
QoS-aware Component Composition
Luis S. Barbosa

DI-CCTC, Universidade do Minho
4710-057 Braga, Portugal
Email: lsb@di.uminho.pt

Sun Meng
Centrum Wiskunde & Informatica (CWI)

P.O. Box 94079, Amsterdam, The Netherlands
Email: M.Sun@cwi.nl

Abstract—Component’s QoS constraints cannot be ignored
when composing them to build reliable loosely-coupled, dis-
tributed systems. Therefore they should be explicitly taken into
account in any formal model for component-based development.
Such is the purpose of this paper: to extend a calculus of
component composition to deal, in an effective way, with QoS
constraints. Particular emphasis is put on how the laws that
govern composition can be derived, in a calculational, pointfree
style, in this new model.

I. INTRODUCTION

The design of loosely-coupled, highly distributed software
systems places new requirements on components’ composi-
tion.

Non-functional properties of software components, such as
response time, availability, bandwidth requirement, memory
usage, etc., cannot be ignored and become decisive in the
selection procedure. Moreover, often adaptation mechanisms
have to take them into account, going far behind the sim-
ple wrapping of functionality to bridge between published
interfaces. The expression Quality of Service (QoS) is widely
accepted to group together all these concerns [14], [19], [20].
It suggests twin notions of a level to be attained and cost to
be paid, as well as point out to the design of suitable metrics
to quantify such properties.

Over the past few decades, several formalisms (e.g., stochas-
tic Petri Nets [13] and interactive Markov Chains [8]) have
been proposed to capture different QoS metrics. In pro-
gramming languages like Java or C#, QoS properties are
often specified using meta-attributes. From a static validation
perspective, these attributes can be treated like structured
comments, which may be used to generate runtime monitors
but their semantics is too weak to allow reasoning effectively
about QoS properties.

Dealing with QoS aspects in a coherent and systematic
way became a main issue in component composition, which
cannot be swept under the carpet in any formal account of the
problem.

This paper extends a formal calculus for component com-
position [3], [4], in order to take into account, in an explicit
way, QoS information. The calculus is based on a coalgebraic
model used to capture components’ observable behavior and
persistence over transitions. Furthermore, it is parametric on
a notion of behavior, encoded in a strong monad, which
allows to reason in a uniform way about total or partial, non
deterministic or stochastic components. It has already been

argued by others (e.g., [11], [10], [17]) that coalgebra theory
nicely captures the ”black-box” characterization of software
components, which favors an observational semantics: the
essence of a component specification lies in the collection
of possible observations and any two internal configurations
should be identified wherever indistinguishable by observation.

To express QoS properties we adopt (a slight generalization)
of the notion of Q-algebra proposed in [7]. In brief, a Q-
algebra amounts to two semirings over a common carrier,
representing some form of cost domain, which allows different
ways of combining and choosing between quality values.

The resulting calculus provides a compositional approach
which offers potential for complex components to be con-
structed systematically while satisfying QoS constraints. Al-
though most previous laws have to be revisited in this extended
model, and most of them turn from equalities (i.e., bisimi-
larities) to inequalities (i.e., refinements), proofs can still be
carried on in the calculation style which is the watermark of
[3], [4]. This style avoids the explicit construction of, e.g.,
bisimulations, when proving observational equality, favouring
an equational, essentially pointfree reasoning style as popu-
larized, at the micro, programming level, under the name of
algebra of programming [6].

The remaining of this paper is devoted to substantiate
this claim. Therefore, the original component calculus is
summarised in the following section. Section III introduces
its extension and redefines the basic operators to make them
QoS aware. An illustrative example is discussed in section IV.
Section V discusses how the properties of component compo-
sition can be established in this new setting. The emphasis is
not on providing a complete account of the new calculus, but
rather on illustrating how it can be developed.

II. A COMPONENTS’ CALCULUS

This section recalls the basic mechanisms for component
aggregation along the lines of [3], [4], where further details
and proofs can be found.

Software components can be characterized as dynamic
systems with a public interface and a private, encapsulated
state. The relevance of state information precludes a ‘process-
like’ (purely behavioral) view of components. Components are
rather concrete coalgebras [17], [1], [11]). For a given value
of the state space — referred to as a seed in the sequel — a
corresponding ‘process’, or behavior, arises by computing its
coinductive extension.



