulla (RVM)], which were shown to 

project directly to the spinal dorsal horn and to mediate electrical/pharmacological induced 

analgesia (Basbaum et al., 1976; Basbaum et al., 1977; Basbaum and Fields, 1979). In fact, 

direct application of morphine (a paradigmatic opioid analgesic) in sites where analgesia could 

be elicited by electric stimulation produced the same effect (Pert and Yaksh, 1974; Jacquet 

and Lajtha, 1976). Furthermore, the specificity of the effect was ascribed to opioid µ-receptor 
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as it was reverted with opioid antagonist naloxone (Akil et al., 1976). The same effects of PAG 

stimulation/naloxone inhibition were also observed in humans within a few years after these 

pioneering finding (Adams, 1976). The set of information collected led to the conceptualization 

of a descending modulatory system centred in the PAG-RVM-spinal cord axis and functionally 

inhibitory in its overall effect on pain perception (Basbaum and Fields, 1978, 1984). In the 

following years it became clear that supraspinal modulation of pain was in every aspect far 

more complex than anticipated by the initial findings (Stamford, 1995; Lima and Almeida, 

2002; Millan, 2002; Gebhart, 2004; Almeida et al., 2006; Ossipov et al., 2010). Other 

supraspinal areas involved in descending modulation are now recognized not only in the 

brainstem, such as the dorsal reticular nucleus (DRt; Almeida et al., 1996; Almeida et al., 

1999) or the caudal ventrolateral medulla (CVLM; Tavares and Lima, 2002; Pinto-Ribeiro et al., 

2011), but also in the hypothalamus (Pinto-Ribeiro et al., 2008) or cortex (Zhang et al., 2005). 

Importantly, descending modulation is presently known also to operate in a facilitatory fashion 

(Lima and Almeida, 2002; Porreca et al., 2002; Almeida et al., 2006) in addition to its well-

known antinociceptive action (Pertovaara and Almeida, 2006).  

 

 

1.3. Chronic neuropathic pain 

 

“We have some doubt as to whether this form of pain [causalgia] ever originates at the moment of the wounding; 

but we have been so informed as regards two or three cases. Certain it is that, as a rule, the burning arises later, 

but almost always during the healing of the wound. Of the special cause which provokes it, we know nothing, 

except that it has sometimes followed the transfer of the pathological changes from a wounded nerve to 

unwounded nerves, and has then been felt in their distribution, so that we do not need a direct wound to bring it 

about. […] The part itself is not alone subject to an intense burning sensation, but becomes exquisitely 

hyperaesthetic, so that a touch or a tap of the finger increases the pain. Exposure to the air is avoided by the 

patient with a care which seems absurd, and most of the bad cases keep the hand constantly wet […]. As the 

pain increases, the general sympathy becomes more marked. The temper changes and grows irritable, the face 

becomes anxious, and has a look of weariness and suffering […]. At least the patient grows hysterical, if we may 

use the only term which covers the facts.”  

 

in Gunshot Wounds and Other Injuries of the Nerves (Mitchell et al., 1864) 
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Pain is a main motivation for seeking medical assistance. When persistent, it can be highly 

incapacitating to the individual and impact on the society. A survey by the World Health 

Organization (WHO) in 14 countries concluded that prolonged pain (present most of the time 

for a period of 6 months or more during the prior year) has prevalence rates between 5,5% and 

33% and a combined result of 21,5% (Gureje et al., 1998; Bond et al., 2006). Chronic pain is 

triggered by injury or disease but may be perpetuated by factors other than the initial cause 

and therefore to outlast it (Loeser and Melzack, 1999). According to the nature of the 

underlying cause it can be classified as nociceptive, inflammatory or neuropathic according to 

the underlying cause (Ashburn and Staats, 1999), although in some cases a clear 

classification cannot be attained as the triggering factors may be multiple (e.g. complex 

regional pain syndrome (CRPS); Baron et al., 2010). 

 

Neuropathic pain is defined by the International Association for the Study of Pain (IASP) as a 

pain initiated or caused by a primary lesion or dysfunction in the nervous system (Merskey and 

Bogduk, 1994, 1997). The Neuropathic Pain Special Interest Group (NeuPSIG) of the IASP 

has, however, recently proposed a new definition: pain arising as a direct consequence of a 

lesion or disease affecting the somatosensory system (Treede et al., 2008; Jensen et al., 

2011). The replacement of dysfunction by disease accounts for the fact that the former also 

included pain caused by neuroplastic changes as a result of intense stimulation and therefore 

not necessarily neuropathic. Additionally, nervous system is replaced by somatosensory 

system, excluding this way, for instance, pain associated with muscular spasticity resulting 

from lesions in the central motor pathways (Hansson, 2010; Haanpaa et al., 2011). 

Neuropathic pains encompass a number of heterogeneous conditions (table I) with diverse 

aetiologies and anatomical locations ranging from the peripheral nociceptor to higher centers 

in the brain (Dworkin et al., 2003; Dworkin et al., 2007; Jensen and Finnerup, 2007). Despite 

the diversity of presentations, several common features can nevertheless be identified. These 

include concomitant partial or total loss of sensation (anesthesia) and pain in the same defined 

anatomical area, ongoing, paroxysmal or evoked pain, after sensations, abnormal summation 

and autonomic features (Dworkin et al., 2003; Jensen and Finnerup, 2007; Hansson, 2010). 

Negative signs reflecting nervous system damage like partial or complete sensory loss and 

positive signs like allodynia, hyperalgesia, dysesthesia and hyperpathia, which reflect 
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hiperexcitability, can coexist simultaneously (Woolf and Mannion, 1999; Jensen and Finnerup, 

2007; Bouhassira and Attal, 2011) and in diverse combinations (Maier et al., 2010). 

 

Table I. Common types of neuropathic pain (Dworkin et al., 2003) 

Peripheral 

Acute and chronic inflammatory demyelinating polyradiculoneuropathy   

Alcoholic polyneuropathy 

Complex regional pain syndrome 

Entrapment neuropathies (e.g. carpal tunnel syndrome) 

HIV sensory neuropathy 

Iatrogenic neuralgias (e.g. post mastectomy or post thoracotomy) 

Idiopathic sensory neuropathy 

Nerve compression or infiltration by tumour 

Nutritional deficiency-related neuropathies 

Painful diabetic neuropathy 

Phantom limb pain 

Postherpetic neuralgia 

Postradiation plexopathy 

Radiculopathy (cervical, thoracic or lumbosacral) 

Toxic exposure-related neuropathies 

Trigeminal neuralgia 

Posttraumatic neuralgias 

Central  

Compressive myelopathy from spinal stenosis 

HIV myelopathy 

Multiple sclerosis-related pain 

Postischemic myelopathy 

Postradiation myelopathy 

Poststroke pain 

Posttraumatic spinal cord injury pain 

Syringomyelia 

 

 

1.3.1. Animal models of chronic neuropathic pain 

 

Animal models of neuropathic pain have been proven to be valuable tools in the research of 

pain mechanisms. The clinical conditions leading to neuropathic pain present a high degree of 

variation (table I) implying therefore that the pathophysiological mechanisms need different 
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modelling. This is reflected in the significant number of animal models of chronic neuropathic 

pain  that  have  been  developed  in  the past decades (see table II; Bennett, 1993; Kim et al.,  

 

Table II. Animal models of chronic neuropathic pain 

Model Key references 

Complete sciatic nerve transection Wall et al., 1979b 

Chronic nerve (sciatic) compression Mackinnon et al., 1984 (rat); 1985 (primate) 

Chronic sciatic constriction injury (CCI) Bennett and Xie, 1988; Grace et al., 2010 (graded) 

Partial sciatic nerve ligation (PSNL) Seltzer et al., 1990; Malmberg and Basbaum, 1998 
(mouse); Hulse et al., 2008 (mouse; saphenous) 

Spinal nerve ligation (SNL) Kim and Chung, 1992 (rat, L5/6); Carlton et al., 1994 
(primate, L7) 

Sciatic cryoneurolysis DeLeo et al., 1994 

Experimental lumbar radiculopathy Kawakami et al., 1994 

Inferior caudal trunk injury Na et al., 1994 

Trigeminal neuralgia (infraorbital nerve) Vos et al., 1994 CCI; An et al., 2011 (cobra venom) 

Toxic exposure-related neuropathies Aley et al., 1996 (vincristine); Authier et al., 2003 
(cisplatin); Authier et al., 2009 (various); 

Photochemically-induced ischemia of the sciatic Gazelius et al., 1996 

Models of inherited neuropathies Martini, 1997; Meyer Zu Horste and Nave, 2006 

Sciatic nerve neuritis Eliav et al., 1999 

Viral-related neuropathies  Fleetwood-Walker et al., 1999 (Chronic varicella-zoster 
virus infection); Wallace et al., 2007 (human 
immunodeficiency virus type 1 glycoprotein 120) 

Spared nerve injury (SNI) Decosterd and Woolf, 2000; Lee et al., 2000 

Partial sciatic nerve transection Lindenlaub and Sommer, 2000 

Sciatic inflammatory neuritis  Chacur et al., 2001 

Malignant sciatic neuropathy Shimoyama et al., 2002 

Nonarteritic anterior ischemic optic neuropathy Bernstein et al., 2003 (rat); Chen et al., 2008 (primate) 

Avulsion of the brachial plexus Rodrigues-Filho et al., 2003 

Diabetic sensory neuropathy models Calcutt, 2004 

Chronic post-ischemia pain (hindpaw) Coderre et al., 2004 

Common peroneal nerve ligation Vadakkan et al., 2005 

Saphenous partial ligation Walczak et al., 2005 

Spinal nerve transection  Hasnie et al., 2007 

Sciatic nerve cuffing Benbouzid et al., 2008; 

Auditory neuropathy Matsumoto et al., 2008 

Thalamic syndrome Wasserman and Koeberle, 2009 

Spinal cord injuries Nakae et al., 2011 

Optic nerve crush Tang et al., 2011 

Autoimmune (antibody-mediated) neuropathy models Willison, 2011 

Partial injury of the median and ulnar nerves Yi et al., 2011 
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1997; Bennett et al., 2003; Wang and Wang, 2003; Dowdall et al., 2005; Authier et al., 2009; 

Decosterd and Berta, 2009; Jarvis and Boyce-Rustay, 2009; Klusakova and Dubovy, 2009; 

Bennett, 2010; Colleoni and Sacerdote, 2010; Khan and Hargreaves, 2010; Jaggi et al., 2011; 

Nakae et al., 2011). The first model of peripheral neuropathy consisted in the complete 

denervation of the distal limb simulating a condition of anesthesia dolorosa (Wall et al., 1979a; 

Wall et al., 1979b). Self-mutilation of the deafferented areas (autotomy) was used as an index 

of pain as evoked responses could not be obtained in the affected areas (Wall et al., 1979a; 

Kauppila, 1998). Models subsequently developed involved in its majority traumatic injury of 

peripheral nerves, nerve roots or spinal cord, caused by sectioning, cuffing, ligation, freezing, 

inflammation and/or ischemia (Decosterd and Berta, 2009; Mogil, 2009). Additionally, drug 

toxicity and systemic metabolic disorders have also been used to trigger neuropathies. Some of 

the most common used models of chronic neuropathic pain are presented in table II.  

 

 

1.3.2. Central plasticity in chronic pain states 

 

In the above citation of the seminal work Gunshot Wounds and Other Injuries of the Nerves 

(Mitchell et al., 1864) published close to the end of the American Civil War (1861-1865), Silas 

Wier Mitchell and colleagues described for the first time some peculiar characteristics of a pain 

syndrome later named causalgia, observed in young soldiers that had been hit by projectiles. 

These included a (i) temporal mismatch between the initial injury and the pain onset, (ii) the 

persistence of pain long after the healing of the primordial injury, (iii) a drop in the pain 

threshold and (iv) a paradoxal manifestation of pain in unaffected dermatomes. A role of the 

central nervous system in this and other painful conditions was largely disregarded for more 

than one century, except for two works that postulated its influence on the amplification of 

ischemic cardiac pain (Sturge, 1883) and on the manifestation of secondary hyperalgesia in an 

experimental pain study in human volunteers (Hardy et al., 1950). The breakthrough discovery 

came in 1983 in a series of electrophysiological studies of the responses of spinal cord flexor 

motoneurons to peripheral stimulation (Woolf, 1983). Central sensitization, as the described 

phenomenon became known, provides a rational framework for the temporal, spatial and 

threshold alterations like those observed by Mitchell more than one century before 

(Latremoliere and Woolf, 2009). The biological importance of central (and also peripheral) 
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sensitization can be ascertained by its conservation across virtually all animal phyla (Woolf and 

Walters, 1991; Walters, 2009). In normal conditions, central sensitization has a benign 

character, as it lowers pain thresholds in injured tissues and surrounding areas, favouring 

protective behaviours. However, in pathological conditions involving sustained inflammation 

and lesions to the nervous system, the benign character is lost, and pain serves no protective 

and/or biologically relevant role. This form of centrally established plasticity decouples the 

peripheral stimulus from its regular central processing to a point that pain no longer reflects 

the existence of a peripheral noxious event but solely a new organization of the central circuitry 

(Woolf, 2011). 

 

Peripheral and central sensitization differ in many respects both at the mechanistic level as 

well as in their manifestations (Latremoliere and Woolf, 2009). Perl and colleagues (1976) 

were the first to describe that nociceptor peripheral terminals can become sensitised following 

injury. This phenomenon was then observed by others in different conditions (Meyer and 

Campbell, 1981; LaMotte et al., 1982; LaMotte et al., 1983; Torebjork et al., 1984; Kocher et 

al., 1987; Campbell et al., 1988a; Bishop et al., 2010). Peripheral sensitisation manifests as a 

drop in threshold and consequent amplification of nociceptors response when these are 

exposed to damaged tissue and inflammatory mediators. This form of sensitization depends on 

nociceptor activation at the periphery, the effect being therefore restricted to the affected area 

and is the core mechanism underlying heat primary hyperalgesia (Hucho and Levine, 2007; 

Latremoliere and Woolf, 2009; Ringkamp and Meyer, 2009). On the contrary, manifestations 

of central sensitization can disperse to areas unrelated with the primary injury as in the cases 

described by Mitchel (Woolf, 2011). Mechanical allodynia is one of such manifestations. In this 

case, inputs that normally parallel the nociceptive pathway, including low-threshold 

mechanoreceptors, are co-opted, resulting in Aβ fiber-mediated pain (Woolf and Salter, 2000). 

In fact, blood-brain barrier impermeable lidocaine analogues, contrary to regular lidocaine, fail 

to abolish mechanical allodynia when injected systemically evidencing its central mediation 

(Chen et al., 2004).  

