

Global warming may reduce the effects of litter quality on litter decomposition by aquatic microbes

Journal:	Freshwater Biology
Manuscript ID:	FWB-P-Dec-11-0634
Manuscript Type:	Standard Paper
Date Submitted by the Author:	26-Dec-2011
Complete List of Authors:	Fernandes, Isabel; University of Minho, Department of Biology Pascoal, Claudia; University of Minho, Department of Biology Guimarães, Helena; University of Minho, Department of Biology Pinto, Rute; University of Minho, Department of Biology Sousa, Ines; University of Minho, Department of Mathematics Cássio, Fernanda; University of Minho, Department of Biology
Keywords:	Climate change < Applied Issues, Running water / rivers / streams < Habitat, Community < Level of Organisation, Decomposition < Process / Approach / Methods, Fungi < Taxonomic Group / Assemblage

	1 Title: Global warming may reduce the effects of litter quality on litter decomposition by
	2 aquatic microbes
	3
	4 Isabel Fernandes ¹ , Cláudia Pascoal ¹ , Helena Guimarães ¹ , Rute Pinto ¹ , Inês Sousa ² ,
	5 Fernanda Cássio ¹ *
	6
	7 ¹ Centre of Molecular and Environmental Biology (CBMA)
	8 Department of Biology, University of Minho
	9 Campus de Gualtar
-	10 4710-057 Braga
	11 Portugal
	12
	¹³ ² Centre of Mathematics (CMAT)
-	14 Department of Mathematics and Applications, University of Minho
	15 Campus de Gualtar
	16 4710 - 057 Braga
	17 Portugal
	18
	19 * Email: fcassio@bio.uminho.pt
,	20 Telephone: + 351 253604045
, ,	21 Fax: + 351 253 678980
	22
	Running head title: Effects of temperature and litter quality on litter decomposition
	24
,	Keywords: leaf decomposition, litter quality, temperature, aquatic fungi, streams

2
3 ⊿
4 5
6
0
0
0
9
10
11
12
13
14
15
16
17
18
19
$2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
00

26 Summary

27	1.	We investigated the effects of riparian plant diversity (species number and identity)
28		and increased temperature on microbially mediated leaf decomposition by assessing
29		leaf mass loss, fungal reproduction and diversity.
30	2.	Leaves of five riparian plant species were immersed in a stream to allow microbial
31		colonization, and then were exposed, alone or in all possible combinations, to 16 °C
32		(ambient temperature) or to 24 °C to simulate a warming scenario.
33	3.	Leaf species number did not significantly affect leaf mass loss. Consistently, we
34		found mostly additive effects of litter mixtures on leaf decomposition because
35		decomposition of litter mixtures did not differ from that expected based on
36		decomposition of single litter species.
37	4.	Leaf mass loss was affected by the identity of leaf mixtures (i.e. litter quality). This
38		was mainly explained by the negative correlation between leaf decomposition and
39		lignin concentration of leaves.
40	5.	The increase of temperature diminished the negative effects of lignin on microbially
41		mediated leaf decomposition, suggesting that the predicted global warming may
42		weaken the effects of litter quality on plant litter decomposition in streams.

43	Introduction
44	Over the last decades, a massive extinction of species has been observed as a
45	consequence of the increasing human impacts on our planet (Chapin III et al., 2000).
46	This has placed biodiversity under great focus as confirmed by the choice of 2010 as the
47	International Year of Biodiversity by the United Nations. Scenarios point to a
48	continuing decline of biodiversity during the 21 st century, but there are also large
49	uncertainties in projections and opportunities to implement better policies (Pereira et al.,
50	2010) to revert this trend. The projections of climate change until the end of this century
51	point to an increase in air temperature between 1.8 °C and 4.0 °C (IPCC, 2007).
52	Consequently, changes of organism physiology, time of life cycle events and individual
53	species distribution are expected to occur (Parmesan & Yohe, 2003; Root et al., 2003),
54	which may lead to species extinction due to direct physiological stress or to changes in
55	interspecific interactions (Hughes, 2000).
56	Forested streams are highly dependent on allochthonous material coming from riparian
57	vegetation that constitutes the main source of food and energy for aquatic biota
58	(Webster & Benfield, 1986). Microbial decomposers and invertebrate detritivores are
59	the main biotic players driving plant litter decomposition in streams (Gessner et al.,
60	2007). Among microbial decomposers, fungi, namely aquatic hyphomycetes, play a key
61	role at early stages of plant litter decomposition (Pascoal & Cássio, 2004; Gessner et al.,
62	2007) and enhance leaf nutritional value for invertebrate detritivores (Graça, 2001).
63	Environmental factors are known to influence the performance of aquatic decomposers
64	with impacts to plant litter decomposition. For instance, the increase in temperature by
65	5-10 °C stimulated fungal growth and reproduction, leading to a 2 times increase in
66	plant litter decomposition in stream microcosms (Dang et al., 2009; Fernandes et al.,
67	2009; Ferreira & Chauvet, 2011b).

68	Fungal diversity in streams was found to vary with riparian plant species richness and
69	composition (Lecerf et al., 2005; Laitung & Chauvet, 2005; Bärlocher & Graça, 2002;
70	Lecerf & Chauvet, 2008a). Besides altering the diversity of aquatic biota, riparian plant
71	diversity can also affect important ecosystem processes, like organic matter
72	decomposition. A recent meta-analysis comprising 18 litter mixture experiments
73	showed that decomposition of litter mixtures in streams is often non-additive, with 44%
74	of litter mixtures decomposing faster than predicted from the sum of single litter species
75	(synergistic effect) and 39% of litter mixtures decomposing slower than expected from
76	individual species performance (antagonistic effect) (Lecerf et al., 2011). According to
77	Gessner et al. (2010) litter mixture effects on decomposition can result from nutrient
78	transfer from one litter type to another due to microbial activity, and passive transfer of
79	nutrients or inhibitory compounds via leaching and subsequent transport by water flow.
80	However, the authors emphasize that water flow 1) continuously disrupts litter
81	accumulation, creating strong physical barriers to fungal colonization of different litter
82	species simultaneously; and 2) easily dilutes leached compounds before microbes can
83	assimilate them, which may result in less probable positive or negative effects of litter
84	mixture on decomposition. Actually, additive effects of litter diversity on
85	decomposition were found in 17–33% of the studies in both terrestrial and aquatic
86	ecosystems (Gartner & Cardon, 2004; Lecerf et al., 2011). Besides, several studies
87	suggested that composition of litter mixtures can play a more important role in
88	controlling litter decomposition rates than the number of litter species per se (Swan &
89	Palmer, 2004; Swan & Palmer, 2006; Lecerf et al., 2007b; Ball et al., 2008; Kominoski
90	& Pringle, 2009). Thus, there is still uncertainty if riparian plant diversity loss can
91	actually change ecosystem processes, like plant litter decomposition, and when it

