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Abstract 

 

Diatoms are microscopic, unicellular photosynthetic microrganisms which possess rigid cell 

walls (frustules) composed by amorphous silica. As photoautotrophic, their cultures are affected by 

light. Other limiting factors are nutrients content (phosphate, nitrogen and silicon), pH and 

temperature. Diatoms can be explored in Biotechnology (pharmaceutical industry, cosmetics and 

biofuel) and the frustule itself is of vast interest to Nanotechnology. However, the success of 

industrial applications using diatoms depends on the choice of the species with the most relevant 

properties for the required application. As a result, the methods of taxonomic characterisation must 

be improved. 

 

The work presented in this thesis aims at investigating new methods for the characterisation 

and preservation of diatoms (Seminavis robusta, Cosciscodiscus, Thalassiosira, Cyclotella 

meneghiniana) and, more specifically, the possibility of using the MALDI-TOF ICMS technique for 

their characterisation. The immobilisation of the marine centric diatom Coscinodiscus, in gelatine and 

pectin beads as a method of long-term preservation was studied as a way of preserving the genomic, 

morphological and physiological characteristics. Finally, surfactants were used in an attempt to 

detach the pennate diatom Seminavis robusta through chemical action.  

 

From these studies, it was concluded that: (1) diatoms generate MALDI-TOF ICMS 

fingerprints that can be used in their identification and characterisation; (2) diatoms immobilisation 

in pectin and gelatine beads did not have any advantages over the existing methods; (3) the chemical 

action proved to be an alternative method to detach diatoms. However, more studies about the 

characterisation and detachment are required. 
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Resumo 

 

As diatomáceas são seres microscópicos, unicelulares, eucariontes e fotossintéticos que 

possuem paredes celulares rígidas (frústulas) compostas por sílica amorfa. Sendo fotoautotróficas, as 

diatomáceas são especialmente sensíveis ao efeito da luz. Outros factores limitantes são os 

nutrientes (fosfato, nitrogénio, silício), o pH e a temperatura. As diatomáceas podem ser exploradas 

na Biotecnologia (indústria farmacêutica, cosmética e de biocombustíveis) e a frústula tem 

despertado um grande interesse para aplicações nanotecnológicas. No entanto, o sucesso das 

aplicações industriais usando diatomáceas depende da escolha da espécie com as propriedades mais 

adequadas para a aplicação desejada. Deste modo, os métodos de caracterização taxonómica são 

fundamentais e devem ser optimizados.  

 

O trabalho apresentado nesta tese teve como objectivo investigar novos métodos de 

preservação e caracterização de diatomáceas (Seminavis robusta, Cosciscodiscus sp., Thalassiosira 

sp., Cyclotella meneghiniana) e, mais especificamente, a possibilidade de utilizar a técnica de MALDI-

TOF ICMS para a caracterização destes microrganismos. A imobilização das diatomáceas cêntricas e 

marinhas, no caso Coscinodiscus, em esferas de gelatina e pectina como um método de preservação 

a longo prazo, foi estudada como forma de preservar as características genómicas, morfológicas e 

fisiológicas. Finalmente, os surfactantes foram usados numa tentativa de destacar as diatomáceas 

pennate da espécie Seminavis robusta por acção química.  

 

Após o presente estudo, pôde concluiu-se que: (1) as diatomáceas são capazes de gerar 

fingerprints obtidos em MALDITOF ICMS que poderão ser usados na sua identificação e 

caracterização; (2) a imobilização de diatomáceas em esferas de pectina e gelatina não apresenta 

vantagens em relação aos métodos já existentes; (3) a acção química provou ser um método 

alternativo para destacar diatomáceas. No entanto, mais estudos sobre a caracterização e 

destacamento são necessários para se cumprirem totalmente os objectivos iniciais. 
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Diatoms (class Bacillariophyceae) are unicellular photosynthetic eukaryotes (Huysman et al. 

2010), which have a particular cell wall, composed of silica. These microorganisms are divided in two 

major architectural types: “centric” diatoms, a paraphyletic group with radially patterned valves; and 

“pennate” diatoms, a monophyletic group characterised by a feather-like valve structure (Scala and 

Bowler, 2001; Gillard et al. 2008). Diatoms are one of the predominant contributors to global carbon 

fixation (Parkinson et al. 1999; Scala and Bowler, 2001; Sarthou et al. 2005). 

Recently, the interest in diatoms has increased since they have many possible applications 

(e.g. aquaculture, nanotechnology, among others). Consequently, proper diatom identification 

processes are necessary in order to select the best species for each given purpose. Diatom taxonomic 

classifications were originally based on optical microscopic analysis; this identification is currently 

made by Scanning Electron Microscopy (SEM) because the frustule structures are the basis for 

species identification. However, this technique is subject to misidentification (Scala and Bowler, 

2001).  

 

The aim of this work was the development of new methods for the characterisation and 

cultivation of diatoms. One of the studies performed in this work was based on the use of 

immobilisation in gelatine beads, for long-term preservation of diatoms as an alternative to the 

existing maintenance strategies, that is, obscurity in cold room or cryopreservation. Additionally, the 

possibility of detaching diatoms through chemical action was studied. And finally, the possibility of 

using the MALDI-TOF ICMS technique as a fast, low cost and reliable method for characterisation of 

diatom strains was evaluated.  

 

This thesis consists of 6 chapters. In the first Chapter, the subject and the theoretical 

framework of the work are presented. In Chapter 2, the biology and morphology of diatoms, as well 

as their specified characterisation, is presented. In Chapter 3, the possibility of using the MALDI-TOF 

ICMS technique to characterise the diatom strains is discussed. In Chapter 4, the long-term 

preservation of the centric diatom Coscinodiscus sp. in gelatine and pectin beads is studied. In 

Chapter 5, a method to detach benthic diatoms, Seminavis robusta 84A in this case, through the 

action of surfactants is presented. Finally, in Chapter 6, general conclusions of the thesis are 

summarized and perspectives for future research are provided.   



 

 
 

 

 

 

 

 

 

 

 

 

 

2 Diatoms Classic Characterisation 
 

 

ABSTRACT. Before working with any living being it is necessary to understand its way of living. In this 

chapter, the unique characteristics of diatoms and their growth are described. 
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2.1 Introduction 

 

2.1.1 General Overview on Diatoms  

 

Diatoms (division Heterokotophyta, class Bacillariophyceae) are microscopic organisms 

ranging in general from 20 to 200 m (Figure 2.1) (Scala and Bowler. 2001; Gordon et al. 2008) and 

live in aquatic ecosystems, freshwater or marine (Trainer et al. 2008; Groger et al. 2008). These 

microorganisms are divided in two types: benthic - attached to submerged surfaces - and planktonic -

free swimming in open water. Benthic diatoms can grow in sediments or on the surface of plants 

(epiphytic), animals (epizootic), or rocks (epilithic) (Winter and Duthie, 2000; Trainer et al. 2008). 

Both benthic and planktonic diatoms can be found as single cells, while others form long chains of 

adjacent cells, either by end to end junction or by joining their protruding spines or setae (Trainer et 

al. 2008).  

 

 

Figure 2.1. Diversity of diatoms (Gordon et al. 2008). 
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Diatoms are the most diverse group within algae, reaching about 200 000 species 

(Holtermann et al. 2010) and, like plants, they contain chlorophyll and other pigments that capture 

the energy of sunlight and convert carbon dioxide and water molecules into carbohydrates via 

photosynthesis (Trainer et al. 2008). Thus, they are a major contributor to global carbon dioxide 

fixation. They are also responsible for 20 % to 25 % of the world net primary production, and roughly 

for 40% of annual marine biomass production supporting most of the world fisheries (Gordon et al. 

2008; Trainer et al. 2008) . 

 

The name diatom comes from the Greek: dia “through” and temein “to cut”, meaning “cut in 

half” referring to their highly ornamented siliceous cell wall – or frustule – divided in two twin parts 

(Trainer et al. 2008). The frustule is composed of two overlapping halves (or valves) that fit together 

like a petri dish in which the upper half – the epitheca - covers the lower half – the hypotheca (Figure 

2.2). Generally, the diatoms are categorized into two major groups based on how the silica (SiO2 = 

glass) ribs on the valve radiate: centrics - a paraphyletic group with discoid or cylindrical cells and 

radially symmetrical valves - and pennates - a monophyletic group having ‘feathery’ patterned and 

more or less bilaterally symmetrical valves (Round et al., 1990; Graham and Wilcox, 2000; Scala and 

Bowler, 2001; Trainer et al. 2008; Gillard et al. 2008; Hildebrand, 2008). These two groups consist of 

about 285 genera (Round et al. 1990) and 200 000 morphologically different species. It is worth 

noting that, on the basis of molecular genetic analyses, there are probably over 100000 

(pseudo)cryptic species. Motility is different in these two groups: centric diatoms (Figure 2.2.a) have 

flagellated gametes but are otherwise swept passively by currents; pennate diatoms (Figure 2.2.b), 

on the other hand, are capable of limited motility (Trainer et al. 2008).  