In the simplest, deterministic case, the behavior of a com-
ponent p is captured by the output it produces, which is
determined by the supplied input. But reality is often more
complicated, for one may have to deal with components whose
behavioral pattern is, e.g., partial or even non deterministic.
Therefore, to proceed in a generic way, the behavior model
is abstracted to a strong monad B. For example, B = Id
retrieves the simple deterministic behavior, whereas B = P or
B = Id+1 would model non deterministic or partial behavior,
respectively1.

Assume a collection of sets I , O, ..., acting as component
interfaces. Then a component taking input in I and producing
output in O is specified by a pointed coalgebra

〈up ∈ Up, ap : Up −→ B(Up ×O)I〉 (1)

where up is the initial state, often referred to as the seed,
and the coalgebra dynamics is captured by currying a state-
transition function ap : Up×I −→ B (Up×O). This definition
means that the computation of an action in a component will
not simply produce an output and a continuation state, but a
B-structure of such pairs. The monadic structure provides tools
to handle such computations. Unit (η) and multiplication (µ),
provide, respectively, a value embedding and a ‘flatten’ opera-
tion to reduce nested behavioral effects. Strength, either in its
right (τr) or left (τl) version, cater for context information2.

Having defined generic components as (pointed) coalgebras,
one may wonder how do they get composed and what kind
of calculus emerges from this framework. In this framework,
interfaces are sets representing the input and output range of
a component. Consequently, components are arrows between
interfaces and so arrows between components are arrows
between arrows. Thus, three notions have to be taken into
account: interfaces, components and component morphisms.
Formally, this leads to a bicategorial setting, but we will avoid
such abstraction step in the sequel. For the moment retain that
a component morphism h : 〈up, ap〉 −→ 〈uq, aq〉 is just a
function connecting the state spaces of p and q and satisfying
the following morphism and seed preservation conditions:

aq · h = TB h · ap (2)
h up = uq (3)

Components with compatible interfaces (as in the case p :
I −→ K and q : K −→ O) can be composed sequentially as

p ; q = 〈〈up, uq〉 ∈ Up × Uq, ap;q〉
1P is the finite powerset monad. On the other hand, 1 represents abstractly

a singleton set; therefore type X + 1 means either X or undifined. The
notation used in the sequel is quite standard in mathematics for computer
science; reference [6] provides an excellent introduction.

2A strong monad is a monad 〈B, η, µ〉 where B is a strong functor and
both η and µ are strong natural transformations [12]. B being strong means
there exist natural transformations τTr : T × − =⇒ T(Id × −) and τTl :
−×T =⇒ T(−× Id), called the right and left strength, respectively, subject
to certain conditions. Their effect is to distribute the free variable values in the
context “−” along functor B. The Kleisli composition of the right with the left
strength, gives rise to a natural transformation whose component on objects
I and J is given by δr = τrI,J • τlBI,J Dually, δl = τlI,J • τrI,BJ .
Such transformations specify how the monad distributes over product and,
therefore, represent a sort of sequential composition of B-computations.

where ap;q : Up × Uq × I −→ B(Up × Uq ×O) is detailed as
follows 3

ap;q = Up × Uq × I
xr−−−−→ Up × I × Uq

ap×id−−−−→

B(Up ×K)× Uq
τr−−−−→ B(Up ×K × Uq)

B(a·xr)−−−−→

B(Up × (Uq ×K))
B(id×aq)−−−−−−→ B(Up × B(Uq ×O))

Bτl−−−−→ BB(Up × (Uq ×O))
BBa◦−−−−→

BB(Up × Uq ×O)
µ−−−−→ B(Up × Uq ×O)

The identity of sequential composition is component
copyK : K −→ K, where

copyK = 〈∗ ∈ 1, acopyK 〉

and acopyK = η1×K .
Recall (from e.g. [17]) that the graph of a morphism is

a bisimulation. Therefore, the existence of a seed preserving
morphism between two components makes them TB-bisimilar,
leading to the following laws, for appropriately typed compo-
nents p, q and r:

copyI ; p ∼ p ∼ p ; copyO (4)
(p ; q) ; r ∼ p ; (q ; r) (5)

In [3] a collection of component combinators was defined
and their properties were studied. In particular it was shown
that any function f : A −→ B can be lifted to a component
whose interfaces are given by their domain and codomain
types. Formally, a function f : A −→ B gives rise to
component

pfq = 〈∗ ∈ 1, apfq〉

i.e., a coalgebra over 1 whose action is given by the currying
of

apfq = 1×A id×f−−−−→ 1×B
η(1×B)−−−−→ B(1×B) (6)

