
Tiago Miguel Laureano Alves

Novembro de 2011U
M

in
ho

|2
01

1

Benchmark-based Software Product
Quality Evaluation

Universidade do Minho

Escola de Engenharia

Ti
ag

o
M

ig
ue

l L
au

re
an

o
A
lv

es
B

e
n

c
h

m
a

rk
-b

a
se

d
 S

o
ft

w
a

re
 P

ro
d

u
c
t

Q
u

a
li

ty
 E

va
lu

a
ti

o
n

Tese de Doutoramento
Doutoramento em Informática

Trabalho efectuado sob a orientação do
Professor Doutor José Nuno Oliveira
e do
Doutor Joost Visser

Tiago Miguel Laureano Alves

Novembro de 2011

Benchmark-based Software Product
Quality Evaluation

Universidade do Minho

Escola de Engenharia

É AUTORIZADA A REPRODUÇÃO PARCIAL DESTA TESE APENAS PARA EFEITOS
DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE
COMPROMETE;

Universidade do Minho, ___/___/______

Assinatura: __

Acknowledgments

These past four years of PhD were a truly fantastic experience, both professionally and

personally. Not only I was granted the opportunity of doing research in exclusivity but

also I received support by supervisors, organizations, colleagues, friends and family.

It was due to their support that I have made it, and this means the world to me. Hence,

I would like to thank all those who supported me and it is to them I dedicate this work.

First, I want to start thanking my supervisors: Joost Visser and José Nuno Oliveira.

It was their encouragement and enthusiasm that lead me to, after a 5-year graduation,

engage in MSc and afterwards in PhD studies. They were tireless providing directions

and comments, while supporting my decisions and helping me to achieve my goals.

I have to additionally thank Joost, my day-to-day supervisor, with whom I enjoyed

working and learned a lot both professionally and personally.

I have to thank Fundação para a Ciência e a Tecnologia (FCT) for sponsoring

me with grant SFRH/BD/30215/2006. This sponsorship was essential, supporting all

my living costs in The Netherlands and my research costs. This work was further

supported by the SSaaPP project, FCT contract no. PTDC/EIA-CCO/108613/2008.

I have to thank the Software Improvement Group (SIG) which hosted me during

all my PhD. SIG provided me a work environment of excellency, where I was able

to share ideas and cooperate with researchers, consultants, technical consultants (Lab)

and sales. Non only SIG highly-educated professionals have challenged me every

time, helping me to look at the problems from other angles, leading to a continuous

improvement of my work, but also some of them directly contributed to my work. It

iii

iv

was also while at SIG I had the chance to learn and practice consultancy and sales.

Thanks to Tobias Kuipers for accepting me at the company.

Thanks to the research team: José Pedro Correira, Xander Schrijen, Eric Bouw-

ers, Dimitrios Athanasiou and Ariadi Nugroho. Together, we have done and discussed

research, read and commented each other’s papers, helped preparing each other’s pre-

sentations, but also end up becoming friends, having daily lunch, socializing, traveling

and partying together - and all that was challenging, inspiring and fun!

Thanks to Brigitte van der Vliet, Paula van den Heuvel, Femke van Velthoven,

Mendy de Jonge and Sarina Petri for their support with all the administrative things -

although their work does sometimes not show, it is extremely important.

Thanks to the Lab for all the technical support: Patrick Duin, Rob van der Leek,

Cora Janse, Eric Bouwers, Reinier Vis, Wander Grevink, Kay Grosskop, Dennis Bi-

jlma, Jeroen Heijmans, Marica Ljesar and Per John. I would like to additionally thank

Patrick and Rob for always being the first providing me support about SIG tooling

which they master, but also with whom I had the chance to spend many great social

moments, and Eric and Cora for always making my day with their good mood.