 

 

Figure 2.2. Schematic diagram of the diatom cell wall structure a) in centric diatoms; b) in pennate diatoms (Al-Kandari et 
al. 2009).  

 

a) 

b) 
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The frustule is composed of solid silica, being the hypotheca slightly smaller than the 

epitheca (Figure 2.2). This causes a cell size reduction during the vegetative cell division carried out 

by mitotic division. From time to time, the diatoms restore the original cell size via sexual 

reproduction. These two stages have different time laps: a prolonged vegetative stage (mitotic 

division of cells) lasting from months to years, a comparatively short stage of sexual reproduction 

(gametogenesis and fertilization) lasting several hours and then a complex developmental process 

(leading to the formation of the new vegetative cells) taking from hours to one week or more. The 

vegetative cell cycle (Figure 2.3) in diatoms consists of interphase (G1, S and G2 phases) and mitosis 

(M phase), the two daughter cell protoplasts still contained within the mother cell and not separated 

(Hildebrand, 2008). Cells in G2 and M cannot be distinguished on the basis of DNA content by flow 

cytometry; therefore, the term “G2+M” is used to describe this situation. During the G2+M step, the 

valves in of daughter cells are synthesized in the silica deposition vesicle (SDV) and once completed, 

are exocytosed, becoming extracellular. Cell separation occurs after synthesis of new valves in each 

of the daughter cells. As said above, an additional special feature of the diatom life cycle is the size-

dependent control of sexuality in which only cells of a particular size range (viz. comparatively small 

cells) are able to become sexualized (Trainer et al. 2008; Hildebrand, 2008). 

 

 

Figure 2.3. “Schematic representation of diatom cell division: a) vegetative mother cell (S phase), b) after cytokinesis, 
showing two daughter cell protoplasts within the mother cell thecae, c) valve synthesis occurring within the daughter 
cell, d) daughter cell valves after exocytosis, and e) daughter cell separation” from Hildbrand (2008). 

 

2.1.2 Basis taxonomy of diatoms  

 

Diatom taxonomy was primarily based on light microscopy observation of the morphologies 

of their frustule. The use of SEM resulted is a significant advance for taxonomy, since it revealed 

additional characteristics not observable by light microscopy. Based on their morphology, Round et 

al. (1990) proposed the classification of diatoms in three classes including the centric diatoms 

(Coscinodiscophyceae), the pennate diatoms without a raphe (Fragilariophyceae) and the pennate 

diatoms with a raphe (Bacillariophyceae) (Al-Kandari et al. 2009).  
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2.1.3 Industrial applications  

 

Due to their high productivity, intra-and extracellular composition and single cell wall 

composition and morphology, diatoms have sparked a growing interest for several industrial 

applications (Lopez et al. 2005). 

 

 One example comes from aquaculture since algae are used in biomass production for food 

and feed. Also, diatoms are a natural source of relevant biotechnology products, such as amino-acids 

and polyunsaturated fatty acids (PUFAs) for, respectively, cosmetic and pharmaceutical applications 

(Lebeau and Robert 2003; Lopez et al. 2005). Due to the algal biomass main components, it is 

possible to use diatoms in the production of biofuel: carbohydrates for ethanol production via 

fermentation, proteins for methane production via anaerobic gasification and natural oils for 

biodiesel production (Bozarth et al. 2009). Diatoms have the ability to accumulate up to 60 % of their 

weight in cytoplasmic oil drops (Lebeau and Robert 2003). The resulted products of their metabolism 

are often released into the medium, such as the blue-green pigment called "marennine". Also, 

diatom metabolites (e.g. domoic acid) can be used in pharmaceutical applications. Finally, diatoms 

can also be applied in the nanotechnology industry, as a result of their ability of surpassing some of 

the modern engineering competences (Bozarth et al. 2009) as their formation does not require high 

temperatures, high pressure or the use of caustic chemicals, being accomplished under mild 

physiological conditions (Lopez et al. 2005). In this way, the frustules can be explored for various 

applications, such as abrasive products, filter agents for water purification, gel filtration for protein 

purification, biosensors, immunoisolation, photonics, drug delivery (Parkinson et al. 1999). 

 

 

2.2 Materials and methods  

 

2.2.1 Cell cultures 

 

Stock cultures of the diatoms species and strains were obtained from the Culture Collection 

of the Laboratory of Protistology and Aquatic Ecology (PAE) in Ghent University 

(http://www.pae.ugent.be/collection.html).  
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2.2.2 Culture conditions  

 

2.2.2.1 Culture media 

 

For the marine species Seminavis robusta, Coscinodiscus sp. and Thalassiosira sp., the f/2 

medium was used and for t,he freshwater species Cyclotella meneghiniana, the WC medium was 

used. The f/2 medium (Guillard, 1975) is a common and widely used general enriched seawater 

medium designed for growing coastal marine algae, especially diatoms. The concentration of the 

original formulation of the "f Medium" (Guillard and Ryther 1962) was reduced by half. The WC 

medium is derived from the Chu #10 Medium (Chu 1942). The medium was originally formulated to 

aid Richard Wright in his efforts to cultivate cryptophytes (WC = Wright's Chu #10), and first 

published by Guillard and Lorenzen  (1972). Subsequently, Guillard has modified the medium being 

referred to, in the present work, as WC medium. Stock of all ingredients and culture media were 

stored in Schott® glass bottles (Duran) and kept in the refrigerator at 5°C. 

 

2.2.2.1.1 f/2 medium (Guillard, 1975) with natural seawater 

 

Seawater, collected from the northwestern Portuguese coast (Vila de Conde) was filtered 

using a filtration apparatus, consisting of an Erlenmeyer flask, a funnel, a 55 mm Ø filter paper circle 

(VWR® European Cat. No. 516-0870) and of a rubber tube that connected the flask to the air pump. A 

volume of 1 L seawater was filtered over each filter paper. The filtered seawater was transferred to 

Schott® (Duran) glass bottles of 1 to 2 L volume.  

 

The f/2 medium was prepared by adding to 950 mL of filtered seawater, 1mL of major 

nutrients stock solutions and also 1 mL of trace metals solution (table 2.1). The f/2 medium was 

sterilized using an autoclave (uniclave 88) at 121 ˚C for 15 minutes. Before autoclaving, the pH was 

adjusted to 8 with 1 N HCL or 1 N NaOH. Autoclaved bottles were cooled and the vitamins stock 

solution was added (table 2.2) 
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       Table 2.1. Marine enrichment f/2 medium (Guillard, 1975) 

Component Stock Solution 

Major nutrients (mg/mL in distilled water) 

NaNO3 75  

NaH2PO4.H2O 5  

Na2SiO3.9H2O 30  

Trace metals (mg/mL in distilled water) 

Na2EDTA 4.36  

FeCl3.6H2O 3.15  

CuSO4.5H2O 0.01  

ZnSO4.7H2O 0.022  

CoCl2.H2O 0.01  

MnCl2.H2O 0.18  

Na2MoO4.2H2O 0.006  

Vitamins (µg/mL in distilled water) 

Thiamine.HCl 100  

Biotin  0.5 

Cyanocobalamin  0.5 

 

 

2.2.2.1.1.1 WC medium (Guillard and Lorenzen, 1972)  

 

Stock solutions of the components for freshwater WC medium are shown in table 2.2. Similar 

components to the f/2 medium were prepared only once. Other major nutrients were individually 

prepared. Components were added to distilled water in Schott bottles (Duran) using 1 mL stock 

solution/L (except for the vitamins stock solution). The mixed solutions were autoclaved at 121°C for 

15 minutes. 
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     Table 2.2. Freshwater enrichment WC medium (Guillard and Lorenzen, 1972)  

Component Stock Solution 

Major nutrients (mg/mL in distilled water) 

NaNO3 85.01  

NaHCO3 12.60  

Na2SiO3.9H2O 28.42 

CaCl2.2H2O 36.76 

MgSO4.7H2O 36.97 

K2HPO4 8.71 

Trace metals (mg/mL in distilled water) 

Na2EDTA 4.36  

FeCl3.6H2O 3.15  

CuSO4.5H2O 0.01  

ZnSO4.7H2O 0.022  

CoCl2.H2O 0.01  

MnCl2.H2O 0.18  

Na2MoO4.2H2O 0.006  

H3BO3 1 

Vitamins (µg/mL in distilled water) 

Thiamine.HCl 100  

Biotin  0.5  

Cyanocobalamin  0.5  

 

 

 

2.2.3 Culture growth  

 

The Seminavis robusta cultures were re-inoculated by adding 2 mL of the old culture  (gently 

scraping with a cell scraper) in f/2 medium, in a total volume of 50 mL. Cells were cultivated in 75 

cm2 tissue culture flasks with filter cap (Orange Scientific®). Incubation was at room temperature by a 

12:12 h light:dark cycle (85 µmol photons/m2/s from cool-white fluorescent lamps). Cultures were 

observed weekly under the inverted microscope to assess growth and possible contaminations. On 

the other hand, planktonic species (Thalassiosira sp, Coscinodiscus sp, Cyclotella meneghiniana) were 

harvested and re-inoculated by adding 12 mL to the f/2 medium, to complete a total volume of 250 
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mL. Harvesting and inoculation of cells were done in the close vicinity of a flame. The cultures used 

were uni-algal but not axenic, although bacterial numbers were minimal at all stages. 

