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On the role of a 5’-leader region in controlling the levels of 

the aromatic-responsive transcriptional activator DmpR 

 

Metabolically versatile bacteria play an important role in recycling carbon in the 

environment. For certain bacteria this metabolic versatility extends to seeming obnoxious toxic 

carbon sources such as aromatic compounds that can cause environmental pollution. One 

such example is Pseudomonas putida CF600 that carries the dmp-system for catabolism of 

dimethylphenols, mono-methylated phenols, and phenol on a catabolic plasmid. The dmp-

system consists of the dmp-operon encoding the specialized catabolic enzymes divergently 

transcribed from the dmpR gene. The dmpR gene encodes the aromatic-responsive 

transcriptional activator DmpR whose activity is strictly required for transcription of the dmp-

operon. Because DmpR is a sensor-regulator that is activated upon binding substrates of the 

dmp-pathway enzymes, the dmp-system is always silent unless substrates are available. 

However, like other auxiliary catabolic pathways, regulation of expression of the Dmp-enzymes 

is also highly integrated within the host global regulatory network such that the system is also 

silent if more energetically favourable carbon sources are present. Failure to engineer such 

integration within host physiology has lead to unpredictable performance of artificial 

constructed catabolic pathways under field conditions. This provides a practical impetus to 

gain a greater understanding of the mechanisms involved. Much previous work had focused on 

the multiple roles of a bacterial alarmone that converge to stimulate activity of the promoter 

that drives transcription of dmpR to maximize performance of the dmp-system under low-

energy / stress conditions.  However, the 5‟-leader region of the dmpR mRNA has also been 

implicated in playing a regulatory role. In this work, it is presented evidence, from in vivo and in 

vitro assays, that the DNA encoding the 5‟-leader region and the cognate region of the resulting 

mRNA exert control of the levels of DmpR by at least three different mechanisms: I) at the level 

of transcription through a ATAAATA motif within the 5‟-leader region DNA, II) at the level of 

translation by binding of Crc to the 5‟-leader region RNA, and III) by a less well defined, Crc-

independent mechanism, that likely involved coupling of translation between a small open-

reading frame with the 5‟-leader region and that of the downstream dmpR gene. The results of 

these analysis and their physiological and mechanistic implications are discussed. 
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O papel de uma região 5’ líder no controlo  

dos níveis do activador transcripcional DmpR  

 

Bactérias metabolicamente versáteis são importantes na reciclagem de carbono no 

ambiente. Em algumas delas, a sua versatilidade abrange fontes de carbono aparentemente 

tóxicas, como compostos aromáticos, e causadoras de poluição ambiental. Um exemplo é a 

espécie Pseudomonas putida CF600 que possui o sistema dmp que permite o catabolismo de 

dimetil-fenois, metil-fenois e fenol. O sistema dmp consiste no operão dmp, que codifica 

enzimas catabolicas especializadas, e o gene dmpR divergentemente transcrito. Este último 

codifica o ativador transcriptional DmpR cuja atividade é estritamente necessária para ocorrer 

transcrição do operão. Sendo o DmpR um sensor / regulador apenas ativo após a ligação a 

substractos da via metabólica, o sistema dmp encontra-se sempre silenciado, exceto, quando 

substratos estão presentes. No entanto, como qualquer outra via metabólica auxiliar, a 

regulação da expressão das enzimas Dmp está também integrada nas vias regulatórias globais 

da célula; desta forma, o sistema é silenciado quando fontes de carbono mais favoráveis estão 

presentes. A falha em construir esta integração com a fisiologia do hospedeiro tem levado a 

resultados imprevistos por parte de vias catabólicas artificialmente construídas quando 

submetidas a condições de campo. Este facto impulsiona a obtenção de um melhor 

entendimento dos mecanismos envolvidos. Uma grande parte do trabalho previamente 

efetuado focou-se nos múltiplos papéis de uma alarmona bacterial, os quais convergem para 

estimular a atividade do promotor do gene dmpR, de modo a maximizar a performance do 

sistema em condições de baixa energia / stress. No entanto, a região 5‟ líder do mRNA do 

gene dmpR parece também estar implicada na regulação dos níveis da proteína. Neste 

trabalho, são apresentadas evidências, de ensaios realizados in vivo e in vitro, em como o DNA 

codificante desta região e a correspondente região do mRNA controlam os níveis de DmpR 

através de pelo menos 3 mecanismos: ao nível da transcrição através do motivo ATAAATA 

presente no DNA; ao nível da tradução através da ligação da proteína Crc ao mRNA e através 

de um mecanismo pouco definido mas que parece envolver a tradução acoplada entre uma 

pequena ORF (dentro da região 5‟ líder) e o gene dmpR. A discussão dos resultados desta 

análise, as implicações fisiológicas e os mecanismos associados são apresentados. 
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Bacteria are able to occupy a wide range of niches, including hostile environments. 

Physico-chemical parameters such as temperature, pH, osmotic pressure, and nutrient (e.g. 

carbon and nitrogen) sources are some of the major factors that influence bacterial survival 

and growth. To accommodate fluctuating and/or unfavourable conditions, bacteria have 

evolved a broad metabolic capacity and highly sophisticated regulatory networks that combine 

plasticity with tight regulation. The genome size and content (and consequently the metabolic 

profile) of a particular bacterial species mainly depends on the selective pressure exerted by 

the environment and lifestyle of the organism (1-3). Therefore, bacteria such as Pseudomonas 

putida, which naturally inhabit continually changing and highly competitive soil and aquatic 

environments, have larger genomes and more regulators per gene than intracellular pathogens 

and endosymbionts that inhabit the comparably stable environments of host cells (4,5). 

Continual competition for limiting carbon sources has selected diverse biochemical 

pathways for the conversion of a wide range of organic compounds to intermediates of central 

metabolism. Due to promiscuity of some of the enzymes and regulatory circuits involved, 

several of these pathways can also degrade synthetic (man-made) compounds, albeit often 

inefficiently. These catabolic pathways serve as an enormous “library” of enzymes and 

regulatory components for biotechnological applications and for bacteria to evolve new 

pathways as novel chemicals become available as nutrient sources (6,7).  

The ability of certain bacteria to degrade different aromatic compounds that are 

considered pollutants (e.g. benzene, toluene, xylene [BTX], phenols, naphthalenes, atrazine, 

nitroaromatics, biphenyls, polychlorinated biphenyls [PCBs] and chlorobenzoates) has been 

exploited for bioremediation – the process of degradation or bioconversion of hazardous 

components of wastes or in situ pollutants in the environment using microorganisms. The 

specificity of pathway enzymes as well as specific and global regulatory circuits that control 

their expression can limit both the efficiency and range of compounds that can be degraded by 

microorganisms (6). The prospective of exploiting bacteria capable of catabolism of aromatic 

compounds in bioremediation protocols has led to an extensive study of their ecology, 

biochemistry, gene regulation and physiological adaptation processes in order to optimise their 

potential usefulness (8). This thesis is centred on the regulatory circuit that controls 

degradation of aromatic methylphenols pollutants by a soil/water microorganism – 
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Pseudomonas putida CF600. Therefore, in the following sections I briefly overview regulation of 

gene expression in bacteria, focussing in particular on factors that are important for controlling 

methylphenol catabolism by P. putida CF600. 

 

1.1. Regulation of gene expression  

To be able to accommodate environmental changes, bacteria have to rapidly respond 

by regulating their gene expression profile. In bacteria, this regulation can occur at the 

transcriptional and translational levels (Figure 1) and/or the post-translational level. Since 

1957, when a regulatory model for the lac operon was first described, analysis of regulation of 

 
Figure 1 –The -cycle and regulation of gene expression in bacteria. Transcription is dived into the 

discreet steps of initiation, elongation, and termination. During initiation the holoenzyme RNA polymerase first 

forms a closed DNA complex with the promoter DNA, which is subsequently melted to form the transcription-

competent open-promoter complex.  Note that complete detachment of the  -factor is not a priori for transition 

in to the elongation phase and a partially attached  can cause elongation stalling by binding promoter-element 

mimics within the DNA. Nevertheless, the -factor is stochastically released during the first 200 nt of 

elongation of the RNA. The released  then joins the pool of free  -factors that compete for association to core 

RNA polymerase.  Thus, active transcription and the -cycle is the key process for re-orchestrating the 

composition of the holoenzyme pool within the cell.  Pertinent examples of regulatory processes employed by 

bacterial cells to regulate transcription and subsequent translation of the RNA product are superimposed on the 

transcription cycle. Figure is adapted from (10). See text for details. 
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gene expression has remained an active field of research that continually reveals novel 

strategies to achieve control. Recently, new high-throughput technologies have demonstrated 

that many regulatory processes, traditionally thought as exceptions, seem to have more 

general applicability and may actually now be considered as common regulatory mechanisms 

(9). As depicted in Figure 1, on the transcriptional level these include proteins and other 

regulatory molecules that directly target RNAP to alter its function and internal promoters 

within operons that affect transcript levels of internal genes. In addition, translational coupling 

through small upstream open-reading frames (ORFs), RNA-binding proteins, riboswitches and 

small RNAs (sRNAs) can affect transcription and/or translation.  

 Sigma factors  

Bacteria use alternative sigma () factors to redirect the transcriptional machinery to 

different classes of promoters in the genome (reviewed in (10)). The catalytic core RNA 

polymerase (core RNAP, subunit composition ‟ is able to synthesize RNA from DNA, 

but cannot specifically recognise or initiate transcription from promoters. For the latter, core 

RNAP needs to be programmed by a -factor to form the holoenzyme (-RNAP) in which the 

-factor builds in the distinct promoter DNA-binding specificities.  

All bacteria have a general (or “housekeeping”) -factor (designated 70 in Escherichia 

coli and Pseudomonas putida) that is responsible for transcription of the majority of the genes 

under rapid growth conditions. Many bacteria also encode additional “alternative” -factors. 

However, the number of alternative s that each organism possesses differs, with the 

multiplicity generally reflecting the diversity of lifestyle and developmental characteristics of the 

organism. For example, enteric E. coli has just seven different -factors (11), while the soil and 

root coloniser P. putida has twenty-four, which probably contributes to the exquisite 

environmental adaptability of this organism (6).  