A wrapping mechanism p[f, g] which encodes the pre- and
post-composition of a component with functions is defined as a
combinator which resembles the renaming connective found in
process algebras (e.g., [16]). Let p : I −→ O be a component
and consider functions f : I ′ −→ I and g : O −→ O′.
Component p wrapped by f and g, denoted by p[f, g] and
typed as I ′ −→ O′, is defined by input pre-composition
with f and output post-composition with g. Formally, it maps
component p from 〈up, ap〉 into 〈up, ap[f,g]〉, where

ap[f,g] = Up × I ′
id×f−−−−→ Up × I

ap−−−−→ B(Up ×O)
B(id×g)−−−−−→ B(Up ×O′)

3As one would expect, reasoning about generic components entails a num-
ber of laws relating monads with common ‘housekeeping’ morphisms such as
product and sum associativity, (a, a+), commutativity (s, s+), left and right
units (l, l+ and r, r+), left and right distributivity (dl, dr) and isomorphisms
xl : A× (B×C) −→ B× (A×C), xr : A×B×C −→ A×C ×B
and m : (A × B) × (C × D) −→ (A × C) × (B × D). Such laws
are thoroughly dealt with in [4]. By convention, binary morphisms always
associate to the left.



Parallel composition, denoted by p � q, corresponds
to a synchronous product: both components are executed
simultaneously when triggered by a pair of legal input values.
Note, however, that the behavior effect, captured by monad B,
propagates. For example, if B can express component failure
and one of the arguments fails, product fails as well. Formally,

p� q = 〈〈up, uq〉 ∈ Up × Uq, ap�q〉

where

ap�q = Up × Uq × (I × J) m−−−−→ Up × I × (Uq × J)
ap×aq−−−−→ B (Up ×O)× B (Uq ×R)

δl−−−−→

B (Up ×O × (Uq ×R))
B m−−−−→

B (Up × Uq × (O ×R))

and maps every pair of arrows 〈h1, h2〉 into h1 × h2.

There are other generic tensors cater component aggre-
gation. For example, external choice � and concurrent �
composition. When interacting with p� q : I + J → O + R,
the environment chooses either to input a value of type I or
one of type J , which triggers the corresponding component (p
or q, respectively), producing the relevant output. In its turn,
concurrent composition combines choice and parallel, in the
sense that p and q can be executed independently or jointly,
depending on the input supplied.

Finally, generalized interaction is catered through a sort of
”feedback” mechanism on a subset of the inputs. This can
be defined by a new combinator, called hook, which connects
some input to some output wires and, consequently, forces
part of the output of a component to be fed back as input.
Formally, the hook combinator − �Z maps each component
p : I + Z −→ O + Z to p�Z : I + Z −→ O + Z given by

p�Z = 〈up ∈ Up, ap�Z 〉

where

ap�Z = Up × (I + Z)
ap−−−−→ B(Up × (O + Z))

B((id×ι1+id×ι2)·dr)−−−−−−−−−−−−−→ B(Up × (O + Z) + Up × (I + Z))
B(η+ap)−−−−−→ B(B(Up × (O + Z)) + B(Up × (O + Z)))
µ·BO−−−−→ B(Up × (O + Z))

III. QOS AS A FIRST CLASS CITIZEN

A. Modelling QoS

QoS is introduced in the component calculus through the
notion of a Q-algebra due to [7]. In brief, a Q-algebra
is an algebraic structure R = (C,⊕,⊗,:,0,1) such that
R⊗ = (C,⊕,⊗,0,1) and R: = (C,⊕,:,0,1) are both c-
semirings. Intuitively, C is a QoS domain (e.g., a measure of
resource usage or availability) whereas ⊕ represents a choice
between QoS values and ⊗ and :, respectively, compose QoS
values sequentially or concurrently.

This definition entails distribution of both ⊗ and : over ⊕,
and an absortion law again for both combinators, i.e.,

(a⊕ b) ◦ c = (a ◦ c)⊕ (b ◦ c) (7)
0 ◦ a = 0 (8)

where ◦ = ⊗,:. Clearly, ⊕ defines a partial order

a ≤ b ⇔ (a⊕ b) = b (9)

meaning a is worse than b, i.e., has a higher cost. Alterna-
tively, ⊕ could be derived from a semi-lattice (C,≤) as the
corresponding least upper bound.