 

 

2.2.4 Assessment of the viability 

 

2.2.4.1 Observation under the inverted microscope  

 

A sample of 1 mL of recovered cells suspension was transferred to 3 wells of a 6 well-plate. 

Settled cells were observed under the inverted microscope (Nikon).   

 

2.2.4.2 Observation under the light microscopy  

 

A sample of 30 µL of recovered cells suspension was transferred to a glass slide and covered 

with a coverslide. Cells were observed under the light microscopy (LEITZ). 

 

2.2.4.3 Epifluorescence microscope (diatom viability using FDA) 

 

The viability of the diatoms was assessed using the fluorescein diacetate (FDA) staining 

method. One milliliter of the benthic diatoms culture and the planktonic species were removed, the 

first gently scraped with a cell scraper. These samples were incubated with 10 µL FDA stock solutions 

(Michels et a. 2010) for 20 min in the dark at room temperature. The samples were observed under 

an epifluorescence microscope (OLYMPUS BX51) using a fluorescence emission of fluorescein 

detected at 525 nm (Holm et al. 2008, Michels et a. 2010). 

 

2.2.5 Growth curve 

 

2.2.5.1 Inverted microscope  

 

All Seminavis robusta cultures were directly observed every eight hours under the 

microscope. The planktonic species, including Thalassiosira sp, Coscinodiscus sp, Cyclotella 

meneghiniana, were assessed in a different way: 1 mL of culture was removed every eight hours and 

inspected under the inverted microscope (Nikon). 
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2.2.5.2 Use of Coulter Counter  

 

Seminavis robusta cultures were gently scraped with a cell scraper and centrifuged (10 min at 

3000xg, in centrifuge 2 HERAEUS MEGAFUGE 1.0R). The pellet was collected and resuspended in 20 

mL of diluent. After this, cells were counted in a Bechman Coulter (Z2 Couter® Particle count and size 

analyser) every eight hours. 

 

2.2.5.3 Fluorimetry  

 

The benthic Seminavis robusta was gently scraped with a cell scraper and centrifuged (10 min 

at 3000 g), being the pellet collected and resuspended in 2 mL of mPBS (Cerda-Cuellar et al. 1997). 

The centric genera were removed by a volume of 2 mL of culture. The cell suspensions were analysed 

by flourimetry (Fluorescence Spectrometer Jasco FP6200). For that, 2 ml of cell suspension were 

diluted in mPBS (to fit the calibration curve) and placed in a fluorimeter cell (cuvette with at least 

three polished windows and no background fluorescence). The emission at 685 nm was read after 

excitation at 440 nm (Ikeda et al. 2008). All readings were done in triplicate every eight hours.  

 

 

2.3 Results and discussion 

 

2.3.1 Characterisation  

 

In order to fully characterise the diatoms, these were observed under three types of 

microscopes (light microscopy, inverted microscope and epifluorescence microscope).  

 

2.3.1.1 Pennate diatoms  

 

Seminavis robusta (Figure 2.4) is a small pennate of the marine epipelon and epiphyton 

(Garcia, 2007). The most important characteristics for their identification are: the outline of the 

ventral margins, the shape of the apices, the length of the striae on the dorsal valve face, the 

presence or the absence of striation interruption on the ventral valve face and the shape and the 

position of the raphe in relation to the ventral margin (Garcia, 2007). 
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Figure 2.4. Seminavis robusta. 

 

All the Seminavis strains used in this work (Figure 2.5) have the same shape but different 

sizes and were of different mating types. Semivavis robusta 84A (Figure 2.5 a) and 85A (figure 2.5 d) 

have a size of about 45 µm and Semivavis robusta 85As (Figure 2.5 g) and 85Bs (Figure 2.5 j) have a 

size of about 25 µm.  

 

Under the light microscopy, it was possible to verify the elongated frustule and two 

chloroplasts. As described in the literature, the frustule is generally elongated with a longitudinal axis 

of symmetry (rib) in each valve (bilateral symmetry) (Kröger and Poulsen, 2008). 

 

With the inverted microscope, the spatial organisation in culture was studied. As in light 

microscopy, it was possible to check again the elongated frustule, but not the presence of the 

chloroplasts. 

 

Under the epifluorescence microscope, the FDA was used to determine if the cells were 

intact. With FDA, it was possible to see the chloroplasts in red and the membrane in green. 
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Light microscopy Inverted microscope Epifluorescence 
microscope (FDA) 

 
a) 

 
b) 

 
c) 

 
d) 

 
e)  

f) 

 
g) 

 
h)  

    i) 

  
j) 

 
k) 

 
l) 

Figure 2.5. Living cells of Seminavis robusta. a, b, c) strain 84 A; d, e, f) strain 85 A; g, h, i) strain 85 As; j, k, l) strain 85 Bs. 

a, b, c, d, e, f, g, h, I, j and l) using the objective of 40x magnification; k) using the objective of 60x magnification. 
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2.3.1.2 Centric diatoms  

 

Three centric diatoms (Coscinodiscus sp., Thalassiosira sp. and Cyclotella meneghiniana) were 

studied. 

 

Coscinodiscus is a big centric diatom with a diameter of 30 to 500 µm. These marine diatoms 

have numerous chloroplasts. The cell is described as being disc-shaped, cylindrical or wedge-

shaped, and solitary.  

 

Thalassiosira is an important centric diatom, due to its presence in marine environments with 

more than 100 already identified species. The first genome sequenced among diatoms was the 

Thalassiosira pseudonana, which was important to enable the unravelling of the genetic basis of the 

unique properties underlying the ecological and evolutionary success of diatoms. The morphological 

identification of the genus Thalassiosira, with diameters ranging from 3 to 186 µm, is based on ultra-

structure details as the number and the location of the rimoportulae and fultoportulae processes on 

the valve (Garcia and Odebrecht, 2009). 

 

The last centric diatom used in this work is the Cyclotella meneghiniana, being one of the 

most extensively studied freshwater diatoms species (Beszteri et al. 2005, Beszteri et al. 2007). Their 

cells are described as  barrel-shaped, with more-or-less tangentially undulate valves, strongly striated 

from the marginal area to halfway towards the middle, widening towards the margins and narrowing 

towards the centre (8-9 in 10 µm); the central area is plain, or with faint radiate, punctate striae, 

sometimes with a few solitary large punctae; their diameter is 10 to 30 µm. 

 

In centric diatoms (Figure 2.6), as in pennate diatoms, light, inverted and epifluorescence 

microscopes were used to characterise the cells. Centric diatoms have the same shape (circular), 

however there is a big difference among them when size is considered, the Coscinodiscus sp. strain 

used in the present study (Figure 2.6 a) being the largest with about 170 µm, followed by the 

Thalassiosira sp. Strain (figure 2.6 d) with about 70 µm and finally Cyclotella meneghiniana (Figure 

2.6 g) with about 10 µm. 

 

With the light microscope, it was possible to see the circular frustule in all centric diatoms 

and the chloroplasts distribution. Coscinodiscus sp. has many small chloroplasts; Thalassiora sp. has 

numerous big chloroplasts. 
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Using the inverted microscope it was possible to observe the spatial distribution of the 

diatoms in culture. 

 

Under the epifluorescence microscope and using FDA, the membrane and porous were seen 

in green. Thalassiosira has more pores than the other centric diatoms. 

 

Light microscopy Inverted microscope Epifluorescence microscope 
(FDA) 

 
a) 

 
b) 

 
  c) 

 
d) 

 
e)  

f) 

 
g) 

 
h) 

 
i) 

Figure 2.6. Living cells of centric diatoms. a, b, c) strain Coscinodiscus sp.; d, e, f) strain Thalassiosira sp.; g, h, i) strain 

Cyclotella meneghiniana. a, b, c, d, e and f) using the objective of 10x magnification; g, h and i) using the objective of 60 x 

magnification. 
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2.3.2 Growth curve 

 

2.3.2.1 Benthic diatom Seminavis robusta 

 

To study the Seminavis robusta growth, the Coulter Counter and the inverted microscope 

were used. Figure 2.7 describes the growth curve of all Seminavis strains using the Coulter. The 

growth curve is very similar for all diatoms, being the only significant difference the concentration. 

The same can be observed in the Seminavis growth curve using the inverted microscope (Figure 2.8). 

The exponential phase is very short (90 hours) and there is not a lag phase. 

 

 

  Figure 2.7. All Seminavis robusta growth curve using Coulter. 

 

Seminavis robusta showed one particular feature during its growth: during the stationary 

phase, by approximately 150 hours, the diatoms spontaneously detach from the wall of the culture 

flasks. That explains the decrease of the cell number assessed by inverted microscopy, as the cells in 

different plans were difficult to count. 
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  Figure 2.8. All Seminavis robusta growth curve using inverted microscope. 