To be able to form a holoenzyme, a -factor must be available so as to compete with 

other -factors for core RNAP (see Figure 1). The levels and availability of the different -

factors in the cell are continually adjusted in response to the conditions the organism finds 

itself in. This control is achieved by multi-facetted regulation at the transcription, translation 

and protein stability levels, by signal-responsive release from “anti--factors” that otherwise 

sequester specific sfrom interaction with core RNAP, and by other processes that alter the 
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competition parameters between different -factors for core RNAP (reviewed in (10)). Hence, 

these changes in the composition of the holoenzyme pool determine the extent to which 

different promoter classes can be occupied, and it is against these dynamic changes in the 

holoenzyme RNAP pool that classical DNA-binding transcriptional activators and repressors 

must act (10).  

 

The 70-family: Most alternative -factors are related in sequence and structure to 70 and 

together constitute the so-called 70-family of proteins. All -factors of this family form 

holoenzymes that recognize distinct promoter signature sequences located approximately -35 

and -10 positions from the transcription initiation site. The 70-family has been divided into four 

groups on the basis of phylogenetic relatedness (gene structure and function) (5,12). Members 

of the 70-family have up to four conserved sub-regions. Regions 2 and 4 are the most 

conserved regions and are present in all s. These two regions are involved in recognition of 

the -10 and -35 promoter motifs, and are the only regions present in group 4 s. Region 3 is 

involved in recognition of extended -10 promoter motifs, while region 1 is only found in group 1 

household s. This latter region is responsible for auto-inhibition of DNA binding of free 70 

and, within the context of the holoenzyme, can make DNA contacts just downstream of -10 

motif at some promoters (reviewed in (13)). A non-conserved region of highly variable length 

intersperses region 2 of some housekeeping Group 1 -factors. For E. coli 70 this region is 

thought to aid dissociation of the -factor and thus alleviate pausing caused by binding to 

promoter-mimic DNA during the early stages of transcription (14). 

 

54 – in a class of its own: In addition to alternative s of the 70-family, many bacteria also 

encode a 54-factor. The 54-factor, also called N, is widely distributed among bacteria and 

differs in amino acid sequence and transcription mechanism from those of the 70-family. The 

unusual 54-factor also recognizes substantially different promoter motifs located -24 and -12 

relative to the transcriptional start [consensus TTGGCACG-N4-TTGC]. Although bacteria 

frequently have several alternative factors of the 70 family, two forms of 54 rarely coexist in 

the same organism and orthologues of E. coli 54 are the only members of the 54 family. The 

54-factor controls transcription of genes whose products have a wide range of different 
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functions (15,16). In P. putida, this factor controls physiological processes such as the 

assembling of motility organs, expression of chemotaxis transducers, nitrogen assimilation, 

and the utilization of unusual carbon sources.  

A key feature of 54-RNAP, which contrast 70-holoenzymes, is its inability to 

spontaneously melt (isomerise) double stranded DNA to form an open DNA promoter complex 

required for transcriptional initiation. This step strictly requires assistance from mechano-

transcriptional activators that utilize ATP hydrolysis to drive conformational changes essential 

for this transition (17). Because these activators bind and activate transcription from sites 

located unusually far (80 to 200 bp) from the promoter (see Figure 2), they are usually 

referred to as bacterial enhancer binding proteins (bEBPs). Physical interaction between the 

bEBP bound to its enhancer site (also known as upstream activating sites, UASs) and the 

promoter-bound 54-RNAP requires looping out of the intervening DNA. At some 54-promoters, 

this process is facilitated by integration host factor (IHF), which induces DNA bending up to 

160º at specific sites (18). Allied to the isomerization and transcriptional initiation by 54-RNAP 

is the activation of the hidden ATPase of the bEBP. These activators are usually present in an 

inactive dimeric form, and only take up their ATPase active and transcriptional promoting 

multimeric form when they receive an appropriate signal (reviewed in (17)). 

 (p)ppGpp and DskA 

In contrast to most other alternative -factors, the levels of 54 in the cell are constant 

in E. coli and P. putida in different growth phases and under different growth conditions, and 

there is no known anti--factor for 54 (19,20). Control of 54-RNAP holoenzyme formation 

σ54-RNAP σ54-RNAP

Figure 2 - Transcriptional initiation by 54-RNAP. Schematic illustration of the sequential steps of 

activation of 54-RNAP by bEBPs. The bEBP activators act on pre-bound  54-holoenzyme that is locked in a 

closed-complex. Multimerization of the bEBP to the transcriptional-promoting active form requires a bEBP-

specific signal (e.g. phosphorylation, ligand-binding, or relief of repressive protein-protein interaction) and 

binding of ATP. Figure adapted from (17). 
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appears primarily regulated by the alarmones guanosine tetraphosphate (ppGpp) and 

guanosine pentaphosphate (pppGpp) – collectively known as (p)ppGpp. These unusual 

nucleotides are probably the most global and far reaching bacterial signalling molecules known 

(21).  

The levels of (p)ppGpp in the cell vary from very low, when cells are rapidly growing in 

rich medium (i.e. high-energy conditions), to very high when cells are cultivated in a medium 

with low quantities of nutrients or when they enter into the exponential-to-stationary transition 

phase (i.e. low energy conditions). The (p)ppGpp nucleotides are synthesized from GTP and 

GDP by RelA (ppGpp synthetase I) and the bi-functional SpoT protein (ppGpp synthetase II). 

RelA is associated with ribosomes. Under amino acid starvation conditions, where uncharged 

tRNAs bind to the ribosomal „A‟ site and stalls protein synthesis, the synthetase activity of RelA 

becomes activated. The synthetase activity of the SpoT protein, which is able to both 

synthesizes and hydrolyzes (p)ppGpp, is induced by other stresses including deprivation of 

phosphate, iron, carbon source or fatty acids (21). 

(p)ppGpp influences transcription by binding to RNAP and affecting the transcriptional 

initiation and elongation properties of RNAP (18). However, its most potent effects lie in 

altering transcriptional initiation at kinetically sensitive promoters – depending on the 

characteristics of the promoters the effect may result in an increase or decrease in productive 

initiation events (13). Because (p)ppGpp affects transcriptional initiation, it also influences the 

global transcription profile indirectly through altering the activity of promoters that control other 

global regulators and thus consequently causing regulatory cascade effects. One important 

indirect effect of ppGpp is its apparent capability to direct preferential use of alternative -

factors, including 54 (reviewed in (10)).  Substantial evidence exists that this is bought about 

through (p)ppGpp-directed modulation of competition between -factors for core RNA 

polymerase to enhance the levels of alternative holoenzymes ((19,20) and references therein). 

The RNAP-binding protein DksA frequently assists (p)ppGpp in both its direct and 

indirect effects on transcription. DksA is a member of a growing family of structurally, but not 

sequence, related proteins that directly access the active site cleft of RNAP through the 

secondary channel. In so doing, DksA mediates long-range structural changes within RNAP that 

alter interaction with the -6 to +6 region at 70-promoters (13,22). The mechanistic details of 
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how DksA binding to RNAP co-modulates stimulatory and inhibitory effects of (p)ppGpp on 

transcriptional initiation have not yet been determined. However, DksA clearly sensitizes RNAP 

to the cellular levels of (p)ppGpp to account for their synergistic action (23).  

 5’-Leading Regions (5’-LRs) 

5‟-leading regions (5‟-LRs) of mRNA are used to control the expression of some genes. 

In a number of cases the 5‟-LR are long – up to hundreds of base pairs – and are the object of 

one or multiple regulatory mechanisms (24-26). 5‟-LRs can form secondary structures that 

can, for example, act to block recognition sites for ribosome binding (RBS) or for mRNA-binding 

proteins in double stranded loops. Such occlusion mechanisms are often associated with other 

regulation process that result in signal-responsive alterations in the secondary structures that 

free the binding site for occupancy by the cognate molecule. Some mRNA-binding proteins are 

translational repressors that bind to specific sequences within the target mRNA. These 

sequences usually flank or overlap the RBS, thus preventing recognition and binding of the 

ribosome or, when located downstream, cause a road-block in translation (27,28). 

Translation of small peptides encoded within the 5‟-LR can also exert control – at the 

transcriptional levels (by regulating premature termination) or – at the translational level 

(through translational coupling and/or by disrupting secondary structures). Classical examples 

are transcriptional attenuation mechanisms of amino acid biosynthetic operons (24-26) that 

allow the cell to sense amino acid levels and regulate expression accordingly. A conceptually 

analogous and probably even more frequent mode of regulation is through riboswitches located 

within 5‟-LRs. Riboswitches are mRNA regions that recognise and bind small molecules 

(cellular metabolites), and in so doing induce changes in the structure which in turn affects 

transcription, translation or mRNA stability (reviewed in (29)). 

 Small RNAs (sRNAs) 

As alluded to above, occlusion mechanisms in which target sites for binding are 

masked within secondary structures of the RNA, are frequently coupled to signal-responsive 

control of the secondary structure of the mRNA. In many cases this is mediated by small 

RNAs, usually non-coding RNAs of 50-250 nt. Binding of the sRNAs alters the secondary 

structure to modulate transcription, translation, and/or change mRNAs half-life (25).  Although 
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a small minority, some sRNAs encode small peptides; however, only few have been described 

as functional and their function is far from completely understood ((26) and references there 

in).  

sRNAs can target proteins or act by antisense mechanisms. In the latter case, they 

can be further divided in cis-acting, if the target gene is within the same locus, or trans-acting if 

it targets one or multiple genes widely distributed in the genome. Unlike cis-encoded sRNAs, 

the regulatory sequences of trans-encoded sRNAs are usually short and the complementarily 

with the target(s) mRNA is not necessarily perfect. Typically, these molecules act as negative 

regulators of target genes by binding to mRNAs and forestalling recognition of the RBS by the 

ribosome, or by preventing translation to proceed. However, they can also have a positive 

effect by binding to mRNA leading regions and inducing a shift from a secondary structure 

where the RBS is sequestered within a double-stranded portion of the mRNA to a structure 

where the RBS is freely accessible for ribosome recognition (reviewed in (30)). 

sRNA that target proteins appear to be comparatively rare; nevertheless, the ones 

described to date target mRNA-binding proteins and thereby regulate their action. In these 

cases, the sRNAs usually possess multiple binding sites for the protein, thus sequestering the 

protein from binding to the mRNAs they regulate. 