Thanks to all consultants: Michel Kroon, Harro Stokman, Pieter Jan’t Hoen, Ilja

Heitlager, Cathal Boogerd, Yiannis Kanellopoulos, Magiel Bruntink, Sieuwert van

Otterloo, Hans van Oosten, Marijn Dessens, Mark Hissink Muller, Sven Hazejager,

Joost Schalken, Bas Cornelissen, Zeeger Lubsen and Christiaan Ypma. I have to thank

Michel for mentoring me in the industrial projects and for his clinical sharpness and

ironic sense that I admired. Thanks Harro for the hints on statistics and his stories

(which I miss the most). Thanks Yiannis and Magiel for taking me on board in con-

sultancy, to Sieuwert for the nasty questions (which allowed me to be better prepared)

and to Hans, Marijn and Mark for care and support in my presentations.

Thanks the sales team, Jan Willem Klerkx, Bart Pruijn, Eddy Boorsma, Dennis

Beets and Jan Hein, which also attended and asked questions in my presentations. In

particular thanks to Jan Willem, from which I learned that sales is mostly a process,

although following the right steps not always allow us to achieve our goals, and with

v

whom I shared and enjoyed the taste for wine and great talks about classic cars.

Last, but far way from least, the SIG System Administrators: Leo Makkinje and

Gerard Kok. Not that Mac computers have problems, of course not, but they made

sure that everything was running smoothly, most of the times stopping whatever they

were doing to help me and allow me to continue my work. Endless times I walked

in their office for a small break and left with improved mood and strength to continue

whatever I was doing.

I have to thank Dutch Space, in particular to Coen Claassens, Leon Bremer and

Jose Fernandez-Alcon, for their support on the quality analysis of the EuroSim Simu-

lator which lead to a published paper and later to one of this dissertation chapters. It

was a great experience to work with them, both from the valuable feedback I got and

the opportunity to learn from each other.

I have to thank the European Space Agency (ESA) for granting me a license to

use their software for research, their support on their software, for teaching me their

software engineering concerns and the important things you should not do. From the

European Space Operations Center (ESOC) thanks to Nestor Peccia, Colin Haddow,

Yves Doat, James Eggleston, Mauro Pecchioli, Eduardo Gomez and Angelika Slade,

from the European Space Research and Technology Centre (ESTEC) thanks to Ste-

fano Fiorilli and Quirien Wijnands and, from the European Space Astronomy Centre

(ESAC) thanks to Serge Moulin.

I have to thank Paul Klint, Jurgen Vinju and Bas Basten from CWI, Arie van

Deursen and Eelco Visser from University of Delft and Jurriaan Hage from Univer-

sity of Utrecht. Several times they invited me to give guest lectures and presentations

allowing me the chance of discussing and improving my work. I would like to ad-

ditionally thank Jurriaan for his work and co-authorship in the Code Querying paper.

Thanks to Leon Moonen from Simula and Ira Baxter from Semantic Designs for their

support in many conferences where we would regularly meet. In particular thanks to

Ira which was one of the first to see my PhD proposal and with whom I had the chance

vi

to share my progress and learn from his wise and practical words and jokes.

I have to thank my friends, who have been with me through this journey and for

the great time we spent together in Amsterdam: Bas Basten, Patrick Duin (and Anna

Sanecka), Rob van der Leek, Xander Schrijven (and Nienke Zwennes), Leo Makkinje

(and Yvonne Makkinje), Joost Visser (and Dina Ruano), Stephanie Kemper, José Pe-

dro Correia, José Proença, Mário Duarte, Alexandra Silva, Levi Pires (and Stefanie

Smit) and Ivo Rodrigues. Thanks to all those in Portugal which kept being great

friends even with whom I only had a chance to meet a couple of times a year: Ri-

cardo Castro, Arine Malheiro, Paulo Silva, Raquel Santos, Ana Cláudia Norte, Filipa

Magalhães and Valente family. Thanks to all those I had the chance to meet around the

world, in particular to Önder Gürcan, Violetta Kuvaeva and Jelena Vlasenko. Thanks

to Andreia Esteves for being such important part of my life, support and care.