 

Figure 2.9 shows the differences in Seminavis robusta 84 A growth using the three different 

methods used (Coulter Counter, inverted microscope and fluorimetry). The observation under the 

inverted microscope was the method the most affected by errors, being the curves obtained by the 

fluorimetry and by the Coulter Counter equivalent. Nevertheless, the pattern of the growth curve, 

comprising the two phases – exponential phase and stationary phase – are consistently observed in 

the curves generated by the three methods. Seminavis robusta does not have a lag phase: the 

exponential phase ends circa the 90 hours but the culture only is in a true stationary phase at 140 

hours. The coincidence in the curves that resulted by the fluorimetry and the Coulter Counter stands 

for the significance of the results obtained by both methods. 
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 Figure 2.9. Seminavis robusta 84A growth curve using three different methods (Coulter, inverted microscopy and 
fluorimetry). 

 

2.3.2.2 Centric diatoms 

 

The same methods (Coulter, inverted microscope, fluorimetry) were used for the study of the 

growth of the centric diatoms, but the cell size and the concentration of the cultures prevented the 

simultaneous use of the three methods in all cultures.  

 

In the case of Coscinodiscus, the Coulter Counter was not used because the cell size is bigger 

than the probe detection limit. All the same, the results of fluorimetry and inverted microscopy were 

similar (Figure 2.10). Unlike Seminavis robusta, Coscinodiscus has a prolonged lag phase (lasting 90 

hours), the cell needing more time to reach the stationary phase and being the curve during the 

exponential phase not very sharp.  
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Figure 2.10. Coscinodiscus sp. growth curve using two different methods (inverted microscopy and fluorimetry). 

 

In the case of Thalassiosira, only the inverted microscope was used, since the culture was not 

sufficiently concentrated and neither the Coulter Counter nor the fluorimeter could be used. The use 

of centrifugation was considered to concentrate the samples and consequently to enable 

fluorimetry, but this approach had to be abandoned because huge volumes of culture would be 

needed. The growth curve (Figure 2.11) is similar to the one of Coscinodiscus. That is, the 

Thalassiosira growth curve has an extended lag phase (with 90 hours) and a smooth exponential 

phase. The Thalassiosira concentration was very low not reaching 10 cells per milliliter. 
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Figure 2.11. Thallassiosira growth curve using inverted microscopy. 

 

Cyclotella was the only freshwater diatom studied in this work. Here, as in Coscinodiscus, the 

Coulter Counter could not be used as the size of Cyclotella is beneath the limit of detection. The 

curve (Figure 2.12) shows three well-defined phases (lag, exponential and stationary). Here, as it 

happened with Seminavis robust, the inverted microscope was error affected, because Cyclotella is 

very little and observation and counting in different plans of the microscope was limited. 

 

  

Figure 2.12. Cyclotella growth curve using two different methods (inverted microscopy and fluorimetry). 



Diatoms Classic Characterisation 

 

22 
 

 

2.4 Conclusions  

 

The growth curves of all Semivavis robusta strains have the same shape, which was expected 

since they all belong to the same species. No morphological differences were observed among the 

strains with the exception of the cell size. 

 

The three centric diatoms, Talassiosira, Coscinodiscus and the marine Cyclotella, were 

different in size and in chloroplasts distribution and their concentrations during the experiments 

were very low, which can be due to the high temperatures in the lab, around 30 °C.  

 

All diatoms showed different growth curves patterns. All Seminavis strains belong to the 

same genus and they show the same behaviour. Talassiosira and Coscinodiscus were grown in the 

same conditions and have similar growth curves, even though they attend very different 

concentrations. 

 

By the results, we can conclude that the three methods, the Coulter Counter, the inverted 

microscope and the fluorimetry were applicable methods for the study of diatom growth. However, 

these methods sometimes cannot be used due the cell size or population density. Furthermore, the 

inspection under the inverted microscope can result in significant errors, as the focusing of several 

focal plans cannot be efficiently accomplished rendering the results affected by errors. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 Diatom characterisation                     

by MALDI-TOF ICMS  
 

 

ABSTRACT. Diatom identification is sometimes intricate because it is based on the frustule 

morphology. To overcome the current difficulties, MALDI-TOF ICMS technique is proposed as a fast, 

inexpensive and reliable method. The use of MADI-TOF ICMS for diatoms identification is evaluated. 
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3.1 Introduction 
 

The analysis and characterisation of macromolecules and their complexes which are the core 

of life, as well as the spectral typing of microbial cells for their taxonomic classification/identification 

and authentication using spectral analysis by Matrix Assisted Laser Desorption Ionisation – Time Of 

Flight Mass Spectrometry (MALDI-TOF MS) are both modern approaches for the life sciences and 

biotechnology studies (Shaah and Gharbia, 2010). MALDI-TOF MS emerged in the late 1980s as a 

sound technique to investigate the mass spectrometry of molecular high-mass of organic compounds 

through a soft ionisation of the molecules resulting in minimum fragmentation (Tanaka et al. 1998). 

 

The MALDI-TOF MS technique has contributed to increasing scientific knowledge about the 

microorganisms and is now used as a reliable tool for rapid tests in hospitals and health centres. In 

this case the interest of the art in question is the analysis of the intact cell. The spectrum generated is 

analysed as fingerprint and the technique is called MALDI-TOF IC (Intact Cell) MS. In the MALDI-TOF 

ICMS technique the microbiological sample is covered with a UV-absorbing organic compound called 

matrix leading to a crystallised mixture. Then the crystallised sample is placed in a vacuum system 

that is targeted and irradiated with a pulsed light from a laser (e.g. N2, Nd:YAG or other) . The 

charged matrix molecules and/or clusters transfer protons onto the sample molecules (e.g. peptide 

or proteins) in the expanding plume. The generated ions are accelerated into the TOF analyser, in 

which ions are separated according to their "time-of-flight" which is a function of molecular mass to 

charge. The TOF analyser determines the molecular mass to charge (m/z) ratio of ions by measuring 

velocities from accelerating ions to defined kinetic energies after calibration of the instrument with 

molecules of known molecular mass (Figure 3.1). In MALDI-TOF ICMS technique the linear mode set 

covers a huge mass range capable to get the appropriate fingerprint for each kind of microorganism 

(e.g. 2 - 20 kDa) (Santos et al. 2010).  
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Figure 3.1. Schematic representation of MALDI-TOF MS operation: After molecule ionisation the separation of ions 

occurs into the flight tube based on their molecular masses (Santos et al. 2010). 

 

The success of diatoms in biotechnological and nanotechnological application primarily 

depends on the correct diatom identification and characterisation. Novel identification methods 

need to be fast, inexpensive and reliable (Santos et al. 2010; Shah, 2005). MALDI-TOF ICMS is a 

powerful technique with all of these adjectives. This technique has been proposed as an 

identification method for bacteria (Shaah and Gharbia, 2010), filamentous fungi (Santos et al. 2010), 

yeasts (Santos et al. 2011) and virus (Franco et al. 2010; McAlpin et al. 2010). 

 

MALDI-TOF MS technique has been used for diatoms characterisation through the analyses 

of lipids (Vieler et al. 2007), chlorophylls (Suzuki et al. 2009), silaffins (Sumeper et al. 2007) and 

polyamines associated with silica (Sumper et al. 2006; Knott et al. 2007). In the works presented 

above, authors used a mass range between 100 and 3 000 Da. However, the remarkable 

reproducibility of the MALDI-TOF ICMS technique for the most common microorganisms (e.g. 

bacteria, filamentous fungi and yeasts) is based on the measurement of constantly expressed and 

highly abundant proteins. The usually observable molecular mass range is between 2 000 and 20 000 

Da, where important proteins and other macromolecules appear, which is an advantage because 

these can be easily used as biomarkers (Santos et al. 2010). 
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In this work, seven isolates of diatoms belonging to four different genera namely, Seminavis; 

Coscinodiscus; Thalassiosira and Cyclotella, were analysed by MALDI-TOF ICMS. All isolates were 

obtained from the culture collection of the Laboratory of Protistology and Aquatic Ecology of 

University of Ghent (Ghent, Belgium). The molecular mass range between 2 000 and 20 000 Da was 

used as an attempt to generate a specific fingerprint for each diatom isolate. 

 

 

3.2 Materials and methods  

 

3.2.1 Growth conditions 

 

All 7 diatoms isolates analysed in this study were obtained from the Laboratory of 

Protistology and Aquatic Ecology culture collection (PAE, http://www.pae.ugent.be/collection.html). 

Escherichia coli strain DH5α was obtained from the Micoteca da Universidade do Minho (MUM, 

www.micoteca.deb.uminho.pt). All cultures were maintained in falcon tubes and preserved in a dark 

room at 4.0 ±1.0 °C. Tubes were opened and strains sub-cultured according to the instructions issued 

by PAE. Homogenous inocula of diatoms cells were grown and maintained on f/2 medium. 

Escherichia coli cells were grown and maintained on Luria-Bertani agar medium (LB: 10 g∙l 1 Bacto-

tryptone, 5 g∙l-1 Bacto-yeast extract, 10 g∙l-1 NaCl). 