 

1.2.  Pseudomonas putida 

The Pseudomonas genus is characterized by the capacity of these organisms to live in 

a wide range of environmental niches such as soil and water ecosystems and in association 

with plants and animals, including humans. This ability is primarily due to their versatile 

metabolism and regulatory processes that finely control preferential utilization of different 

carbon sources through carbon catabolite repression (31). P. putida strains are Gram-negative 

rod-shaped soil bacteria which frequently inhabit the rhizosphere of plants. As with other 

members of the Pseudomonad group, P. putida strains are able to grow on the expense of a 

variety of carbon sources. In some strains their catabolic capacity is expanded through 

possession of plasmids that encode the ability to degrade toxic pollutants such as naphthalene, 

phenol, methylphenols, and toluene (32-34). This capacity lends these species as useful for 

bioremediation of these compounds from soil (35,36). 

http://en.wikipedia.org/wiki/Gram-negative
http://en.wikipedia.org/wiki/Soil
http://en.wikipedia.org/wiki/Bacterium
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1.3.  Carbon Catabolite Repression 

To face changes in carbon-source availability bacteria have global regulation systems 

that allow them to coordinate the expression of different metabolic pathways in order to 

optimize efficiency and ecological fitness. One of these regulatory systems is carbon catabolite 

repression (CCR) or catabolite repression control (CRC). These regulatory processes allow 

bacteria to preferentially assimilate the compound that provides the most efficient growth when 

several carbon sources are available. Strategically, these systems operate by repressing the 

genes that encode proteins needed for the catabolism of non-preferred compounds until 

conditions cue the need for their activity.  

Although CCR has been observed in most free-living bacteria with versatile 

metabolisms, the molecular mechanism involved can vary greatly from one species to another 

(37,38). For example, the major CCR mechanisms in Pseudomonas are quite different from 

the one described in E. coli. For E. coli, as for the majority of enteric bacteria, the preferred 

carbon source is glucose. Therefore, in this organism the main CCR mechanism involves the 

EIIAGlc protein, which is a specific glucose kinase that also mediates its passage through the 

cytoplasmic membrane. EIIAGlc also indirectly regulates expression of genes responsible for the 

metabolism of other carbon sources by inducer exclusion and by controlling cAMP levels, 

which in turn controls the DNA-binding ability of the global transcriptional regulatory protein 

CRP (37,38). For Pseudomonas, on the other hand, glucose and other hydrocarbons are not 

the preferred carbon source; instead some organic acids and amino acids are. The CCR 

mechanisms known in Pseudomonas are, therefore, also different and involve the Cyo terminal 

oxidase system, the PTSNtr system and the Crc protein (reviewed in (37,38)). 

 The Pseudomonas Crc – Catabolite repression control protein 

As carbon sources, Pseudomonads prefer amino acids over hydrocarbon but different 

amino acids are not all equally preferred. Therefore, the cell needs to repress the assimilation 

of non-preferred ones as well as favouring the ordered assimilation of amino acid or organic 

acid if several are available. Crc is the regulatory factor responsible for this organised 

assimilation to result in efficient use of the available nutrients by optimization of metabolic-flow, 

which consequently leads to a maximum growth rates (39).  
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Crc also controls other important aspects of the cell biology in these organisms. In P. 

aeruginosa, an opportunistic human pathogen, Crc is necessary for the formation of fully 

functional type IV pili that are mandatory for twitching motility and biofilm formation that is 

associated with chronic colonization of human tissues (40). 

Crc is a RNA-binding protein that regulates gene expression at the post-transcription 

level. Crc binds to short unpaired A-rich sequences (consensus AAnAAnAA) in the 5‟-end of 

mRNAs; this prevents translation without destroying the mRNA by cleavage or degradation 

(41,42). The precise mechanism that results in inhibition of translation is still uncertain; it is 

likely that the formation of the ribosomal-mRNA complex is inhibited by competition for closely 

located binding site, but it is also possible that Crc does not prevent binding of the 30S 

ribosomal subunit per se, but rather can trap it in an inactive form that is not able to continue 

the translation process (41). 

Crc levels and availability vary according to the growth status of the cell. For example, 

when P. putida cells are cultivated in rich media, Crc levels levels are four- to five-fold higher at 

mid-exponential phase than in stationary phase (43). Although the ultimate signal(s) that 

control Crc levels in the cell are not yet known, levels are adjusted in response to the carbon 

source present in the medium (43-45). Moreover, even when Crc is present, its availability can 

be controlled through sequestering by sRNAs. In P. aeruginosa, it has been found that a sRNA 

of 407 nt (named CrcZ) contains five exposed Crc motifs, and that CrcZ sequesters Crc. As a 

result, in this organism, levels of free Crc are modulated in order to control the strength of CCR 

effect that is dependent on Crc (42). Two CrcZ-like RNAs are encoded in the KT2440 genome, 

suggesting the presence of a similar sequestering mechanism for Crc in this organism.  

 

1.4.  Introduction to the dmp-experimental system 

The extensively studied dmp-system of the pVI150 plasmid of P. putida CF600 provides 

the capability to grow on the expense of phenol and methylphenols (6,46). The dmp-system is 

controlled by two promoters dependent on different -factors, see Figure 3. The non-

overlapping 70-Pr and 54-Po promoters are located within a 406 bp intergenic region. The 

DmpR-regulated 54-Po promoter drives transcription of the dmp-operon that contains fifteen 

dmp structural genes which encode a multicomponent phenol hydroxylase and a subsequent 
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meta cleavage pathway that are responsible for complete metabolize phenolic compounds 

(reviewed in (47)). The Dmp-enzymes are only required when the pathway substrates are 

present. Specific regulation in response to the presence of phenolics is achieved through the 

sensor-regulator DmpR, a 63.3 kDa protein encoded by dmpR gene. The dmpR gene is 

transcribed from a 70-Pr promoter and encodes a bEBP that binds dmp-pathway substrates 

(or structural analogues) to take up its active multimeric form (48-52).  Thus, it is only when 

pathway substrates are present that the 54-Po promoter is active and the dmp-operon 

encoded enzymes are expressed.  

The 54-Po promoter belongs to the class of promoters recognized by the 54-RNAP. As 

mentioned previously, this class of promoters is sensitive to the indirect influence of (p)ppGpp 

and DksA through their effects on 54-RNAP holoenzyme levels. (p)ppGpp and DksA also affect 

the output of 54-Po by stimulating transcription of IHF genes (53), which in turn enhances 

productive interaction of DmpR (bound to UAS1 and UAS2) and Po-bound54-RNAP (6,19). A 

final direct input of (p)ppGpp and DksA in this regulatory circuit is their stimulatory effect on 

70-RNAP activity at the Pr-promoter (53). The direct stimulatory effect of (p)ppGpp/DksA at 

the Pr promoter has been traced to its extremely suboptimal -10 element, more specifically the 

lack of A residue at the -11 position. Pr requires (p)ppGpp and DksA to both stimulate binding 

of 70-RNAP and to accelerate the rate of open-complex formation (54).  

It has previously been shown that divergent but non-overlapping transcription from 54-

Po promoter stimulates transcription from the 70-Pr promoter of dmpR (53). Because 54-Po 

activity is dependent on DmpR, this interplay between 54-dependent and 70-dependent 

transcription generates a feed-forward loop in which DmpR stimulates its own synthesis as 

 

Figure 3 - The dmp-regulatory circuit. Schematic illustration (not to scale) of the locations of the Po and 

Pr promoters as well as DNA binding sites for DmpR (UASs) and IHF. 
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illustrated in Figure 4. This feed-forward loop, which is integrated with (p)ppGpp production 

upon stress and/or nutrient limitation as described above, both reinforces the silencing or the 

transcription of the 54-Po promoter under high energy conditions (low ppGpp levels) when this 

auxiliary pathway is not needed, and promotes high level productions of the enzymes under 

low energy conditions when an appropriate substrate is present.  

 

1.5  Negative regulation by the extensive and conserved 5’-LR 

In addition to the positive stimulatory action of (p)ppGpp/DksA via the feed-forward 

loop, the levels of DmpR are also modulated through an initially transcribed region of the dmpR 

gene that encodes a 123 nt long 5‟-LR. This effect was firstly detected during monitoring of 

transcription from the Pr promoter using luciferase (Lux) transcriptional reporters that either 

had the 5‟-LR or lacked this DNA (53). The presence of the 5‟-LR has a 5- to 7-fold inhibitory 

effect on the number of transcripts from the Pr promoter as assessed by transcriptional 

reporter gene assays and quantitative RT-PCR (see Figure 5). Moreover, the mRNA stability is 

not affected by the absence or presence of the 5‟-LR region (V. Shingler, personal 

communication).  As outline in preceding sections, 5‟-LRs of mRNA are known to affect gene 

expression by a wide variety of mechanisms. How the 5‟-LR of dmpR is involved in controlling 

the levels of DmpR is the subject of this thesis.  

 

 

Figure 4 – Model of aromatic-effector activation of DmpR and a consequence feed-forward loop (blue 

stars) mediated through interplay of the Po and Pr promoters and the effects of (p)ppGpp/DksA; 

adapted from (53), see text for details.  

 



Introduction 

 

29 

 

 

 

 
Figure 5 – Effects of the 5’ -LR of dmpR on the level of transcripts from the Pr promoter. The 

two bar charts on the left compare the in vivo transcription values from the Pr promoter in the presence (+) 

and absence (-) of DNA encoding the 5‟-LR of dmpR, obtained by quantitative transcriptional reporter 

assays and quantitative RT-PCR. Data are from early stationary phase cultures, the same fold-inhibition is 

observed throughout the growth curve. The graph on the right shows data from a comparison between the 

half-lifes of the transcripts from these reporters with and without the 5‟-LR. Data were obtained after adding 

rifampicin to early stationary phase cultures to prevent new RNA synthesis (0 time point), RNA extraction at 

the indicated time points, followed by quantification of mRNA levels by qRT-PCR. Unpublished data 

courtesy of V. Shingler. 
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2. Aims 
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To avoid disadvantageous energy-fluxes, regulation of natural pathways for toxic 

aromatic compounds is attuned to host physiology and the energy status of the cell. Because 

such compounds are toxic even to bacteria that can degrade them, the regulatory circuits that 

control the expression of the specialized catabolic enzymes interface both metabolic- and 

stress-responsive regulatory networks. Failure to engineer such integration into specifically 

designed synthetic pathways destined for use in environmental clean-up is one of the major 

reasons for the partial or complete failure of some systems to perform their task under field 

conditions (55).  