 

The cascade of events that follow peripheral nerve lesion (or sustained inflammation) and 

eventually leads to central sensitization can be summarized as follows (Saade and Jabbur, 

2008): 1. spontaneous activity is generated (Wall and Gutnick, 1974; Devor, 2009) both in 
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injured and intact fibers (Wu et al., 2001; Lee et al., 2003); 2. locally (and centrally) pro-

inflammatory molecules are released, (Campana et al., 2006; Campana, 2007; Schäfers et 

al., 2007); 3. phenotype switch occurs in the form of expression of new receptors and ionic 

channels giving the nociceptor a sensitised profile (Waxman, 1999) and, additionally, an 

otherwise “silent” or “sleeping” C-fiber population is recruited (Schmidt et al., 1995); 4. 

peripheral and central fibers reorganize (McMahon and Kett-White, 1991; Woolf et al., 1995); 

5. receptive fields and sensory modalities of both injured and intact fibers modify as a 

consequence (Campbell et al., 1988b; Gracely et al., 1992; Liu et al., 2000; Pitcher and 

Henry, 2004). The resulting augmented afferent barrage to the spinal cord drives central 

sensitization (Latremoliere and Woolf, 2009; Ossipov and Porreca, 2009). In fact, 

pharmacological block of the afferent activity prevents the development of behavioural pain 

symptoms (Xie et al., 2005). Additionally, descending facilitation from the brain also 

contributes to central sensitization at spinal cord level (Heinricher et al., 2009; Ossipov and 

Porreca, 2009). The RVM has been the most studied in this context. The surgical interruption 

of RVM-spinal cord communication (Ossipov et al., 2000; Burgess et al., 2002; Gardell et al., 

2003), its pharmacological inactivation with lidocaine (Pertovaara et al., 1996; Burgess et al., 

2002) or the selective ablation of µ-opiod receptor positive RVM neurons (Porreca et al., 2001; 

Burgess et al., 2002; Gardell et al., 2003) abolished behavioural signs of ongoing pain 

(Ossipov and Porreca, 2009). This is not an exclusive action of the RVM as other areas, 

namely the medullary pronociceptive dorsal reticular nucleus (DRt) (Almeida et al., 1996; 

Almeida et al., 1999; Lima and Almeida, 2002) were also shown to contribute to sensitization 

(Sotgiu et al., 2008).  

 

Central sensitization is the consequence of a number of functional, chemical, and structural 

plastic alterations. These are extensively characterized in the spinal cord and, to certain extent, 

in the brain (Saade and Jabbur, 2008; Zhuo, 2008; Jaggi and Singh, 2011). Similarly to what 

is observed in the spinal cord in different animal models of chronic pain, signs of abnormal 

neuronal activity have been recorded in the brain, namely in the RVM (Goncalves et al., 2007), 

thalamus (Guilbaud et al., 1990; Miki et al., 2000), Amy (Ikeda et al., 2007) and prefrontal 

cortex (PFC; Zhuo, 2008). Measurements of metabolic activity anatomically correlate with 

electrophysiological data (Mao et al., 1993; Neto et al., 1999) and, again, in notable parallel 

with similar observations in the spinal cord (Schadrack et al., 1999). Data from brain imaging 
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studies in human patients with chronic pain support an increased activity in the PFC but, 

paradoxically, not in the thalamus (Seifert and Maihofner, 2009; Apkarian, 2010). At the 

morphological level, structural abnormalities have been reported both in animal (Seminowicz et 

al., 2009; Millecamps et al., 2010) and human studies (May, 2008). Generally, these reflect a 

decreased gray matter density and have been detected in brainstem, thalamus, PFC and 

somatosensory cortex. On the contrary, an increase in the striatum and in the orbitofrontal 

cortex (OFC) gray matter was reported in patients with fibromyalgia (Schmidt-Wilcke et al., 

2007). Alterations in brain neurochemistry have also been observed both in the animal model 

and (Millan, 1999) in the human disease (Grachev et al., 2000). Of particular interest in the 

context of pain, µ-receptor availability was found to be decreased in the Amy, accumbens and 

dorsal cingulate in patients with fibromyalgia (Harris et al., 2007) and in the Amy of mice 

(Narita et al., 2006). Concerning the activation of the glial population, which is a neuropathy 

hallmark in the spinal cord, in the brain findings are contradictory. While some groups report 

an increase of both microglial and astrocytic markers in the brainstem, thalamus and forebrain 

(Raghavendra et al., 2004), others found no alterations (Zhang et al., 2008).  

 

The morphological and functional alterations described above impact not only in areas with an 

established role in pain modulation but also in areas that are classically associated with the 

modulation of emotional and cognitive behaviour, like the Amy and the PFC. In fact, anxiety, 

depression and cognitive impairments are frequent comorbidities associated with human 

chronic pain suggesting a causality relation (Moriarty et al., 2011). Experimental animal 

models, however, have produced contradictory results concerning the emergence of these 

traits. This can largely be attributed to the experimental factors varying among the reports, 

some of these underlying putatively important aspects of the pathophysiology. Yalcin and 

colleagues, for instance, have recently established that the duration of the neuropathy is a 

determinant factor in the expression of emotional alterations, with anxiety-like behaviours 

appearing first, followed then by depressive-like behaviours suggesting that the process has a 

well defined kinetic (Yalcin et al., 2011). Additionally, given the organization of the ascending 

pathways described previously (see 1.2.2.) one might postulate that the left/right origin of pain 

can differentially affect areas that are functionally lateralized like the Amy and the PFC, having 

therefore a selective functional impact. Despite this, left and right neuropathies have been 

indiscriminately used in the published reports. On the contrary, factors like gender and age of 
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experimental subjects are the same in all studies (only young male animals have been used). 

Although being a great advantage for comparison terms, this leaves uncovered important 

aspects of the human pathology. This is particularly pertinent concerning ageing because of 

the increased prevalence of pain, notably pain associated with musculoskeletal degenerative 

conditions, in the elderly (Jones and Macfarlane, 2005). It should, however, be acknowledged 

that the relation is complex and some pain conditions are in fact age-independent (e.g. 

stomach and head) or decrease with age (e.g. abdominal and some types of orofacial pain) 

(Jones and Macfarlane, 2005). The neuropathy prevalence is also positively correlated with 

aging both in humans and in rats (Gagliese and Farrell, 2005) although results concerning with 

its algesic quality are contradictory (Gagliese and Melzack, 1997, 2000; Gagliese and Farrell, 

2005; Gagliese and Melzack, 2005). Importantly, the risk of affective disorders (Vink et al., 

2008; Wolitzky-Taylor et al., 2010) and cognitive deterioration (D'Esposito, 1999; Rosenzweig 

and Barnes, 2003; Jones et al., 2006) is also increased in the aged individual augmenting the 

chances of co-occurrence with pain.  

 

 

1.4. Aims 

 

The general aim of the present thesis was therefore to further extend the characterization of an 

animal model of neuropathic pain beyond its somatosensory disturbances, namely in respect 

to the manifestation of emotional and cognitive disturbances. For the reasons raised above, the 

influence of the experimental subject age at the time of the neuropathy induction (chapter 2.1.) 

and its lateralization (chapter 2.2.) were studied. Concerning the cognitive impact of the 

neuropathy, which is by far less studied than the emotional impact, a diversified battery of 

tests were employed in order to ensure a good characterization of the executive function 

domains affected. Additionally, considering that some of these domains have well established 

anatomical substrates we aimed to gain some insight into the areas of increased susceptibility.  
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a b s t r a c t

Chronic pain syndromes encompass several clinical entities that frequently affect the individuals’
emotional and cognitive behaviours which, in turn, can also alter pain perception. Additionally, both
pain perception and motivational-affective behaviours change with increasing age. In order to evalu-
ate the influence of age upon the interaction between chronic pain and affective/cognitive behaviours,
3-, 10- and 22-month-old rats with 1 month neuropathy (spared nerve injury, SNI model) were com-
pared with age-matched sham-operated controls in the open field (OF; locomotor and exploratory
behaviours), elevated plus-maze (EPM; anxiety-like behaviour), forced swimming (FST; depressive-like
behaviour), working memory water maze (WM; spatial short-term memory), Morris water maze
(MWM; spatial reference memory) and spatial reversal (behavioural flexibility) tests. Locomotor and
exploratory activities decreased steadily with age and were further reduced by SNI. Aging was asso-
ciated with increased anxiety-like behaviour, which was potentiated by SNI in both 3- and 22-month-
old rats. The performance in the FST was affected by SNI but only in mid-aged animals. Cognitive per-
formances in the MWM and spatial reversal tests deteriorated with age; however, the SNI lesion was
only detrimental in the reversal task to mid-aged animals. Our data demonstrate that the influence of
neuropathic pain on affective and cognitive behaviours is age dependent and varies with the behav-
ioural domain that is tested. Importantly, mid-aged animals seem to be more susceptible to depres-
sion and cognitive deterioration associated to chronic pain than young and old groups.

� 2009 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
1. Introduction

Pain is a multidimensional experience with sensory-discrimina-
tive and motivational-affective components [77] and thus variation
in pain sensitivity across life span is not a linear phenomenon
among different people. It depends on pain modality, gender,
pain-related past experiences and the contribution of several
unidentified factors. Moreover, the construction of solid models
for age dependence of pain sensitivity has been hampered by the
existence of contradictory data (see reviews by [28–30]).

Alterations in the neuronal substrates underlying pain sensa-
tion and in the respective subsidiary glial arrays might in part ex-
plain differences in age-dependent pain behaviour. Reported
alterations include: (i) anatomical and morphological senescence
events [2,7,25,61,79]; (ii) variations in neurotransmitters and
receptors implicated in pain sensation and modulation [6,17,20,
or the Study of Pain. Published by

: +351 253 604809.
lmeida).

/neurc/index.htm (A. Almei-
21,34,39,45,46,51,59,60,64]; (iii) changes in neuronal electrophys-
iological properties as response latency, intensity, pre- (back-
ground) and post- (after discharges) stimuli activity and
receptive field sizes [45,50,84]; and (iv) modifications in the glial
activation status [90,91] and glia-to-glia coupling [41]. Similarly,
emotional and cognitive behaviours are also sustained by plastic
neuronal structures that display alterations with aging [33,75].
Among others, dysregulation of the hypothalamic–pituitary–adre-
nal (HPA) axis occurs during normal aging in both aged human and
animal subjects [73]. This new hormonal milieu impacts on several
central nervous system areas, notably the hippocampus and the
prefrontal cortex (PFC) at morphological [15,88] and electrophysi-
ological [14,49] levels (see also [13,86]), providing a plausible con-
tribution for augmented anxiety levels, depressive symptoms and
cognitive impairments in aged subjects.

Chronic pain syndromes comprise a vast and heterogeneous
group of clinical entities that are frequently accompanied by debil-
itating mood disorders such as anxiety and depression [58,69]. De-
spite this, there are only a handful of animal studies using models
of prolonged pain to assess the impact of chronic pain on emo-
tional behaviour [35,37,53,66,67,92] and none has analysed the
Elsevier B.V. All rights reserved.

51

mailto:aalmeida@ecsaude.uminho.pt
http://www.ecsaude.uminho.pt/icvs/domains/neurc/index.htm
http://www.elsevier.com/locate/pain


58 H. Leite-Almeida et al. / PAIN� 144 (2009) 57–65
influence of age in pain/emotional links. In the present work, we
report how 1 month of spared nerve injury (SNI) model neuro-
pathic pain [24] affects the behavioural performance of 2
(young)-, 9 (mid-aged)- and 21 (old)- month-old rats in different
emotional and cognitive tasks.

2. Materials and methods

2.1. Animals

Fifty male Wistar-Han rats (Charles River Laboratories, Barce-
lona, Spain) aged, at the beginning of the protocol, 8 weeks (young
animals, n = 21), 9 months (mid-age animals, group n = 18) and
21 months (old animals, n = 11) were used. Weight ranges for
young, mid-aged and old animals were 230–300 g, 500–600 g
and 650–850 g, respectively. Animals were housed in plastic cages
in groups of 2 to 3 with food and water available ad libitum in a
standard vivarium with controlled temperature (22 ± 1 �C) and a
12 h light/dark cycle (lights on at 8 a.m.). All experiments were
performed during the light period of the cycle, starting at 9:00
and extending as far as 18:00 depending on the duration of each
protocol (see below). Acclimatization to the testing room was al-
lowed for approximately 1 h. All procedures with animals followed
the normatives stated by the European Community Council Direc-
tive 86/609/EEC and the ethical guidelines for the study of experi-
mental pain in conscious animals [104]. At least one category C
FELASA certified experimenter (see the Federation of European
Laboratory Animal Science Associations web page http://
www.felasa.eu/ for more information) was present when animals
were manipulated. Detailed information on experimental condi-
tions is given as supplemental material according to the guidelines
established by others [80].

2.2. Surgery and experimental design

An experimental neuropathy was induced using the spared
nerve injury (SNI) model, as originally described by Decosterd
and Woolf [24], in half of the animals of each age category, the
remaining being sham operated and used as controls. Animals
were deeply anaesthetized with a mixture of 1.5: 1.0 of ketamine
(Imalgene�)/medetomidine (Dormitor�) at a dose of 1 mL/kg. The
hairy skin of the left limb lateral surface was shaved and a longitu-
dinally oriented incision was made. The musculature was blunt
dissected and the sciatic nerve and its three terminal branches,
sural, common peroneal and tibial, were exposed. The last two
branches were then tightly ligated with 4–0 silk ligatures and a
1 mm portion was distally sectioned. Caution was taken not to
damage or stretch the sural nerve, which should remain intact
(spared nerve). Similar procedures were applied to the sham
groups, except that all nerves were exposed but left untouched. Fi-
nally, muscles and skin were separately sutured. During the recov-
Fig. 1. Chronogram of the experimental protocol. Eight weeks (young), 9 months (mid-a
controls, were submitted to a battery of daily tests according to the following sequence: O
i.e., the submerged platform (see main text) was located in the same quadrant of the swim
response, a well-known marker of neuropathy in nerve-injury models, using calibrated Vo
field; MWM – Morris water maze; WM – working memory.
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ery period animals were left in individual cages for 24 h and then
placed with their previous cage-mates.

During the first month after surgery, except for cage cleaning
and non-scheduled occasional handling twice a week, animals
were left without any kind of manipulation, to avoid additional
distress. Then, a battery of behavioural paradigms was employed
as represented in Fig. 1. Animals were always tested in the same
pre-established order, which included testing sequentially sub-
groups of young SNI, young sham, mid-aged SNI, mid-aged sham,
old SNI and old sham animals. Since this sequence was repeated
three times until all animals were tested, the influence of con-
founders such as the testing hour was equally distributed through
all the experimental groups. A brief summary on each test is given
below (for a recent review see for example [87]).