 

3.2.2 MALDI-TOF Analysis 

 

Benthic diatoms were initially detached from the culture flask through mechanical action, 

with a cell scraper (Cat # 5560500 - 23 cm - Orange Scientific). Centric diatoms were cultivated in 250 

mL Elermeyers flasks. All the cultures were centrifuged at 3000 g for 10 minutes using a centrifuge 2 

HERAEUS MEGAFUGE 1.0R. The pellet was collected, placed in an Eppendorf and centrifuged once 

again for 4 minutes using a micro-centrifuge Sigma 112 – B. Braun Botech international. The pellet 

obtained was transferred into an Eppendorf containing 30 µL acetonitrile aqueous solution (60 % 

acetonitrile in 40 % ultra-pure water), and vortexed for 1 minute. Half a microliter of the green 

suspension obtained above was placed on the MALDI sample plate. When the liquid phase was 

almost evaporated, 0.5 L DHB matrix solution (75 mg/mL 2,5-dihydroxybenzoic acid [DHB] in 

ethanol/water/acetonitrile [1:1:1; v/v/v] with 0.03% trifluoroacetic acid [TFA]) was added and mixed 

gently. Finally, all samples were air dried at room temperature and analysed in quadruplicate. 
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The MALDI-TOF ICMS analyses were performed in the Platform of Structural Analysis of the Centre of 

Biological Engineering of University of Minho on an MALDI-TOF Axima LNR system (KratosAnalytical, 

Shimadzu, Manchester, UK).The instrument was equipped with a nitrogen laser (337 nm), where the 

laser intensity was set above the threshold for ion production. Escherichia coli DH5α strain with 

known mass values of ribosomal proteins was used as an external calibrant. The mass range from 2 

000 to 20 000 Da was recorded using the linear mode with a delay of 104 ns and an acceleration 

voltage of + 20 kV. Final spectra were generated by summing 20 laser shots accumulated per profile 

and 50 profiles produced per sample, leading to 1 000 laser shots per summed spectrum. The 

resulting peak lists were exported to the SARAMIS™ software package (Spectral Archiving and 

Microbial Identification System, AnagnosTec, Germany, www.anagnostec.eu) where the final 

identifications were achieved. This software uses a point system based on peak list with mass signals 

weighted according to their specificity. The similarity between individual spectra is expressed as the 

relative or absolute number of matching mass signals after subjecting the data to a single link 

agglomerative clustering algorithm. Microbial identifications by the SARAMIS™ package are based on 

the presence or absence of each peak in the spectra. 

 

 

3.3 Results and discussion  

 

The genetic and proteomic information are not available on the literature for the diatoms species 

studied in this work. The mass range from 2 000 to 20 000 Da was chosen taking into consideration 

the proteomic information available for bacteria (Shaah and Gharbia, 2010), filamentous fungi 

(Santos et al. 2010) and yeasts (Santos et al. 2011). However, through the results obtained 

preliminary in this work for all diatoms isolates it was possible to observe that the chemical 

compounds present on each diatom spectral fingerprint presented variations as a function of the 

isolate age. Moreover, for the same culture duplicate or triplicate MALDI-TOF ICMS samples 

presented different mass spectra. Figure 3.2 shows the duplicate spectra obtained from the same 

culture for Seminavis robusta strain 85A at 5 days old. The observation of these spectra leads to the 

conclusion that the majority of the compounds evaluated within the mass range from 2 000 to 20 

000 Da are not ribosomal proteins (Appendices B). 
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Figure 3.2. Duplicates MALDI-TOF ICMS mass spectra for Seminavis robusta strain 85A at 5 days old. 

 

In order to understand the change in molecular masses, the mass analyses of mature diatoms 

was performed at the stationary phase. It was developed according to the growth curve (Chapter 2) 

for each diatom species (Seminavis robusta strains 84A,  85A, 85As, and 85Bs, Cyclotella 

meneghiniana, Coscinodiscus sp. and Thalassiosia sp.). All of the mass spectra obtained in these 

analyses show similar behaviour as observed for Seminavis robusta strain 85A mass spectra at 5 days 

old described above (Figure 3.2). Considering both the growth curve obtained by classical techniques 

(Chapter 2) and the mass fingerprint by MALDI-TOF ICSM discussed above incongruent results are 

observed. The growth curves by classical techniques indicate that the stationary phase was 6 days old 

for all Seminavis robusta and 7 days old for Cyclotella meneghiniana, Thalassiosia sp. and 

Coscinodiscus sp.. On the other hand, MALDI-TOF ICMS spectra performed at and/or after these 

diatoms ages indicate to a potential different growth phase inside the same diatoms cultures. 

 

Since the mass spectra change with the diatoms age the spectral change versus the diatom 

age was assessed. For each diatom strains a specific time course of the spectrum versus time was 

assessed based on the follow schedule: 7, 9, 13, 14, 18 and 30 days old. However, results indicate 

that because of the in situ bio-compounds extraction quality for some of the diatoms isolates the 

mass spectra where not generated for this entire schedule. Moreover, all the diatoms evaluated in 

this study presented a specific age where the mass spectrum becomes reproducible. For all 

Seminavis robusta and Cyclotella meneghiniana this time was 9 days old (Figure 3.3) and for all 

Thalassiosia sp. and Coscinodiscus sp. it was 13 days old (Figure 3.4). 
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Figure 3.3. Reproducible MALDI-TOF ICMS mass spectra for (A1-2) Cyclotella meneghiniana and (B1-2) Seminavis robusta 
strains 84A at 9 days old. 

 

 

Figure 3.4. Reproducible MALDI-TOF ICMS mass spectra for (A1-2) Thalassiosia sp. and (B1-2) Coscinodiscus sp. at 13 days 
old. 

 

Furthermore, there was no compounds stability over time. Spectral data obtained for Coscinodiscus 

sp. at 13, 18 and 30 days old culture (Figure 3.5) is an example of instability over time for this species. 
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Figure 3.5. MALDI-TOF ICMS mass spectra for Coscinodiscus sp. at 13, 18 and 30 days old from top to bottom. 

 

Using the first reproducible spectral data (Appendices B) including all peaks obtained from     

2 000 to 20 000 Da a cluster analysis of the MALDI-TOF ICMS mass spectral data was assembled. This 

statistic analysis based on the mass spectral signatures allowed the grouping of all isolates into 

clusters according to their species designation (Figure 3.6). The dendrogram presents two main 

clusters with the two different pairs Thalassiosia sp./Cyclotella meneghiniana and Seminavis 

robusta/Coscinodiscus sp. grouped at a threshold of about 30 % similarity. The pairs Thalassiosira 

sp./Cyclotella meneghiniana was distinct at a threshold of about 44 %. Additionally, the pair 

Seminavis robusta/Coscinodiscus sp. can be identified at a threshold of 38 %. Overall, the clustering 

shows the isolates grouped altogether according to their species. Furthermore, Seminavis robusta 

strains 84A, 85A, 85As and 85Bs grouped altogether without a clear spectral differentiation for each 

strain. 
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Figure 3.6. MALDI-TOF ICMS spectra-based dendrogram of the diatoms isolates studied in this work. 

 

 

3.4  Conclusions  
 

MALDI-TOF ICMS, when the microbial age is known, appears to be a powerful 

highthroughput mass spectra method to discriminate diatoms genera. This technique may be 

alternative to classical and molecular biology methods that are time consuming and expensive 

approaches. The MALDI-TOF MS equipment is straightforward to operate and cost-effective on an 

individual sample basis. The best growth time for the diatom identification by MALDI-TOF ICMS was 9 

days old for Seminavis robusta and Cyclotella meneghiniana and 13 days old for Thalassiosia sp. and 

Coscinodiscus sp.. All of the diatoms evaluated in this study present a specific age where the mass 

spectrum becomes reproducible. However, the reproducibility is not accompanied by the compounds 

Benthic diatom 

(Marine) 

Centric diatom 

(Marine) 

Centric diatom 
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stability. Based on the chemical variability of the molecular mass of some of the compounds 

evaluated within the mass range from 2 000 to 20 000 Da it is possible to conclude that the majority 

of the compounds presented on these fingerprints are not ribosomal proteins. The isolation and 

analysis of the diatom ribosomal proteins by MALDI-TOF MS could lead to a better understanding on 

this subject, inclusively the percentage of these proteins on the mass range evaluated in this work. 

