
A MACHINE INDEPENDENT WCET PREDICTOR FOR MICROCONTROLLERS AND
DSPS

Adriano José Tavares

Department of Industrial Electronics, University of Minho, 4800 Guimarães, Portugal
e-mail: atavares@dei.uminho.pt, phone: (351) 253 604706

Carlos Alberto Couto

Department of Industrial Electronics, University of Minho, 4800 Guimarães, Portugal
e-mail: ccouto@dei.uminho.pt, phone: (351) 253 604701

ABSTRACT

This paper describes a method for analyzing and
predicting the timing properties of a program fragment.
The paper first presents a little language implemented to
describe a processor’s architecture and a static WCET
estimation method is then presented. The timing analysis
starts by compiling a processor’s architecture program
followed by the disassembling of the program fragment.
The assembler program is then decomposed into basic
blocks and a call graph is generated. These data are later
used to evaluate the pipeline hazards and cache miss that
penalize the real-time performance. Finally, some
experimental results of using the developed tool to predict
the WCET of code segments with some Intel
microcontroller are presented.

1. INTRODUCTION

Real-time systems are characterized by the need to satisfy
a huge timing and logical constraints that regulate their
correctness. Therefore, predicting a tight worst case
execution time of a code segment will be a must to
guarantee the system correctness and performance.

The simplest approach to estimate the execution time
of a program fragment is, for each arithmetic instruction,
counting the number of times it appears on the code,
express the contribution of this instruction in terms of
clock cycles, and update the total clock cycles with this
contribution. Other two basic approaches are:

1) Isolate the operation to be measured and make

time measurements before and after performing
it, which is valid only when the resolution of an
individual measurement will be considerably
less than the time of the operation to be
specifically analyzed

2) Execution of the operation a large number of
times, and at the end of the loop operation
execution, the desired time will be found by
averaging. Even with this approach, if you want
an accurate measurement, a number of
complications such as, compiler optimizations,
operating system distortions, must be solved.

Nevertheless, these approaches are unrealistic since

they ignore the system interferences and the effects of
cache and pipeline, two very important features of some
processors that can be used in our hardware architecture.
Shaw [1], Puschner [2], and Mok [3], developed some
very elaborated methodology for WCET estimation, but
none of them takes into account the effects of cache and
pipeline.

By definition, the estimation of WCET must skip over
all the profits provided by modern processors, such as
caches, and pipeline (i.e., each instruction execution
suffers from all kind of pipeline hazards and each memory
access would cause a cache miss) as they are the main
source of uncertainty. However, following such
definition, a very pessimistic result would be obtained,
making useless those processor’s resources. Some WCET
estimation schemes oriented to modern hardware features,
were presented in the last years, and among them we refer
to: Bharrat [4], Nilsen [5], Steven Li [6], Zhang [7],
Tai-Yi Huang [8], Whalley [9], and Sung-Soo Lim [10].
As these WCET estimators are oriented to general-
purpose processor, they do not address some specificity of
our target processors (microcontrollers and DSPs), and so,
we propose a new and universal (Machine Independent)
estimator, implemented as a little language for
architecture description. Such an universality scheme,
based on the little language was used before by Scharr
[11] to describe the pipeline instruction scheduling and
executable editing, Tremblay[12] to generate machine
independent code, Proebsting and Fraser [13] to describe
pipeline architectures and Nilsen [5] to implement a

compiler, simulator and WCET estimator for pipeline
processors.

2. LITTLE LANGUAGE PROCESSOR

A little language is a programming language written for a
specific application that does not necessarily have the
same functionality as a general-purpose language. The
purpose of a little language, typically, is to solve a
specific problem and, in so doing, simplify the activities
related to the solution of the problem. To create our little
language’s statements, we start to define the tasks to be
performed, i.e., describing processor’s architectures in
terms of structure and functional architecture of the
interrupt controller, PTS (Peripheral Transaction Server),
PWM (Pulse Width Modulation), WG (Waveform
Generator), and HIS (High Speed Input), instruction set,
instruction semantics, addressing modes, processor’s
registers, instruction coding, compiler’s specificity,
pipeline and cache resources, and so on. Strongly related
to the instruction’s semantics of a little language is the
language paradigm that defines how the language
processor must process the built-in statements.
For our little language, we adopt a procedural and
modular paradigm, such that modules are independent
from each other, the sequence of modules execution does
not matter, but within each module an exact sequence of
instructions is specified and the computer executes these
instructions in the specified order. A processor’s
architecture program is written by modules, each one
describing a specific feature such as instruction set,
interrupt structure and mechanism, register structure,
memory organization, pipeline, data cache, instruction
cache, PTS, and so on. As said above, the module
execution order can be any, but the register module must
always be the first to be executed. A module can be
defined more than once, but it is a processor language job
to verify the information consistency among them and
concatenate all them into a single module.