Finally, I want to thank my family for being an extremely important pillar of my

life. Although I have spent most of my PhD away from them, sometimes missing

important celebrations and moments, I have tried to be always present by phone, mail,

or Skype. At all times, they supported me, cheered me up and encouraged me to go

further and dream higher. Thanks to my grandmother Laida, which I miss dearly, that

did not lived enough to see me become PhD. To my grandparents Dora and Teotónio

which countless of times told me how much they missed me, but always respected

what I wanted and no matter what supported me on that. Thanks to the Almeida and

Moutinho families for this great family we have and for their support. Thanks to my

aunt Lili that despite being in the background was always a front supporter, being there

for me. To my sisters Ana, Sara and Paula Alves, which always made sure to remind

me who I am. To my mom and dad that are the best persons I ever had the chance to

met – they have done for me more than I am able to count or express with words (or

pay back making sure the computers work). I love you and thank you for being there.

Benchmark-based Software Product

Quality Evaluation

Two main problems have been hindering the adoption of source code metrics for qual-

ity evaluation in industry: (i) the difficulty in doing a qualitative interpretation of mea-

surements; and (ii) the inability of summarizing measurements into a single meaning-

ful value that captures quality at the level of overall system.

This dissertation proposes an approach based on two methods to solve these prob-

lems using thresholds derived from an industrial benchmark.

The first method categorizes measurements into different risk areas using risk

thresholds. These thresholds are derived by aggregating different metric distributions

while preserving their statistical properties.

The second method enables the assignment of ratings to systems, for a given scale,

using rating thresholds. These thresholds are calibrated such that it is possible to

distinguish systems based on their metric distribution. For each rating, these thresholds

set the maximum amount of code that is allowed in all risk categories.

Empirical and industrial studies provide evidence of the usefulness of the approach.

The empirical study shows that ratings for a new test adequacy metric can be used to

predict bug solving efficiency. The industrial case details the quality analysis and

evaluation of two space-domain simulators.

vii

viii

Avaliação da Qualidade de Produto de

Software baseada em Benchmarks

A adoção na indústria do uso de métricas de código fonte para a avaliação de qualidade

tem sido dificultada por dois problemas: (i) pela dificuldade em interpretar métricas de

forma qualitativa; e (ii) pela impossibilidade de agregar métricas num valor único que

capture de forma fiel a qualidade do sistema como um todo.

Esta dissertação propõe uma solução para estes problemas utilizando dois métodos

que usam valores-limite derivados de um benchmark industrial.

O primeiro método caracteriza medições em diferentes áreas de risco através de

valores-limite de risco. Estes valores-limite são derivados através da agregação das

distribuições de métricas preservando as suas propriedades estatı́sticas.

O segundo método, dada uma escala, permite atribuir uma classificação a sistemas

de software, usando valores-limite de classificação. Estes valores-limite são calibrados

para permitir diferenciar sistemas baseada na distribuição de métricas definindo, para

cada classificação, a quantidade máxima de código permissı́vel nas categorias de risco.

Dois estudos evidenciam os resultados desta abordagem. No estudo empı́rico

mostra-se que as classificações atribuı́das para uma nova métrica de teste podem ser

usadas para prever a eficiência na resolução de erros. No estudo industrial detalha-se

a avaliação e análise de qualidade de dois simuladores usados para missões no espaço.