So, it is possible conclude that the MALDI-TOF ICMS have powerful to physiological 

characterisation of diatom cultures. 
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4 Immobilisation of diatoms                

for long-term preservation 
 

 

ABSTRACT. In every collection there is a need to preserve the genomic, the morphological and the 

physiological features of the specimens. In the case of long-term preservation of the marine centric 

diatom Coscinodiscus sp., the strategy of conserving its cultures in obscurity is the most commonly 

used, but this method can only be used for, at most, six months. In the present work, new methods 

of preservation were studied - immobilisation in gelatine and pectin beads - to try to improve the 

preservation time. Immobilized cells were stored for 4 weeks in absolute darkness at 4 °C, in gelatine 

beads. The immobilised cells were found dead when their viability was assessed. 
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4.1 Introduction 

 

Cryopreservation consists in freezing the tissues (microorganisms, among others) at the 

temperature of liquid nitrogen (- 196 °C). This method is widely used for suspending the metabolic 

activity and keeping the organisms characteristics, that is, the genomic, the morphological and the 

physiological stability of preserved cells. The most commonly employed cryopotectants for diatoms 

are dimethyl sulphoxide (DMSO) and methanol. However this method is not suitable for the 

preservation of the diatom frustules. Indeed, as frustules are made of silica, they become very fragile 

at very low temperatures and tend to break up (Tzovenis et al. 2004; Gwo et al. 2005; Mitbavkar and 

Anil, 2006). 

 

Obscurity is another method used to preserve diatoms. It consists in keeping the diatoms 

harvested during the exponential phase at 4 °C in the dark, for a period between 4 and 5 months. 

Diatoms were preserved between 4 and 5 months since the cells grow slowly (as diatoms are 

photosynthetic autotrophic microorganisms, they are growing in unfavourable conditions) 

(Montainia, 1995; Gillard et al. 2008). 

 

There is another method of long-term preservation: the immobilisation. Cell Immobilisation 

is defined as a “natural or artificial method, to prevent cells from moving independently from its 

original location to all parts of an aqueous phase in a system” (de-Bashen and Bashan, 2010) with 

preservation of a required catalytic activity. In this work, the immobilisation of diatoms was done 

through different polymers described below. 

 

Gelatine is an interesting candidate to immobilise diatoms for long-term preservation 

because it is a non-toxic, inexpensive and non-immunogenic material; nevertheless, it is 

biodegradable (Vandelli et al. 2004; Ratanavaporn et al. 2006; Huang et al. 2008).  

 

Gelatine is a protein that it is derived from collagen by hydrolysis and denaturation (results of 

breaking of the collagen triple helix). These will cause an alteration in the collagen molecule, but not 

in their chemical composition. 

 

To get the gelatine from denatured collagen, two basic processes are used: thermal 

treatment and hydrolytic degradation of covalent bonds. Thermal treatment (40 °C) occurs in the 
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presence of water (destroys both hydrogen and electrostatic interactions). Hydrolytic degradation of 

collagen can occur under acidic or basic conditions, leading to the formation of gelatine type A (acid 

pig skin) or type B (limed ossein), type C (limed bovine and cattle hide) and type AB (acid ossein) 

(Bosch and Gielens, 2003; Habraken et al. 2008). After hydrolysis and denaturation, gelatine chains 

undergo a gradual conformational change, known as the coil-to-helix transition. During this process, 

there is an increase in viscosity. Gelatine can be made into roll film and drug capsules which can also 

be used as a biomaterial in biomedical applications, such as in drug delivery systems (Zhang et al. 

2006). Crosslink of gelatine is possible if aldehydes such as formaldehyde and glutaraldehyde are 

used. The crosslinked gelatine can form toxic products between the gelatine and the crosslinker 

(Vandelli et al. 2004).  

 

Another candidate for the immobilisation is pectin. Pectin is a ubiquitous component (anionic 

polysaccharides) of the plant cell walls (Sila et al. 2009, Sørensen et al. 2009). Chemically, pectin is 

predominantly a linear polymer of mainly α-(1-4)-linked D-galacturonic acid (Sriamornsak et al. 2008, 

Sørensen et al. 2009, Souza et al. 2009). Pectin like gelatine can be used in drug delivery systems. 

This is because pectin can form gels by cross-linking with calcium ions. Intermolecular cross-links are 

formed between the divalent calcium ions and the negatively charged carboxyl groups of the pectin 

molecules, called an ‘egg-box’ conformations with interstices in which the calcium ions may pack and 

be coordinated (Sriamornsak et al. 2008). 

 

 

4.2 Materials and methods  

 

4.2.1 Cell cultures and culture conditions 

 

The cell culture and culture condition are the same as described in Chapter 2.  

 

4.2.2 Immobilisation 

 

4.2.2.1 Gelatine  

 

The gelatine solution (type A) is made at a concentration of 20 % (w/v) (5 g of gelatine was 

dissolved in 25 mL f/2 medium) in f/2 medium (Habraken et al. 2008). After this, the autoclave is 

used (15 min, 121 °C) as the gelatine solution needs to stay sterile. The gelatine solution is cooled, 

until its temperature reaches 30 °C after which it is placed in a hotplate. This is when the diatoms (25 
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mL of the culture) are mixed in the gelatine solution (800 rpm). The resulting solution is cooled for 30 

min at room temperature. The solution (gelatine + diatom) was added drop-wise into paraffin oil (ice 

bath), while the mixture was mechanically stirred at 10 rpm to form an emulsion (Vandelli et al. 

2004; Huang et al. 2008). The formed gelatine particles were filtered washed with f/2 medium and 

placed in petri dishes (Huang et al. 2008). These gelatine particles were kept at 4 °C in cold room.  

 

The same process was repeated but with mPBS. 

 

4.2.2.2 Cross-linking of Gelatine 

 

The procedure of cross-linking gelatine beads is the same procedure of gelatine beads 

preparation, with the exception that the 8 % glutaraldehyde is added directly to the paraffin. 

 

4.2.2.3 Pectin 

 

Pectin (6 % w/v) was dispersed in solution with 50 % f/2medium and 50 % distilled water 

with agitation. The solution needs to cool down (fifteen minutes). After cooling, the pectin beads 

were obtained by dripping in an aqueous solution of 10 % (w/v) CaCl2 in low agitation. The formed 

beads stayed in the solution for 30 minutes, then were separated and washed with f/2 medium, 

screen-filtered and dried at room temperature for 24 hours (Sriamornsak et al. 2008). 

 

4.2.3 Viability 

 

For viability determination the FDA was used (as described in Chapter 2). 

 

 

4.3 Results and discussion 

 

The stock culture was preserved by the obscurity method because it is very simple, easy and 

quick to carry on: a concentrated culture was placed at 4 ± 1 °C in the dark. With this method, it is 

not necessary to add anything to the culture, being this viable for 4 or 5 months and no 

contamination occurred.  

Commonly referred in literature, the cryopreservation was not used because, as mentioned 

above, the low temperature involved can break diatoms frustule (causing their death) and the 
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cryopotectants are toxic for the cells. With this method it is necessary to be more careful and spend 

more time with sample preparation; however the cells may keep on viable for one year. 

 

In the beads preparation, distilled water was normally used as a solvent, however in this 

work has been used f/2 medium and mPBS, since the diatoms (marine creatures) need salts to 

prevent the osmotic shock.  

 

4.3.1 Gelatine  

 

During this work, it was observed that it is very difficult to get diatoms concentrations higher 

than 20 % (w/v) (close to the solution saturation). Using higher gelatine concentration, the resulting 

beads were more perfect and consistent, as was expected. Figure 4.1 shows the difference in beads 

structure with different concentrations of gelatine. This experience was done with and without 

diatoms, to ensure that the problems did not arise from diatom enzymes, for instance. 

 

  

a) b) 

Figure 4.1. a) Gelatine beads in a concentration of 20 % (w/v); b) Gelatine beads in a concentration of 10 % (w/v).  

 

In Figure 4.2, it is possible to observe that deterioration of the beads structure occurs over 

time. After 31 days, beads were completely solubilised. It seems that gelatine is not stable in the 

long-term (Wei et al. 2007), being this method difficult to use for long periods of time. The gelatine 

beads had, as solvent, the f/2 medium. The salt blocks some connection points and the gelatine 

structure is not compact enough to ensure long-term stability (Sarabia et al. 2000). 
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a) b) c) 

Figure 4.2. a) Gelatine beads at time zero; b) Gelatine beads in 15 days after its production; c) Gelatine beads 31 days 

after its production. 

 

 

A possible way to eliminate some of the salts effect is to make a medium with less salt (e.g. 

mPBS). In mPBS and with the same concentration of gelatine, beads had a better consistence (Figure 

4.3). This is due to the fact that there is less salt available to occupy the connection points. As 

expected, the gelatine beads in mPBS did not dissolve over one month. 

 

 

a) 
 

b) 

 

c) 

Figure4.3 A – Gelatine beads in a concentration of 10 % (w/v) in f/2 medium; B - Gelatine beads in a concentration of 10 

% (w/v) in   ⁄ .of f/2 medium +   ⁄  of mPBS; C – Gelatine beads in a concentration of 10 % (w/v) in mPBS. 

 

After recovering the diatoms, it was necessary to assess the diatom viability, by using FDA. 

Unexpectedly, all cells were dead (Figure 4.4)which may be explained by a) the initial cell 

concentration was low (77 cell/mL), b) the cells were destroyed when placed on the coverslide, c) the 

diatoms chosen (centric diatoms) were not appropriate, since all known studies about diatom 

immobilisation are carried on with pennate diatoms (Gaudin et al. 2006). 