2.2.1. Open field
The open field (OF) is probably one of the oldest behavioural

paradigms in rodents (Hall 1934). It is a versatile test that permits
assessment of anxiety-like exploratory and locomotor behaviours
by measuring, respectively, the percentage of time spent in the
centre of the OF arena (higher values being associated with less
anxious profiles [78]), the amount of rearing activity and the total
distance travelled [87]. The OF was performed in a square
(43.2 cm � 43.2 cm) arena with transparent acrylic walls (Med
Associates Inc., St. Albans, Vermont, USA) placed in a brightly illu-
minated room. Animals started the test at the arena’s centre and
were given 5 min to explore it. Location (peripheral versus central)
and total distance travelled in the arena were automatically regis-
tered by equipment sensors. Additionally, the number and dura-
tion of rearings were manually registered by an observer located
1.5–2.5 m away from the apparatus. The inner areas, floor and
walls, were cleaned with 10% alcohol and carefully dried between
trials. This test spanned for approximately 6 h, starting at 9 a.m.

2.2.2. Elevated plus-maze
The elevated plus maze (EPM) was developed to test anxio-

lytic/anxiogenic effects of drugs in rodents [36,74] and it is pres-
ently considered the most validated and reliable test of anxiety-
like behaviour. The rationale of the test results from the conflict
between the drive to explore the maze and the aversion to open
areas. More anxious behavioural profiles are correlated with
smaller ratios between time spent in the open arms and in the
closed arms (open arm avoidance index). Other EPM behavioural
indexes are: (i) risk assessment (RA) (calculated according to the
formula: RA = [number of explorations/(300 � open arm time in
seconds)] � 60) for exploratory activity and (ii) the number of
entries in EPM closed arms for locomotor activity, which is con-
sidered more valid [9,22,81] than the total (open + closed) num-
ber of arms entries (see [95] and references within). The EPM
was performed in a plus-shaped maze made on black polypro-
pylene plastic, with two opposed open arms (50.8 cm � 10.2 cm)
ged) and 21 months (old) old animals with 1 month neuropathy and correspondent
F, EPM, FST, WM, MWM and reversal. On the seventh day, WM and MWM coincided,
ming pool. One week after the behavioural tests, animals were probed for allodynic
n Frey filaments. EPM – elevated plus-maze; FST – forced swimming test; OF – open

http://www.felasa.eu/
http://www.felasa.eu/


Table 1
Sequence and organization of the cognitive tests: working memory (WM), Morris
water maze (MWM) and reversal (see main text for details on each of these tests). The
location of the platform on each day and the starting quadrant in each of the four
trials are referred. When coincident, this was highlighted. In the WM, animals had to
learn a new platform location on a four-trial run, everyday. In the MWM, reference
memory was tested by keeping the platform position unaltered for four consecutive
days during each of which the starting quadrant for each trial was randomly assigned
(order repetitions were not allowed). Finally, on the last day, after a 4-day period
learning a location, behavioural flexibility was tested by changing the platform to a
new position – approximately opposed to the previous – within the north quadrant,
N* (different from that on day 5).

Day Protocol Platform location Starting quadrant

4 WM O N S O E
5 WM N O N S E
6 WM E E S N O
7 WM/MWM S E O N S
8 MWM S N S E O
9 MWM S S N O E

10 MWM S O E S N
11 Reversal N* N S E O
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and two opposed closed arms with the same dimensions but
surrounded by walls (40.6 cm height; Med Associates Inc., St. Al-
bans, Vermont, USA). The whole structure was elevated 72.4 cm
from the floor and was placed in the centre of same room where
the OF took place the previous day. Each animal was placed at
the centre of the maze and allowed to explore for 5 min. The
number of arm entries, the time spent in each arm and the num-
ber of explorations were automatically recorded. Inter-trial pro-
cedures were as described for the OF. This test spanned for
approximately 6 h, starting at 9 a.m.

2.2.3. Forced swimming test
Since its development in the mid-1970s [76], the forced swim-

ming test (FST) has been employed as a successful screening tool
for assessing antidepressant-like effects of drugs in rodents. The
perseverance of the animal struggling to escape from an inescap-
able aversive scenario (a cylinder full of water), has been proved
to be inversely correlated with a depressive-like profile. Two
parameters are currently employed: 1. latency to immobility (Lati)
– the duration of the first and usually most intense period of escap-
ing activity (inverse correlation with depressive states); 2. immo-
bility (Ti) – total time staying afloat without trying to escape
(direct correlation with depressive-like profiles). The FST was per-
formed in a cylinder filled with water (23–24 �C) to a depth of
40 cm, such that animals could not lay their rear paws on the bot-
tom without being totally submersed, and with a height of 30 cm
above the water level, thus preventing the escape of the animals.
A first trial in the FST (training) was done approximately 1 h after
the EPM after which animals were allowed to rest 24 h before the
second session (test). Both sessions lasted 5 min and were video-
taped by a fixed camera located on the ceiling. Since two different
animals were simultaneously recorded (using two FST equip-
ments), the whole FST session lasted only 3 h, starting at 12 p.m.;
this ensured homogeneity of testing times between all animals.
Lati and Ti parameters from the second (test) trial were scored off-
line using the freeware Etholog software [71].

2.2.4. Cognitive tests
Cognitive tests were made in a black, circular (170 cm diame-

ter) tank, filled with water (23–24 �C) to a depth of 31 cm in a
dimly illuminated room with spatial clues on the walls, kept unal-
tered during the duration of the experiment. A video camera fixed
on the ceiling, above the centre of the tank, captured the image to a
video tracking system (Viewpoint, Champagne au Mont d’Or,
France) located in an adjacent room. Four virtual quadrants [north
(N), east (E), south (S) and west (W)] were then assigned on the
computer and a black circular platform, 12 cm in diameter, 1 cm
below water surface (therefore, invisible to the rats) was placed
within one of the quadrants. The position of the platform varied
according to each test (see below). In each testing, animals were gi-
ven four trials to find the platform, each starting from a different
quadrant. At the beginning of each trial, animals were gently
placed in the periphery of the selected quadrant, approximately
half-way from its limits and facing the wall of the maze. Trials
were automatically ended once the animals reached the platform
or 120 s had elapsed, whichever occurred first. If an animal failed
to find the platform in 120 s, it was gently guided to it and allowed
to remain there for 30 s before starting a new trial. Time to escape
to the platform, as well as to the path, and distance swum during
that period were automatically recorded.

2.2.4.1. Working memory. The working memory (WM) test is a
modification [23] of the Morris water maze (MWM [65]). It mea-
sures the ability of the animal to acquire and keep on line during
four consecutive trials, information about the platform location
that is changed daily to a different quadrant (Table 1).
2.2.4.2. Morris water maze. The MWM test was designed to study
the animal capacity to learn the platform location during four con-
secutive days – spatial reference memory [65]. The platform was
therefore kept in the same position throughout the test (Table 1).

2.2.4.3. Reversal. The day after learning the platform location in the
MWM, animals were similarly tested during four trials, but with
the platform positioned in the opposite quadrant (Table 1). The
rationale underlying this test is that animals displaying behav-
ioural flexibility will rapidly learn to search the platform in its
new location while impaired rats will spend more time around
the old location.

2.2.5. Von Frey
One week after the end of the emotional and cognitive behav-

ioural tests, animals were evaluated for allodynic responses, a hall-
mark for a neuropathic chronic pain condition. Each paw (ipsi- and
contralateral) was probed with Von Frey filaments on the lateral
surface (sural nerve territory), starting with softer (lower bending
force) and progressively increasing to harder Von Frey filaments,
each applied five consecutive times in each paw. The brisk lifting
of the probed paw was considered a positive pain-like response;
simultaneous similar movements of the other paw – mirror-re-
sponses – were also registered but not considered as a pain re-
sponse. This test was performed on an elevated grid, where the
animals were placed, inside an inverted white light-transparent
plastic box to limit their movements. In order to minimise the po-
tential stressful impact of the testing conditions, animals were al-
lowed to acclimatize daily to the examination room, for 1 week
before the test (Fig. 1).

2.3. Statistical analysis

Results are expressed as means ± standard errors. Comparisons
between means were analysed with one-way or repeated mea-
sures analysis of variance (ANOVA), as appropriate. Differences be-
tween groups were analysed post-hoc with Tukey’s honestly
significant differences test (Tukey’s HSD). Results were considered
statistically significant if p < 0.05.

3. Results

3.1. General considerations

After the SNI/sham surgery, animals spent 1 month period
without any manipulation besides cage cleaning and occasional
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handling, without a fixed schedule to avoid habituation. During
this period, animals were monitored for abnormal signs indica-
tive of disease (e.g. weight loss, infections, alterations in groom-
ing and other behaviours). Only one wound infection, promptly
treated with the topical application of chlorohexidin, was de-
tected, in a mid-age SNI animal; as this resolved in less than
1 week, we found no motives for not including the animal.

All SNI rats developed signs of spontaneous pain (flinching and
paw protection) almost immediately after nerve lesion and brisk
pain responses were elicited when forces as low as 0.04 g were ap-
plied to the lateral area of the nerve-lesioned paw. When this paw
was probed five times with the 1 g Von Frey filament, nearly 75%,
85% and 60% of young, mid-aged and old SNI animals, respectively,
responded at least once (Fig. 2A). In contrast, only 1 of 11 young
animals and no mid-aged nor old sham animals responded to the
same filament. After stimulation with a 15 g filament, virtually
all (100%) SNI animals from all age groups showed pain-like behav-
iour, while only 40% (young) – 60% (old) of sham-operated animals
showed the same type of reaction (Fig. 2B).

3.2. Locomotor behaviour

The total distance travelled in the OF, the number of entries in the
EPM closed arms and the average velocity in the water maze were
used as locomotion indexes (Fig. 3). In the OF, a stepwise decrease
in motor activity was apparent with increasing age (F2,44 = 31.811,
p < 0.001). Nerve lesion also affected locomotor activity significantly
(F1,44 = 17.126, p < 0.001), with older animals being more suscepti-
ble to its effects (interaction between age and nerve lesion
F2,44 = 3.606, p = 0.035; Fig. 3A). Specifically, when age-matched ani-
mals were compared, SNI animals were found to travel significantly
Fig. 2. Percentage of responders to 1 g (A) and 15 g (B) Von Frey probes on the
ipsilateral paw. The great number of responders in the SNI group to 1 g filament
probe – an innocuous stimulus for sham animals – is a clear indication of allodynic
behaviour and neuropathy. For comparison purposes, responses to 15 g probe are
also given. Note that sham group scores are still smaller than those obtained with
1 g probe in SNI animals. Results referring to the contra-lateral paws do not differ
from sham ipsilateral paw probing and were therefore omitted.

Fig. 3. Locomotory behaviour. Three indexes of locomotion were accessed: (A) total
distance travelled in the OF; (B) number of entries in the EPM closed arms; (C)
average velocity in the water maze. Note the aging trend similarities of locomotory
activity across the three indexes. *p < 0.05 and **p < 0.001; comparisons within age-
matched animals are indicated over SNI graph bar and comparisons along aging
within surgery groups, sham and SNI, are indicated over horizontal lines. EPM –
elevated plus-maze; OF – open-field.
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less than controls, but only in mid-aged (p = 0.028) and old
(p = 0.030) groups. In the EPM, age (F2,43 = 21.335, p < 0.001), but
not SNI (F1,43 = 2.335, p = 0.134), significantly reduced the number
of closed arm entries and this effect was similar in both treatment
groups (F2,43 = 2.054, p = 0.141) (Fig. 3B). Mid-aged and old animals
displayed fewer entries in the closed arms when compared to young
animals of the same experimental group (sham: x mid-aged
p = 0.045; x old p = 0.034; SNI: x mid-aged and x old p < 0.001).
Although it did not reach statistical significance, treatment effect
was more pronounced in old animals (p = 0.064). In the water maze,
age (F2,44 = 4.976, p = 0.011) and SNI (F1,44 = 14.424, p < 0.01) signif-
icantly decreased the average velocity but no interaction was found
between these two factors (F2,44 = 0.272, p = 0.763) (Fig. 3C): nerve
injury decreased the average swimming speed only in mid-aged
and old animals (young p = 0.066; mid-aged p = 0.032; old
p = 0.014).
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3.3. Anxious-like and exploratory behaviours

The percentage of time spent in the EPM open arms (percentage
of OA; Fig. 4A), and the RA parameter (EPM; Fig. 4B) were used as
anxiety-like behavioural indexes. The total amount of time spent
rearing (Trea; Fig. 4C) and the absolute number of rearings (Nrea;
Fig. 4D) that animals performed during the exploration of the OF
arena were used as indexes of exploratory behaviour.

In the EPM, both percentage of OA (Fig. 4A) and RA (Fig. 4B) sig-
nificantly decreased with increasing age (F2,43 = 15.107, p < 0.001
and F2,43 = 28.922, p < 0.001, respectively) and nerve lesion
(F1,43 = 6.287, p = 0.016 and F1,43 = 4.729, p = 0.035, respectively).
Young SNI and sham animals differed in percentage of OA
(p = 0.028) and RA (p = 0.041) whereas in old animals treatment
affected only percentage of OA (p = 0.016) (Fig. 4A and B). In the
OF, the duration (Trea; Fig. 4C) and the absolute number of rearings
(Nrea; Fig. 4D) inside the OF arena were affected similarly by both
age (Trea F2,44 = 7.725, p < 0.001; Nrea F2,44 = 15.669, p = 0.001) and
surgery (Trea F1,44 = 25.678, p < 0.001; Nrea F1,44 = 20.158, p < 0.001).
Within groups of age-matched animals, Trea and Nrea were decreased
by SNI surgery (young pTrea = 0.003 and pNrea = 0.006; mid-aged
pTrea = 0.006 and pNrea = 0.145; old pTrea = 0.020 and pNrea = 0.005).
Additionally, a clear age-dependent attenuation of the exploratory
behaviour was detected in the Trea (SNIyoungxmid p = 0.024; SNIyoungxold

p = 0.003) and Nrea (SNIyoungxold p = 0.001; shamyoungxmid p = 0.005;
shamyoungxold p = 0.010) (Fig. 4C and D).

3.4. Depressive-like behaviour

The period of escaping activity between the introduction of the
animal in the water cylinder and the first immobilization –
Fig. 4. Anxiety-like and exploratory behaviours. Two indexes of anxiety-like behaviour
arms (A) and in the central area of the OF arena (C). The remaining – risk assessment beha
behaviour. *p < 0.05; **p < 0.001; comparisons within age-matched animals are indicated
SNI, are indicated over an horizontal line. EPM – elevated plus-maze; OF – open-field.
latency to immobilization (Lati; Fig. 5A) – and the amount of time
that the animal stayed afloat without evident efforts to escape –
immobility time (Ti; Fig. 5B), were used as indexes of depressive-
like behaviour. Both factors were significantly affected by age
(F2,43 = 4.593, p = 0.016 and F2,43 = 12.376, p < 0.001, respectively)
but not by nerve ligation. Additionally, there was a significant
interaction between age and surgery for Ti (F2,43 = 3.747,
p = 0.032). Ti was reduced in mid-aged sham animals compared
to young (p = 0.001) and old controls (p = 0.001). Interestingly,
only in this age group did SNI increase Ti when compared to sham
animals (p = 0.032), indicating a depressive-like behaviour in-
duced by nerve lesion.