Freshwater Biology

3
1
4 E
5
6
1
8
9
10
11
12
13
14
15
16
10
17
18
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9
20
21
22
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
38
39
40
40
41
42
43
44
45
46
47
48
49
50
51
52
53
53 54
55
56
57
58
59
60

happens if it is more dependent on the number of litter species or on the identity of theconstituting species.

94 Moreover, the direction and magnitude of diversity effects on plant litter decomposition 95 can change with the environmental context. Swan and Palmer (2004) observed changes 96 from additive effects of litter mixtures on decomposition in autumn (lower temperature) 97 to non-additive antagonistic effects in summer (higher temperature). Conversely, in a 98 paired decomposition experiment, positive litter diversity effects were observed in a 99 warmer stream in France, contrasting with the null effects in a cooler stream in Romania 100 (Lecerf et al., 2007b). So, it is still not clear how environmental factors, such as 101 temperature, might influence plant diversity effects on litter decomposition in 102 freshwaters. 103 Our study aimed at assessing the interactive effects of resource availability (riparian 104 plant diversity and identity) and temperature on plant litter decomposition by aquatic 105 microbes. Specifically, we wanted to test if 1) increasing leaf diversity would result in 106 non-additive effects, 2) an increase in temperature would lead to higher leaf 107 decomposition, and 3) temperature would change the direction or magnitude of the 108 observed diversity effects. To test these hypotheses, leaves from four common riparian 109 plant species (alder, oak, grapevine and plane tree) in streams of Northwest Portugal 110 were used either alone or in all possible combinations. Grapevine was chosen because it 111 is commonly found as the only plant species bordering small streams in Northwest 112 Portugal. Leaves were immersed in a stream to allow microbial colonization and, then, 113 were exposed, in microcosms, to an ambient temperature of 16 °C or to 24 °C to 114 simulate a warming scenario. The measured endpoints were leaf decomposition, fungal 115 reproduction and diversity. 116 Methods

3
4
5
6
7
8
a
10
10
11
12
13
14
15
16
17
18
19
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
20 21
21
20 21 22 23 24 25 26
23
24
25 26
26
27
28
29
30
31
22
3Z 22
33
34
35
36
37
38
39
40
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
42
43
43 44
44 45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

117 Stream site

118	The Algeriz Stream is located in the Northwest Portugal (longitude: 41°35'24.56''N;
119	latitude: 8°22'36.96''W). At the sampling site the stream was about 30 cm depth and 50
120	cm wide and the bottom is composed of boulders, pebbles and sand. On 29th May 2008,
121	physical-chemical parameters in the stream water were measured in situ (Multiline F/set
122	3 no.400327, WTW, Weilheim, Germany) and showed that stream water had
123	circumneutral pH (6.6), low conductivity (45 μ S cm ⁻¹) and high oxygen concentration
124	(9.9 mg L^{-1}). At the same date, water samples were collected, filtered (filter paper,
125	Macherey-Nagel, Düren, Germany), autoclaved (120°C, 20 min) and used in the
126	microcosm experiment. Nutrient concentrations in stream water were measured and
127	showed moderate nitrate (0.09 mg L^{-1} NO ₃ -N) and phosphate (0.03 mg L^{-1} PO ₄ -P)
128	concentrations (HACH kit, program 355 and 480, respectively, HACH, Loveland, CO,
129	USA).
130	
131	Microcosm experiment

132 Leaves of alder (Alnus glutinosa (L.) Gaertn.), grapevine (Vitis vinifera L.), oak 133 (Quercus robur L.) and plane tree (Platanus sp.) were collected just before abscission in 134 autumn 2007 and air dried. Fine mesh bags (0.5 mm pore size, 16 x 12 cm) were used to avoid invertebrate colonization. Each bag was filled with 2.4 ± 0.2 g of each leaf type 135 alone or in all possible combination of the four leaf species, keeping the proportion of 136 leaf species in the mixtures (15 combinations; 3 replicates). On 29th May 2008, leaf 137 138 bags were immersed in the Algeriz Stream to allow microbial colonization. After 7 139 days, bags were retrieved and transported to the laboratory in a cool box. Leaves were 140 washed with deionised water to remove sediments, and cut into 12-mm leaf disks. 141 Twenty-four leaf disks were placed in 150 mL-Erlenmeyer flasks with 80 mL of

1	
2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
$\frac{-0}{24}$	
27	
25	
26	
27	
28	
29	
30	
24	
31	
32	
33	
34	
35	
36	
36	
36 37	
36 37 38	
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	
36 37 38 39 40	
39 40 41	
39 40 41	
39 40 41 42	
39 40 41 42 43	
39 40 41 42 43 44	
39 40 41 42 43 44 45	
39 40 41 42 43 44 45 46	
39 40 41 42 43 44 45 46	
39 40 41 42 43 44 45 46 47	
 39 40 41 42 43 44 45 46 47 48 	
39 40 41 42 43 44 45 46 47 48 49	
39 40 41 42 43 44 45 46 47 48 49 50	
39 40 41 42 43 44 45 46 47 48 49 50 51	
39 40 41 42 43 44 45 46 47 48 49 50 51 52	
39 40 41 42 43 44 45 46 47 48 49 50 51 52	
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	
39 40 41 42 43 44 45 46 47 48 950 51 52 53 55	
39 40 41 42 43 44 45 46 47 48 49 51 52 53 45 56	
39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 45 56 57	
39 40 41 42 43 44 45 46 47 48 9 51 52 53 4 55 57 58	
39 40 41 42 43 44 45 46 47 48 49 51 52 53 45 56	