 

 

Light microscopy Epifluorescence microscopy  
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a) 

 

b) 

 

c) 
 

d) 

Figure 4.4. Coscinodiscus immobilisation in gelatine beads in mPBs – a) in light microscopy and b) in epifluorescence 

microscopy; c, d) Coscinodiscus immobilisation in gelatine beads in mPBs more f/2 medium, in light and in 

epifluorescence microscopy, respectively. 

 

4.3.2 Crosslinking of Gelatine 

 

Initially, gelatine beads were made without cross-linking because this can be toxic to the 

diatoms (Cortesi et al. 1999; Vandelli et al. 2004). But as the results were not satisfying, gelatine 

beads with cross-linking (where glutaraldehyde was proposed as connection agent) were made. 

Glutaraldehyde is toxic for the cell. To reduce the glutaraldehyde effect in cell, it cannot contact 

directly with cells. One way of doing this is to place the glutaraldehyde directly in paraffin instead of 

being added to the gelatine solution (Saarai et al. 2011). 

 

It was difficult to dissolve the glutaraldehyde in paraffin, since the glutaraldehyde is highly 

cationic. To mitigate this fact, the solution was in constant agitation (200 rpm) to promote the 

homogeneity. 

 

The beads formed from the cross-linked gelatine at time zero have the same texture and 

colour as the gelatine beads in mPBS. However, in the second day, they showed a different colour 

and had a smaller size (Figure 4.5). 

 



Immobilization of diatoms for long-term preservation 

40 
 

  

a) b) 
 

Figure 4.5. a) Beads at time zero; b) Beads in the second day. 

 

As in normal gelatine beads, the gelatine beads with gluraraldyde changed their structure, by 

being smaller and of a different colour, over time (Figure 4.6).  

 

  

1 days 30 days 

Figure 4.6. a) Gelatine beads at time zero; b) Gelatine beads after 30 days. 

 

Glutaraldehyde increases the resistance of the beads to the temperature so they could stay  

more than one month in the cold room (4 ± 1 °C). 

The disadvantage of this method is that the use of high temperatures (more than 30 °C) was 

essential for the cell recovery, causing subsequent cell death. 

 

4.3.3 Pectin 

 

Pectin proved to be a limited immobilisation method, because it was not possible to build the 

beads efficiently and consequently to encapsulate the cells (Figure 4.7). 

This was not expected since Sriamornsak, in 2008, described this procedure in distilled water. 

Apparently, the salts from the f/2 medium influenced the beads structure. 
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0 days  1 month  

Figure 4.7. a) Pectin beads at time zero; b) Pectin beads in 30 days after its 

production. 

 

 

4.4 Conclusions  

 

Comparing all methods it was possible to conclude that obscurity is presently the best 

method for the diatom conservation. It is simpler, cheaper and faster than the immobilisation 

method.  

 

The immobilisation in gelatine beads was not satisfactory because the beads only lasted for 

one month, much lower than the six months obtained with the obscurity. On the other hand, 

gelatine beads in mPBS were not satisfactory as well because the cells were unviable after recovery. 

 

When the glutaraldehyde was used, the beads lasted more than one month, but the need of 

using higher temperatures to solubilise the gelatine beads and to recover the cells caused the 

diatoms death. 

 

The pectin proved to be a poor option for the immobilisation since it did not allow for the 

beads assemblage. 

 

We may thus conclude that the methods used were not the best to immobilize this type of 

cells.  Other ways to liquefy gelatine, alternative to heating, might prove to be more successful. 
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5 Diatom detachment 
 

 

ABSTRACT. Benthic diatoms grow attached to a surface. This means that prior to their use, they need 

to be detached. Normally the detachment is performed by using scrapers (mechanic action). A less 

aggressive method was studied based on chemical action through the use of surfactant. The 

surfactants were placed in contact with the cell cultures overnight. Cells were recovered the next 

morning and their viability evaluated. It was concluded that chemical action can be a good method 

for detaching benthic diatoms.  
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5.1 Introduction 

 

Most of the pennate diatoms grow adhered to a surface, by secreting an adhesive mucilage 

composed of polysaccharides and proteoglycans (Drum and Gordo, 2003; Stanley and Callow, 2007). 

Prior to their use, cells need to be detached. Detaching can be achieved through mechanic action, 

chemical action and temperature. 

 

When mechanical action is used, the diatom culture is gently scraped with a cell scraper. 

Other possible treatment is putting the diatoms at lower temperatures and in the dark (Kilroy et al. 

2007).  

 

Surfactants, sometimes called surface-active agents or detergents, are of widespread use 

around the world. They are classified in four classes (cationic, anionic, amphoteric and non-ionic) 

based on the ionic charge (if present) of the hydrophilic portion of the surfactant in an aqueous 

solution (Yüksel et al. 2009). 

 

Anionic surfactants (AS) are the major class of surfactants used in detergents formulations.  

In this case, when the surfactant is dissolved in water the obtained electrolyte is an anion. These 

surfactants adsorb various types of substrates, giving them a negative charge. AS are wide-purpose 

detergents and exhibit a large capacity of foam production (Oliveira, 2001). An example of these 

surfactants is Sodium dodecyl sulphate (SDS). SDS (Figure 5.1 the SDS structure), a member of the 

linear alkylbenzene sulfonates (LAS) family, is used as detergent, dispersant, or anionic surfactant 

(Yüksel et al. 2009). 

 

 

Figure 5.1. SDS structure. 

 

Cationic surfactants like anionic surfactants are electrolytes. Cationic surfactants have a 

positive charge. Most of the materials, when in aqueous solution, are positively charged and the 

negatively charged surfactants are therefore adsorbed, directing their hydrophilic heads to the 

negative surface (Oliveira, 2001). One example of these surfactants is Tris base (Figure 5.2). Tris is an 

abbreviation of the organic compound known as tris(hydroxymethyl)aminomethane (Marcozzi et al. 

1998; Oliveira, 2001). 

http://en.wikipedia.org/wiki/Organic_compound
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Figure 5.2. Tris base structure. 

 

Non-ionic surfactants do not have an electrical charge, which makes them resistant to water 

hardness deactivation. They are excellent grease removers, being used in laundry products, 

household cleaners and dishwashing liquids (Oliveira, 2001). 

 

Triton X-100 (Figure 5.3) is a commercial name for the non-ionic detergent known chemically 

as octylphenoxy polyethoxyethanol, with a polar group that contains polyoxyethylene residues 

(Robson and Dennls, 1977; Marcozzi et al. 1998; Liu et al. 2009).  

 

 

Figure 5.3. Triton x-100 structure. 

 

 

5.2 Materials and methods  

 

5.2.1 Cell cultures and culture conditions 

 

The benthic Seminavis robusta 84A and culture conditions were the same described in 

Chapter 2. 

 

5.2.2 Detergents 

 

For the diatom detachment, mechanic action (by scrapers) was used as a control.  
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The surfactants used were sodium dodecyl sulfate (SDS), Tris Base and Triton X-100. Initially, 

the solutions of the SDS, tris base and Triton X-100 were prepared in mPBS in different 

concentrations: SDS (M= 288.38 gmol−1 of Himedia) was used in seven different concentrations (25 

g/l, 0.025 mg/mL; 0.25 mg/mL; 2.5 mg/mL; 2 % (w/v), 0.1 % (w/v) and 1 % (w/v)) (Yüksel et al. 2009); 

Tris Base (M= 11645 gmol−1 of fisher Sciebtific) was used in three concentrations (10 mM; 17 mM; 50 

mM and 50 M. And Triton X-100 (M= 646.86 gmol−1 of Fisher Chemical) was used in six 

concentrations (1 % (v/v), 0.1 % (v/v), 0.001 % (v/v), 0.5 % (v/v), 0.05 % (v/v) and 0.25 % (v/v)). 

 

To detach the cells, the culture medium was removed and 4 mL of the detergent solution was 

added and kept in dark overnight. Furthermore, to evaluate the effect of temperature, the culture 

flasks with the solutions of 2.5 mg/mL of SDS solution, 50 mM of Tris base, and 0,05 % (v/v) of Triton 

X-100 were made in triplicate and incubated in three different temperatures: in cold room (4 °C), at 

environmental temperature (25 °C) and at 30 °C. 

 

After this, the culture was centrifuged (3000 g at 10 min), the liquid was removed and the 

pellet was washed with mPBS. This last step was repeated four times. 

 

5.2.3 Viability 

 

For viability determination was used the FDA method (described in Chapter 2). 

 

 

5.3 Results and discussion 

 

The main disadvantage of the control procedure, that is, the scraping, was the cell membrane 

breakage leading to the diatom death and the under-estimation of the viability assessment of the 

culture. For the other hand, when the scraping is used, it is not possible ensure that all diatoms are 

removed for the surface and the detachment sample are reproducible. Nevertheless, percentages of 

80 % of viability were obtained by this method. 

 

In this work another method for benthic diatom detach mend, i.e. chemical action (to use 

surfactants) was performed. The chemical action method aims at detaching the diatoms by 

destroying the adhesive mucilage that ties the walls to the flask, in a similar way as the action of  

trypsin in animal cell cultures. 
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Figure 5.4 proves that FDA was a good method to check the cell viability, since the living cells 

are stained with green fluorescence whereas dead cells presented no fluorescence. 