3.5. Cognitive assessment

Repeated measures analysis of WM performance demon-
strated only a marginal effect of age (F2,43 = 3.155, p = 0.053)
but not surgery (F1,43 = 3.507, p = 0.068) nor an interaction be-
tween these two factors (F2,43 = 0.662, p = 0.521; Fig. 6A–C). None
of these factors influenced the performance in the Morris water
maze (Fig. 6D–F). Analyses of behavioural flexibility revealed an
interaction between aging and lesion (F4,86 = 2.630, p = 0.040),
with SNI impairing this behaviour only in mid-aged animals as
revealed by the higher percentage of distance swum in the old
location and lower percentage of distance swum in the new
location of the platform (Fig. 6G). There was, in addition, an
aging effect (F2,43 = 5.108, p = 0.010) with older animals display-
ing a higher percentage of distance swum in the old location
compared to young animals (p = 0.030). No differences were ob-
served in the distances swum in the neutral quadrants (data not
shown).
are given, namely the percentage (%) of time spent by the animals in the EPM open
viour (B), rearing time (D) and number of rearings (E) – are measures of exploratory
over SNI graph bars and comparisons along aging within surgery groups, sham and
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Fig. 5. Forced swimming test for depressive-like behaviour. Two indexes are given:
latency to immobility (A) and immobility time (B). *p < 0.05; comparisons within
age-matched animals are indicated over SNI graph bar and comparisons along aging
within surgery groups, sham and SNI, are indicated over horizontal lines. FST –
forced swimming test.
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4. Discussion

In this study we attempt for the first time to analyse the com-
bined influence of aging and chronic neuropathic pain on cognitive
and emotional behaviours in rats. One month after the induction of
SNI, young, mid-aged and old animals went through a battery of
tests and were then probed for signs of allodynia, a well-estab-
lished marker of neuropathic pain. Our results demonstrate that
even nearly 2 months after surgery, animals submitted to SNI dis-
played an increased response to light (1 g) Von Frey probing; per-
sistence of pain related behaviours is a well-known feature of the
SNI model [24]. Spontaneous pain-related behaviours such as
flinching and protection of the affected paw have also been ob-
served in SNI animals during their normal activities in the cages,
possibly indicating ongoing pain. We demonstrate that after
1 month of peripheral nerve injury (SNI model) mid-aged rats,
but not young nor aged animals, acquire a depressive-like behav-
iour and show impairment of executive function (behavioural
flexibility).

4.1. Neuropathic pain increases locomotor impairment with aging

The present study shows that SNI potentiates the reduction of
locomotor activity that normally occurs with increasing age. The
age-related decline in motor performance is in accordance with
previous studies [3,11,12,27,38,44,66,89,97]. The underlying
mechanisms for this phenomenon include a contribution of age-re-
lated alterations of neuronal networks involved in motor activity
(planning, execution and coordination) but also side factors such
as weight gain, diminished metabolic activity as a result of cardio-
vascular and musculoskeletal impairments [3]. Our data also show
that nerve lesion related-impairments of locomotor behaviour aug-
ment with increasing age. A possible explanation might be that
young animals are able to use intact limbs more effectively to over-
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come the partial loss of function of the lesioned limb. A more effec-
tive functional recovery in younger animals could also provide an
explanation for the near absence of functional impact of SNI
30 days after the surgery. On the contrary, the locomotor behav-
iour in mid-aged and old animals was reduced after the lesion.
It is not known to what extent performances in movement-depen-
dent behavioural tests such as the OF, EPM and FST are affected but
principal component analyses studies demonstrated an extensive
segregation between motor and anxiety-related indexes in the
EPM [9,22,81] and OF [9]; as expected, the use of anxiolytic and/
or anxiogenic drugs (in a certain dose range) only affected the anx-
iety-related factor [22]. Similar findings have been reported
recently by Rice’s group in a model of HIV anti-retroviral-associ-
ated pain [96]. Treated and control animals differed in their
thigmotaxic behaviour in OF, the former group presenting a more
anxious-like behaviour, but no differences were found regarding
motor activity. Pharmacological approach with analgesics (gaba-
pentin and morphine) and one anxiolytic (diazepam) drug signifi-
cantly reduced anxious-related behaviour without any
interference with motor behaviour [96] (see also [82]). Concerning
the FST, this test is mostly dependent on forepaws and tail move-
ments and therefore SNI is not expected to interfere extensively:
indeed, intact and operated old animals presented no differences
in this test.

4.2. Neuropathic pain affects behavioural flexibility only in mid-aged
animals

To avoid possible interferences related to altered locomotion
abilities in the water maze tests, we used swum distances (more
related to animals’ strategy) instead of velocities (related to loco-
motive performance) to compare animals’ performances. The
learning curves in the spatial reference memory obtained herein
revealed that aged animals have learning/memory deficits; this is
in accordance with several previous studies [31,32,98]. On the con-
trary, no association between aging and decreased performance
was apparent in the WM test. Nevertheless, it should be noted that,
by the end of both WM and MWM tests, sham and SNI animals
were equally good performers indicating that the memory perfor-
mance was not affected by chronic neuropathic pain. In the rever-
sal task age-related deficits in behavioural flexibility are
demonstrated, as old sham animals failed to show an adaptive
behaviour when challenged with a new rule. Furthermore, in this
test, SNI affected exclusively the performance of mid-aged animals,
with sham rats displaying successful behavioural adaptation (sim-
ilar to young sham and SNI animals) and injured animals failing to
adapt their behaviour (similar to old sham and SNI animals). The
herein reported selectivity of SNI effects for mid-aged rats in the
reversal test is in accordance with the report by Smith and collab-
orators [85] showing that repeated tail pinch only activated the
PFC of mid-aged rats but not of young or old rats. Indeed, behav-
ioural flexibility is associated with the function of the medial PFC
[18,83] and impairments on reversal-type tasks, such as the one
used in the present study, have been associated with volumetric
decreases, neuronal loss, altered dendritic morphologies and im-
paired LTP on the hippocampal-PFC connection [14–16]. It is
remarkable that, in mid-aged rats, SNI seemed to induce a prema-
ture aging of PFC function, suggesting that, in this particular region,
chronic neuropathic pain might trigger, and hasten, the plastic
mechanisms involved in aging. Interestingly, previous studies on
chronic pain subjects (human and animal) have identified altera-
tions in regional cerebral blood flow [40,72], metabolic neural
activity [62], gray matter density [5,54], gene expression patterns
[4,68], receptor affinity/availability [48], synaptic activity [99]
and glial status [55,67] in prefrontal areas. Moreover, manipulation
of the PFC was shown to alter the nociceptive response in several



Fig. 6. Cognitive behaviours. Animals were challenged with three tasks that differed in their cognitive requirements (see main text for detailed explanation). Working
memory performances of sham and SNI are compared for young (A), mid-aged (B) and old (C) animals. Similarly, Morris water maze (MWM) performances are plotted in
graphs (D)–(F). Reversal task performances are plotted in graph (G). The four quadrants of the pool are assigned with letters W, N, E, S; the actual and the former platform
positions are, respectively, W and E. *p < 0.05; comparisons within age-matched animals are indicated over bar lines. MWM – Morris water maze; WM – working memory.
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models of acute and chronic pain [1,10,19,26,47,56,57,70,101–
103]. Altogether, these studies indicate that the PFC is a likely tar-
get for the mediation of the interaction between cognition and pain
processing. The fact that performances in the MWM and WM are
not affected by the SNI lesion, suggest that the hippocampal func-
tion is preserved after chronic neuropathic pain. This finding con-
trasts with the report that hippocampal long-term potentiation is
depressed in neuropathic mice [52]. The use of distinct species
and temporal differences in the neuropathy duration (7–9 days in
the later study and over 1 month in the present study) hindered
further comparisons.

4.3. Neuropathic pain affects emotional behaviours differently with
aging

In the FST, mid-aged animals struggled for longer periods of
time and spent significantly more time swimming than young
and old animals (similar results were obtained in female mice
[100]). Remarkably, once again differences between sham and
SNI animals were only evident in mid-aged animals; rats submit-
ted to SNI presented increased learned helplessness. A number of
functions have been proved to be dependent on PFC activity
including the regulation of emotional behaviour [13]. Whether
these behavioural profiles observed in SNI mid-aged animals share
a common neural substrate namely on the PFC, remains to be
proved. However, as stated above, several structural and functional
aspects of PFC have been shown to be dramatically affected by pro-
longed pain.

In this perspective, our data on anxiety-like behaviour appear to
be paradoxical as mid-aged SNI animals are apparently spared
from the anxiogenic effect of the lesion, a well-known phenome-
non in young rodents [63,66,67,92]. Plastic alterations in other
brain centres such as the extended amygdala (AMY) are likely to
be involved. Indeed, affinity shifts of opioidergic ligands, increased
glucocorticoid receptor and corticotropin-releasing factor mRNA
expression, synaptic potentiation, astrogliosis and neurogenesis
in the AMY [35,42,67,94] have been described after peripheral
nerve injury. Concerning the observed age-related anxiogenic ef-
fects in rodents, they are in accordance with previous reports
either using the EPM [8,43], the OF [93] or using both [9].
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4.4. Concluding remarks

In the present work we demonstrate that some of the cardinal
features of aging are anticipated by peripheral nerve injury. The
near absence of SNI-evoked behavioural effects in old animals in
some of the tasks is possibly due to the poor level of performance
of these subjects in basal (sham) conditions – ‘‘ceiling effect” – pos-
sibly rendering our analyses ineffective to discriminate SNI effects.
On the other hand, behavioural impairments caused by SNI were
evident in mid-aged animals. A putatively higher algesic quality
of mid-life neuropathies has been described (reviewed by [29]),
but at the moment it is premature to establish a causality relation
between these two observations. It also stems from our work that
PFC function appears to be more susceptible to the effects of the
neuropathic lesion than the hippocampal function. This observa-
tion concurs with a vast number of literature published by other
authors and mentioned above, confirming the PFC as one of the
principal targets for future studies.
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The prefrontal cortex is severely affected in prolonged pain conditions. Since it is 

functionally lateralized, we reasoned that its functions could be selectively affected according to 

the side of pain origin. We tested this assumption in rats with a unilateral neuropathy to 

conclude that left-sided neuropathic pain is more anxiogenic than right-sided pain and that the 

latter disrupts efficient executive function and working memory while having no emotional 

effect. 

 

64



	
  
	
  

Emotional disturbances and cognitive impairments are a common feature of 

prolonged pain conditions1. One of the brain areas most consistently shown to be selectively 

damaged in patients with chronic pain syndromes is the prefrontal cortex (PFC)2,3. Importantly, 

this region is involved in the expression of emotions4 and in a wide range of cognitive 

functions5, therefore appearing as a good candidate for mediating the above mentioned effects.  

The PFC has a central role in working memory, attention, impulsivity and in the 

construction of flexible adaptive behaviors5, collectively named executive functions. Additionally, 

PFC regions were also shown to modulate the expression of emotional states, including 

anxiety, through their projections to centers such as the bed nucleus of stria terminalis, the 

amygdala and the hypothalamus5. The extensive range of cortical and subcortical PFC targets, 

upon which it exerts a top-down control, is matched by a similar broad range of afferents from 

several cortical and subcortical regions6, including direct projections from the spinal cord7. 

Importantly, the PFC is the only cortical area that receives such projections, which might 

explain its selective vulnerability to the effects of prolonged pain. In fact, it has been shown that 

the thalamus, which also receives spinal cord projections, is similarly affected upon prolonged 

pain2. 

If the plasticity observed in cortical and subcortical areas in chronic pain conditions 

relates totally or partially with a disturbance of the ascending pathways we can postulate that 

lateralized pain would have a differential behavioral impact according to its left/right origin as 

the PFC itself has been shown to be functionally lateralized8. 

To test this hypothesis, we assessed the behavior of young Wistar-Han rats after 1 

month of either left- or right-sided neuropathic pain (spared nerve injury model9, SNI) on a 

battery of tests for sensory, emotional and cognitive function. Both right and left sham-operated 
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animals were used as controls but their performances were clustered together since there 

were no differences between them. 

Using established paradigms to assess both acute evoked nociception (von Frey 

monofilaments) and ongoing, non-provoked, pain (analgesia-derived conditioned place-

preference)10 we firstly showed that left- (SNI-L) and right-sided (SNI-R) neuropathies have 

similar algogenic properties. Nerve-injured animals showed an expected decrease of the 

monofilament-induced limb withdrawal threshold, which was of similar magnitude irrespective 

of lesion side (Fig. 1a).  In both left- and right-sided lesion groups (Fig. 1b), but not in sham-

operated animals (Supplementary Figure S1b), a single intrathecal clonidine injection produced 

a significant place-preference for the clonidine-paired chamber. Since increased anxiety is 

frequently reported in both humans with prolonged pain conditions and animal models of 

chronic pain, we assessed anxiety-like behavior, in a different cohort of animals, by exposing 

them for 5 minutes to the elevated-plus maze (EPM). Here, contrary to the previous results, we 

had a lateralized effect of prolonged pain exposure, with SNI-L animals spending significantly 

less time in the open arms when compared to both SNI-R and sham-lesioned animals (Fig. 1c). 

These differences do not relate to alterations in locomotor activity, since the number of closed 

arms entries is similar in all groups (Supplementary figure 2), suggesting therefore an 

increased anxiety-like behavior upon left- but not right-sided chronic pain.   

Finally, to test whether the cognitive effects of prolonged pain were also lateralized, 

we assessed animals for several PFC-dependent executive functions including working memory 

(WM; assessed in the water maze), behavioral flexibility (assessed in an attentional-set shifting 

task; ASST) and impulse control (assessed in a delay-to-signal task; see Supplementary 

Methods for a detailed description). Interestingly, right-lesioned animals showed consistent 

impairments in all tasks, when compared to SNI-L and control rats (respectively Fig. 1d, e and 

66



	
  
	
  

f). Importantly, no significant differences between any experimental groups were observed in a 

hippocampal-dependent spatial long-term memory task (the Morris Water Maze; MWM, 

supplementary Figure 3), suggesting a specific susceptibility of PFC-dependent cognitive 

domains in chronic pain conditions. 

Rodent models of neuropathic pain proved to be robust enough to manifest a whole 

range of emotional and cognitive disturbances observed in human disease besides sensorial 

abnormalities (e.g. hyperalgesia and allodynia) that are considered to be hallmarks of 

neuropathies1,11. Given the well established association between prolonged pain conditions and 

increased anxiety, our findings that only left-lesioned rats do display a hyperanxious phenotype 

are striking, though in line with a previous study in human volunteers12. Concerning the 

detrimental effect of right-sided pain on cognitive function, no parallel exists in the current 

literature.  

Results from our cognitive studies confirm a selective PFC susceptibility in chronic 

pain conditions as SNI-R had deteriorated cognitive performances specifically in PFC-

dependent tasks (WM, ASST and impulse control) but not in the hippocampal-dependent task 

(MWM; supplemental fig. 3), in which performance was at the level of SNI-L and controls. 