142	sterilized stream water. One set of microcosms was placed at 16 °C (ambient
143	temperature) and the other set at 24 °C (to simulate a warming scenario). Microcosms
144	were kept on a shaker at 140 rpm during 21 days, and the stream water was changed
145	every 7 days. After 14 days, stream water containing released fungal spores was mixed
146	with formaldehyde (final concentration of 2%) to further assess fungal reproduction and
147	diversity. At the end of the experiment, leaf disks from microcosms were used to assess
148	leaf mass loss.
149	
150	Mass loss and nutrient concentration in leaves
151	Leaf disks were freeze-dried (Christ alpha 2–4, B. Braun, Germany) and weighed
152	(± 0.01 mg). Leaf mass loss was estimated by the difference between leaf mass at the
153	beginning and at the end of experiment. Initial leaf mass was estimated using sets of
154	leaf disks from each treatment before microcosm assay.
155	The concentration of nitrogen, phosphorus and lignin for each leaf type was calculated
156	based on average values found in literature (Table 1). The nutrient concentration in leaf
157	mixtures was estimated taking into account the initial percentage of each leaf type in the
158	mixture.
159	
160	Fungal reproduction and diversity
161	Fungal reproduction and diversity were assessed by counting and identifying spores
162	released from decomposing leaves. Appropriate volumes of stream water containing
163	suspended fungal spores were filtered (0.45-µm pore size, Millipore, Billerica, MA,
164	USA) and spores on filters were stained with 0.05% cotton blue. At least 300 spores per
165	sample were counted and identified under a light microscope (Leica Biomed, Heerbrug,
166	Switzerland) at 400x magnification.

167	
168	Statistical analyses
169	A three-way nested ANOVA was used to test the effects of leaf diversity, leaf identity
170	(nested in leaf diversity) and temperature on leaf decomposition, and fungal
171	reproduction and diversity. To achieve normal distribution, percentage data of leaf
172	decomposition was arcsine square root transformed and values of fungal reproduction
173	were ln transformed (Zar, 1996). The expected leaf mass loss, fungal reproduction and
174	diversity in litter mixtures were estimated as the sum of the component single litter
175	species performances (weighted by their proportion in mixtures) (Bärlocher & Corkum,
176	2003; Duarte et al., 2006). The differences between the observed and the expected
177	performances were tested against the null hypothesis that the average difference
178	equalled 0 (t-test). ANOVAs and t-tests were done in Statistica 6.0 for Windows
179	(Statsoft, Tulsa, OK, USA).
180	Ordination of leaf species alone or in mixtures according to the initial litter
181	concentration in nutrients (nitrogen, phosphorus and lignin) was done using Principal
182	Component Analysis (PCA) (Legendre & Legendre, 1998). PCA was done in
183	CANOCO 4.5 for Windows (Microcomputer Power, Ithaca, NY, USA).
184	The percentage of leaf mass loss was used as response variable and modelled as a
185	function of explanatory variables, namely temperature, lignin, nitrogen, phosphorous.
186	Data were fitted to a model with multiple explanatory variables to adjust for possible
187	interactions between them. We assumed that the proportion of leaf mass loss followed a
188	Beta distribution, under the restriction that values range from 0 to 1. Therefore, a Beta
189	regression model with a logit link function was used (Ferrari & Cribari-Neto, 2004).
190	Beta regression was done in R 2.13.1 (http://cran.r-project.org/).
191	

Freshwater Biology

Results

1

2	
3	
1	
-	
5	
6	
7	
8	
9	
10	
14	
11	
12	
13	
14	
15	
16	
17	
10	
18	
$\begin{array}{c} 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 2\\ 3\\ 14\\ 5\\ 16\\ 17\\ 18\\ 19\\ 20\\ 2\\ 22\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2$	
20	
21	
22	
23	
20	
24	
25	
26	
27	
28	
29	
20	
30	
31	
32	
33	
34	
35	
36	
27	
31	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
4 3 50	
50	
51	
52	
53	
54	
55	
56	
56 57	
5/	
58	
59	
60	

60

193	Fungal reproduction
194	After 14 days in microcosms, fungal sporulation rates were significantly affected by leaf
195	species number and identity, but not by temperature (3-way nested ANOVA, $p < 0.05$
196	and $p > 0.05$, respectively; Table 2; Figure 1a, b). In microcosms with single leaf
197	species, the lowest fungal sporulation rates were found on plane tree leaves at 16 °C
198	(131 spores mg ⁻¹ leaf dry mass d ⁻¹) and on alder leaves at 24 $^{\circ}$ C (59 spores mg ⁻¹ leaf dry
199	mass d ⁻¹) (Figure 1a), while the highest sporulation rates were found on grapevine
200	leaves (482 and 509 spores mg ⁻¹ leaf dry mass d ⁻¹ for 16 °C and 24 °C, respectively). At
201	both temperatures, sporulation rates in leaf mixtures did not differ or were lower than
202	that expected from the sum of fungal sporulation on individual leaf species (Figure 2a).
203	At 24 °C, the negative effect of leaf species number on fungal sporulation became less
204	pronounced as the number of leaf species increased.
205	

206 Fungal diversity

207 Fungal diversity associated with decomposing leaves was affected by temperature, but 208 not by leaf species number or identity (3-way nested ANOVA, p < 0.05 and p > 0.05, 209 respectively; Table 2). In general, the increase in temperature led to a decrease in fungal 210 diversity (Figure 1c, d). At 16 °C, oak leaves had the lowest fungal diversity (7 species) 211 while alder leaves showed the highest diversity (12 species) (Figure 1c). At 24 °C, the 212 lowest fungal diversity was found on alder and plane tree leaves (ca. 8 species), and the 213 highest diversity was associated with grapevine leaves (10 species). At the lowest 214 temperature, fungal diversity in leaf mixtures did not differ from that expected based on 215 the weighted sum of fungal diversity on single leaf species (t-tests, p > 0.05; Figure 2b).