One component of our language processor is the
disassembler that has as input an executable file
containing the code segment that one wants to measure
and the compiled version of the processor’s architecture
program. The disassembler process starts at the start-up
code address (startup code is the bootstrap code executed
immediately after the reset or power-on of the processor)
and follows the execution flow of the program. It is
implemented into four phases:

1. starting at the start-up code address follows all

possible execution paths till reaching the end
address of the “main” function. At this stage, all
function calls are examined and their entry code
addresses are pushed into an auxiliary stack,

2. from the entry address of the “main” function,
checks the main function code for interrupt
activation,

3. for each active interrupt, gets its entry code

address and pushed it into the auxiliary stack,

4. pops each entry address from the auxiliary stack
and disassemble it, following the function’s
execution paths.

The execution of the simulation module is optional

and the associated process is described by a set of
operation introduced using the function “SetAction”. That
is to say, for each instruction the simulation process,
including the flag register affectation, are described by a
set of operation specified using “SetAction” calls. To
achieve a correct flags affectation, all operations describe
by “SetAction” must be implemented using binary base.
The main purposes of the simulation module are:

a) to rectify the execution time of instructions that

depends on data locations, such as stack,
internal or external memory,

b) to solve the indirect address problem by

checking if it is a jump or a function call
(function call by address),

c) to estimate the iteration number of a loop.

Note that, running the simulation process before the

estimation process, it is possible to obtain a more
optimistic worst case timing analysis.

The WCET estimator module is the only one that
requires a direct interaction with the user. Such interaction
is always needed, as some parameters are not measurable
through the program code. Examples of such kind of
parameters are, the number of an interrupt occurrence and
the preview of a possible maximum iterations number
associated to an infinite loop. The WCET estimation
process was divided into two phases:

1- first, the code segment to be measured is

decomposed into basic blocks,

2- for each basic block, it will be estimated the
lower and upper execution time, using the
shortest path method and a timing scheme [1].

The basic block graph will be the input of the shortest

path algorithm used to estimate the lower and upper
bound on the execution time of the code segment. For the
estimation of the upper bound, it is used the multiplicative
inverse of the upper execution time of each basic block.

A basic block is a sequence of assembler’s
instructions, such as that only the first instruction can be
prefixed by a label and only the last one can be a control
transfer instruction. The decomposition phase is carried
out following the steps below:

1- Rearrangement of code segment to guarantee the

visual cohesion of a basic block. Note that, the
ordering of instructions by address make more
difficult the visualization of the inter basic block
control flow, due to long jump instructions that
can occur between basic blocks. To guarantee
that visual cohesion, all sequence of instructions
are rearranged by memory address, excluding
those one located from long jump labels – these
instructions are inserted from the last buffer
index.

2- Characterization of the conditional structure

through the identification of the instructions
sequence that compose the “if” and “else” body.

3- Characterization of the loop structure through

the identification of the instructions sequence
that composes the loop body, control and
transfer control. It is essential to discern
between “while/for” and “do while” loop since
the timing schemes are different.

4- After the identification and characterization of

the control and loop structures, it will be built a
basic block graph, showing all the execution
paths between basic blocks.

5- For each basic block, find the lower and upper

execution time.

2.1. Pipeline Modelling

The WCET estimator presented so far, considers that an
instruction’s execution is fixed over the program
execution. However, with the modern processors, the
dependence among instructions can cause pipeline
hazards, introducing a delay in the instructions execution.
This dependence emerges as several instructions are
simultaneously executed and as the result of this
parallelism execution among instructions, the execution
time of an instruction fluctuates depending on the set of
its neighbouring instructions.