Additionally, the fact that SNI-R behavioral performance in the ASST task was only impaired in 

the reversal steps (Rev) but not in the extradimensional shift step (EDS; supplemental fig. 4) 

suggests that PFC malfunction is restricted to the ventral mPFC/OFC subareas, sparing 

dorsomedial prelimbic and cingulate PFC subareas13.  

Apart from cognitive function, manipulations of ventral mPFC/OFC subareas have 

been shown to influence behavioral outcomes in anxiety paradigms and the levels of anxiety–

related biomarkers such as corticosteroids. Importantly, this effect is lateralized, depending on 

the right PFC, expectably the area affected in SNI-L (reviewed by Sullivan and Gratton4). On the 
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contrary, the individual contribution of left/right mPFC to cognitive construction is still a matter 

of debate8. However, Luerding and colleagues found in fibromyalgia patients an impairment on 

non-verbal working memory that was positively correlated with the grey matter volume of the 

left middle frontal gyrus14, expectedly, and according to our guiding hypothesis, the area 

affected in SNI-R animals. 

Curiously, the ventral mPFC and OFC are the only cortical areas where direct 

projections from the contralateral spinal cord dorsal horn terminate (reviewed by Lima7). This 

body of evidence supports our hypothesis that peripheral nerve injury affects the ascending 

pathways resulting in functional impairment of these cortical terminal areas. Given the above 

mentioned lateralization of PFC functioning, particularly in the ventral mPFC and OFC, 

peripheral nerve injury has a differential and selective emotional/cognitive impact according to 

the side of injury.  

In summary, in the present work we demonstrated for the first time that the side of a 

neuropathic lesion is crucial in determining the emotional and cognitive comorbidities 

chaperoning pain.  
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Figure 1. Left- and right-sided neuropathies are detrimental to emotional and cognitive 

behaviors, respectively. (a) Nerve injury produced a significant decrease in the monofilament-

induced limb withdrawal threshold (F2,13=25.98, P<0.0001), while the side of nerve injury had 

no significant effect on the withdrawal threshold. (b) Clonidine treatment (10 µL intrathecally) 

produced a significant place preference for the clonidine-paired chamber (F1,16=26.84, 

P<0.0001), while the side of nerve injury (left versus right) had no influence on the clonidine-
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induced place preference (F1,16=0.00). (c) Left- but not right-sided SNI decreased the 

percentage of time spent in the EPM open-arm indicating anxiety-like behavior (F2,37=3.888; 

P=0.03; SNI-R versus sham and SNI-L (P=0.05)). (d, e, f) The performance of SNI-R rats is 

impaired in PFC-dependent tasks. In the WM paradigm (d), the side of the SNI had an impact 

on animals’ performance (F2,48=4.987; P=0.01; SNI-R versus sham (P=0.01) and SNI-L 

(P=0.04)). Similarly, in the reversal steps 1-4 of ASST (e), the side of SNI had a significant 

effect (F(2,45)=14.522, p<0.001; F(2,45)=11.347, P<0.001; F(2,45)=46.343, p<0.001 and 

F(2,45)=24.661, P<0.001; respectively). SNI-R animals required a significantly higher number of 

trials to criteria than sham and SNI-L animals (P<0,001 in all comparisons). (f) The ability to 

refrain from responding when the delay-to-response was increased to 10 seconds (F(2,21)=7,884, 

P=0,003) was impaired in the SNI-R group when compared to both sham (P=0,01) and SNI-E 

(P=0,007). Results presented as mean±SEM. *P<0.05, **P<0.001, ***P<0.0001 (Tukey’s 

test). 
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Supplementary Methods 

 

Animals and surgery  

 

2 months old, male, Wistar han rats were used in all experiments. Animals were kept 

in a room with controlled temperature (22 ± 1ºC), 12 h light/dark cycle (lights on at 8 a.m.) 

and housed in groups of 2-3 animals in plastic cages with food and water available ad libitum. 

All procedures with animals were approved by the respective local organisms: Direcção Geral 

de Veterinária (Lisboa, Portugal) and The Experimental Animal Ethics Committee of the 

Provincial Government of Southern Finland (Hämeenlinna, Finland); and the experiments were 

performed according to the guidelines of European Communities Council Directive 

2010/63/EU. 

An experimental model of peripheral neuropathy was induced by a spared nerve 

injury (SNI)1. The unilateral axotomy and ligation of the tibial and common peroneal nerves on 

the left (SNI-L) or right (SNI-R) hindpaws was performed under 1,5:1,0 of ketamine 

(Imalgene)/medetomidine (Dormitor) at a dose of 1 mL/kg as described in detail elsewhere1. 

Briefly, the skin of the lateral surface of the thigh was incised and a section made directly 

through the biceps femoris muscle exposing the sciatic nerve and its three terminal branches. 

Following ligation and removal of 2–4 mm of the distal nerve stumps of the tibial and common 

peroneal nerves (the sural nerve was left intact), muscle and skin were closed in two layers. 

Sham-operated animals underwent identical surgical procedures (half of the group in the left 

and the remaining in the right paw) except that tibial and common peroneal nerves were left 

intact. After the surgery, animals were allowed to recover before the actual testing that was 

performed one month after the operation.  

Animals participating in the conditioned place preference (CPP) experiment had an 

intrathecal (i.t.) catheter for drug delivery to the spinal cord. The catheter (Intramedic PE-10, 
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Becton Dickinson and Company, Sparks, MD, USA) was placed at the level of the lumbarspinal 

cord under pentobarbital anesthesia (50 mg/kg i.p.) one week before actual testing, as 

described in detail elsewhere2. Following recovery from anesthesia, the correct placing of the 

catheter was verified by injecting lidocaine (4%, 7–10 µl followed by a 10 µl of saline for 

flushing) with a 50 µl Hamilton syringe (Hamilton Company, Bonaduz, Switzerland). Only those 

rats that had no motor impairment before lidocaine injection but had a bilateral paralysis of 

hind limbs following i.t. administration of lidocaine were studied further.  

 

Behavioral experiments  

 

All behavioral experiments were performed during the light period of the daily cycle. 

Acclimatization to the testing room was allowed for approximately 1h. To avoid possible bias, in 

particular related with the testing period, animals belonging to different groups were tested 

alternately (e.g. sham, SNI-L, SNI-R,…). 

 

Von Frey monofilaments. Development of neuropathic hypersensitivity was verified behaviorally 

in all animals. In the group undergoing CPP, this was done in the beginning before the 

installation of the i.t. catheter and was used to compare the lesion lateralization effect. In the 

remaining animals, hypersensitivity was assessed 1 week after the end of behavioral 

assessment to verify the successful development and maintenance of the neuropathy. Animals 

were habituated to the experimental conditions 1–2 h daily for 2 to 3 days. For assessment of 

tactile allodynia, the hind limb withdrawal threshold was determined by stimulating the sural 

nerve areas in the hind paw of the nerve-injured or sham-operated limb with monofilaments. 

The calibrated series of monofilaments used in this study produced forces ranging from 0.008 

to 60 g (North Coast Medical, Inc. Morgan Hill, CA, USA). The monofilaments were applied to 

the lateral foot pad with increasing force until the rat withdrew its hind limb. The lowest force 

producing a withdrawal response was considered the threshold. The threshold for each hind 

paw of each rat was based on three separate measurements and the median of these values 

was considered to represent the threshold. Limb withdrawal threshold was assessed in a 

separate session one month after nerve injury or sham operation.  
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Conditioned place preference (CPP). For analysis of ongoing pain one month after the nerve 

injury or sham operation, rats received spinal clonidine as previously described for a single 

conditioning trial protocol3. All rats underwent a 3 day habituation, in which they were placed in 

automated CPP boxes (Place Preference System, San Diego Instruments, Inc., San Diego, CA, 

USA) with access to all 3 chambers for 30 min per day. Time spent in each of the boxes was 

recorded for 15 min on day 3 (Supplementary Figure S1a). Rats that spent more than 720 s in 

one of the conditioning chambers were eliminated from the study. The following day (day 4), all 

rats received a morning injection of saline and were immediately placed in the appropriate 

pairing chamber for 30 min. Four hours later, all rats received clonidine and were immediately 

placed in the opposite chamber for 30 min. Testing, in which the animals were placed drug-

free in the CPP boxes with access to all chambers, occurred the following day (20 h following 

drug pairing). Clonidine hydrochloride (Sigma-Aldrich, St.Louis, MO, USA) was administered 

intrathecally at the dose of 10 µg and at the volume of 10 µl. Clonidine as well as saline 

control were flushed with 10 µl of saline. Clonidine and saline control injections were 

monitored by movement of an air bubble between the drug/saline control and the saline used 

for flushing. 

 

Elevated-plus maze (EPM). The EPM was performed in a plus-shaped maze made on black 

polypropylene plastic, with two opposed open arms (50.8 cm x 10.2 cm) and two opposed 

closed arms with the same dimensions but surrounded by walls (40.6 cm height; Med 

Associates Inc., St. Albans, Vermont, USA). The whole structure was elevated 72.4 cm from 

the floor and was surrounded by 4 black walls perpendicular and at equal distances from each 

arm of the maze. Animals were placed at the centre of the maze and allowed to explore for 5 

min. In the end of each trial all areas were cleaned with 10% alcohol and carefully dried. The 

number of arm entries and the time spent in each arm was registered. The percentage of the 

time spent in the open-arms is inversely related with anxiety-like behavior. The number of 

closed-arm entries was used as an index of locomotor activity. 

 

Working memory (WM) and Morris water maze (MWM). The WM and MWM tests were 

performed in a circular tank (diameter 170 cm) with black walls located in the center of a room 

with white walls where black geometric figures have been placed as spatial references. A video 

camera positioned in the ceiling captured the image to a video tracking system (Viewpoint, 
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Champagne au Mont d’Or, France). A black, circular (diameter 12 cm) platform was placed 

within one of the quadrants virtually assigned in the computer. During the tests the water 

temperature was kept in the range 22-24ºC and the level was such that it slightly covered the 

platform (therefore, invisible to the rats). In the beginning of each trial the animal was placed in 

the respective quadrant (Supplementary table 2) facing the maze walls. The trial was 

interrupted if the platform was found or if 120 seconds had elapsed (thereafter the animal was 

guided to the target). The animal was then allowed to spend 30 seconds in the platform before 

starting a new trial. In the WM paradigm, the daily trial-to-trial progression of the swim distance 

was averaged for the different platform locations, whereas in the MWM day-to-day progression 

(learning) was averaged across the 4 daily trials, for the same platform location.   

 

Attentional-set shifting task4. The ASST was performed in a rectangular arena (40 x 70 cm) with 

20 cm height walls. In one end of the arena a fixed divider created two compartments (20 x 20 

cm) each containing a bowl (7 cm diameter/ 4 cm depth) filled with sawdust, whose top was 

at the floor level. Near the opposite end, a removable divider placed 25cm from the wall 

created a waiting area (25 x 40cm). 6 days before the experiment, food availability was 

restricted to the last hour of the day cycle. In the first 3 days animals also received in their 

cages, during the morning, 2 pieces of Cheerios (Nestle, Portugal) per animal. In the second 3 

days, these rewards were delivered in the two bowls of the test arena, buried progressively 

deeper, until the animals become used to dig the media. The actual test spanned for 2 days, 

the first consisting of two simple discrimination tasks (odor and textures) and the last of 4 

compound discrimination/reversal task pairs. Rats performed each task until a criterion of 6 

consecutive correct trials was reached. Trials started by removing the divider of the waiting 

area and allowing the animal to explore the arena and terminated when the it excavated one of 

the bowls, only one of which was baited with ½ Cheerio. The location of the correct (baited) 

bowl varied in each trial according to a pre-established order (see Supplemental Table 3). In 

the odor and texture simple discrimination tasks, each bowl was marked with a different odor 

(aromatic oil) or texture (placed at the entrance of the choice compartments), respectively, one 

of which signaled the presence of the buried reward. In the compound tasks of the 2nd testing 

day, odors and textures (attentional dimensions) were simultaneously presented and the 

animal had to disregard the irrelevant dimension and focus on the relevant one. During each 

trial, procedures were similar to the ones described above. A first task in which odor was the 
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relevant cue was followed by its reversal (same odors and textures, but with the previously 

unbaited odor as the signal for reward), and then to a second pair of odors and textures, with 

odor the relevant dimension, at its reversal. Animals were then presented with a new group of 

odor and texture pairs, of which one texture was the relevant dimension, followed by its 

reversal, and a new group of odors/textures (with texture the relevant dimension) again 

followed for its reversal. Detailed information on the sequences used is presented in the 

Supplementary Table 3. The number of trials necessary to reach the criteria is used to 

compare the performances at each step. 

 

Inhibitory control to variable delay. This task was performed in the classical 5-choice serial 

reaction time task apparatus5, consisting in an nearly squared arena with 20cm tall walls, one 

being curved and having 5 apertures at the animal head level with nose-poke detectors and a 

light. In the opposite wall, a single aperture with similar dimensions is connected to a food 

dispenser. In this test, only the middle aperture out of the 5 nose-poke apertures was available 

(the remaining 4 were closed). The day before the first session, food was removed from 

animals’ cages and thereon its availability was restricted to the last hour of the light cycle. 

Animals were trained to nose-poke the open aperture in order to receive a sugar pellet 

(dustless precision pellets; Bio-Serv, Frenchtown, US). Each trial in the training sessions 

started with the house-light on, signaling an ongoing trial. After a 3 seconds delay interval, the 

light-signaling aperture lighted up. A nose poke before the signal (impulsive response) 

interrupts the trial and initiates a “punishment” period of 5 seconds (house light off). On the 

other hand, a nose poke after the signal triggers a pellet deliver. Each training session spanned 

for 30 min or 100 trials. After nine training sessions all animals were able to accomplish 100 

trials and, except for two (1 sham and one SNI-L), had less than 30% of impulsive responses. 

The 10th session animals were tests in a sequence of 25 trials at 3 seconds delay, followed by 

70 trials at 7 or 10 seconds delay attributed randomly by the computer and returning finally to 

3 seconds delay for more 25 trials. In this session premature responses were not punished. 

The total number of premature responses per total amount of delay time, were used to 

compare groups’ performances.       

 

Statistics 
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The data are presented as mean ± S.E.M. and analyzed using one- or two-way 

analysis of variance (1-w- or 2-w-ANOVA) or repeated measures of variance, accordingly, 

followed by Tukey’s post-hoc test for multiple comparisons (comparison of three or more 

groups), or t-test (comparison of two groups). P<0.05 was considered to represent a significant 

difference. 
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Supplementary figure 1 

During pre-conditioning period, the animals failed to show preference for any of the chambers 

(F1,26=0.45; p=0.51), independent of the experimental group (F2,26=0.24; p=0.79;). Drug and 

saline indicate whether the chamber was paired with clonidine or saline treatment in the 

following day. Data presented as mean + S.E.M. 