1	
2	
2 3 4 5 6 7 8	
4	
5	
6	
0	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
4 3 50	
51	
51 52	
52	
53	
54	
55	
56	
57	
58	
59	
60	

216	At the highest temperature, the difference between observed and expected fungal
217	diversity was negative for mixtures of 2 and 3 leaf species.
218	
219	Leaf decomposition
220	After 21 days in microcosms, mass loss of single leaf species varied from 9.6 to 26.7%
221	at 16 °C and from 17.4 to 50.4% at 24 °C for plane tree and alder, respectively (Fig. 1e).
222	Leaf decomposition was significantly affected by species identity and temperature, but
223	not by the number of leaf species (3-way nested ANOVA, $p < 0.05$ and $p > 0.05$,
224	respectively; Table 2, Figure 1e, f). The increase in temperature led to an increase in
225	leaf decomposition in microcosms containing single and multi-species (Figure 1e, f). In
226	multi-species microcosms, leaf mass loss did not differ from that expected from the
227	weighted sum of mass loss of individual leaf species, except for mixtures with 3 leaf
228	species at 16 °C that had lower values than expected (Figure 2c).
229	
230	Effect of litter quality on leaf decomposition
231	The PCA ordination of initial nutrient concentrations in litter showed that the first PC
232	axis explained 95% of the variance. Axis 1 mainly separated leaves of alder alone or in
233	mixtures without plane tree from leaves of plane tree alone or in mixtures without alder.
234	Nitrogen and phosphorus concentrations in the leaves were positively correlated with
235	the first PC axis, while lignin was negatively correlated (Fig. 3).
236	The estimated parameters of the Beta regression model adjusting leaf mass loss for leaf
237	nutrient concentrations showed that lignin was the only variable that explained leaf
238	decomposition (Table 3, Fig. 4, Beta regression, $p < 0.05$). The estimated parameters for
239	the effect of nitrogen and phosphorus in percentage leaf mass loss were not significantly
240	different from zero (Beta regression, $p = 0.502$ and 0.549, respectively). Moreover, the

Freshwater Biology

241 effect of lignin on leaf mass loss varied with temperature. Although we found lower leaf

242 decomposition at 16 °C than at 24 °C (Fig. 1), the negative effect of lignin on

243 decomposition was higher at lower temperature (Table 3, Fig.4).

245 Discussion

We found mostly additive effects of litter diversity on leaf decomposition since decomposition of litter mixtures did not differ from that expected based on decomposition of single litter species. Even though meta-analyses from terrestrial and aquatic ecosystems have often pointed to non-additive effects, predominantly synergistic, of litter diversity on decomposition, additive effects have also been found in 17-33% of the studies (Gartner & Cardon, 2004; Lecerf et al., 2011). Some authors report larger effects of litter species diversity on decomposition in long term experiments due to increased complementarity effects over time (Srivastava *et al.*, 2009; Lecerf et al., 2011). This may be true for litter decomposition which involves a succession in the dominance of litter consumers (fungi-detritivores-bacteria) that interact synergistically to fully exploit and decompose leaf litter (Lecerf *et al.*, 2011). In our study, fungal activity on leaves, measured as reproductive output, was affected by both leaf species number and identity. Aquatic fungi spread by producing conidia (Pascoal & Cássio, 2008), therefore if aquatic fungal reproductive activity is compromised by the lost of riparian plant species, we might face lower microbial diversity in streams. In our microcosm study, fungal diversity did not appear to be affected by changes in plant litter diversity, probably because experiment was conducted during a short period of time. However, impacts of riparian plant diversity on microbial diversity might be stronger at longer times. This can be of particular concern taking into account that predictions point to a loss of up to 32% of plant species in

Europe until 2050 (Bakkenes et al., 2002). Besides, there is evidence that environmental context, like differences in temperature/seasonality, may change the direction and magnitude of diversity effects (Swan & Palmer, 2004; Lecerf et al., 2011). In the present study, the increase in temperature led to changes from additive to non-additive antagonistic effects of litter diversity on fungal reproduction and diversity. Moreover, increased temperature changes fungal community composition (Fernandes et al., 2009; Dang et al., 2009) and decreases fungal species diversity (this study; Bärlocher et al., 2008). Therefore, taking into account the predicted plant biodiversity loss (Bakkenes et al., 2002) under the ongoing climate warming (IPCC, 2007), fungal diversity in streams can be seriously compromised in the future and this might affect leaf decomposition with consequences to freshwater ecosystem functioning.

There is evidence that litter decomposition rates in streams are more controlled by plant litter composition than by the number of riparian plant species (Swan & Palmer, 2004; Swan & Palmer, 2006; Lecerf et al., 2007b; Ball et al., 2008; Kominoski & Pringle, 2009). Our findings support this idea because leaf mass loss by microbial decomposers was affected by the identity of leaves in mixtures, but not by leaf species number. Lower leaf quality has been associated with lower leaf decomposition rates in freshwaters (Leroy & Marks, 2006; Lecerf & Chauvet, 2008b; Schindler & Gessner, 2009; but see Kominoski et al., 2009; Ferreira & Chauvet, 2011a). We confirmed that relationship because a decrease in leaf decomposition was observed with increasing concentration of lignin and decreasing concentrations of nitrogen and phosphorus in plant litter. Actually, the most diverse litter mixture tested in our study fell in a mean position in terms of litter quality and decomposition. This suggests that changes in process rates due to loss of riparian plant diversity can be of particular concern when the

Freshwater Biology

290 remaining species are of lower or higher quality than those of the original plant291 communities.