The pipeline analysis strategy built in the proposed
little language is different from those referred so far, since
we use the pipeline hazard detection technique suggested
by Proebsting and Fraser [13]. The little language models
the pipeline as a set of resources and each instruction as a
process that acquires and consumes a subset of resources

for its execution. Therefore, the pipeline stages and
functional units are defined using functions
“setPipeStage(Mn)” and “SetPipeFunctionalUnit(Mn,num)”,
respectively. For each instruction, there is a set of
functions to solve the following points:

i) Instr.SetSourceStage(s_Opr, Stg) specifies the

pipeline stage each source operand must be
available,

ii) Instr.SetResultStage(d_Opr, Stg) specifies the

pipeline stage the output of the destination
operand becomes available.

iii) Instr.SetStageWCET(stg, tm) specifies each

pipeline stage required to execute an
instruction and the execution time
associated to that stage.

iv) Instr.SetbranchDelayCost(tm) sets the control

hazard cost associated to a branch
instruction.

The pipeline analysis of a given basic block must

always take into account the influences of the predecessor
basic blocks (note that, the dependence among
instructions can cause pipeline hazards, introducing a
delay in the instructions execution), otherwise, it leads to
an underestimation of the execution time. Therefore, at
the hazard detection stage of a given basic block, it will be
always incorporate the pipeline’s state associated to the
predecessor basic blocks over the execution paths. The
resources vector that describes the pipeline’s state will be
iteratively updated by inserting pipeline stalls to correct
the data and/or structural hazards when the next
instruction is issued.
If these two hazards happen simultaneously, the
correction process start at the hazard that occurred first
and after it checks if the second one still remains. The
issuing of the new instruction will be always preceded by
the updating of the previous pipeline’s state. This is
achieved by shifting the actual pipeline resource vector
one cycle forward.

The pipeline architectures, usually, present special
techniques to correct the execution flow when a control
hazard happens. For instance, the delay transfer control
technique offers the hardware an extra machine cycle to
decide the branch. Also, special hardware is used to
determine the branch label and value condition at the end
of the instruction’s decode. As one can conclude, the
execution of delay instructions does not depend on the
branch decision and it is always carried out. So, we model
the control hazard, as being caused by all kind of branch
instruction and by adding the sum of execution time of all

instructions in the slot delay to the basic block execution
time.

2.2. Cache Modelling

Cache is a high speed and small size memory, typically, a
SRAM that contains parts of the most recent accesses to
the main memory. Nowadays, the time necessary to load
an instruction or data to the processor is much longer than

the instruction execution time. The main rule of a cache
memory is to minify the time needed to move the
information from and to the processor. An explanation for
this betterment, comes from the locality of reference
theory – at any time, the processor will access a very
small and localized region of the main memory and the
cache loads this region, allowing faster memory accesses
to the processor.

In spite of the memory performance enhancement,

the cache makes the execution time estimation harder, as
the execution time of any instruction will vary and depend
on the presence of the instruction and data into the caches.
Furthermore, to exactly know if the execution of a given
instruction causes a cache miss/hit, it will be necessary to
carry out a global analysis of the program. Note that an
instruction’s behavior can be affected by memory
references that happened long time before.

Adversely, the estimation of WCET becomes harder
for the modern processors, as the behavior of cache and
pipeline depend on each other. Therefore, we propose the
following changes to the algorithm that takes into account
the pipeline effects:

1) Classify the cache behavior [9] for any data

and instruction as cache hit or cache miss
before the analysis of the pipeline behavior

2) Before the issuing of an instruction, verify
if there is any cache miss related to the
instruction, and if any, apply the miss
penalty beforehand and then the detection
and correction of pipeline hazards

3. EXPERIMENTAL RESULTS

By the moment, we will present some results using the
8xC196 Intel microcontrollers as they are the only ones
present all needed execution time information in the
user’s guide. But we hope soon to present results of
experiments with modern processor such as, some Texas
Instruments DSPs, Intel 8xC296, and so on.