Available data suggest that population dynamics and physiological control of catabolic 

gene expression prevail over any artificial attempt to engineer optimal performance of the 

desired catalytic activities in determining a successful outcome (55). Therefore, to be able to 

rationally design bacteria for bioremediation applications, a full understanding of the multiple 

mechanisms which couple the expression of these pathways to host physiology is required. In 

the case of Pseudomonas putida CF600, expression of the master regulator DmpR is the 

major check point. As overviewed in the introduction, multiple mechanisms involving the 

bacterial alarmone (p)ppGpp converge to stimulate transcription from the intrinsically weak Pr 

promoter under stress conditions. On the other hand, a 5‟-LR seems to also have an important 

role in the regulation of this system.  

 

Therefore, the overall objective of this thesis was to unveiling the regulatory mechanism(s) 

associated with the 5‟-LR. As the research progressed, the specific aims became: 

I) To define the region of the 5‟-LR that mediated transcriptional repression through the 

activity of the Pr promoter. 

II) To elucidate if the Crc mRNA-binding protein mediates control of DmpR levels through 

modulation of translation. 

III)  To determine if an open-reading frame and/or potential target site for a small 

regulatory RNA (PhrS) – which both lie upstream of the dmpR coding region in the 

mRNA – have roles in directing the levels of DmpR produced. 
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3.1. Bacterial strains and culture conditions 

P. putida and E. coli strains (Table 1) were cultured at 30ºC and 37ºC respectively, in 

Luria-Bertani / Lennox medium (LB, AppliChem GmbH) or M9-minimal salts medium (56) 

supplemented with appropriate antibiotics (Table 2) for the strain and/or plasmid selection.  

 

Table 1 – Bacterial strains used in this study 

A Shingler “lab collection” strains are as yet unpublished and were constructed by co-workers.  
 
 

Table 2 – Antibiotics used to supplement the media 
 

 

3.2. Plasmid constructions  

Plasmids (Table 3) were introduced into E. coli strains by transformation, into P. putida 

strains by electroporation, and introduced into P. aeruginosa by conjugation from E. coli 

S17pir. Standard DNA cloning techniques were used to generate the plasmids constructed in 

this work. Fidelity of DNA regions generated by PCR or by the insertion of synthetic double 

stranded linker DNA was confirmed using a Big Dye terminator sequencing kit (Applied 

Biosystems) and primer 135 listed in Table 4. 

 Strain  Relevant Properties Source A or Reference 
      

Escherichia coli  

 EC51   DH5; prototrophic  (57)  

 EC1655  S17pir TpR; strain that provides mobilization 
functions from the chromosome 

(58)  

      

Pseudomonas putida 
 PP2  KT2440 mt-2, prototrohic parent strain (59)  

 PP980  KT2440KmR, Po-luxAB transcriptional reporter 
cassette on the chromosome 

(60)  

 PP3044  KT2440KmR crc::Gm Po-luxAB; 
Crc null derivative of PP980 

lab collection  

      

Pseudomonas aeruginosa 
 PAO1  Prototrophic parent strain (61)  
 PAO6671  PAO1 PhrS; PhsR null strain (26)  

Antibiotic 
Concentration for E. coli  
(g ml-1) 

Concentration for P. putida and 
P. aeruginosa (g ml-1) 

Carbenicillin (Cb) 100 1000 
Trimethoprim (Tp) 100 - 
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Table 3 – Key plasmids used in this study 

Plasmid                   Relevant properties A                                                                                     SourceB or Reference 
 

CbR narrow-host-range, high copy number plasmids 
   

 

pBlueScriptSK+ 
 

Multipurpose cloning vector 
 

Stratagene 
pVI399 -555 to +1842 Pr 5‟-LR WT dmpR (WT) (48,60) 
pCon2117 -555 to +1842 Pr 5‟-LR9-101 dmpR (8) lab collection 
pCon2147 -555 to +1842 Pr 5‟-LR dmpR (mutD) lab collection 
pCon2202 -555 Pr 5‟-LR39TAA41 dmpR (stop) This study 
   

 

CbR broad-host-range vectors and luciferase (luxAB) promoter probe vectors 
 

pMMB66HE  RSF1010-based laclq-Ptac expression vector; polycloning site: 
HindIII/PstI/SalI/BamHI/SmaI/EcoRI  

(62) 

pMMB66EH RSF1010-based laclq-Ptac expression vector; polycloning site: 
EcoRI/SmaI/BamHI/SalI/PstI/HindIII 

(62) 

pVI398 pMMB66HE derivative deleted of laclq-Ptac ; polycloning site: 
PstI/NotI/BamHI/SmaI/EcoRI 

(60) 

pCon1640 pMMB66 derivative deleted of laclq-Ptac and carrying the promoterless 
luxAB genes downstream of a polycloning site: 
EcoRI/SmaI/XhoI/BglII/NotI/SpeI/StuI/SacI  
used for -38 to +127 and -266 to +127 Pr-luxAB derivatives below 

lab collection 

pCon2126 As above but with polycloning site: 
SmaI/Sal/BglII/NotI/KpnI/NdeI/SpeI/StuI/SacI  
used for -555 Pr-luxAB derivatives below 

lab collection 

   

 

CbR broad-host-range luxAB transcriptional reporter plasmids 
 

 

pVI466 Pr-dmpR Po-luxAB reporter (native configuration) on pVI398 (63) 
pCon1565 -38 to +1 Pr 5‟-LR (WT) luxAB  lab collection 
pCon 1850 -38 to +127 Pr 5‟-LR (WT) luxAB lab collection 
pCon 1631 -38 to +127 Pr luxAB with a BglII site downstream from +1  lab collection 
pCon 1586 -38 to +127 Pr (+1 to +127 random DNA) luxAB lab collection 
pCon 1633 -38 to +127 Pr (+1 to +127 in opposite orientation) luxAB lab collection 
pCon 1598 -38 to +127 Pr 5‟-LR 9-78 luxAB (3) lab collection
pCon 1599 -38 to +127 Pr5‟-LR 9-93 luxAB  (4) lab collection
pCon 2100 -38 to +127 Pr5‟-LR 9-108 luxAB  (5) lab collection 
pCon 2101 -38 to +127 Pr5‟-LR 9-93,109-123 luxAB  (6) lab collection 
pCon 2114 -38 to +127  Pr 5‟-LR 9-105 luxAB  (7) lab collection 
pCon 2115 -38 to +127 Pr 5‟-LR9-101 luxAB (8) lab collection 
pCon 1817 -266 to +127 Pr 5‟-LR WT luxAB (WT) lab collection 
pCon 1821 -266 to +127 Pr 5‟-LR 74AAAAAA79 luxAB (mutA) lab collection 
pCon 1822 -266 to +127 Pr 5‟-LR 91AAAA94 luxAB (mutB) lab collection 
pCon 1833 -266 to +127 Pr 5‟-LR 77AAAAAA82 luxAB (mutC) lab collection 
pCon 1841 -266 to +127 Pr 5‟-LR 83AAGTAA89 luxAB (mutD) lab collection 
pCon 1843 -266 to +127 Pr 5‟-LR 77AAAAAAAAGTAA89 luxAB (mutE) lab collection 
pCon 1485 -555 to +127  Pr 5‟-LR WT luxAB  lab collection 
pCon 2204 -555 to +127  Pr 5‟-LR 39TAA41 luxAB (NotI to NdeI fragment 

                                                   from pCon2202 into pCon2126) 
This study 

   

Table 3 continued on next page 
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Table 3 – continued 
 

Plasmid                   Relevant properties A                                                                    Source B or Reference 
 

CbR broad-host-range DmpR expression plasmids 
 

 

pVI401 -555 to +1842 Pr 5‟-LR WT dmpR (WT-NdeI) (60) 
pCon2119 -555 to +1842 Pr 5‟-LR 9-101 dmpR (8) lab collection 
pCon 1483 -555 to +1842 Pr 5‟-LR 9-78 dmpR (3) lab collection
pCon 1482 -555 to +1842 Pr5‟-LR 9-93 dmpR (4) lab collection
pCon 2203 -555 to +1842 Pr 5‟-LR39TAA41 dmpR (NotI fragment from  

    pCon2202 into pVI398) 
This study 

pCon 2150 -555 to +1842 Pr 5‟-LR 83AAGTAA89 dmpR (mutD) (NotI  
                                  fragment from  pCon2147 into pVI398) 

This study 

pCon 2127 -266 to +1842 Pr 5‟-LR WT dmpR This study 
pCon 2128 -266 to +1842 Pr 5‟-LR 74AAAAAA79 dmpR (mutA) This study 
pCon 2129 -266 to +1842 Pr 5‟-LR 91AAAA94 dmpR (mutB) This study 
pCon 2132 -266 to +1842 Pr 5‟-LR 77AAAAAA82 dmpR (mutC) This study 
pCon 2133 -266 to +1842 Pr 5‟-LR 83AAGTAA89 dmpR (mutD) This study 
pCon 2134 -266 to +1842 Pr 5‟-LR 77AAAAAAAAGTAA89 dmpR (mutE) This study 
   
A Co-ordinates are relative to the +1 transcriptional start from Pr. Deletions () or substitutions of the 5‟-LR (1 to 
123) are indicated; WT denotes wild-type. The abbreviated designations in brackets are those used in the Figures.  
B Shingler “lab collection” plasmids are as yet unpublished and were constructed by co-workers.  
 

 

Table 4 – Oligonucleotides used during this study 

Number Sequence A Purpose 
   

2646f 5’-CGGATCCGCAGGACATCAAGCAACGGC 
Amplification of BamHI to 
NdeI fragments - constructs 
pCon2127-2134 2647r 5’-CGCGCATATGAGCGAGGCCCCTATTTATTT 

   

2646f As above Overlapping PCR 
mutagenesis: internal HindII 
to BglII fragment used to 
replace the wild-type region 
pVI399 to generate 
pCon2202 

2846int 5’-CCCCATGTAACCATCTGGAATCGCCGCCTGCCT  

2845int 5’-CGATTCCAGATGGTTACATGGGGAAAATCGGCAGT 

354r 5’-CAGATTTCCACCTCGAAGGAGTC 

   

135f 5’-CTTTTTAAGCATTTGATCAATTGCC 

 
Sequencing verification for 
faithful PCR amplification 
and linker insertions  

   
A Restriction sites artificially introduced via oligonucleotides are underlined, while initiation and termination codons 
are shown in bold. 
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3.3. Crc protein for IVTT reaction 

 P. putida Crc with an N-terminal His tag was a generous gift from Fernando Rojo. Crc 

was provided in high salt / 30% glycerol buffer and stored at -80ºC until use. Before added to 

the buffer-sensitive IVTT reactions, aliquots of the proteins were first equilibrated into 10 mM 

Tris-HCl pH 7.6 using BioRad P30 spin columns. Concentration of stock and buffer-exchanged 

proteins was determined using the Pierce BCA protein assay kit (based on the biuret reaction) 

following the microtiter well plate protocol. Standard curves were obtained used BSA-acetylated 

stock (initial concentration of 20 mg/ml; Ambion), diluted with the corresponding buffer of the 

protein preparation. 