With respect to [7], we additionally require that both ⊗ and
: be commutative, which makes easy formal manipulation in
proofs. More fundamentally, we also require that the common
identity of these cost combinators acts as an absorving element
wrt ⊕, i.e.

1⊕ a = 1 (10)

Law (10) is required to establish essential properties relating
the QoS levels of individual components with their composi-
tion, in particular that a ◦ b ≤ a, for ◦ = ⊗,:. Actually,

a ◦ b ≤ a
⇔ { (9) }

(a ◦ b)⊕ a = a

⇔ { identity for ◦ }
(a ◦ b)⊕ (a ◦ 1) = a

⇔ { (7) }
a ◦ (b⊕ 1) = a

⇔ { (10) }
a ◦ 1 = a

⇔ { identity for ◦ }
a = a

Section IV presents concrete examples of this sort of structure.
Further examples are discussed, although in a different context,
in [2].

B. QoS-aware components

QoS information is included in the component model as
an additional attribute: its execution generates a QoS value
which is observable (i.e., measurable). Formally, definition (1)
changes to

〈u0 ∈ Up, αp : Up → B(Up × C ×O)I〉 (11)

where C is the domain of some Q-algebra R =
(C,⊕,⊗,:,0,1).

The definition of all component combinators change accord-
ingly to take into account the need for equally combining
the observed QoS levels of their parameters. The dynamics



of sequential composition becomes

ap;q = Up × Uq × I
xr−−−−→ Up × I × Uq

ap×id−−−−→ B(Up × C ×K)× Uq
τr−−−−→ B(Up × C ×K × Uq)

B(id×aq)−−−−−−→ B((Up × C)× B(Uq × C ×O))
Bτl−−−−→ BB(Up × C × (Uq × C ×O))
BBa◦−−−−→ BB((Up × C × (Uq × C))×O)
µ−−−−→ B((Up × C × (Uq × C))×O)

B(m×id)−−−−−→ B((Up × Uq × (C × C))×O)
B(id×⊗×id)−−−−−−−→ B(Up × Uq × C ×O)

Note the use of ⊗ to sequentially compose QoS levels. The
same occurs in the redefinition of the hook combinator −�Z ,
which is essentially a generalization of sequential composition.

The redefinition of parallel composition, on its turn, resorts
to ::

αp�q = Up × Uq × (I × J) m−−−−→ (Up × I)× (Uq × J)
αp×αq−−−−→ B(Up × C ×O)× B(Uq × C ×K)
δl−−−−→ B((Up × C ×O)× (Uq × C ×K))
Bm−−−−→ B((Up × C)× (Uq × C)× (O ×K))

B(m×id)−−−−−→ B((Up × Uq)× (C × C)× (O ×K))
B(id×:×id)−−−−−−−→ B(Up × Uq × C × (O ×K))

Although not discussed in detail in this paper, component
choice, �, requires the introduction of a new operator. Actu-
ally, the global QoS level of p � q is computed as c1 � c2,
where � is the glb of order ≤. Actually, the cost order has
the structure of a lattice whose lub gives ⊕ and glb gives �.

C. And equalities become refinements ...

In the presence of QoS constraints most bisimulation equa-
tions become refinements, in the sense the word has in
coalgebra theory [15]. Note that a bisimulation over TX =
B(X × C ×O)

I , which acts as the notion of equality in the
calculus, entails, as usual, syntactic equality at the interface
level, and thus equal costs. To compare component-based
designs with respect to QoS measures entails the need for
a notion of refinement: pE q (read component q refines p) if
they exhibit the same behavior but the QoS level of q is higher
(i.e., ”costs less”) than that of p. Formally, this is recorded by
the existence of what was called in [15] a forward morphism
with respect to an order v which captures QoS increase. We
will briefly review its definition and precisely characterize
the refinement order relevant for reasoning about QoS-aware
components.