  

 

Supplementary figure 2 

EPM closed-arms (CA) entries. Neither left- or right-sided SNI influences the number of CA 

entries (F2,37=1.640; p=0.21) indicating that the groups do not differ regarding their locomotor 

activity. Data presented as mean + S.E.M. 

 

 

Supplementary figure 3 

The learning curves in the Morris water maze spatial reference memory task are given as the 

average daily gain in reference to day 1. A multivariate analysis indicates that SNI has no 

significant effect on the ability to learn the platform location F(2,48)=1.628 (p=0.21). Data are 

presented as mean + S.E.M.   

 

Supplementary figure 4 

All steps of the ASST are presented. Except for the reversal steps (see main text) no differences 

were found between groups particularly in the Extra-Dimensional Shift (F(2,45)=2.949, p=0.063) 

indicating that PFC medial areas are apparently spared after SNI. Data presented as mean + 

S.E.M.
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Supplementary table 1 

 Starting quadrant 

day platform location Protocol T1 T2 T3 T4 

1 W WM N S W E 

2 N WM W N S E 

3 E WM E S N W 

4 S WM/MWM E W N S 

5 S MWM N S E O 

6 S MWM S N O E 

7 S MWM O E S N 

 

Supplementary table 1. Sequence and organization of the WM and MWM tests. Platform 

location on each day and the starting quadrant on each trial are given. Note that when the 

animal initiates the trial in the quadrant where the platform is located (bold), there exists an 

increased chance of finding the platform by accident. To avoid this possible bias, these trials 

were distributed evenly in the four days.  
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Supplementary table 2 

 L R L R L R L R L R L R L R L R L R L R 

trial 1 2 3 4 5 6 7 8 9 10 

SDodo O2 O1 O1 O2 O1 O2 O2 O1 O1 O2 O2 O1 O2 O1 O2 O1 O1 O2 O1 O2 

SDtex T2 T1 T1 T2 T1 T2 T2 T1 T1 T2 T1 T2 T1 T2 T1 T2 T2 T1 T2 T1 

O3 O4 O4 O3 O4 O3 O4 O3 O3 O4 O3 O4 O4 O3 O4 O3 O3 O4 O3 O4 
CD 

T3 T4 T3 T4 T4 T3 T4 T3 T4 T3 T3 T4 T3 T4 T3 T4 T4 T3 T4 T3 

O3 O4 O3 O4 O3 O4 O4 O3 O4 O3 O3 O4 O4 O3 O4 O3 O3 O4 O4 O3 
Rev1 

T4 T3 T4 T3 T4 T3 T4 T3 T3 T4 T3 T4 T3 T4 T4 T3 T3 T4 T3 T4 

O5 O6 O5 O6 O5 O6 O6 O5 O6 O5 O6 O5 O6 O5 O6 O5 O5 O6 O5 O6 
IDS1 

T5 T6 T5 T6 T6 T5 T5 T6 T6 T5 T5 T6 T5 T6 T6 T5 T6 T5 T6 T5 

O6 O5 O5 O6 O5 O6 O5 O6 O6 O5 O6 O5 O5 O6 O6 O5 O6 O5 O5 O6 
Rev2 

T5 T6 T6 T5 T6 T5 T5 T6 T6 T5 T5 T6 T5 T6 T6 T5 T6 T5 T6 T5 

O7 O8 O8 O7 O7 O8 O7 O8 O7 O8 O8 O7 O7 O8 O8 O7 O8 O7 O8 O7 
EDS 

T7 T8 T8 T7 T7 T8 T7 T8 T8 T7 T8 T7 T8 T7 T8 T7 T7 T8 T7 T8 

O8 O7 O8 O7 O7 O8 O7 O8 O7 O8 O8 O7 O8 O7 O8 O7 O7 O8 O7 O8 
Rev3 

T7 T8 T7 T8 T7 T8 T8 T7 T7 T8 T8 T7 T8 T7 T8 T7 T7 T8 T8 T7 

O9 O10 O9 O10 O10 O9 O9 O10 O9 O10 O10 O9 O10 O9 O9 O10 O10 O9 O10 O9 
IDS2 

T9 T10 T10 T9 T9 T10 T9 T10 T10 T9 T10 T9 T10 T9 T10 T9 T9 T10 T9 T10 

O9 O10 O10 O9 O9 O10 O9 O1 O9 O10 O10 O9 O10 O9 O9 O10 O9 O10 O10 O9 
Rev4 

T9 T10 T9 T10 T9 T10 T10 T9 T9 T10 T9 T10 T10 T9 T10 T9 T9 T10 T10 T9 

 

Supplementary table 2. Odor and texture presentation at each ASST trial. If at the 10th trial the 

learning criteria was not successfully achieved the sequence was restarted. Odors: O1-

strawberry; O2-camellia; O3-lemon; O4-papaya; O5-rose; O6-vanilla; O7-lotus; O8-cinnamon; O9-

mango; O10-eucalyptus; Textures: T1-styrofoam; T2-sponge; T3-sandpaper; T4-scourer; T5-sponge 

cloth 1; T6- sponge cloth 2; T7-cardboard; T8- velvet; T9-carpet; T10-foam. L-left compartment; R-

right compartment. 
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3. Results and discussion 

 

 

The work presented in this thesis illustrates the detrimental effect of chronic neuropathic pain 

on emotional and cognitive behaviour. It is in its conception a descriptive analysis, supported 

by a wide battery of behavioural tests. The spared nerve injury (SNI) model of chronic 

peripheral neuropathic pain was used in all experiments standardized to a 1 month period of 

undisturbed development. By keeping constant these two factors, i.e. model and neuropathy 

duration, the influence of two other variables, (i) the age of the animal at the time of pain onset 

and (ii) the laterality of the nerve lesion, were studied. The working hypotheses raised in each 

of these two cases shared a common ground, the neuropathy as a degenerative process that 

affects not only the primordial neuropathic spot but also remote areas of the nervous system 

either by degeneration (e.g. Wallerian), aberrant synaptic transmission, inflammation or a 

combination with variable degrees of contribution. In peripheral neuropathies, as is the case of 

the model adopted in the studies integrating this thesis, the areas being immediately affected 

are the spinal cord (or brainstem nuclei if a cranial nerve is affected) and the dorsal column 

nuclei, or to put it differently, areas where the affected nerves establish their first synapse. 

There, a cascade of events follows at molecular, cellular and morphological levels with 

immediate manifestations of abnormal sensation and hypersensitivity. Human and animal 

studies in the past years revealed that cortical and subcortical areas are also subject to plastic 

transformation as a consequence of prolonged pain and that these are temporally coincident 

with the emergence of altered emotional and cognitive behaviours. However, animal models 

have shown inconsistent results concerning the manifestation of these traits, suggesting that 

these models are not thoroughly characterized. The effects of age at pain onset and of 

lateralization of pain on such manifestations are discussed as well as the potential involvement 

of the prefrontal cortex (PFC).   
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3.1. Experimental considerations 

 

 

3.1.1. Animal model and pain assessment  

 

Over the last decades, a significant number of chronic pain animal models have been 

developed modelling different aspects of clinical chronic pain syndromes (reviewed in section 

1.3.1.; Bennett et al., 2003; Martin et al., 2003; Jarvis and Boyce-Rustay, 2009; Bennett, 

2010; Colleoni and Sacerdote, 2010; Jaggi et al., 2011). The SNI model (Decosterd and 

Woolf, 2000) was adopted in the experimental work presented in this thesis. Briefly, it consists 

in the ligation and distal axotomy of the tibial and common peroneal branches of the sciatic 

nerve, preserving a third branch, the sural nerve. Characteristic signs of neuropathy emerge a 

few hours after the surgery, including mechanical/temperature allodynia and hyperalgesia. 

Importantly, the model is temporally stable in time making it particularly suited for long 

experiments. This, allied with its technical simplicity and reproducibility, were the main reasons 

for its selection. 

 

In all experiments, the model was installed 1 month prior to the initiation of the behavioural 

studies in male Wistar Han rats. During this period animals were handled in a random 

schedule to prevent habituation while reducing bias due to novelty exposure stress. Aging 

studies included three groups of animals aged 2, 9 and 21 months. The SNI lesion was 

installed on the left side in this case. In the lateralization studies, 2 months-old animals were 

used. The SNI was installed either in the left or right side. Von Frey calibrated filaments were 

used in all cases to access the occurrence of mechanical allodynia (Chaplan et al., 1994), a 

hallmark of ongoing neuropathy. This assessment was performed at the end of the behavioural 

tests to prevent any interference. Additionally, analgesia conditioned place preference (CPP) 

was also employed in the lateralization experiments to assess ongoing pain (King et al., 2009).  
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3.1.2. Behavioural paradigms 

 

3.1.2.1. Emotional behaviour 

 

Elevated plus maze 

 

The elevated-plus maze (EPM) test is the gold-standard paradigm used for testing anxiety-like 

behaviour in rodents (Handley and Mithani, 1984; Pellow et al., 1985; Sousa et al., 2006). It 

consists in an elevated plus shaped maze with opposing open and closed arms. The rationale 

of the test lays on the conflict between the innate drive to explore novel spaces and the 

aversion to open areas that occurs in rodents. Anxious behavioural profiles are correlated with 

shorter periods of time spent in the open arms. The validity of the test has been extensively 

documented (Cruz et al., 1994; Rodgers and Johnson, 1995; Rodgers and Dalvi, 1997; Wall 

and Messier, 2001). 

 

Forced swimming test  

 

The forced swimming test (FST) was conceived in the mid 1970’s as a screening test for 

putative antidepressant properties of drugs in rodents (Porsolt et al., 1977a; Porsolt et al., 

1977b; Porsolt et al., 1978). In this paradigm the animal faces an inescapable aversive 

scenario (a cylinder filled with water) leading to a condition of learned helplessness that is a 

hallmark of depressed individuals. The perseverance of the animal to escape the situation 

inversely correlates with depressive-like behaviour. The FST has been extensively validated and 

is the most common test used to assess depressive-like behaviour in rodents (Cryan et al., 

2005; Petit-Demouliere et al., 2005; Sousa et al., 2006).  

 

3.1.2.2. Cognitive behaviour 

 

A battery of cognitive tasks was selected to study the effect of chronic pain on cognitive 

performance (Sousa et al., 2006). Successful performance in the majority of these tasks is 

known to be dependent on the PFC functional integrity (for detailed discussion see 3.4.; Dalley 

et al., 2004; Robbins and Arnsten, 2009). This option was made based on the consistent 
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findings of morphofunctional maladaptative plasticity in this area during chronic pain 

conditions (see 1.3.2.). Morris water maze (MWM), a hippocampal dependent task, was used 

for comparison (Morris, 1984). 

 

Working memory 

 

A number of tasks have been envisaged to test for working memory (WM) in rodents 

(Dudchenko, 2004). In the set of studies performed, the spatial WM version of the MWM (see 

below for details) was used (Frick et al., 1995). The task was performed in a circular pool of 

water where a platform was accessible but concealed slightly below the water level. Each day, 

for four consecutive days, the platform location was changed and the animal was given four 

trials to learn it. Therefore, information concerning the platform location had to be acquired 

(first trial) and retrieved (remaining trials). The trial-to-trial progression was analysed in terms of 

the amount of time (or swam distance) elapsed to reach the platform. We also analysed MWM 

long-term spatial reference memory for comparison. In this case the platform location was kept 

in the same location for four consecutive days. The daily progression in terms of the amount of 

time (or swam distance) elapsed to reach the platform was analysed. Water mazes are 

advantageous over other WM and long term memory paradigms in many aspects (Dudchenko, 

2004); food or water deprivation are not required as the motivating stimulus, i.e. escaping 

from the water, an innate behaviour in rodents and, additionally, intramaze cues (e.g. odours) 

are nearly absent. The principal disadvantage relates to the fact that the animal can adopt 

other strategies, namely egocentric orientation, not related with the rational of WM or MWM.  

 

Reversal learning 

 

Reversal following MWM acquisition. The classical MWM was applied as originally described 

(Morris, 1984). After the fourth day of MWM, the platform location was finally moved to a new 

location. The percentage of time (or distance) spent in old and new quadrants were used as an 

index of reversal learning ability.  

 

Attentional-set shifting task (ASST). The ASST is an analogue of the Wisconsin Card Sorting test 

(Berg, 1948; Milner, 1963; Monchi et al., 2001) that has been adapted for primates (Dias et 
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al., 1996a, b, 1997) and rodents (Birrell and Brown, 2000). The test consists in the sequential 

acquisition and reversal of rules regarding information leading to a reward (Birrell and Brown, 

2000). The rule indicating a food reward is constantly being shifted either within or between a 

perceptual dimension (odour or texture). The set of cues consists of two different odours and 

two different textures, being simultaneously presented to the animal (compound discrimination, 

CD). In the first CD, the reward was associated with one of the odours. Following a successful 

acquisition (six consecutive rewarded trials), the reward was then associated with the second 

odour - reversal (R1). Once the criterion was attained, new pairs of odours and textures were 

introduced. The procedure was repeated in a first instance maintaining the perceptual 

dimension - intradimensional shift (IDS1)/R2 – and then changing it to textures - 

extradimensional shift (EDS)/R3. Finally, an IDS2/R4 was performed. The ASST is 

advantageous over the MWM/reversal as it allows to discriminate PFC subfunctions (see 

below; Birrell and Brown, 2000) and limits the use of alternative strategies, e.g. egocentric 

orientation. Food deprivation is required, but only for a short period of time and thus it should 

not constitute a major drawback.  

 

Impulsivity 

 

The 5-choice serial reaction time task (5-csrtt) was primarily selected to test impulsive 

behaviour (Carli et al., 1983; Robbins, 2002; Bari et al., 2008). The rational behind the task 

follows that of Leonard’s 5-csrtt developed to study sustained attention in humans (Leonard, 

1959). In this task animals are trained to poke the nose in a lighted aperture out of five 

possible choices in order to gain a sugared reward. The attentional demand of the task is 

increased by successively decreasing the light signal duration whenever the animal reaches 

accuracy levels over 80%. We found that the amount of sessions needed to reach the last level 

varied substantially between animals (from 3 weeks up to 2 months), independently of their 

experimental condition. However, in this level we had a strong indication that right-sided SNI 

animals presented increased levels of impulsive responses. To validate this observation, we 

designed a delay-to-signal task, focusing on the impulsive response. In this task, the light signal 

was presented with variable delays but in a fixed location. The total number of premature 

responses (i.e. nose pokes during the delay period) was compared between the groups. This 

task is advantageous over the 5-csrtt in that animals learn it faster (up to 8 days) and more 
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homogeneously, implying a shorter period of alimentary restriction. Additionally, the attentional 

component is minimized facilitating the interpretation of the results. 