 

3.4. Electro-mobility shift assays (EMSA)  

EMSA analysis of Crc binding to RNA was performed by Fernando Rojo and colleagues 

essentially as described in (41), using increasing concentrations of P. putida Crc-His and an 

RNA probe 5‟-UUCCCCAUCUAAAAAUAAAUAGGGGC-3‟ (encompassing the suspected Crc-

binding region of the 5‟-LR of the dmpR mRNA, which is highlighted in bold).  20 l reactions 

(in 10 mM Hepes-KOH pH 7.9, 35 mM KCl, 2 mM MgCl2) and containing 1 g yeast tRNA, 0.1 

nM [32P]-labelled RNA probe were supplemented with the indicated concentration of Crc-His (0, 

53, 106, 212, 425, and 850 nM). These levels of Crc-His do not alter the migration of an 

unrelated RNA probe lacking a Crc site (Fernando Rojo, personal communications). Reactions 

were incubated for 30 mins at 20ºC prior to addition of 4 l of loading buffer (60% glycerol, 

0.025% xylene cyanol) and analysis on a non-denaturing 4%  polyacrylamide gel containing 

TMB buffer (45 mM Tris-HCl, pH 8.3, 43 mM boric acid, 2 mM MgCl2, 5% glycerol). 

Electrophoresis was performed in TBM buffer at 4ºC, and the results documented by exposure 

of the dried gel to X-ray film. 

 

3.5. In vitro transcription-translation (IVTT) assays 

IVTT assays were performed using the Promega E. coli S30 extract kit for circular DNA. 

Reactions (total volume 25 l) contained S30 extract (7.5 l), reaction pre-mix (10 l) and all 
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amino acids except methonine (2.5 l) as recommended by the manufacturer. Reactions were 

additionally supplemented with a) 1 g of plasmid DNA (in 2 l) , b) L-[35S]-Methionine (5 Ci 

at >1000 Ci/mmol, Perkin Elmer; 0.75 l), c) RNAse inhibitor (Ambion; 0.25 l) and d) 2 L 

of 10 mM Tris-HCl pH 7.6 containing or not Crc (to the final concentrations indicated).  

Reactions were incubated at 37ºC for 60 mins at which point 5 l samples were taken and 

proteins precipitated by the addition of 20 l of ice cold acetone. After 15 mins on ice, tubes 

were centrifuged at 12,000 rpm for 5 mins and the recovered air-dried protein pellet re-

suspended and heated to 100ºC for 5 mins in final sample buffer (125 mM Tris pH 7.5, 2.5% 

SDS, 8% glycerol, 10% -mercaptoethanol and 0,1% bromophenol blue) prior to separation on 

an 11% SDS-polyacrylamide gel. After electrophoresis, the gel was stained with coomassie 

blue, de-stained, dried and newly synthesised proteins detected using AGFA medical X-ray film. 

 

3.6. In vivo Luciferase assays 

 To perform luciferase plate tests, single colonies of the strains were streaked into LB 

plates containing Cb and 2-methylphenol and allowed to grow over night. The next day, 

approximately 100 l of 1:100 diluted decanal solution was dispensed in the plate lid and the 

inverted plates were incubated for some minutes; light emission was then acquired by 

exposing AGFA medical X-ray films. 

Quantitative luciferase luxAB reporter assays were performed on cultures grown and 

assayed at 30ºC as described in (64). Overnight cultures were diluted 1:50 and grown into 

exponential phase followed by a second dilution to a final OD600 between 0.05-0.08 to ensure a 

balanced growth of all strains prior to initiation of the experiment. After the second dilution, 

when required for DmpR activity, 2 mM (in case of P. putida) or 0.5 mM (in case of P. 

aeruginosa) of 2-methyphenol was added to the cultures. A 100 l samples were collected of 

at the indicated time points. Optical density (OD at 600 nm) and light emission of samples 

were measured using an Infinite M200 luminometer (Tecan); for light emission, a 100 l of a 

1:2000 diluted decanal solution was dispended as substrate. Samples were taken every 45 

minutes for approximately 9 hours. Data points are the average of duplicate determinations 

from each of two or more independent cultures ± standard errors. Data treatment was 

performed using Origin software. 
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3.7. Western analysis 

Samples were collect from cultures of luciferase assays at time points 3.5 h and 7.5 h 

(that correspond to exponential and stationary phase, respectively). The procedures for 

preparation of crude extract, SDS-PAGE, and electrotransfer to Amersham Biosciences PVDF 

membrane (0.45 mm, Amersham Biosciences) were as previously described (49). Anti-DmpR 

antibodies were affinity purified polyclonal rabbit antibodies raised against the N-terminal 232 

residues of DmpR (19). Antibody-decorated bands were revealed using ECL-Plus reagents (GE 

Healthcare) following the instructions of the manufacture, and documented using AGFA 

medical X-ray films. 
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4.1. DNA encoding the 5’-LR mediates inhibition at the level of 

transcription 

The presence of DNA encoding the 123 nt long 5‟-LR of dmpR results in a decreased 

number of transcripts originating from the Pr promoter, as assessed using transcriptional 

reporter gene assays and qPCR, through a mechanism that is independent of mRNA stability 

(Figure 5). To further investigate the mechanism underlying the repressive effect of the 5‟-LR 

on Pr output, a series of luciferase transcriptional reporter plasmids were constructed in which 

the promoterless luxAB genes were placed under the control of the Pr promoter and 

downstream of variants of the 5‟-LR ((65), see Figure 6).  

To enable manipulation of DNA encoding the 5‟-LR, a unique BglII site was introduced 

immediately downstream of the +1 transcriptional start from Pr. This allowed construction of 

derivatives with i) a reconstituted 5‟-LR in its native orientation, ii) with the 5‟-LR DNA inverted, 

or iii) with the 5‟-LR DNA substituted by random DNA. As summarised in Figure 6, luciferase 

plate tested showed that the 5‟-LR DNA exerts a repressive effect in either orientation, but that 

repression is sequence specific because random DNA cannot mimic the effect. 

The next step was to map the region responsible for the repressive effect. Therefore, a 

 
Figure 6 – Mapping the repressive effect of the 5’-LR on Pr activity. Left shows a schematic of a 

series of constructions used to analyse and trace the sub-region of the 5‟-LR responsible for the repressive 

effect on output from Pr. The upper autoradigrams show representative results of luciferase plate test as 

examples of repressive and non-repressive derivatives.  The sequences of the 5‟-LR present in six key 

deletions derivatives are given with the bases common between 3, 4, 5 and 8 that maintain the 

repressive effect highlighted in cyan. The minimal sequence deduced as mediating the repressive 

sequence is outlined by a black box superimposed on the sequence of 8. 
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series of deletions were constructed (see Figure 6). The 3 and 4 constructions, in which 

promoter proximal parts of the dmpR 5‟-LR were deleted, maintained the repressive effect, 

thus tracing the responsible region to the promoter distal portion of the 5‟-LR. This region was 

further reduced to 15 bp after observing that 5, in which the promoter proximal region was 

further reduced, no longer maintained the repressive effect, while 6, which has the same 

deletion of the promoter proximal part as 4 combined with a 15 bp deletion just upstream 

the ATG start, still maintained it. Although 7 has a smaller deletion than 5, it did not 

manifest the repressive effect. However, with 8, which possesses just 3 additional bases 

more than 7, the repressive effect was restored. Taken together, the data trace the region 

responsible for repressing Pr output to a short AT-rich DNA region – ATAAATA – present in all 

the derivatives that exhibit the repressive phenotype but absent in those that do not. 

 

4.2. The 5’-LR controls expression of DmpR at the level of translation 

Because the luxAB reporter genes possess their own ribosome binding site (RBS), the 

transcriptional analysis described above only documents effects at the level of transcription 

from the Pr promoter. To determine if the 5‟-LR also plays a role at the level of translation, the 

8 deletion – the largest deletion that still maintained the wild-type repressive effect on 

transcription from Pr – was engineered into a Pr-dmpR expression plasmid (pCon2119). The 

levels of DmpR produced from this construct were compared to those produced by an 

otherwise identical Pr-dmpR expression plasmid containing the native 5‟-LR (pVI401). These 

two plasmids were independently introduced into PP980, a P. putida KT2440 strain that 

carries a Po-luxAB transcriptional cassette on the chromosome. As schematically illustrated in 

Figure 7A, because activity of the 54-dependent Po promoter is strictly dependent on DmpR, 

luciferase activity from the Po-luxAB cassette indirectly reports on the in vivo levels of DmpR. 

Quantitative luciferase assays of both strains, cultivated in rich liquid media in the 

presence of 2-methylphenol (a stronger inducer of DmpR activity), was followed for nine hours. 

The result (Figure 7B) showed that the activity of Po varied greatly during the exponential 

phase, suggesting that DmpR levels from the 8 were likewise elevated during this phase of 

growth. That this was indeed the case was confirmed by quantitative Western analysis, which 

showed that exponential phase levels of DmpR produced by the 8 derivative were 2- to 4-fold 
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Figure 7 – In vivo effect of the 5’-LR at the translational level. (A) Schematic of the experimental 

system used to monitor DmpR levels through output from the DmpR-dependent Po promoter. (B) Graph 

showing the luciferase activity profiles (continuous lines) and corresponding growth curves (dashed lines) for the 

strain Po-luxAB reporter strain PP980 carrying plasmids encoding the wild-type Pr-dmpR fusion (pVI401; black 

squares) and the Pr-8-dmpR construction (pCon2119; dark cyan triangles). (C) Western blot analysis of DmpR 

levels; cells were harvested at time points 3.5 h and 7.5 h (exponential and stationary phase respectively) and 

20 g, 10 g and 5 g of soluble protein extract were separated on 12% SDS-PAGE gels.  

 higher than those produced by the wild-type counterpart (Figure 7C). This contrasts the results 

from stationary phase cultures in which DmpR levels are very similar. This data strongly 

indicates the existence of a second regulatory role of the 5‟-LR, namely control at the 

translation level during the exponential phase of growth. 