To better discriminate if the effects of leaf species identity resulted from differences in litter quality, we modelled leaf decomposition in function of nitrogen, phosphorus and lignin concentrations. Nitrogen and phosphorus concentrations in the leaves were much less related to decomposition than lignin, which came out as the variable that best explained the process. Results agree with those that identified lignin as the key litter trait determining decomposition rate (Lecerf et al., 2007a; Schindler & Gessner, 2009). However, the negative effects of lignin on leaf decomposition in our study seemed to be weakened by the increase of temperature, suggesting that the predicted climate warming (IPCC, 2007) might reduce the effects of litter quality on leaf decomposition. This might be counterbalanced by the increase in CO_2 concentration in atmosphere (IPCC, 2007) that have been found to lower leaf quality by decreasing nitrogen and increasing lignin (Peñuelas & Matamala, 1990; Cotrufo, Ineson & Rowland, 1994; Tuchman et al., 2002). This can be of particular concern if riparian vegetation diversity loss occurs for higher quality plant species. Thus, further investigation on the combined effects of increasing CO₂ level, temperature and leaf litter diversity and quality on leaf decomposition are needed to better understand which factors are more critical for this process in streams.

We found that increased temperature led to faster microbially mediated leaf decomposition, probably due to the increase of microbial metabolic rates (Brown *et al.*, 2004). Enhanced activity of microbial decomposers with temperature has been observed in microcosms with either manipulated fungal assemblages (Dang *et al.*, 2009; Ferreira & Chauvet, 2011b) or natural fungal assemblages (Fernandes *et al.*, 2009), and in a recent global experiment in streams along a latitudinal temperature gradient (Boyero *et*

2	
3	
4	
5	
4 5 6	
7	
0	
à	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
o 9 10 11 12 13 14 5 16 7 18 9 20 22 23 4 5 26 7 28 9 0 12 33 34 5 6 7 8 9 20 22 23 4 5 26 27 28 9 0 12 33 34 5 36 37 38 9 39 39 30 30 30 30 30 30 30 30 30 30 30 30 30	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
25	
30	
30	
37	
38	
39	
40	
41	
42	
42 43	
44	
45	
46	
40 47	
47 48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
58 59	
60	

1 2

al., 2011). Therefore, the predicted climate warming will probably result in faster plant
litter decomposition due to increased microbial activity.

317 Altogether our results suggested that 1) plant litter quality seems to be more important 318 than species number to litter decomposition; 2) a decrease of litter decomposition may 319 occur if plant species loss result in lower quality plant species (i.e. higher lignin 320 concentration); 3) the predicted global warming may lead to faster decomposition due to 321 increased microbial activity; and 4) warming may also reduce the negative effects of 322 lignin in microbially driven decomposition. Therefore, warming is expected to enhance 323 microbial decomposition of plant litter even when species loss or replacement of 324 riparian vegetation occurs towards poor quality litter. This may lead to a decrease in 325 litter availability for stream biota with consequences for the functioning of freshwater 326 ecosystems, if not counterbalanced by increased productivity of riparian forests.

327

328

329 Acknowledgments

330 The Portuguese Foundation for the Science and Technology supported this work

331 (PTDC/CLI/67180/2006, PTDC/AAC-AMB/117068/2010 and PEst-

332 C/BIA/UI4050/2011) and I. Fernandes (SFRH/BD/42215/2007).

333

334

335 References

- 336 Bakkenes M., Alkemade J.R.M., Ihle F., Leemans R. & Latour J.B. (2002) Assessing
- 337 effects of forecasted climate change on the diversity and distribution of
- European higher plants for 2050. *Global Change Biology*, **8**, 390-407.

339	Ball B.A., Hunter M.D., Kominoski J.S., Swan C.M. & Bradford M.A. (2008)
340	Consequences of non-random species loss for decomposition dynamics:
341	experimental evidence for additive and non-additive effects. Journal of Ecology,
342	96 , 303-313.
343	Bärlocher F. & Corkum M. (2003) Nutrient enrichment overwhelms diversity effects in
344	leaf decomposition by stream fungi. Oikos, 101, 247-252.
345	Bärlocher F. & Graça M.A.S. (2002) Exotic riparian vegetation lowers fungal diversity
346	but not leaf decomposition in Portuguese streams. Freshwater Biology, 47,
347	1123-1135.
348	Bärlocher F., Seena S., Wilson K.P. & Williams D.D. (2008) Raised water temperature
349	lowers diversity of hyporheic aquatic hyphomycetes. Freshwater Biology, 53,
350	368-379.
351	Boyero L., Pearson R.G., Gessner M.O., Barmuta L.A., Ferreira V., Graça M.A.S. et al.
352	(2011) A global experiment suggests climate warming will not accelerate litter
353	decomposition in streams but might reduce carbon sequestration. <i>Ecology</i>
354	Letters, 14, 289-294.
355	Brown J.H., Gillooly J.F., Allen A.P., Savage V.M. & West G.B. (2004) Toward a
356	metabolic theory of ecology. <i>Ecology</i> , 85 , 1771-1789.
357	Canhoto C. & Graça M.A.S. (1996) Decomposition of <i>Eucalyptus globulus</i> leaves and
358	three native leaf species (Alnus glutinosa, Castanea sativa and Quercus faginea)
359	in a Portuguese low order stream. Hydrobiologia, 333, 79-85.
360	Chapin III F.S., Zavaleta E.S., Eviner V.T., Naylor R.L., Vitousek P.M., Reynolds H.L.,
361	et al. (2000) Consequences of changing biodiversity. Nature, 405, 234-242.
362	Chauvet E. (1987) Changes in the chemical composition of alder, poplar and willow
363	leaves during decomposition in a river. Hydrobiologia, 148, 35-44.