 

 

3.2. Impact of neuropathic pain on emotional behaviour 

 

The association between chronic pain and mood disorders is extensively documented in 

human subjects (Blackburn-Munro and Blackburn-Munro, 2001; Wiech and Tracey, 2009). It is 

bidirectional in the sense that both chronic pain potentiates the emergence of mood disorders 

(Dworkin and Gitlin, 1991), but also in that the latter can increase the risk for chronic pain 

(Magni et al., 1994; Carroll et al., 2004; Larson et al., 2004). Additionally, in the past decade 

it was demonstrated that animal models of prolonged pain also manifest altered emotional 

behaviour, particularly anxiety- and depressive-like behaviour, paving the way for a new 

comprehension of the pathophysiology of deteriorated emotional behaviour in the context of 

chronic pain. However, results obtained by different researchers greatly diverge. This derives to 

a great extent from the experimental heterogeneity among the different studies (see table I) as 

factors as specie, strain, gender, age, husbandry and testing procedures are known to greatly 

influence the outcome measures (Mogil, 2009). These will be briefly discussed below.  

 

Strain/genetic background. There is currently no experimental evidence that the genetic 

background influences the expression of emotional disorders in animal models of prolonged 

pain. However, this is highly probable as, when analysed individually, pain-related behaviours 

(LaCroix-Fralish et al., 2005) and anxiety/depression manifestations (O'Neil and Moore, 2003; 

Hamet and Tremblay, 2005; Malkesman and Weller, 2009) greatly depend on the genetic 

background. Furthermore, two reports have consistently demonstrated that increased levels of 

basal trait anxiety are predictive of increased pain-like behaviours in neuropathy models (Vatine 

et al., 2000; Roeska et al., 2009).  

 

Gender. All information concerning the impact of chronic pain on emotional behaviour has 

been obtained in male subjects (table I). Therefore gender cannot account for the diversity of 

published results. However it is expectable that gender plays a role, not only because 

emotional traits present gender-related differences in basal conditions (Palanza, 2001) but also 
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because sexual hormones modulate pain perception (Craft et al., 2004; Aloisi and Bonifazi, 

2006).  

 

Pain duration. In chronic pain models, manifestations of abnormal emotional behaviour are 

delayed in relation to the emergence of pain behavioural signs. Most probably, this reflects 

different kinetics on the plastic adaptations taking place in the supraspinal centers and dorsal 

horn, respectively (see 1.3.2.). Additionally, distinct traits of emotional behaviour, like anxiety 

and depression, present a temporal mismatch in their manifestations, the former preceding 

the latter (Suzuki et al., 2007; Yalcin et al., 2011). Thus, the duration of the neuropathy in 

experimental studies is probably one of the factors mostly associated with the variability on the 

reported results (table I).  

 

Pain model. A small number of studies (see table I) demonstrated that the emergence of 

emotional disturbances depend on the type of pain model used. Comparative analyses indicate 

that models associated with lower withdraw thresholds to mechanical stimulation are more 

anxiogenic, suggesting that pain magnitude can be a determinant factor triggering abnormal 

affective behaviour (Hasnie et al., 2007a; Roeska et al., 2008).  

 

Experimental conditions. Factors related with the experimental organization and husbandry 

impact on the manifestation of behavioural traits (Sousa et al., 2006; Rice et al., 2008; Mogil, 

2009). Although these are not always described with detail in the scientific reports, some 

possible sources of bias can be detected including nociceptive testing immediately prior to 

anxiety assessment or test repetition in paradigms that require novelty, for instance. 

 

The impact on emotional behaviour on parameters such as age at the time of pain onset and 

anatomical location of the pain focus, namely its lateralization, were unexplored when the 

experimental work of this thesis was initiated. Both parameters were considered fundamental 

to the overall characterization of the phenomena in the animal model and, most of all, to guide 

further research on the underlying pathophysiology.  

 

 

 

95



Table I. Evaluation of anxiety- and depression-like behaviour in chronic pain models 

trait paradigm species/strain model age side overall effect references 

anxiety EPM; DB/LB rat; SD SNL y l No differences were detected between injured and sham controls at day 14; Kontinen et al., 1999 

 EPM; DB/LB mouse; B6 PSNL; CFA y r Anxiety-like behaviour in the EPM and DB/LB at day 28; EPM tested at 7(b) and 28(a,b) day; 
DB/WB tested at 7(a,b), 14(a), 21(a) and 28(a,b) day; 

Narita et al., 2006a; Narita et 
al., 2006b 

 OF rat; Wistar VZV; PSNL; SNT y l Positive correlation between mechanical hypersensitivity and anxiety in the VZV and SNT 
models at day 14; 

Hasnie et al., 2007a 

 EPM; OF mouse; B6 PSNL y l No differences were found at days 7, 14 and 28;  Hasnie et al., 2007b 

 OF; DB/LB; EPM mouse; B6 SNL y l Signs of anxiety-like behaviour at post-surgery week 8 in all paradigms1; Suzuki et al., 2007 

 OF rat; Wistar PSNL; gp120 y l Signs of anxiety-like behaviour at day14; a second group was tested at day 7 but has not 
manifested any alteration; 

Wallace et al., 2007 

 OF rat; Wistar ddC; ddC+gp120 y syst; syst/l Signs of anxiety-like behaviour at day 14 (ddC+gp120) and 21 (ddC); Wallace et al., 2007b, 2008 

 EPM mouse; B6 SC y r Anxiety-like behaviour at day 30; Benbouzid et al., 2008 

 DB/LB; EPM mouse; B6 PSNL y r Anxiety-like behaviour at post-surgery day 27 in both paradigms; Matsuzawa-Yanagida et al., 2007 

 OF; EPM rat; Wistar SNI y r No signs of anxiety-like behaviour at day 60; Goncalves et al., 2008 

 EPM rat; Wistar CCI; PSNL y l Anxiety-like behaviour at day 28 (CCI); ≈ 40% less time in the OA PSNL compared to sham 
(no statistical significance); 

Roeska et al., 2008 

 EPM rat; Wistar (HAB and LAB) CCI y n/a2 Anxiety-like behaviour both in HAB and LAB animals at post-surgery day 36; Roeska et al., 2009 

 OF mouse; ddY PSNL y r No signs of anxiety-like behaviour at at post-surgery days 7-9; Kodama et al., 2011 

 OF; EZM; mb mouse; Balb/c and B6 SNI; CCI; CFA y l Results vary according to the paradigm, sp/st and model 30 days after pain onset. 
Generally, no alterations or decreased anxiety; 

Urban et al., 2011 

 DB/LB; mb; NSF mouse; B6 SC n/a r Increased anxiety from the 4th up to the 8th post-surgery week;  Yalcin et al., 2011 

depression FST rat; SD SNL y l No differences were detected between injured and sham controls; Kontinen et al., 1999 

 TST mouse; B6 PSNL y l No differences were found at post-surgery days 7, 14 and 28; Hasnie et al., 2007b 

 FST mouse; B6 SNL y l Depressive-like behaviour at post-surgery week 8; Suzuki et al., 2007 

 TST mouse; B6 SC y r No differences were detected between injured and sham controls; Benbouzid et al., 2008 

 FST rat; Wistar SNI y r Depressive-like behaviour at day 60; Goncalves et al., 2008 

 FST rat; Wistar CCI y l Depressive-like behaviour at post-surgery day 21-28; Hu et al., 2009 

 FST mouse; B6 SNI y r Depressive-like behaviour at post-surgery day 7; Norman et al., 2009 

 FST rat; SD SNL (L5) y n/a Depressive-like behaviour at post-surgery day 29; Hu et al., 2010 

 FST; SPT mouse; Balb/c and B6 SNI; CFA y l No alterations up to post-surgery day 40; Urban et al., 2011 

 Splash test; FST mouse; B6 SC n/a r Depressive-like behaviour at post-surgery weeks 6-9; Yalcin et al., 2011 
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Table I. Summary of the literature concerning the effects of chronic pain in anxiety- and depression-like behaviour in rodent models. Male animals were used in all 

studies. Abbreviations: CCI – chronic constriction injury; CFA - complete Freund’s adjuvant; DB/LB – dark/light box; ddC – 2'-3'-dideoxycytidine (zalcitabine; 

antiretroviral agent); EPM – elevated-plus maze; EZM – elevated-zero maze; FST – forced swimming test; gp120 - immunodeficiency virus type I envelope 

glycoprotein 120; HAB – high anxiety-like behaviour; l – left; LAB – low anxiety-like; mb – marble burying; n/a – not applicable (available); OF – open-field; NSF – 

novelty suppressed feeding test; PSNL – partial sciatic nerve ligation; SC sciatic nerve cuffing ; SD – Sprague-Dawley; SNI – spared nerve injury; SNL – spinal nerve 

ligation; SPT – sucrose preference test; syst – systemic; r – right; SNT - spinal nerve transection; TST - tail suspension test; VZV - Varicella zoster virus ; y – young. 

Notes: 1 in a second experiment, a group of animals was tested at post-surgery days 2, 7, 15 and 30; depressive- and anxiety-like behaviours manifested at days 15 

(FST) and 30 (OF, EPM), respectively; 2left-sided in previous reports. 
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3.2.1. Age effect 

 

In chapter 2.1. of this thesis we demonstrated that young and old SNI animals had an 

increased anxiety-like behaviour when compared to the respective age-matched sham controls. 

On the contrary, mid-aged SNI and sham-operated animals presented a similar behavioural 

profile in the EPM. A substantial decrease in the percentage of time spent in the open-arms by 

the sham group (and not a recovery of SNI) accounts for this result in mid-aged animals. 

Additionally, there was an age-related increase in the anxiogenic profile which is in accordance 

with the observations made by others (Lamberty and Gower, 1990; Frussa-Filho et al., 1992; 

Lamberty and Gower, 1992; Li et al., 1995; Boguszewski and Zagrodzka, 2002; Bessa et al., 

2005; Pego et al., 2006; Meyza et al., 2011; Moretti et al., 2011). Importantly, the presence 

of the neuropathic lesion seemed to contribute to accelerate the aging trend.  

 

On the contrary, young and old SNI animals do not display major differences in the 

manifestation of depressive-like behaviour in the FST, as assessed both by the latency to 

immobility and the immobility parameters, when compared with the respective age-matched 

controls. Curiously, mid-aged controls and SNI differed significantly as a result of a decreased 

immobility in the sham group (when compared with young and old sham groups). This age-

related pattern observed in the sham group was in accordance with studies performed by 

others (Miyagawa et al., 1998; Zambrana et al., 2007). Taking into account the data obtained 

in the EPM it is apparently paradoxical that in the FST, SNI did not trigger a deterioration of the 

emotional response. However, a recent study suggests that depressive-like behaviour in 

rodents with neuropathic pain is a late onset phenomena emerging around the 8th week after 

the neuropathy installation (Yalcin et al., 2011), which may justify the absence of depressive-

like manifestations in our animals (4-week neuropathy). This observation is not consensual but 

other studies seem to support this possibility (see table I; Suzuki et al., 2007; Goncalves et al., 

2008). 

 

The pathophysiology underlying altered emotional behaviour in chronic pain conditions remains 

largely unknown. Comparable behavioural impairments are observed in chronic stress 

conditions largely as a result of a sustained activation of the hypothalamic-pituitary-adrenal axis 

(HPA). Neuropathic pain is an inescapable stressor and in this context some groups measured 
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the levels of circulating adrenocorticotropic hormone (ACTH) and corticosterone (Bomholt et 

al., 2005; Ulrich-Lai et al., 2006; Norman et al., 2009; Yalcin et al., 2011) as well as thymus 

and adrenal weights (Ulrich-Lai et al., 2006) to conclude that they were unaltered. However, 

the expression of corticotropin releasing factor (CRF) and glucocorticoid receptor (GR) were 

found to be increased in the Amy (and the latter also in the hippocampus) but not in the 

hypothalamic paraventricular nucleus (PVN), which is a central area in the HPA axis. 

Furthermore, CRF receptor antagonism was demonstrated to diminish pain-related (acute 

inflammatory condition) anxiety (Ji et al., 2007). Additionally, in a chronic SNI condition, 

blockage of CRF binding protein (implying increased free CRF) was shown to increase the 

preference for the dark compartment of the dark/light box (DB/LB) paradigm (LaBuda and 

Fuchs, 2000) reflecting an anxiogenic effect (Bourbia et al., 2010). The interpretation of this 

effect has however to account for the dual pro- and anti-nociceptive actions of CRF (Ji and 

Neugebauer, 2008; Bourbia et al., 2010). Altogether, the available data support the idea that 

the underpinnings of emotional disturbances associated with chronic pain are mainly extra-

HPA. During the ageing process, on the other hand, it is known that the regulatory 

mechanisms of the HPA axis are altered toward an increased level of circulatory ACTH and 

corticosteroids and that the inhibitory feed-back loop is less effective when a HPA response is 

mounted (Sapolsky, 1999; Pedersen et al., 2001). It is therefore probable that both systems 

concur to the overall modulation of emotional behaviour, explaining the potentiation of the SNI 

effect observed in the aged animals. 

 

Alternatively, the hypothesis of a neuro-immune contribution to the modulation of emotional 

behaviour has been gaining currency. In this context, the observation of an increased 

expression of interleukin 1β (IL-1β) in the brainstem, thalamus and PFC in neuropathic pain 

models (Apkarian et al., 2006; Norman et al., 2009) and, particularly, an IL-1β receptor 

antagonism mediated rescue of a depressive-like behaviour in the same conditions seems to 

support such view (Norman et al., 2009). It should be noticed that the magnitude of IL-1β 

expression differed between the two models of neuropathic pain used by Apkarian and 

colleagues (2006), evidencing the singularity of each model. Additionally, alterations of 

opioidergic function in the Amy (Narita et al., 2006a) and PFC (Narita et al., 2006b) have been 

associated with abnormal emotional behaviour in chronic pain conditions, further highlighting 

the multifactorial character of the phenomenon.  
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3.2.2. Lateralization effect 

 

Animals with left-sided SNI manifested increased anxiety-like behaviour when compared with 

both right-sided SNI and the sham control (chapter 2.2). Measurements of either evoked or 

ongoing pain showed no differences that could account for our observations. Only two human 

studies by Gagliese and colleagues tested putative differential effects of lateralized pain on 

emotional behaviour and both concluded similarly, i.e., left-sided pain is more anxiogenic 

(Schiff and Gagliese, 1994; Gagliese et al., 1995). On the other hand, innumerable animal 

studies greatly diverge on results (see table I). These discrepancies may relate to the diversity 

of pain models, time points for behavioural assessment, the usage of strains that differ on 

basal conditions in emotional manifestations and incorrect organization of the behavioural tests 

(some authors report pain tests prior to EPM) hindering any comparison. This point will be 

further discussed in section 3.4. in the context of spinal cord ascending pathways to the PFC, 

a potential mediator of the lateralized effect. 