 

4.3. Crc controls translation of DmpR through binding to the 5’-LR 

Many different mechanisms could account for control of DmpR translation through the 

5‟-LR of its mRNA. However, three observations suggested Crc as a likely candidate for 

mediating the observed effect. Firstly, the mRNA-binding Crc protein is responsible for 

hierarchal control of carbon source catabolism. Secondly, Crc levels (and availability) vary 

during different phases of growth, being high during the exponential phase (when the inhibitory 

effect through the wild-type 5‟-LR was observed) but only at basal levels during stationary 
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Figure 8 – Effect of Crc on DmpR-dependent 

transcription in vivo. (A) Promoter distal 

sequences of WT and 8 Pr-dmpR 5‟-LRs indicating 

the location of a potential Crc binding motif and RBS 

(consensus sequence from (41). (B) Schematic of 

the reporter plasmid (pVI466) used to test the 

impact of Crc in WT versus Crc null strains. (C) The 

graph shows the growth (dashed lines) and 

luciferase activity (lines) profiles of the two strains 

carrying pVI466 over 8.25 h of growth; WT (PP2; 

black squares) versus Crc null (orange circles).  

phase (when the effect is no longer 

observed). Thirdly, the 5‟-LR sequence posses 

of a potential Crc RNA-binding motif (Figure 

8A) that i) overlaps the RBS region and ii) 

would be destroyed in 8. Thus, if Crc does 

influence this system, then the 8 derivative 

would represent a Crc target-site deficient 

mutant. 

To test for the potential involvement 

of Crc, a Po-luxAB reporter plasmid that also 

carried the Pr promoter, the 5‟-LR, and dmpR 

in its native configuration was used (Figure 

8B). This plasmid was introduced into wild-

type P. putida KT2440 and an otherwise 

identical Crc null counterpart. The result 

(Figure 8C) showed that DmpR-dependent Po 

output is greatly affected by the lack of Crc, 

particularly during the exponential phase 

where levels are up to 22-fold higher than in 

the wild-type strain. It is notable however, that 

the Crc null strain has a marked slower 

growth rate. This would be predicted to 

increase (p)ppGpp levels within the cell. Thus, 

part of the observed effect in the Crc null 

strain may be due to abnormal levels of 

(p)ppGpp because elevated (p)ppGpp would stimulate transcription from the Pr  promoter and 

hence have a positive stimulatory effect on the system. This may at least in part account for 

much greater effect observed in the Crc null strain as compared to the effect of the 8 Crc 

target-site deficient mutant. Taken together, the data in Figures 7 and 8 provide strong 

evidence that Crc controls translation (but not transcription) of DmpR to result in elevated 

levels of DmpR in vivo.   
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To further analyse the role of Crc in inhibiting translation of DmpR, two in vitro 

approaches were used. In the first approach, DmpR production was monitored using a plasmid 

encoding the native Pr-dmpR system in a coupled in vitro transcription-translation reaction 

(IVTT) in the presence of different amounts of Crc. The results showed that the levels of DmpR 

decrease as the levels of Crc increase (Figure 9A upper panel). Notably, the inhibitory action of 

Crc was abolished when a plasmid carrying the Crc target-site mutation (8) was used (Figure 

9A lower panel). Recall that the 8 deletion does not affect transcript levels, hence these 

results strongly suggest that Crc binds to the 5‟-LR of the dmpR mRNA and thereby inhibits 

translation.   

The ability of Crc to potentially bind the dmpR mRNA was directly assessed using an 

RNA electro-mobility shift assays (EMSA) (performed by Fernando Rojo (Spain)), using a RNA 

probe that encompassed the potential Crc binding site within the 5‟-LR (Figure 9B).  The 

presence of different concentration of Crc resulted in a dose-dependent increase in the amount 

of RNA-Crc complex formed (see bands labelled C in Figure 9B).  No RNA-Crc complex was 

observed in similar assays using RNA probes that carried C-substitutions within the potential 

Crc motif (orange in Figure 9B; data not shown).  The free RNA probe ran as three different 

 
Figure 9 – Effect of Crc on DmpR levels and binding of Crc in vitro. (A) Coupled in vitro 

transcription-translation assays. The upper panel shows a representative assay using a Pr-dmpR plasmid 

template with a native 5‟-LR (WT, pVI399) in the absence (-) or in the presence of increasing amounts of the 

Crc protein (0.5, 1.0, 2.0 and 4.0 M). The lower panel shows assays with the same plasmid (WT, pVI399)  

and a Crc target site deficient 8 derivative (pCon2117) in the absence (-) or presence (+) of 0.8 M of Crc. 

(B) EMSA assay of a 5‟-LR RNA probe (+89 to +115) containing the potential Crc binding site (orange) in the 

presence of different amounts of Crc (0, 53, 106, 212, 425 and 850 nM); C indicates RNA-Crc complexes, 

while F, F* and F** indicate the different forms/structures observed for the free RNA probe (Courtesy of 

Fernando Rojo, Spain). 
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System dmpK
(276 bp)

Intervening
(283 bp)

5‟-LR 
(123 bp +ATG) 

dmpR coding 
(1689 bp)

P. putida BH / PheR 276/276 =100% 283/283 = 100% 126/126=100% 1683/1689 = 99.6% 
{560/563 (99%) aa} 

P. putida KCT1452 / CapR Not available 267/283 = 94.4% 125/126=99.2% 1665/1689 = 98.5% 
{563/563 (100%) aa} 

P. putida H / PhlR 266/276 = 96.3% 231/243 = 95% 125/126=99.2% 1444/1689 = 85.5% (gaps) 
{482/562 (85%) aa}

P. putida P35X / PhhR 268/276 = 97.1% 273/283 = 96.5% 124/126=98.4% 1441/1689 = 85.3% (gaps) 
{483/562 (85%) aa}

RBS

DNA

AGCTGGCGCAGGTGAAAAAACTGCCGATTTTCCCCATGACCCCATCTGGAATCGCCGCCTGCC

TTGCGCTATAGCGGCGACCCTGATTTCCCCATCTAAAAATAAATAGGGGCCTCGCTTACATG

transcriptional repression

mRNA

AGCUGGCGCAGGUGAAAAAACUGCCGAUUUUCCCCAUGACCCCAUCUGGAAUCGCCGCCUGCC

UUGCGCUAUAGCGGCGACCCUGAUUUCCCCAUCUAAAAAUAAAUAGGGGCCUCGCUUACAUG

AAnAAnAA – Crc binding consensus

dmp-operon dmpR

54-Po
IHF UAS2 UAS1

70-Pr

A

B

 

Figure 10 - The 5’-LR is more highly conserved than coding regions in related systems. (A) 

Sequence of the 5‟-LR with the region involved in transcription regulation (DNA) and translational regulation 

(RNA) indicated.  (B) Table of relative conservation in related systems with a schematic of the sub-regions 

used in Blast searches superimposed above.  

forms on these non-denaturing gels (denoted F, F* and F** in Figure 9B), although only one 

form is observed when assessed on denaturing gels (data not shown).  It is notable that these 

three forms are differentially bound by Crc: F and F** can both be bound by Crc, while F* 

cannot. Because Crc can only bind to sequences that are unpaired (41), it seems likely that F* 

is an alternative structure where the binding site is masked in a double strand form, while F 

and F** represent alternative forms where the Crc-site is freely accessible. 

 

4.4. A highly conserved promoter proximal region of 5’-LR is also 

involved in controlling DmpR levels  

The preceding sections document two regulatory processes associated to the 5‟-LR of 

DmpR – one at the levels of transcription and one at the levels of translation. However, the 

regions involved only cover 11 (9%) of the 123 bp/nt that comprise this region (Figure 10A). 

When the sequence of the 5‟-LR and DNA in its surroundings – dmpR, the intergenic Po-Pr 

region, and the first gene of the dmp-operon (dmpK) –  are compared to those present in other 

phenol-degradative systems, the 5‟-LR is the most highly conserved region of all (Figure 10B). 
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This raised the question of whether the other 112 nt of the 5‟-LR are involved in additional 

roles that impact DmpR levels.   

Previously, the potential secondary structure of the 5‟-LR had been analysed using the 

M-fold and Vienna RNA folding programmes (66). The result predicted two possible structures: 

structure 1 (left-hand side, Figure 11A) has a large central stem-loop and two alternative forms 

of a short stem-loop, while the second structure (right-hand side, Figure 11A) exhibits two long 

stem-loops. Five different mutations, denoted mutA to mutE, designed to disrupt either one or 

the other of these potential structures had previously been introduced into Pr-luxAB reporter 

plasmids and found to have little, if any, effect on transcription from the Pr promoter in either 

the exponential or stationary phase of growth (Figure 11B; (66)). To be able to assess whether 

these mutations could mediate any effect on translation of DmpR, they were reconstituted in 

the context of Pr-dmpR expression plasmids and introduced into the P. putida PP980 Po-luxAB 

reporter strain described under Figure 7. These in vivo experiments showed that all five of the 

mutations resulted in a down-regulation of DmpR in exponential phase as assessed through 

output from the DmpR-dependent Po-promoter (Figure 11C). The differences were 2- to 5-fold 

for all but mutB, which represents the mutation with the least effect (Figure 11C, bar chart). 

Because the major effect of these mutations appeared limited to the exponential phase of 

growth, the activities of these Pr-dmpR plasmids were also monitored in a Crc null background 

(Figure 11D). Note that promoter output is generally lower in the Crc-null strain for all 

derivatives – a phenomenon that is also observed for transcription from other promoters 

dependent on a variety of different -factors (V. Shingler, personal communication). Most 

importantly, however, the profiles differ between mutations as compared to those seen in the 

P. putida wild-type (compare Figure 11C and D); mutA, mutD and mutE presented similar 

profiles as the wild-type (WT) Pr-dmpR construct in the Crc null strain, indicating that the 

reduced output observed in the wild-type strain is associated with the action of Crc i.e. that 

these three mutations in some way affect binding of Crc to the mRNA and thereby translation 

of DmpR. Therefore, these mutations lend support to the idea that the secondary structure of 

the 5‟-LR may be important for correct presentation of the Crc-binding site. For mutB and 

mutC this was not the case. Surprisingly, mutC exhibited 2.5-fold higher output as compared 

to the WT Pr-luxAB derivative in the Crc null strain, while mutB exhibited 3-fold lower output. 