364	Cotrufo M.F., Ineson P. & Rowland A.P. (1994) Decomposition of tree leaf litters
365	grown under elevated CO2: effect of litter quality. Plant and Soil, 163, 121-130.
366	Dang C.K., Schindler M., Chauvet E. & Gessner M.O. (2009) Temperature oscillation
367	coupled with fungal community shifts can modulate warming effects on litter
368	decomposition. Ecology, 90, 122-131.
369	Duarte S., Pascoal C., Cássio F. & Bärlocher F. (2006) Aquatic hyphomycete diversity
370	and identity affect leaf litter decomposition in microcosms. Oecologia, 147, 658-
371	666.
372	Fernandes I., Uzun B., Pascoal C. & Cássio F. (2009) Responses of aquatic fungal
373	communities on leaf litter to temperature-change events. International Review of
374	<i>Hydrobiology</i> , 94 , 410-418.
375	Ferrari S.L.P. & Cribari-Neto F. (2004) Beta regression for modelling rates and
376	proportions. Journal of Applied Statistics, 31, 799-815.
377	Ferreira, V. & Chauvet, E. (2011a) Future increase in temperature more than decrease in
378	litter quality can affect microbial litter decomposition in streams. Oecologia,
379	167 , 279-291.
380	Ferreira V. & Chauvet E. (2011b) Synergistic effects of water temperature and
381	dissolved nutrients on litter decomposition and associated fungi. Global Change
382	<i>Biology</i> , 17 , 551-564.
383	Gartner T.B. & Cardon Z.G. (2004) Decomposition dynamics in mixed-species leaf
384	litter. Oikos, 104, 230-246.
385	Gessner M.O. & Chauvet E. (1994) Importance of stream microfungi in controlling
386	breakdown rates of leaf-litter. Ecology, 75, 1807-1817.
387	Gessner M.O., Gulis V., Kuehn K.A., Chauvet E. & Suberkropp K. (2007) Fungal
388	decomposers of plant litter in aquatic ecosystems. In: The Mycota:

389	environmental and microbial relationships. (Eds C.P. Kubicek & I.S.
390	Druzhinina), pp. 301-321. Springer, Berlin.
391	Gessner M.O., Swan C.M., Dang C.K., McKie B.G., Bardgett R.D., Wall D.H., et al.
392	(2010) Diversity meets decomposition. Trends in Ecology & Evolution, 25, 372-
393	380.
394	Graça M.A.S. (2001) The role of invertebrates on leaf litter decomposition in streams -
395	A review. International Review of Hydrobiology, 86, 383-393.
396	Hughes L. (2000) Biological consequences of global warming: is the signal already
397	apparent? Trends in Ecology & Evolution, 15, 56-61.
398	IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of the
399	Working Group I to the Fourth Assessment Report of the Intergovernmental
400	Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M.
401	Marquis, K.B. Averyt, M. Tignor & H.L. Miller), p. 996. Cambridge University
402	Press, Cambridge and New York.
403	Kominoski J.S., Hoellein T.J., Kelly J.J. & Pringle C.M. (2009) Does mixing litter of
404	different qualities alter stream microbial diversity and functioning on individual
405	litter species? Oikos, 118, 457-463.
406	Kominoski J.S. & Pringle C.M. (2009) Resource-consumer diversity: testing the effects
407	of leaf litter species diversity on stream macroinvertebrate communities.
408	Freshwater Biology, 54 , 1461-1473.
409	Laitung B. & Chauvet E. (2005) Vegetation diversity increases species richness of leaf-
410	decaying fungal communities in woodland streams. Archiv Fur Hydrobiologie,
411	164 , 217-235.
412	Lecerf A. & Chauvet E. (2008a) Diversity and functions of leaf-decaying fungi in
413	human-altered streams. Freshwater Biology, 53, 1658-1672.

414	Lecerf A. & Chauvet E. (2008b) Intraspecific variability in leaf traits strongly affects
415	alder leaf decomposition in a stream. Basic and Applied Ecology, 9, 598-605.
416	Lecerf A., Dobson M., Dang C.K. & Chauvet E. (2005) Riparian plant species loss
417	alters trophic dynamics in detritus-based stream ecosystems. Oecologia, 146,
418	432-442.
419	Lecerf A., Marie G., Kominoski J.S., LeRoy C.J., Bernadet C. & Swan C.M. (2011)
420	Incubation time, functional litter diversity, and habitat characteristics predict
421	litter-mixing effects on decomposition. Ecology, 92, 160-169.
422	Lecerf A., Patfield D., Boiché A., Riipinen M.P., Chauvet E. & Dobson M. (2007a)
423	Stream ecosystems respond to riparian invasion by Japanese knotweed (Fallopia
424	japonica). Canadian Journal of Fisheries & Aquatic Sciences, 64, 1273-1283.
425	Lecerf A., Risnoveanu G., Popescu C., Gessner M.O. & Chauvet E. (2007b)
426	Decomposition of diverse litter mixtures in streams. <i>Ecology</i> , 88 , 219-227.
427	Legendre P. & Legendre L. (1998) Numerical Ecology. Developments in Environmental
428	Modelling. Elsevier Science BV, Amsterdam.
429	Leroy C.J. & Marks J.C. (2006) Litter quality, stream characteristics and litter diversity
430	influence decomposition rates and macroinvertebrates. Freshwater Biology, 51,
431	605-617.
432	Nikolaidou A.E., Pavlatou-Ve A.K., Kostopoulou S.K., Mamolos A.P. & Kalburtji K.L.
433	(2010) Litter quality and decomposition of Vitis vinifera L. residues under
434	organic and conventional farming systems. European Journal of Soil Biology,
435	46 , 208-217.
436	Parmesan C. & Yohe G. (2003) A globally coherent fingerprint of climate change
437	impacts across natural systems. Nature, 421, 37-42.

Freshwater Biology

438	Pascoal C. & Cássio F. (2004) Contribution of fungi and bacteria to leaf litter
439	decomposition in a polluted river. Applied and Environmental Microbiology, 70,
440	5266-5273.
441	Pascoal C. & Cássio F. (2008) Linking fungal diversity to the functioning of freshwater
442	ecosystems. In: Novel Techniques and Ideas in Mycology. (Eds K.R. Sridhar, F.
443	Bärlocher & K.D. Hyde), pp. 1-15. Fungal diversity Press, Hong Kong.
444	Peñuelas J. & Matamala R. (1990) Changes in N and S leaf content, stomatal density
445	and specific leaf area of 14 plant species during the last three centuries of CO_2
446	increase. Journal of Experimental Botany, 41, 1119-1124.
447	Pereira H.M., Leadley P.W., Proença V., Alkemade R., Scharlemann J.P.W.,
448	Fernandez-Manjarrés J.F., et al. (2010) Scenarios for global biodiversity in the
449	21st century. Science, 330 , 1496-1501.
450	Root T.L., Price J.T., Hall K.R., Schneider S.H., Rosenzweig C. & Pounds J.A. (2003)
451	Fingerprints of global warming on wild animals and plants. Nature, 421, 57-60.
452	Sampaio A., Cortes R. & Leão C. (2001) Invertebrate and microbial colonisation in
453	native and exotic leaf litter species in a mountain stream. International Review
454	of Hydrobiology, 86 , 527-540.
455	Schadler M., Rottstock T. & Brandl R. (2005) Food web properties in aquatic
456	microcosms with litter mixtures are predictable from component species. Archiv
457	<i>Fur Hydrobiologie</i> , 163 , 211-223.
458	Schindler M.H. & Gessner M.O. (2009) Functional leaf traits and biodiversity effects on
459	litter decomposition in a stream. <i>Ecology</i> , 90 , 1641-1649.
460	Srivastava D.S., Cardinale B.J., Downing A.L., Duffy J.E., Jouseau C., Sankaran M., et
461	al. (2009) Diversity has stronger top-down than bottom-up effects on
462	decomposition. <i>Ecology</i> , 90 , 1073-1083.