ix

x

Contents

1 Introduction 1

1.1 Software quality assurance . 3

1.2 ISO/IEC 9126 for Software Product Quality 6

1.3 SIG quality model for maintainability 8

1.4 Benchmarks for software evaluation 11

1.5 Problem statement and research questions 13

1.6 Sources of chapters . 17

1.7 Other contributions . 18

2 Benchmark-based Derivation of Risk Thresholds 21

2.1 Introduction . 22

2.2 Motivating example . 24

2.3 Benchmark-based threshold derivation 25

2.4 Analysis of the methodology steps 27

2.4.1 Background . 28

2.4.2 Weighting by size . 29

2.4.3 Using relative size . 31

2.4.4 Choosing percentile thresholds 33

2.5 Variants and threats . 35

2.5.1 Weight by size . 35

2.5.2 Relative weight . 36

xi

xii Contents

2.5.3 Outliers . 37

2.5.4 Impact of the tools/scoping 39

2.6 Thresholds for SIG’s quality model metrics 39

2.7 Related Work . 42

2.7.1 Thresholds derived from experience 42

2.7.2 Thresholds from metric analysis 42

2.7.3 Thresholds using error models 44

2.7.4 Thresholds using cluster techniques 45

2.7.5 Methodologies for characterizing metric distribution 45

2.8 Summary . 46

3 Benchmark-based Aggregation of Metrics to Ratings 49

3.1 Introduction . 50

3.2 Approach . 52

3.2.1 Aggregation of measurements to ratings 53

3.2.2 Ratings to measurements traceability 55

3.3 Rating Calibration and Calculation Algorithms 57

3.3.1 Ratings calibration algorithm 58

3.3.2 Ratings calculation algorithm 60

3.4 Considerations . 62

3.4.1 Rating scale . 62

3.4.2 Distribution/Partition . 63

3.4.3 Using other 1st-level thresholds 63

3.4.4 Cumulative rating thresholds 64

3.4.5 Data transformations . 65

3.4.6 Failing to achieve the expected distribution 66

3.5 Application to the SIG quality model metrics 67

3.6 Stability analysis . 68

3.7 Related work . 71

Contents xiii

3.7.1 Addition . 71

3.7.2 Central tendency . 72

3.7.3 Distribution fitting . 72

3.7.4 Wealth inequality . 73

3.7.5 Custom formula . 75

3.8 Summary . 75

4 Static Evaluation of Test Quality 77

4.1 Introduction . 78

4.2 Approach . 80

4.3 Imprecision . 86

4.3.1 Sources of imprecision . 86

4.3.2 Dealing with imprecision . 91

4.4 Comparison of static and dynamic coverage 92

4.4.1 Experimental design . 92

4.4.2 Experiment results . 94

4.4.3 Evaluation . 101

4.5 Static coverage as indicator for solving defects 102

4.5.1 Risk and rating thresholds 102

4.5.2 Analysis of defect resolution metrics 105

4.5.3 Evaluation . 108

4.6 Related Work . 108

4.7 Summary . 110

5 Assessment of Product Maintainability for Two Space Domain Simulators113

5.1 Introduction . 114

5.2 Systems under analysis . 117

5.2.1 EuroSim . 117

5.2.2 SimSat . 118

xiv Contents

5.3 Software analyses . 119

5.3.1 SIG quality model for maintainability 119

5.3.2 Copyright License Detection 121

5.4 Analysis results . 123

5.4.1 Software Product Maintainability 123

5.4.2 Copyright License Detection 128

5.5 Given recommendations . 129

5.6 Lessons learned . 130

5.7 Summary . 132

6 Conclusions 133

6.1 Summary of Contributions . 133

6.2 Research Questions Revisited . 135

6.3 Avenues for Future Work . 138

List of Figures

1.1 Bermuda triangle of software quality 3

1.2 ISO/IEC 9126 quality model for software product assurance 6

1.3 SIG quality model for maintainability 9

2.1 Risk profiles for the McCabe metric of four P2P systems 24

2.2 Summary of the risk thresholds derivation methodology 26

2.3 Vuze McCabe distribution (histogram and quantile plot) 28

2.4 Vuze McCabe distribution (non-weighted and weighted) 30

2.5 Benchmark McCabe distributions (non-weighted and weighted) . . . 31

2.6 Summarized McCabe distribution 32

2.7 McCabe distribution variability among benchmark systems 33

2.8 Comparison of alternative distribution aggregation techniques 36