Recall first that a T-coalgebra morphism h : q −→ p is a
function from the state space of q to that of p such that

Th · q = p · h (12)

It is well known that the existence of such a morphism
entails bisimulation. A weak form of morphism where (12)
is rephrased in terms of a refinement preorder over the image
of functor T was proposed in [15]:

Th · q
.
v p · h (13)

where4 it was proved such a morphism still preserves transi-
tions, therefore entailing a form of simulation, and that for a
given functor T coalgebras and forward morphisms still form
a category. Preorder v cannot be arbitrary, but compatible
with the structural membership ∈T defined for regular functors
in [9]. This means that (∈T · v) ⊆ ∈T, or, equivalently,
v⊆ (∈T \ ∈T), i.e., the relational division of structural
membership by itself. A typical refinement preorder, called
structural inclusion, is given by

x⊆Id y iff x = y

x⊆K y iff x=K y

x⊆T1×T2 y iff π1 x⊆T1 π1 y ∧ π2 x⊆T2 π2 y

x⊆T1+T2 y iff

{
x = ι1 x

′ ∧ y = ι1 y
′ ⇒ x′ ⊆T1

y′

x = ι2 x
′ ∧ y = ι2 y

′ ⇒ x′ ⊆T2
y′

x⊆TK y iff ∀k∈K . x k ⊆T y k

x⊆PT y iff ∀e∈x∃e′∈y. e⊆T e
′

Note that ⊆T captures the classical notion of non determinism
reduction. The refinement preorder relevant to capture increase
in component’s QoS level is obtained from structural inclusion
by replacing the second clause by

x⊆K y iff

{
K = C ⇒ x v y
K 6= C ⇒ x=K y

Clearly,
⊆T ⊆ vT ⊆ (∈T \∈T) (16)

Section V discusses in detail the rendering of what was in
the original component calculus an equivalence law, as a
refinement inequation wrt vT.

IV. AN EXAMPLE

Both the component calculus and QoS modelling are il-
lustrated in this section through a well-known example: the
Alternating Bit Protocol (ABP) [18]. It is a simple communica-
tion protocol that provides an error-free communication over a
medium that might lose messages. The description consists of
four components: a sender and a receiver which are connected

4We denote by
.
v the pointwise lifting of v to the functional level,

f
.
v g ⇔ ∀x. f x v g x (14)

which can also be formulated in the following pointfree way,

f
.
v g ⇔ (f ⊆ v ·g) (15)



via two media. The structure of the communication system are
shown in Figure 1.

Sender Receiver
recsend

in
Medium

Ack−Medium
acks ackr

out

Fig. 1. The Structure of ABP

A retransmission mechanism is used to overcome the un-
reliability of the medium. When the sender observes a delay
between issuing a message to the medium (via the in channel)
and receiving an acknowledgement (via the acks channel) that
it deems too long, it initiates a retransmission (we assume that
the retransmission happens when the delay is t time units). In
this model we assume that sometimes messages are lost in
the media and some time delays occur in the media as well.
So the QoS properties we are interested here are reliability
and time. These two quality dimensions are represented by
the corresponding Q-algebras

Q1 = ([0, 1],max,×,×, 0, 1)
Q2 = (R+ ∪ {∞},min,+,max,∞, 0)

Furthermore, they can be composed to yield a new Q-algebra
for the two QoS dimensions. Elements of this composed
structure are pairs of elements of Q1 and Q2. Formally

Q = ([0, 1]× (R+ ∪ {∞}),
〈max,min〉, 〈×,+〉, 〈×,max〉, 〈0,∞〉, 〈1, 0〉)

Let C = [0, 1] × (R+ ∪ {∞}) be the domain of Q, and
T = R+ ∪ {∞} be the set of time values, we define the
four components as follows 5:

Sender : U −→ (U × C × (M × 2))(M+M×2+T )

Sender = 〈∗ ∈ U, aSender〉

where U = (M × 2) ∪ 1, and

aSender 〈u, i〉

=



〈〈m, 0〉, cSender, 〈m, 0〉〉 if u = ∗ ∧ i = m

〈〈m, 0〉, cSender, 〈m, 0〉〉 if u = 〈m, 0〉 ∧ i = t

〈〈m′, 1〉, cSender, 〈m′, 1〉〉 if u = 〈m, 0〉 ∧ i = 〈m′, 0〉
〈〈m′, 1〉, cSender, 〈m′, 1〉〉 if u = 〈m′, 1〉 ∧ i = t

〈〈m, 0〉, cSender, 〈m, 0〉〉 if u = 〈m′, 1〉 ∧ i = 〈m, 1〉

Medium : 1× (M × 2) −→ 1× C × (M × 2)

Medium = 〈∗ ∈ 1, aMedium〉

where

aMedium 〈∗, 〈m, k〉〉 = 〈∗, cMedium, 〈m, k〉〉

5Since the behavior of these components is functional and deterministic, B
is obviously the identity monad Id, which is omitted to simplify writing.