Fig.1 shows the program to be estimated, that is
composed by two functions: the main() and func(). This
program was instrumented to allow a direct measurement
with a digital oscilloscope through the pin number six of
port 2 (P2.6), as shown in Fig.2.

At a first stage, the WCET estimator built the call
graph given at the lower right quadrant of fig.3 and then,
func() identified by the label C_2192 will be processed
and providing a similar screen. At the upper right
quadrant of fig.3, information such as execution time of
individual basic blocks, basic block control flow and
function execution time are presented. At the lower right
quadrant of fig.3, can be presented the assembler code
translated by the disassembler from the executable code,
the call graph and the simulator state. The upper left
quadrant of fig.3 presents parts our little language
program describing the microcontroller architecture.

4. CONCLUSIONS

A very friendly tool for the WCET estimation was developed
and the results obtained over some Intel microcontroller were
very satisfactory. To a complete evaluation of our tool we will
realize more test using other classes of processors such as DSPs
e some Motorola microcontrolers.

5. REFERENCES

[1] Alan C. Shaw, Deterministic Timing Schema for Parallel
Programs, technical Report 90-05-06, Department of Computer
Science and Engineering, University of Washington, Seattle,
1990.

[2] P. Puschner and CH. Koza, Calculating the Maximum
Execution Time of Real-Time Programs, The Journal of Real-
Time Systems, 1, pp. 159-176,1989.

[3] A. K. Mok et al., Evaluating Tight Execution Time Bounds
of Programs by Annotations, in Proc. Of the Sixth IEEE
Workshop on Real-Time Operating Systems and Software, pp.
272-279, May 1989.

[4] S. Bharrat and K. Jeffay, Predicting Worst case Execution
Times on a Pipelined RISC Processor, Technical Report,
Department of Computer Science, University of North Carolina.

Fig.1 Code segment to be measured

#pragma model(MC)
#include _SFR_H_
#include _FUNCS_H_
/* Reserve the 9 bytes required by eval board */
char reserve[9];
#pragma locate(reserve=0x30)
register int i,k;
register int x, y;
void func();

void main(void)
{
 x = 1;
 y = 0;
 i = 20;
 func();
}

void func()
{
 for(k=1; k<10; k++)
 {
 x*=3;
 y = x + 4;
 }
}

Fig.2 Direct measurement of instrumented program using a digital Oscilloscope to monitor P2.6

[5] K. Nilsen and B. Rygg, Worst-Case Execution Time
Analysis on Modern Processor, ACM SIGPLAN Notices, Vol.
30, No. 11, pp. 20-30, November 1995.

[6] Y. Steven Li et al., Efficient Microarchitecture Modeling and
Path Analysis for Real-Time Software, Technical Report,
Department of Electrical Engineering, Princeton University.

[7] N. Zhang and M. Nicholson, Pipelined Processors and Worst
Case execution Times, Real-Time Systems Journal, Vol. 5, No.
4, pp. 319-343, October 1993.

[8] Tai-Yi Huang et al., A Method for Bounding the Effect of
DMA I/O Interference on Program Execution Time, in Proc.
Real-Time Systems Symposium, Washington DC. December
1996.

[9] C. Healy, D. Whalley and M. Harmon, Integrating the
Timing Analysis of Pipelining and Instruction Caching,
Technical Report, Computer Science Department, Florida State
University.

[10] Sung-Soo Lim, C. Yun Park et al., An Accurate Worst Case
Timing Analysis for RISC Processors, IEEE Transactions on
Software Engineering, Vol. 21, No. 7, pp. 593 – 604, July 1995.

[11] Eric Schnarr and James Larus, Instruction Scheduling and
Executable Editing, Worshop on Compiler Support for System
Software (WCSSS’ 96), Tucson, Arizona, February, 1996.

[12] J. Tremblay and P. Sorenson, The Theory and Practice of
Compiler Writing, McGraw-Hill, ISBN 0-07-065161-2, 1987.

[13] T. Proebsting and C. W. Fraser, Detecting Pipeline
Structural Hazards Quickly, in Proc. of the 21th Annual ACM
SIGPLAN_SIGACT Symposium on Principles of Programming
Languages, pp. 280-286, January 1994.

Fig. 3 WCET = 61µs was estimated for the code presented at fig. 1