463	Swan C.M. & Palmer M.A. (2004) Leaf diversity alters litter breakdown in a Piedmont
464	stream. Journal of the North American Benthological Society, 23, 15-28.
465	Swan C.M. & Palmers M.A. (2006) Composition of speciose leaf litter alters stream
466	detritivore growth, feeding activity and leaf breakdown. Oecologia, 147, 469-
467	478.
468	Tuchman N.C., Wetzel R.G., Rier S.T., Wahtera K.A. & Teeri J.A. (2002) Elevated
469	atmospheric CO ₂ lowers leaf litter nutritional quality for stream ecosystem food
470	webs. Global Change Biology, 8, 163-170.
471	Webster J.R. & Benfield E.F. (1986) Vascular plant breakdown in freshwater
472	ecosystems. Annual Review of Ecology and Systematics, 17, 567-594.
473	Zar J.H. (1996) Biostatistical analysis, Prentice-Hall, Englewood Cliffs.
474	
475	

Table 1. Average initial concentrations of nitrogen, phosphorus and lignin (% leaf dry

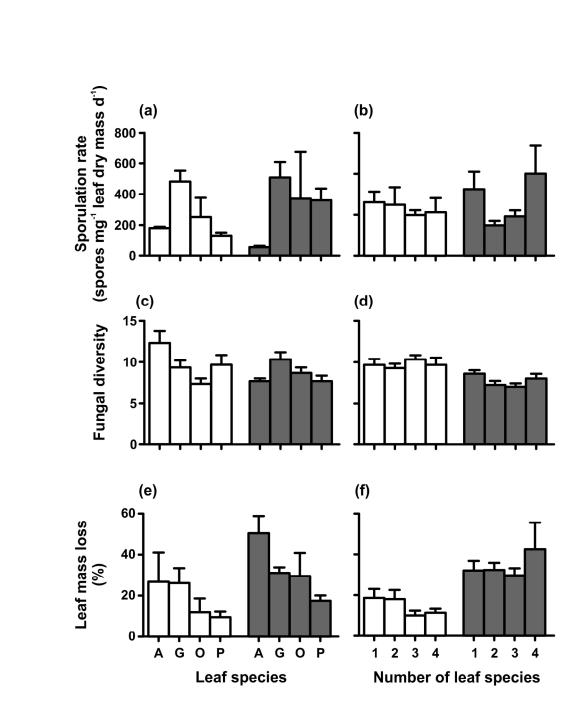
Leaf species	Nitrogen	Phosphorus	Lignin	References
Alder	2.72	0.109	10.0	(Chauvet, 1987; Gessner &
	(1.9-3.46;	(0.034-0.187;	(3.9-19.0;	Chauvet, 1994; Canhoto &
	n=17)	n=14)	n=13)	Graça, 1996; Sampaio, Cortes
				& Leão, 2001; Lecerf et al.,
				2007b; Lecerf & Chauvet,
				2008b; Schindler & Gessner,
				2009)
Grapevine	1.63	0.11	11.9	(Nikolaidou et al., 2010)
	(1.47-1.79;	(0.10-0.12; n=2)	(9.3-14.6; n=2)	
	n=2)			
Oak	0.92	0.049	19.3	(Sampaio et al., 2001; Schadler
	(0.71-1.14;	(0.042-0.055; n=3)	(17.8-20.8;	Rottstock & Brandl, 2005;
	n=6)		n=2)	Lecerf et al., 2007a; Lecerf et
				<i>al.</i> , 2007b)
Plane tree	0.66	0.049	32.5	(Gessner & Chauvet, 1994;
	(0.52-0.80;	(0.017-0.080; n=2)	(30.9-34.0;	Schindler & Gessner, 2009)
	n=2)		n=2)	
}				

mass) in leaves of alder, grapevine, oak and plane tree.

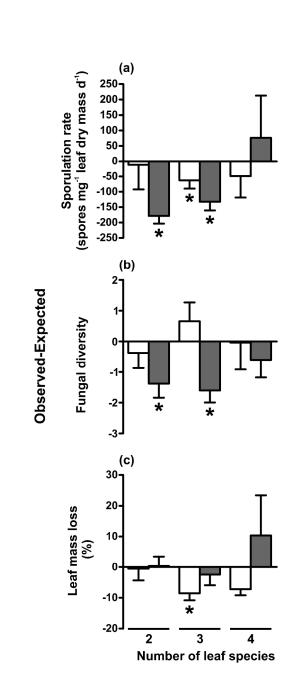
480 Table 2. Three-way nested ANOVAs on the effects of temperature, number of litter

481 species and identity (nested in number of species) on leaf decomposition, fungal