AckMedium : 1× 2 −→ 1× C × 2

AckMedium = 〈∗ ∈ 1, aAck〉

where
aAck 〈∗, k〉 = 〈∗, cAck, k〉

Component Receiver is defined as

Receiver = M ; outrec� outackr

where

outrec : 2×M × 2 −→ 2× (C ×M + C)

outrec = 〈0 ∈ 2, aoutrec〉

aoutrec 〈u, i〉 =


〈1, coutrec,m〉 if u = 0 ∧ i = 〈m, 0〉
〈0, coutrec,m〉 if u = 1 ∧ i = 〈m, 1〉
〈0, coutrec〉 if u = 1 ∧ i = 〈m, 0〉
〈1, coutrec〉 if u = 0 ∧ i = 〈m, 1〉

outackr : 2×M × 2 −→ 2× (C × 2)

outackr = 〈0 ∈ 2, aoutackr〉

aoutackr 〈u, i〉 =


〈1, coutackr, 0〉 if u = 0 ∧ i = 〈m, 0〉
〈0, coutackr, 1〉 if u = 1 ∧ i = 〈m, 1〉
〈1, coutackr, 0〉 if u = 1 ∧ i = 〈m, 0〉
〈0, coutackr, 1〉 if u = 0 ∧ i = 〈m, 1〉

The whole system is written as

ABP = (Sender ;Medium ; Receiver ; AckMedium)�2

The quality improving refinement order discussed in the
previous section can be used here to establish a relation-
ship between different implementations of the APB protocol.
Monotonicity of vT, which one gets for free once proved
it is a coalgebraic refinement relation (by (16)), ensures that
replacing, say, the Sender component by a faster one, or
the component representing the communication medium by
a reliable one, i.e., Sender′ESender and Medium′EMedium,
one gets

(Sender′ ;Medium′ ; Receiver ; AckMedium)�2 E ABP

Next section puts this problem in a broader context, illustrating
how an equational law on component composition gives rise
to a refinement result in a QoS-aware model.

V. REVISITING COMPONENT LAWS

For space limitations, we limit ourselves to mention a few,
hopefully illustrative, examples. As mentioned in section II,
the basic mechanism provided in the calculus to adapt com-
ponent interfaces is wrapping and amounts to the pre and post
composition of a component with suitable functions which
modify the input and output universes without interfering in
the component dynamics. The QoS level of p[f, g] is, of
course, that of p.

The calculus also allows to regard functions as particular
instances of components, whose interfaces are given by their



domain and codomain types. As also discussed above, a
function f : A −→ B is represented by component pfq
Assigning a cost (or generically a QoS measure) c ∈ C to
the execution of f corresponds to change (6) to

apfq = 1×A〈id,c〉×f// 1× C ×B
η(1×B) // B(1× C ×B)

What is the effect of QoS annotations in the calculus? Clearly,
properties like

p[f, g] ∼ pfq ; p ; pgq (17)
(p[f, g])[f ′, g′] ∼ p[f · f ′, g′ · g] (18)

only hold if functions are lifted at no cost (i.e., with perfect
QoS). In this new setting, equation (17) is reduced to a
refinement inequality

pfq ; p ; pgq E p[f, g] (19)

Parallel composition of components provides another inter-
esting source of examples of previous equational laws lifting
to refinement inequations. A basic question, which moreover
is independent of QoS introduction, is whether � lifts to a
universal product construction at the behavioral level, i.e.,
whether it behaves like Cartesian product when modelling
types by simple sets. Therefore we start by definning the split
of two components as

〈p, q〉 = pMq ; (p� q) where M= 〈id, id〉

exactly as the split of two sets (formally, the universal function
to the Cartesian product). This definition, however, does not
guarantee, in general, the commutativity of

I
p

{{xxxxxxxxx
q

##FFFFFFFFF

〈p,q〉
��

O O �R
pπ1q

oo
pπ2q

// R

(20)

Qualifier in general above means for any monad B; obviously
(20) holds for deterministic components (i.e., with B = Id), as
in the example of section IV. One may prove, however, that,
for a broad range of (commutative) monads a cancellation law

p ∼ 〈p, q〉 ; pπ1q (21)

holds. In the extended QoS-aware calculus, equation (21) is
only a refinement

p E 〈p, q〉 ; pπ1q (22)

because the right-hand side entails the execution of both p and
q, thus ⊗-composing the respective costs.