 

 

3.3. Impact of neuropathic pain on cognitive performance 

 

It has been recognised that individuals with chronic pain frequently display impaired attention 

and a slower ability to process information (Moriarty et al., 2011). Some authors attributed 

such impairments to the presence of a highly salient and perseverant stimulus – pain – that, 

by consuming processing capacity, diminishes the efficient process of other types of 

information (Eccleston, 1994, 1995; Legrain et al., 2009). Brain imaging studies, namely the 

seminal studies by Apkarian and colleagues would, however, reveal a different picture 

(Apkarian et al., 2004). In this report, it was concluded that individuals with chronic pain 

presented severe structural alterations in cortical areas involved in cognitive function, namely 

the prefrontal cortex (PFC). To put it in the authors’ own words “…the brain of a chronic pain 

patient is not simply a healthy brain processing pain information, but rather is altered by the 

persistent pain in a manner reminiscent of other neurological conditions associated with 

cognitive impairments.” (Baliki et al., 2008). Until very recently, the effect of chronic pain in 

cognitive performance was largely uncharacterized in the animal model. Importantly, none of 

the studies available was concerned with the distinction between affected and spared cognitive 
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domains, a fundamental aspect of validity of the model as a correlate of human pathology. This 

scenario prompted us to initiate a series of behavioural tests aiming to further clarify this issue. 

The organization rationale of the cognitive tests was similar to that followed in emotional 

behavioural studies (section 3.2.) both in terms of the pain model selected as well as of the 

parameters age and laterality of pain focus. Finally, the experimental considerations raised on 

section 3.2. concerning the impact of factors as strain, gender, pain model, among others, on 

the emotional behaviour, also apply in the context of cognitive studies. However, the scarcity of 

published reports hinders any detailed comparative analyses on each of these factors (table II).  

 

3.3.1. Age effect 

 

In chapter 2.1. we demonstrated that the increased age of the experimental subject was a 

determinant factor for poorer performances in the reversal learning task, marginally significant 

for WM task and not relevant for the performance in the MWM. Chronic pain (left-sided SNI) 

was detrimental for the performance only in the reversal task affecting specifically the mid-aged 

group, mid-aged sham operated animals performance being comparable to that of young (SNI 

and Sham) animals and that of mid-aged SNI comparable to old (SNI and sham) animals. 

 

Aging seemed to be selectively detrimental in the tasks that are more dependent on the 

functional integrity of the PFC, i.e., reversal learning, and spared the hippocampal dependent 

MWM. WM task depends on the hippocampal-to-PFC communication (Cerqueira et al., 2007) 

and in that sense it is not surprising that the performance on this task was also affected by 

aging though not as severely as the reversal learning task. In agreement with our observations, 

in a cross sectional study in humans, negative associations between volume and age were 

found to be stronger in the PFC than in the hippocampus in (Raz and Rodrigue, 2006). It 

should however be acknowledged that interindividual heterogeneity concerning the onset and 

the affected brain areas has been found in a longitudinal study on healthy subjects (Raz et al., 

2005). 

 

Current data on the association between pain and age is controversial, some authors 

defending a putatively increased algesic quality of neuropathies in mid-aged individuals while 

others not (Gagliese and Melzack, 2000). In our experiments we showed that pain-related 
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behaviours evoked by stimulation of the affected dermatomes with calibrated Von frey 

filaments did not differ between young, mid-aged and old animals and, therefore, pain intensity 

should not be an accountable factor for the cognitive impairment observed.  

 

	
  

3.3.2. Lateralization effect 

 

Following the initial studies on aged animals (chapter 2.1.), the PFC emerged as a probable 

candidate mediating the observed behavioural effects considering that its dependent functions 

appeared particularly vulnerable in chronic pain conditions. We have therefore increased the 

battery of cognitive tests in the second series of experimental work in order to test for other 

PFC-dependent functions like impulse control and attentional-set shifting (see chapter 2.2.). We 

demonstrated that in all these paradigms animals with right-sided neuropathy had consistently 

poorer performances when compared to sham operated animals or left-sided SNI animals. 

Importantly, we have found no differences in the hippocampal dependent MWM reinforcing the 

idea that the SNI lesion, particularly when right-sided, is more detrimental for PFC-dependent 

functions. 

 

In the spatial reference WM test we observed that the trial-to-trial average distance difference in 

the water maze was significantly smaller in rats with a right-sided neuropathy when compared 

to left-sided and controls, reflecting an impaired learning ability. Contrary to our observations, 

in a recently published study (table II; Ren et al., 2011) left-sided SNI animals were found to 

have an impaired WM performance in the 8-arm radial maze (8-arm; Olton and Samuelson, 

1976). The paradigms used in the two studies, although sharing a common rationale, differ 

significantly in many aspects (Sharma et al., 2010), which can possibly account for the 

observed differences. A curious aspect of the 8-arm study is that while control animals 

demonstrate a clear learning curve, stabilizing on the 3rd day close to their best performance, 

SNI maintain a stable performance throughout the entire experimental period (9 days), i.e., 

these animal do not learn. This fact strongly suggests that stereotypic strategies (e.g. clockwise 

movements), not related with WM, might be operating (Dubreuil et al., 2003). 
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In the ASST we observed that right-sided SNI animals required more trials to accomplish the 

criteria in the reversal (R1-4) steps. Curiously, in the EDS step no differences were detected 

between groups. EDS and reversal have been demonstrated to depend on the functional 

integrity of distinct areas of the PFC, the medial PFC (mPFC) and orbitofrontal cortex (OFC), 

respectively (Bissonette et al., 2008). This suggests that the deleterious role of the neuropathic 

lesion is mainly restricted to the OFC (discussed in section 3.4). To the best of our knowledge, 

this is the first observation of impaired attentional-set shifting ever reported.    

 

Impulse control in a delay-to-signal task was also affected in the right-sided SNI animals. The 

effect was particularly evident when the delay was incremented from 3 to 7 or 10 seconds.  

This is in agreement with a previous unpublished observation of ours in the classic 5-csrtt. 

Again, impulsivity was only evident when the task demand was increased. Concerning the 

lateralized effect of the lesion, Pais-Vieira and colleagues tested the performance of animals in 

left-sided inflammatory monoarthritis model in the 5-csrtt and, in agreement with our 

observations, failed to demonstrate alterations in impulsive behaviour (see table II; Pais-Vieira 

et al., 2009a).  

 

In the MWM, SNI lesion on either side was not detrimental for the animal performance. In the 

above mentioned study by Ren and colleagues, left-sided SNI animals though presenting an 

increased number of WM errors in the 8-arm, had similar long-term reference memory errors 

when compared to controls (Ren et al., 2011). This result, and considering the construct 

similarities between the two paradigms, is comparable to ours, despite the ethological 

considerations raised before.  
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Table II. Evaluation of cognitive performance in chronic pain models 

trait paradigm species; strain model age side overall effect references 

Sustained attention Delayed nonmatching-
to-position operant task  

rat; Lewis polyarthritis y n/a Increased percentage of incorrect choices 1 to 2 months post pain onset; Cain et al., 1997; Lindner et 
al., 1999 

Attention/memory NORT rat; SD colitis y n/a Decreased attention toward a novel object up to 7 days after pain onset; Millecamps et al., 2004 

Sustained attention/impulsivity 5-csrtt rat; LH monoarthritis y l Decreased accuracy and increased omissions immediately after monoarthritis induction 
(sustained for 10 days); No difference in impulsive responses; 

Pais-Vieira et al., 2009a  

Risk assessment Gambling task rat; SD monoarthritis y l Increased preference for risk choice 5, 21 and 56 days post pain onset; Pais-Vieira et al., 2009b 

Spatial reference memory MWM rat; SD SNL (L5) y n/a Impaired learning performance at day 30;  Hu et al., 2010 

Attention/memory NORT mouse; ddY PSNL y r Decreased attention toward a novel object 7-9 days post PSNL; Kodama et al., 2011 

Working memory 8-arm; NORT rat; SD SNI y l Increased number of WM errors and no differences in spatial reference memory errors in 
the 8-arm at post-surgery days 10-20 and 30-40; Decreased short-term memory and no 
differences in long-term memory at post-surgery days 19 and 20, respectively, in the NORT; 

Ren et al., 2011 

 

Table II. Summary of the literature concerning the effects of chronic pain in cognitive performance in rodent models. Male animals were used in all studies. Abbreviations: 5-

csrtt – 5-choice serial reaction time task; 8-arm – 8-arm radial maze; l – left; LH – Lister Hooded; MWM – Morris water maze; n/a – not applicable (available); NORT – novel 

object recognition test; PSNL – partial sciatic nerve ligation (Seltzer et al., 1990); r – right; SD – Sprague-Dawley; SNI – spared nerve injury (Decosterd and Woolf, 2000); SNL 

– spinal nerve ligation (Kim and Chung, 1992); y – young. 
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3.4. Is the PFC underlying maladaptive behaviour in chronic pain? 

 

 

In an overall appreciation of our behavioural experiments, it is noticeable that a dysfunctional 

PFC could account for the behavioural shifts observed in chronic pain rats. Firstly, the 

behavioural domains affected are known to rely on important contributions from the PFC 

(Miller, 2000; Dalley et al., 2004; Robbins, 2005; Salzman and Fusi, 2010; Diamond, 2011), 

namely working memory (Passingham and Sakai, 2004; Funahashi, 2006; D'Esposito, 2007; 

Galloway et al., 2008; Khan and Muly, 2011), attentional set-shifting (Robbins, 2007), 

impulsivity (Dalley et al., 2008; Kim and Lee, 2011) and emotional behaviour (Cardinal et al., 

2002; Davidson, 2002; Maier and Watkins, 2010; Etkin et al., 2011). Secondly, the PFC is 

morphologically altered in chronic pain conditions (Apkarian et al., 2004; May, 2008). Finally, 

the PFC is functionally lateralized (Cerqueira et al., 2008) and, considering its functional load 

distribution, the behavioural impairments caused by left and right nerve lesions are in 

accordance with the organization of the ascending pathways (see 1.2.2.). Taking this into 

consideration it is important to appraise our data in the context of a PFC contribution. 

 

Brain imaging studies in human subjects consistently indicate that the PFC is morphologically 

altered in a number of chronic pain conditions including chronic back pain (Apkarian et al., 

2004), fibromyalgia (Luerding et al., 2008), chronic complex regional pain syndrome (Geha et 

al., 2008) and myofascial-type temporomandibular disorders (Gerstner et al., 2011). A similar 

observation was also made in a rat model of chronic neuropathic pain (Seminowicz et al., 

2009). The casual relation between pain and the plastic adaptation observed in the PFC has 

been established, the latter depending on the former (and not the opposite) (Rodriguez-Raecke 

et al., 2009). Accordingly, the structural alterations, as well as the cognitive impairments 

associated, were shown to be reversible with an effective analgesic treatment (Seminowicz et 

al., 2011). The reasons for an apparent increased susceptibility of the PFC when compared to 

other cortical areas are not currently understood. In the rat, it has been demonstrated that the 

ventral aspects of the mPFC and the OFC are the only neocortical areas that receive direct 

input from the contralateral spinal cord (Lima, 2009), which may render these areas more 

susceptible to the effects of the nerve lesions. In fact, other second order relay stations of the 

ascending pathways, such as the thalamus and the brainstem, have also been shown to 
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present similar morphological abnormalities (May, 2008), further supporting this hypothesis. 

Finally, the functional integrity of the mPFC and OFC is intimately associated with the 

behavioural domains affected in our experiments (Dalley et al., 2004).  

 

Concerning the lateralized effects of the neuropathic lesion, these can be explained by the 

functional organization of the PFC. Inhibition of the right, but not the left, mPFC (infralimbic 

area) was shown to suppress anxiety-like behaviour (Sullivan and Gratton, 1999, 2002; Wall et 

al., 2004) and stress-induced corticosterone elevation (Sullivan and Gratton, 1999). It is 

therefore tempting to postulate that the deterioration of emotional behaviour we observed in 

the left SNI animals, reflect such organization. As stated before, measurements of circulating 

ACTH and corticosterone indicate that neuropathic animals do not differ from controls in basal 

conditions (Bomholt et al., 2005; Ulrich-Lai et al., 2006; Norman et al., 2009; Yalcin et al., 

2011). However, when challenged with a stress paradigm, the HPA appears to be 

hyperresponsive in left lesioned animals suggesting an impairment of the regulatory 

mechanisms (Ulrich-Lai et al., 2006). New studies are therefore needed concerning this 

hypothesis.  

 

The selective cognitive deficits found in the right-sided animals are, on the other hand, more 

difficult to explain based on a simple lateralization of PFC, because both hemispheres are 

known to contribute to different aspects of cognitive construction/performance (Gazzaniga, 

2000). For instance, when a decision paradigm was applied to patients with either right or left 

PFC lesions, the former show impaired performance in trials where the decision was based on 

incomplete information while the latter were impaired when complete information was provided 

(Goel et al., 2007). An additional example comes from impulsivity studies in humans. Matsuo 

and colleagues (2009) found an inverse correlation between the left/right OFC volume gray 

and motor and nonplanning impulsivity, respectively. The construct of the behavioural 

paradigm employed is therefore determinant when evaluating lateralized frontal dysfunction. 

This probably explains the differences in the WM performance in our experiments and in those 

described by others (Ren et al., 2011).  

 

The PFC hypothesis is also coherent in the context of ageing. This area has been shown to 

present marked morphological alterations, namely cortical atrophy, in aged human individuals 
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(Raz and Rodrigue, 2006). As stated above, similar alterations have been found in chronic pain 

patients (Apkarian et al., 2004) suggesting that a cumulatively effect would result, if the two 

factors co-occur. In fact, in our experiments both control and SNI aged animals presented an 

increased anxiety-like behaviour but this was more marked in the latter, supporting this 

hypothesis. Additionally, there is now available compelling evidence of functional cortical 

asymmetry loss during the aging process (Rossi et al., 2004; Bergerbest et al., 2009), 

explaining the apparently contradictory observation of impaired reversal performance of left-

sided SNI mid-aged animals. 

 

Taken together, these observations give us a compelling indication of the PFC involvement on 

the behavioural shifts occurring after SNI.  
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4. Conclusions and future perspectives 

 

 

It stems from our experimental data that the age at the onset of pain and the lateralization of 

the neuropathic lesion affect the behavioural outcome in emotional and cognitive paradigms. In 

the first case (chapter 2.1.), the presence of chronic pain was shown to further aggravate an 

age-associated deterioration of emotional and cognitive functions while in the second (chapter 

2.2.) emotional and cognitive domains were selectively affected after left- and right-sided 

neuropathic lesions, respectively. Although our data is suggestive of a strong PFC involvement 

in the observed behavioural impairments, the underlying neural substrates remain largely 

unknown. Future studies addressing this issue should include: 

 

i. a chronological evaluation of the manifestations of abnormal emotional and cognitive 

behaviour; this point is essential to establish the temporal window of analyses and/or 

intervention in subsequent experimental studies; 

 

ii. detailed morphological studies of brain areas that by their established role on emotional and 

cognitive behaviours can putatively mediate the behavioural shifts observed in chronic pain. 

For the reasons raised in the previous section, the PFC, namely its medial and ventral 

subdivisions, is a primary candidate area in such studies. These should include, among other 

techniques, volumetric analyses and Golgi stain studies of neural morphology;  

 

iii. electrophysiological recordings of PFC neural activity while performing relevant tasks;   
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