Although this data does not give any insight into which of the potential secondary structure is 
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Figure 11 – Effect of 5’-LR structural mutations on transcription and translation. (A) Two potential secondary 

structures of the 5‟-LR of dmpR are depicted with the locations of the substitution mutations mutA to mutE indicated in relation 

to the Crc binding site (orange). (B) Relative transcription values of PP2 harbouring Pr-luxAB WT (pCon1817) or the otherwise 

identical derivatives carrying the five substitution mutations mutA to mutE (pCon1821 [mutA], pCon1822 [mutB],  pCon1833 

[mutC], pCon1841[mutD], or pCon1843 [mutE]: WT pCon1817 values were set as 1. The differences were constant over the 

entire growth curve (as followed for nine hours). (C) DmpR-dependent Po-output of PP980 (Po-luxAB reporter strain) harbouring 

Pr-dmpR expression plasmids (pCon2127 [WT], pCon2128 [mutA], pCon2129 [mutB], pCon2132 [mutC], pCon2133 [mutD], 

or pCon2134 [mutE]) cultured on rich medium contain 2-methylphenol as the inducer of DmpR activity as under Figure 7. Bar 

graphs are the average differences during the exponential phase (time points 0.45 to 3.5 h) with that of WT set as 1. (D) As for 

(C) except assays were performed with the Crc null derivative of PP980 (PP3044). Exponential phase time points used in the 

bar diagram were 1.5 to 4.5 h for this slower growing strain. 
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Figure 12 – Effect of 3 and 4 on transcription and translation. (A) Schematic of the two potential 

secondary structures showing the extent of the regions deleted in 3 (gray) and 4 (yellow) as well as the mutated 

region in mutD (blue) and the location of the Crc binding site (orange). (B) Relative transcription values of PP2 

harboring Pr-luxAB reporter plasmids: WT (pCon1580), 3 (pCon1598), 4 (pCon1599). Differences were 

constant over the 9 h growth curve; data are the average of all time point comparisons with WT set as 1. (C) 

Growth curves (dotted lines) and luciferase values (continuous lines) obtain from Po-luxAB reporter strain PP908 

harboring Pr-dmpR plasmids: WT (pVI401), 3 (pCon1483), 4 (pCon1482) or mutD (pCon2150). (D) As (C) but 

with the same plasmids in PP3044 – the Crc null counterpart of PP980. 

correct, the results with the mutB and mutC derivatives do provide the first evidence that the 

structure of the 5‟-LR mRNA may be important for other regulatory processes that impact 

translation of DmpR by a mechanism(s) that is independent of Crc-binding. 

To start to address this possibility, two deletions (3 and 4) of the 5‟-LR that had 

previously been analysed in the context of the 5‟-LR in Pr-luxAB transcriptional reporter 

plasmids (Figure 6) were incorporated in the context of Pr-dmpR expression plasmids. Both 

these deletions would remove most of the potential secondary structure of the 5‟-LR, but would 

leave the Crc binding site and RBS intact (see Figure 12A). These plasmid derivatives carry a 

longer portion of the Pr upstream region than those used in the analysis shown in Figure 11. 

Because this has repercussions for the absolute values obtained (53), an equivalent derivative 
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harbouring the mutD substitution was also constructed for comparison purposes. These 

plasmids were subjected to the same series of assays as described for mutA to mutE above.  

Consistent with the finding in Figures 6, neither 3 nor 4 had any detectable effect on output 

from the Pr promoter i.e. they do not have any effect on the level of transcription (Figure 12B). 

Importantly, however, both deletions caused a decrease in output from the DmpR-dependent 

Po-luxAB fusion in wild-type P. putida and markedly decrease output in the isogenic Crc null 

derivative (Figure 12C and D). Thus, these data again support the suggestion that the 

secondary structure of the 5‟-LR is important for efficient translation of DmpR (and thus 

corresponding output from DmpR-dependent Po promoter). 

      

4.5. The 5’-LR encompasses an upstream ORF (uORF) and a potential 

target site for a small regulatory RNA. 

As detailed in the introduction, 5‟-LRs can control translation by different mechanisms 

including modulation of translation efficiency through coupling of translation with that of a short 

upstream open-reading frame (uORF). Control of translation of PsqR of P. aeruginosa is a 

prime example of such regulation (26). In that system, the 5‟-LR of the PqsR mRNA contains 

an uORF, and active translation through the uORF is required for efficient translation of the 

downstream pqsR gene. Moreover, this translational coupling was found to be controlled 

through the secondary structure of the 5‟-LR, which in turn is modulated by interactions with a 

small regulatory RNA denoted PhrS (26).  The region of PhrS responsible for modulating 

translation has been traced to a sub-region of PhrS denoted creg. A homologue of PhrS exists 

in P. putida and exhibits a 100% identity in the creg region (26). This raised the possibility that 

a similar mechanism may also operate through the 5‟-LR of the DmpR mRNA.   

Re-examination of the 5‟-LR region in the light of the findings with PhrS/PqsR in P. 

aeruginosa revealed the presence of both a potential uORF within the dmpR mRNA and a 

potential target site for interaction with the regulatory RNA PhrS (Figure 13). The potential PhrS 

target site within the uORF of 5‟-LR of the dmpR mRNA has both higher continuity and 

complementary than that of the identified target site within pqsR mRNA (Figure 13, lower). The 

dmpR uORF has two potential start sites; a GTG Val start (20 codon ORF) or an ATG Met start 

(12 codon ORF) that are bounded by a UAG termination codon.  The UAG termination codon is 
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the poorest translation stop signal, particularly when followed by a C (67). Inefficient 

termination at the stop codon would be consistent with coupling between translation of the 

uORF and translation of DmpR. These observations prompted an evaluation of these potential 

regulatory features in controlling DmpR levels.  

To assess a potential regulatory role of the PhrS RNA, the Po-luxAB Pr-dmpR reporter 

plasmid used in analysis of the in vivo effects of Crc (Figure 8D) was employed. This reporter 

plasmid was introduced into wild-type P. aeruginosa and its PhrS null counterpart. However, 

luciferase activity assays across the growth curve did not show any difference between the two 

strains and, therefore, did not provide any support for the notion that PhrS is involved in 

controlling translation of DmpR (Figure 14A).  

To assess if translational coupling between the uORF and the dmpR ORF could 

potentially control DmpR levels, the ACC codon immediately downstream of the Met start of the 

uORF was chosen for mutagenesis. This codon was targeted because substitutions to a strong 

TAA termination codon would not disrupt any of the bonds in the predicted secondary 

structures (see red circles in Figure 13). However, the ACC to TAA substitution would be 

 

Figure 13 – The 5’-LR has a potential uORF and target site for PhrS.  The sequence of the 5‟-LR in 

alternative structures is shown with the potential uORF highlighted in green. Start and stop codons are shown in 

bold, while the red circle indicates the codon targeted for mutagenesis as described in the text. The region with 

complementary to the PhrS-creg region is shown in blue. The alignment in the lower part of the figure shows 

the greater continuity and higher complementarity of the PhrS-creg region with the 5‟-LR of dmpR than its 

document target within the mRNA of pqsR. 
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expected to terminate any potential translation of the uORF and thus disrupt potential 

translational coupling between the uORF and that of dmpR. The ACC to TAA substitution, when 

incorporated in the 5‟-LR in the context of a Pr-luxAB transcriptional reporter plasmid, had little 

or no effect on the transcriptional output from Pr as assessed by luciferase plate assays (Figure 

14B, upper). However, plate test of the Pr-dmpR expression plasmid, showed that the ACC to 

TAA substitution resulted in reproducible decrease in output from the DmpR-dependent Po 

promoter in the P. putida Po-luxAB reporter strain PP980 (Figure 14B, lower). Although, the 

differences were not dramatic under the experimental conditions used, they do suggest that 

translational coupling may exist. 
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Figure 14 – Assessing potential regulation through PhrS and translational coupling. (A)  The graph shows 

the growth (dashed lines) and luciferase (continuous lines) profiles of WT (PAO1, black squares) and its PhrS null 

counterpart (PA6671, blue circles) harbouring the Po-luxAB Pr-dmpR reporter plasmid pVI466.  (B) Autoradiograms of 

luciferase plate test assays. The upper image shows a comparison of PP2 harbouring either a wild-type (WT) Pr-luxAB 

reporter (pCon1485) or an equivalent plasmid carrying a ACC to TAA (stop) substitution within the 5‟-LR (pCon2204) 

cultivated on rich media. The lower image shows a comparison of PP980 Po-luxAB reporter strains harbouring either a 

wild-type (WT) Pr-dmpR expression plasmid (pVI346) or an equivalent plasmid carrying a ACC to TAA (stop) substitution 

within the 5‟-LR (pCon2203). In this case, strains were cultivated on rich media containing 2-methylphenol required for 

DmpR activity.  
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Figure 15 – Potential regulations at translational level addressed during this study. The two 

potential secondary structures and sub-structures predicted for the dmpR 5‟-LR presented with  the features 

involved in the potential regulatory mechanisms identified highlighted: Crc binding site in orange letter, RBS in 

pale orange, uORF in green and the PhrS-creg consensus region in blue letter. 
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Expression of natural systems for the catabolism of toxic carbon sources is finely tuned 

to host physiology to allow appropriate expression of the specialised catabolic enzymes only 

when they are of benefit to the host. For the dmp-system for degradation of methylphenols, all 

such integration appears to converge on controlling expression of the aromatic-responsive 

transcriptional activator DmpR. In this work, we present evidence that the DNA encoding the 

5‟-leader region (5‟-LR) of dmpR exerts control of transcription from the Pr promoter, while the 

resulting 5‟-LR of the mRNA is employed in at least two independent mechanisms that regulate 

translation of the DmpR gene product – one involving binding of the Crc protein to repress 

translation, and a second mechanism that likely involves translational coupling through the 5‟-

LR to enhance translation of DmpR. The findings raise the following mechanistic questions:  

 

 How does the initially transcribed (5‟-LR) DNA control output from the Pr promoter? 