VI. CONCLUSIONS

We have shown how, with a slight generalization of the
notion of Q-algebra proposed in [7], a component calculus
can be extended, in a systematic way, to deal with QoS
measures. This shows that reasoning formally about QoS-
aware components is feasible; the resulting calculus being a
smooth extension of the original one.

This leads to a new dimension on refinement, which one
may call quality improving refinement, as a way to guarantee
not only the functional simulation relation induced by the
behavior of components, as in [15], [5], but also a higher (or
at least equal) service quality.

The extended component calculus is doubled parametric in
both dimensions: behavior (through a strong monad B) and
QoS (through a Q-algebra). Therefore, it offers a suitable
setting for reasoning, at a high level of abstraction, about
component composition and, in general, coordination prob-
lems. Whether and how it scales up to composition of mobile
components and their dynamic reconfiguration, is the topic of
our current research.

REFERENCES

[1] J. Adamek. An introduction to coalgebra. Theory and Applications of
Categories, 14(8):157–199, 2005.

[2] F. Arbab, T. Chothia, M. Sun, and Y.-J. Moon. Component Connectors
with QoS Guarantees. In A. L. Murphy and J. Vitek, editor, Proceedings
of 9th International Conference on Coordination Models and Languages,
Coordination’07, volume 4467 of LNCS, pages 286–304. Springer, 2007.

[3] L. S. Barbosa. Towards a Calculus of State-based Software Components.
Journal of Universal Computer Science, 9(8):891–909, August 2003.

[4] L. S. Barbosa and J. N. Oliveira. State-based components made generic.
In H. P. Gumm, editor, Elect. Notes in Theor. Comp. Sci. (CMCS’03 -
Workshop on Coalgebraic Methods in Computer Science), volume 82.1,
Warsaw, April 2003.

[5] L. S. Barbosa and J. N. Oliveira. Transposing partial components: an
exercise on coalgebraic refinement. Theor. Comp. Sci., 365(1-2):2–22,
2006.

[6] R. Bird and O. de Moor. Algebra of Programming. Prentice Hall, 1997.
[7] T. Chothia and J. Kleijn. Q-automata: Modelling the resource usage

of concurrent components. Electronic Notes in Theoretical Computer
Science, 175(2):153–167, 2007.

[8] H. Hermanns. Interactive Markov Chains And the Quest for Quantified
Quality. Springer, 2002.

[9] P. F. Hoogendijk. A generic theory of datatypes. PhD thesis, Department
of Computing Science, Eindhoven University of Technology, 1996.

[10] B. Jacobs. Objects and classes, co-algebraically. In B. Freitag, C. L.
C.B. Jones, and H.-J. Schek, editors, Object-Orientation with Parallelism
and Persistence, pages 83–103. Kluwer, 1996.

[11] B. Jacobs. Exercises in coalgebraic specification. In R. Backhouse,
R. Crole, and J. Gibbons, editors, Algebraic and Coalgebraic Methods
in the Mathematics of Program Construction, volume 2297 of LNCS,
pages 237–280. Springer, 2002.

[12] A. Kock. Strong functors and monoidal monads. Archiv für Mathematik,
23:113–120, 1972.

[13] M. A. Marsan, G. Conte, and G. Balbo. A class of generalized stochastic
petri nets for the performance evaluation of multiprocessor systems.
ACM Transactions on Computer Systems, 2(2):93–122, 1984.

[14] D. A. Menascé. Composing Web Services: A QoS View. IEEE Internet
Computing, 8(6):88–90, 2004.

[15] S. Meng and L. S. Barbosa. Components as Coalgebras: the Refinement
Dimension. Theoretical Computer Science, 351(2):276–294, 2006.

[16] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[17] J. Rutten. Universal coalgebra: a theory of systems. Theoretical

Computer Science, 249:3–80, 2000.
[18] K. Tarnay. Protocol Specification and Testing. Plenum Press, 1991.
[19] T. Yu and K.-J. Lin. Service Selection Algorithms for Composing

Complex Services with Multiple QoS Constraints. In B. Benatallah,
F. Casati, and P. Traverso, editors, ICSOC 2005, volume 3826 of LNCS,
pages 130–143. Springer, 2005.

[20] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang. QoS-Aware Middleware for Web Services Composition. IEEE
Transactions on Software Engineering, 30(5):311–327, 2004.