 

 Light microscopy FDA 

 

 
 

Figure 5.4 . Difference between living cell and dead cell using FDA.. 

 

In general, the surfactants concentrations were too high and besides detaching the cells, they 

caused cell death. Surfactants are toxic and lower concentrations should have been used to prevent 

toxic effects and cell death. Since these surfactants are normally used for cell lysis, higher 

concentrations of the surfactants were expected to result in a decrease of the cell viability. In the 

present work, all concentrations were above the toxic concentration and most of them caused a 

significant decrease in the viability of the cultures. Future work shall take this in account. The best 

surfactant used was the Tris base at 17 mM (cationic surfactant), the number of cells detached was 

similar to the number obtained with the mechanic action, using a scraper. 

 

These problems arose because there is not much information about diatom detachment 

through chemical action. Furthermore, the surfactants concentration used in this work is the 

normally used for bacterial detachment. Control of the contact time can also be a variable to study in 

future works. 

 

The surfactant effect in diatoms was affected by concentration and temperature (Table 5.1). 

The temperature used had a significant influence on the surfactant solubilisation: for example, the 

SDS was less efficient at lower temperatures (4 °C). 

 

The detachment process was not optimized: it is necessary to find the ideal concentration 

and contact time for different species. It is also necessary to improve other steps such as the 

centrifugation time and the method for washing diatoms (mPBS washing in this case). 
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Table 5.1. Viability of diatom cultures after surfactant use 

Technique Viability 

Scraper (mechanic action) 80 % 

Tris base 

0.5 M 0 % 

50 mM at 4 °C 0 % 

50 mM at 25 °C 0 % 

50 mM at 30 °C 0 % 

17 mM 70 % 

Triton X-100 

1 % (v/v) 0 % 

0.5 % (v/v) 0 % 

0.05% (v/v) at 30 °C 0 % 

0.05% (v/v) at 25 °C 20 % 

0.05% (v/v) at 4 °C 30 % 

0.001% (v/v) 50 % 

SDS 

2 % (w/v) 0 % 

1 % (w/v) 0 % 

0.5 % (w/v) 20 % 

25 mg/mL 0 % 

2.5 mg/mL at 4 °C 0 % 

2.5 mg/mL at 25 °C 0 % 

2.5 mg/mL at 30 °C 0 % 

0.25 mg/mL 30 % 

0.025 mg/mL 40 % 

 

5.4 Conclusions  

 

The mechanic method to detach benthic diatoms is fast, needs few work and care and 

maintains high viability of the cultures. However, scraping is an erratic method because the number 

of collected diatoms is highly variable. If we wish to achieve reproducible inoculation conditions 

other methods must be explored. It is necessary to optimize the process here presented using 

surfactants to detach the benthic cells, because the concentrations herewith presented were 

definitely too high for this purpose. 



 

 

 

 

 

 

 

 

 

 

 

 

6 General conclusions                          

and future prospects 
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Diatoms are unicellular microalgae with the ability to form complex silicate structures and 

with a very wide potential of applications. 

 

The work presented in this thesis aimed at diatom characterisation, by traditional methods 

and by MALDI-TOF ICMS. Besides that Coscinodiscus sp. preservation in beads (gelatine and pectin) 

and the detachment of benthic diatoms were studied as they both are methods related and useful to 

the characterisation of diatoms: the first intends to preserve the characteristics of the cultures and 

the latter is crucial to get a correct sampling to further characterise the cultures. 

 

With traditional methods, it is possible to differentiate diatoms belonging to different genus 

but traditional methods take a long time. These organisms present different frustule morphologies 

and growth rates. Diatom characterisation using MALDI-TOF ICMS was not conclusive for all diatoms, 

although promising. However, this study also led to the conclusion that this method is able to 

discriminate different diatom genus but, at least under the conditions used in this work, is not 

capable to differentiate isolates of the same strains.  

 

The use of gelatine and pectin beads did not add any benefits to what already exists related 

to long-term preservation methods. This proves that the obscurity is a satisfactory and efficient 

method, and can be more practical and less laborious that immobilisation in beads. Substantial 

improvement can be done by changing the preparation conditions and the beads solubilisation.  

 

Finally, promising results were obtained that pointed to the potential use of surfactants for 

benthic diatoms detachment. However, more studies are needed and this process needs to be 

optimized, namely, by using other surfactants, by identifying the optimal concentration of the 

surfactant and by applying different contact times. 

 

Concerning future work, the results obtained by the present study showed that more studies 

are needed in order to overcome a series of unresolved questions. For example, it is necessary to 

study the diatom metabolism (to know the molecules that were analyzed in the MALDI-TOF) and to 

understand the lack of reproducibility of the MALDI-TOF spectra over time. We need to confirm that 

the obtained peaks are related with ribosomal proteins or other kind of macromolecules, e.g., 

polysaccharides. If the peaks are confirmed to be ribosomal protein-related, it is needed to know the 

protein ribosomal mass to establish peak standards for a best MALDI-TOF analysis. Another 

strategywill be the development of a database with diatoms characteristic spectra. The diatoms were 
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analyzed and the spectra obtained for each diatom should be deposited in the database created. The 

spectra were obtained as the fingerprint for each diatom.  

 

Another important feature to resolve is the low diatom concentration that usually is reached, 

thus new cultivation methods to increase diatom concentration are crucial.  

 

Finally, new methods for long-term diatom preservation are required (for example, using 

capillaries with alginate for diatom immobilisation), since the current available preservation methods 

only allow diatoms to remain viable for at most one year. In preservation the diatoms with crosslink 

in gelatine beads used new methods for example  
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Appendices A 

Calibration curves of diatoms  

  

In order to evaluate the diatom concentration in different cell suspensions, three calibration curves 

correlating chlorophyll fluorescence and cell concentration for the three genera (Seminavis robusta, 

Cosciscodiscus and Cyclotella meneghiniana.) were determined. For that, different dilutions were 

prepared from an initial cell suspension. Cell concentration of the initial solution and of the dilutions 

was determined by counting cells under the microscope (Olympus). Then, chlorophyll fluorescence 

was evaluated by fluorimetry (Fluorescence Spectrometer Jasco FP6200; emission at 685 and 

excitation at 440 nm). From a linear regression, the equations in table A.1 were found: 

Table A.1. Seminavis robusta, Coscinodiscus sp. and Cyclotella meneghiniana equation. Where, y is cell concentration 
(cel/ml) and x is chlorophyll fluorescence 

 Equation R2      

Seminavis 
robusta 

y=(1890.5±209.52)x–(133.87±123.4) 0.9908 0.028 dilutions of 1:2, 1:4, 1:8; 1:10 
and 1:20 

Cosciscodiscus 
sp. 

y=(156.03±30.81)x-(49,289±19.64) 0,9886 0.0196 dilutions of 1:2, 1:4 and 1:8 

Cyclotella 
meneghiniana 

y=(1588,2±272)x-(78,87±147.87) 0,9714 0.0532 dilutions of 1:2, 1:4, 1:8; 1:10, 
1:20, 1:100 and 1:150 

 

 

Figure A.1. Calibration curve of cell concentration for Seminavis robusta 84A. 
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Figure A.2. Calibration curve of cell concentration for Coscinodiscus sp. 

 

 

Figure A.3. Calibration curve of cell concentration for Cyclotella meneghiniana. 

 



Appendices  

64 
 

Appendices B 

 

 

Figure B.1. Reproducible MALDI-TOF ICMS mass spectra for Cyclotella meneghiniana at 9 days old. 

 

 

Figure B.2. Reproducible MALDI-TOF ICMS mass spectra for Cyclotella meneghiniana at 30 days old. 

 

 

Figure B.3. Reproducible MALDI-TOF ICMS mass spectra for Coscinodiscus sp. at 13 days old. 
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Figure B.4. Reproducible MALDI-TOF ICMS mass spectra for Coscinodiscus sp. at 18 days old. 

 

 

Figure B.5. Reproducible MALDI-TOF ICMS mass spectra for Coscinodiscus sp. at 30 days old. 

 

 

Figure B.6. Reproducible MALDI-TOF ICMS mass spectra for Seminavis robusta 84A at 9 days old. 
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Figure B.7. Reproducible MALDI-TOF ICMS mass spectra for Seminavis robusta 84A at 9 days old. 

 

 

Figure B.8. Reproducible MALDI-TOF ICMS mass spectra for Seminavis robusta 84A at 14 days old. 

 

 

Figure B.9. Reproducible MALDI-TOF ICMS mass spectra for Seminavis robusta 85AS at 9 days old. 
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Figure B.10. Reproducible MALDI-TOF ICMS mass spectra for Seminavis robusta 85AS at 14 days old. 

 

 

Figure B.11. Reproducible MALDI-TOF ICMS mass spectra for Seminavis robusta 85A at 9 days old. 

 

 

Figure B.12. Reproducible MALDI-TOF ICMS mass spectra for Seminavis robusta 85BS at 9 days old. 
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