 How does Crc-binding to the mRNA result in repression of translation of DmpR? 

 How might the secondary structure of the 5‟-LR potentially influence binding of Crc? 

 How might translational coupling through an upstream open-reading frame (uORF) 

enhance translation of DmpR?  
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How does the initially transcribed (5’-LR) DNA control output from the Pr 

promoter?  

Simple possession of a symmetrical promoter-distal ATAAATA motif within the DNA 

encoding the 5‟-LR is all that is needed to result in a reduced number of transcripts from the Pr 

promoter (Figures 5 and 6). How the presence of this motif causes this effect is yet unknown, 

but does not involve any process that reduces the mRNA half-life (Figure 5). This suggests that 

the mechanism involves either the number of productive initiation events at the Pr promoter or 

the rate with which RNAP progresses through the 5‟-LR DNA. Because the ATAAATA motif lies 

quite distal from the Pr promoter, the latter of these two alternatives appears the most likely.  

Two possible mechanisms can be envisioned to account for the repressive effect of 

this motif on the number of transcripts produced from the Pr promoter. The first of these 

involves transcriptional pausing at the ATAAATA motif due to its similarity to a promoter 

element (-10 TATAAT) motif and its location 102 bp downstream of the +1 transcription start. 

As outlined in the introduction, -factor can stay partially attached to the RNAP-core during the 

first 200 nt of elongation of the RNA and cause pausing by binding to promoter mimics within 

the DNA. This would impede the progression of RNAP and thus result in a lower net number of 

full length transcripts.  

A second and perhaps more likely explanation is that the ATAAATA motif serves a 

binding site for an as yet unknown repressor.  Repression at the level of the transcription is 

also seen in the heterologous host E. coli DH5 containing the minimal system of the Pr 

promoter and 5‟-LR controlling the expression of the luxAB reporter genes (66). Therefore, 

such a repressor would have to be encoded within the genomes of both E. coli and P. putida 

KT2440.  The ATAAATA motif bears similarity to the consensus sequence for E. coli H-NS 

(TCGATAAATT). H-NS-like proteins all bind AT-rich regions and are global regulators of 

environmentally regulated genes in many Gram-negative bacteria (reviewed in (68)). E. coli has 

two known H-NS like proteins (H-NS and StpA), while the genome of P. putida KT2440 

encodes multiple such proteins (PP0017, PP1366, PP2947, PP3693, and PP3765). However, 

systematic evaluation of the possible involvement of a H-NS-like protein by monitoring 

transcription from Pr with or without the 5‟-LR in P. putida strains individually devoid of each of 

these H-NS like proteins refuted this idea (T. del Peso-Santos and V. Shingler, unpublished 
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data). Thus, the identity of the potential repressor that could bind the ATAAATA motif remains a 

mystery. A future approaches to pursue such a repressor is to try affinity purification of 

proteins that binds the 5‟-LR DNA by established methods (69).  

How does Crc-binding to the mRNA result in repression of translation of 

DmpR? 

During this study, much evidence that Crc specifically binds to the 5‟-LR of the dmpR 

mRNA and inhibits translation both, in vivo (Figures 7 and 8) and in vitro (Figure 9) has been 

acquired. The actual mechanism that brings about this effect remains to be verified. However, 

as highlighted in Figure 15, the Crc binding site overlaps 5 nt of the potential RBS of dmpR. 

This, therefore, suggests that the most probable mechanism involves a competition between 

Crc and ribosomes to recognize and bind their respective sites within this region.  

This hypothesis could potentially be directly assessed by toe-printing assays in the 

presence or absence of Crc. The toe-printing technique was originally developed to detect 

formation of RNA-ribosomal complexes through blocking a primer-extension reaction mediated 

by a reverse transcriptase. As reverse transcriptase copies cDNA from RNA (using an 

oligonucleotide primer complementary to a region downstream the RBS), bound ribosomes 

serve as a road-block.  The length of the prematurely terminated primer extension product can 

then be used to determine the RBS location. By analogy, the presence of Crc or other RNA-

binding proteins could also potentially be detected in the same way. 

During the time of this study it was possible to establish fluorescent-primer extension 

based assay essentially as described in (53). However, consistent with previous findings with 

Crc, premature termination due to binding of Crc could not be detected by toe-printing (41). 

This result suggests that Crc is readily displaced by the reverse transcriptase as it copies the 

RNA into cDNA. Although the direct binding of Crc bind could not be determined by this 

method, if competition with ribosomes is indeed the mechanism through which Crc acts, its 

inclusion in assays would likely reduce the number of premature termination events observed 

due to ribosome binding. However, despite extensive test I was unable to document binding of 

available 30S E. coli ribosomes to the 5‟-LR mRNA.  Therefore, further development and 

optimisation of this assay is need in order to test the hypothesis. 
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How might the secondary structure of the 5’-LR potentially influence 

binding of Crc? 

Crc can only bind to single stranded RNA (41). The analysis of the effect of structural 

mutants (mutA-mutE) on DmpR translation did not give any insight to which of the two 

potential secondary structures of the 5‟-LR mRNA is the likely relevant form in vivo (Figure 11). 

However, the results not only suggested that the secondary structure does influence Crc 

binding (as exemplified by reversal to wild-type expression profiles in a Crc null strain), but also 

revealed the existence of an additional Crc-independent regulatory role(s) associated with the 

5‟-LR. To further pursue how the secondary structure may influence DmpR levels, it would be 

greatly beneficial to know the actual structure of 5‟-LR mRNA. One technique that may allow 

the determination of this is RNA enzymatic probing as used in (26). Within this kind of analysis, 

the restriction pattern obtain with RNAses that only recognize and cut after specific nucleotides 

and/or only cut single-stranded or double-stranded RNA can be used to deduce secondary 

structures. Such analysis would directly determine if the proposed Crc-binding site is located 

within a loop, the size of such a loop, and if mutants that apparently facilitate Crc binding alter 

the overall structure. 

How might translational coupling through an upstream open-reading frame 

(uORF) enhance translation of DmpR? 

As outlined in the preceding sections, Crc binding likely competes with binding of 

ribosomes to directly reduce translational efficiency, and binding of Crc is also likely to be 

enhanced by exposure of the Crc binding site in a single stranded loop configuration. 

Introduction of a TAA stop codon immediately adjacent to the ATG Met codon within a small 

uORF of the 5‟-LR apparently reduces translation of DmpR (Figure 14C). These finding suggest 

that there is some translational coupling event between the uORF and that of DmpR. Two non-

mutually exclusive scenarios can be envisaged.   

Firstly, because transcription and translation are coupled processes in bacteria, active 

translation of the uORF would likely block the potential formation of the first large stem loop of 

either of the structure depicted in Figure 15. This, in turn, may simply allow formation of an 

RNA configuration that is bound less efficiently by Crc – less efficient binding of Crc would 

result in enhance translation of dmpR. A second, possible explanation is suggested by the 



Discussion 

 

63 

 

inefficient termination codon context of the uORF – a TAG codon followed by a C. Inefficient 

termination at this codon might allow read-through of terminated-but-not-released-ribosome 

that would scan by lateral diffusion along the mRNA to the next available ATG start (70) i.e. 

that of the dmpR ORF.  In so doing, translational efficiency may be increased by increasing the 

frequency of productive binding of ribosomes directly and/or by “railroading” Crc off the mRNA 

in much the same manner as reverse transcriptase appears to do. One approach to distinguish 

between these two possibilities would be to introduce an alternative Met start and stop codon 

downstream of the uORF termination codon but upstream of the Crc site, so as to sequester 

any scanning ribosomes before they could reach the Crc binding site or the ATG initiation 

codon of dmpR. 

Irrespective of the mechanism involved, either explanation for the apparent 

translational coupling demands that the uORF is actually translated. Future experiments 

involving translational fusions with a reporter gene, in- and out-of-frame, and downstream of 

the termination codon placed within the uORF, should resolve this issue. However, translation 

coupling to enhance translation of DmpR combined with translational repression via Crc 

presents a conundrum – what is the regulatory logic of having two counteractive systems 

operating simultaneously? Because Crc levels and availability are controlled in response to the 

carbon sources and growth conditions of the bacteria, repression of translation by Crc 

seemingly makes biologic sense – muting of the dmp-system when preferred carbon sources 

are present. But why also have a system for translational coupling that can stimulate 

translation of DmpR? By analogy to the PsqR/PhsR system of P. aeruginosa (26), it is plausible 

that a small regulatory RNA (or an RNA-binding protein) may influence this event to enhance 

DmpR production when the methylphenol catabolic enzymes are required. An initial 

experiment using a PhrS null mutant of P. aeruginosa did not provide any supportive evidence 

that its P. putida homologue may be such factor (Figure 14A). However, given the higher 

similarity of a potential target site for PhrS within the uORF of the 5‟-LR, further analysis of this 

possibility using the native P. putida host is certainly warranted. 
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A complete understanding of the physiological control of catabolic gene expression is 

necessary to allow predictable successful design of bacteria for biotechnological and 

bioremediation applications. In the case of the dmp-system of Pseudomonas putida CF600, 

expression of DmpR is without doubt the major regulatory check point of the system and the 

target for integration within host physiology. Much previous work had focussed on the Pr 

promoter that drives transcription of dmpR, but little was known about the impact of the 5‟-LR 

of the dmpR gene.  Therefore, this study was performed in the pursuit of more information 

about the role of the 123 bp long dmpR 5‟-LR.  

 

The main conclusions that can be drawn from the results are: 

 

1) A short promoter distal motif – ATAAATA – within the DNA encoding the 5‟-LR of the 

dmpR mRNA is responsible for a 5- to 7-fold repression at the level of transcription 

from Pr.  

2) Crc specifically binds to a near-consensus RNA site (AAAAAUAA), localized in the distal 

region of the 5‟-LR, and represses translation of dmpR.  

3) The secondary structure of the 5‟-LR is likely involved in the regulation of DmpR levels 

by i) providing a configuration suitable for Crc binding, and ii) also by other 

mechanisms that are not completely understood as yet. 

4) The 5‟-LR possesses a small open-reading frame located upstream of dmpR, 

translation of which seems to have a positive effect on DmpR levels and, therefore, on 

the dmp-system. 
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