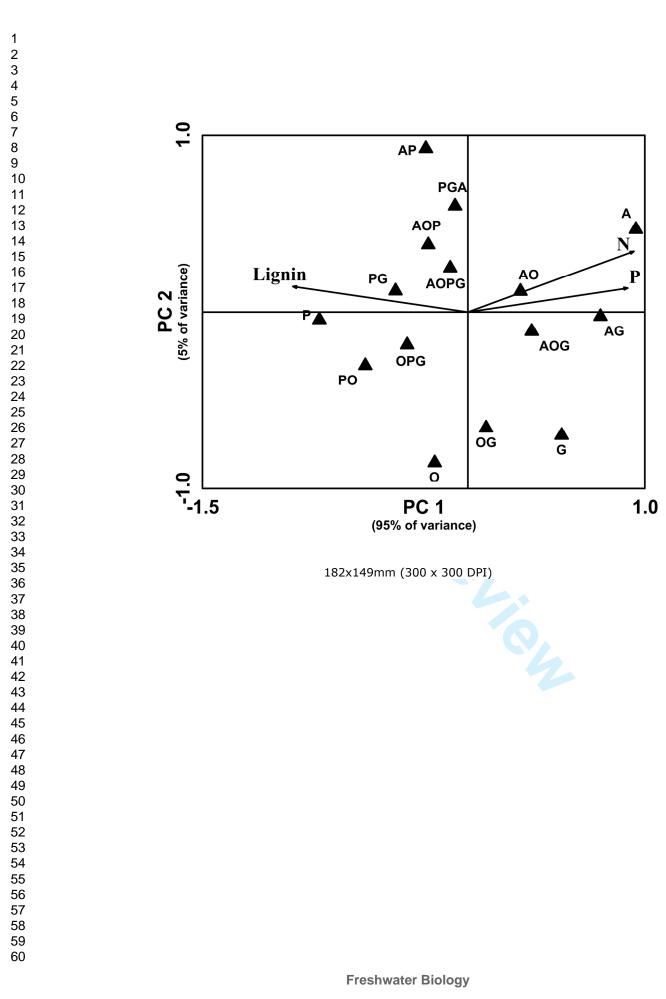
482 reproduction and diversity.

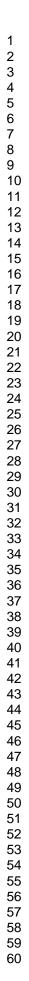

Parameter	Effect	SS	df	MS	F	р
Leaf	Temperature	2338.75	1	2338.75	31.073	<0.001
decomposition	remperature					
	Number of species	225.95	3	75.32	1.001	0.398
	Identity (Number of species)	2764.50	11	251.32	3.339	< 0.001
	Temperature*Number of species	171.15	3	57.05	0.758	0.521
	Error	5343.86	71	75.27		
Fungal reproduction	Temperature	0.432	1	0.432	0.572	0.452
	Number of species	6.456	3	2.152	2.847	0.044
	Identity (Number of species)	19.484	11	1.771	2.343	0.016
	Temperature*Number of species	0.623	3	0.208	0.275	0.844
	Error	53.664	71	0.756		
Fungal diversity	Temperature	59.617	1	59.617	17.258	< 0.001
	Number of species	11.358	3	3.786	1.096	0.357
	Identity (Number of species)	68.375	11	6.216	1.799	0.070
	Temperature*Number of species	15.625	3	5.208	1.508	0.220
	Error	245.264	71	3.454		

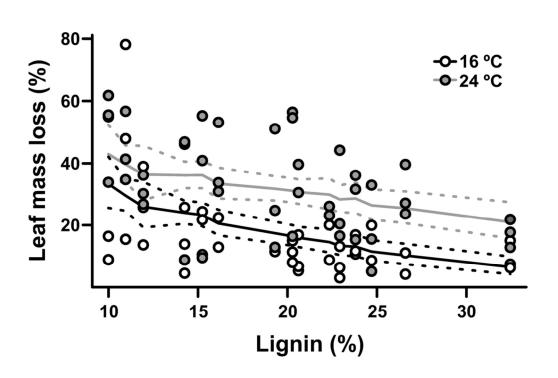
Freshwater Biology


- 484 Table 3. Estimated parameters of the Beta regression model applied to percentage leaf
- 485 mass loss using nitrogen, phosphorus and lignin as explanatory variables. For lignin,
- 486 separate effects at 16 °C and 24 °C were considered.

	Estimate	Std. Error	z value	p (> z)
Nitrogen	0.182920	0.272485	0.671	0.502
Phosphorus	-3.535219	5.906652	-0.599	0.549
Lignin.16	-0.080330	0.008964	-8.961	< 2e-16
Lignin.24	-0.039178	0.007592	-5.160	2.46e-07


488 489	Figure 1. Fungal sporulation rate (a, b), fungal diversity (c, d) and percentage of leaf
490	mass loss (e, f) in treatments containing single leaf species (a, c, e) or in treatments
491	containing the average of 1 to 4 leaf species (b, d, f) exposed to 16 °C (white bars) or 24
492	°C (grey bars). Leaf mass loss was determined at the end of the experiment (21 days)
493	and fungal sporulation and diversity was determined after 14 days in microcosms.
494	M+SEM, n = 3. A, alder leaves; P, plane tree leaves; O, oak leaves; and G, grapevine
495	leaves.
496	
497	Figure 2. Differences between observed and expected fungal sporulation rate (a) fungal
498	diversity (b) and leaf mass loss (c) in mixtures with 2, 3 or 4 leaf species exposed to 16
499	°C (white bars) or 24 °C (grey bars). Leaf mass loss was determined at the end of the
500	experiment (21 days) and fungal sporulation and diversity was determined after 14 days
501	in microcosms. M+SEM, n = 3. Differences were tested against zero by a t-test; $*p < $
502	0.05.
503	
504	Figure 3. Principal component analysis of the initial nutrient concentrations (Lignin; N,
505	nitrogen; and P, phosphorus) in single leaf species or in leaf mixtures. The direction of
506	the arrow reflects the maximum change of each variable. A, alder leaves; P, plane tree
507	leaves; O, oak leaves; and G, grapevine leaves.
508	
509	Figure 4. Theoretical regression models of percentage leaf mass loss (full lines) as
510	function of lignin concentration (%) at 16 °C and 24 °C. Symbols correspond to
511	observed leaf mass loss values and dashed lines correspond to 95% confidence intervals
512	of the estimated model.
513	




193x241mm (300 x 300 DPI)

234x573mm (300 x 300 DPI)

91x59mm (300 x 300 DPI)