2.9 Impact of outliers when aggregating a metric distribution 38

2.10 Unit Size distribution and risk profile variability 40

2.11 Unit Interface distribution and risk profile variability 40

2.12 Module Inward Coupling distribution and risk profile variability . . . 41

2.13 Module Interface Size distribution and risk profile variability 41

3.1 Overview of code-level measurements aggregation to system ratings . 52

3.2 Example of transformations to avoid over-fitting data 65

4.1 Overview of the Static Estimation of Test Coverage approach 81

xv

xvi List of Figures

4.2 Graph and source code example of a unit test. 82

4.3 Modified graph slicing algorithm for test coverage estimation 84

4.4 Example of imprecision related to control flow 87

4.5 Example of imprecision related to dynamic dispatch 88

4.6 Example of imprecision related to method overloading 88

4.7 Example of imprecision related to library calls 89

4.8 Comparison of static and dynamic coverage at system-level 95

4.9 Comparison of static and dynamic coverage for 52 releases of Utils . . 96

4.10 Histograms of static and dynamic class coverage for Collections . . . 99

4.11 Comparison of static and dynamic class coverage for Collections . . . 99

4.12 Histograms of static and dynamic package coverage for Collections . 100

4.13 Comparison of static and dynamic package coverage for Collections . 101

4.14 Static coverage distribution . 103

5.1 SimSat analysis poster . 116

5.2 SIG quality model for maintainability 119

5.3 Volume comparison for EuroSim and SimSat 123

5.4 Duplication comparison for EuroSim and SimSat 124

5.5 Unit size comparison for EuroSim and SimSat 125

5.6 Unit complexity comparison for EuroSim and SimSat 126

5.7 Unit interfacing comparison for EuroSim and SimSat 127

List of Tables

1.1 Benchmark systems per technology and license 12

1.2 Benchmark systems per functionality 12

2.1 Risk profiles for the McCabe metric of four P2P systems 24

2.2 Risk thresholds and respective quantiles for SIG quality model 40

3.1 Risk and rating thresholds for the SIG quality model metrics 68

3.2 Rating thresholds variability analysis 69

3.3 Summary statistics on the stability of the rating thresholds 70

3.4 Summary statistics on the stability of the computed ratings 70

4.1 Description of the systems used to compare static and dynamic coverage 92

4.2 Characterization of the systems used to compare static and dynamic

coverage . 93

4.3 Comparison of static and dynamic coverage at system level 95

4.4 Comparison of static and dynamic coverage at class and package levels 97

4.5 Risk and rating thresholds for the static coverage metric 104

4.6 Benchmark used for external quality validation 106

5.1 Criteria to determine implications of the use of a license 122

xvii

xviii List of Tables

Acronyms

ESA European Space Agency

ECSS European Cooperation for Space Standardization

FCT Fundação para a Ciência e a Tecnologia

GUI Graphical User Interface

IEC International Electrotechnical Commission

ISBSG International Software Benchmarking Standards Group

ISO International Organization for Standardization

ITS Issue Tracking System

MI Maintainability Index

OO Object-Oriented

OSS Open-Source Software

P2P Peer-to-Peer

SAT Software Analysis Toolkit

SETC Static Estimation of Test Coverage

SIG Software Improvement Group

xix

xx Acronyms

SLOC Source Lines of Code

TÜViT Technischer Überwachungs-Verein Informationstechnik – German Technical

Inspection Association, Information Technology

“Count what is countable, measure what is measurable, and what is not

measurable, make measurable.” Galileo Galilei

“When you can measure what you are speaking about, and express it in

numbers, you know something about it.” Lord Kelvin

“The wonder is, not that the field of the stars is so vast, but that man has

measured it.” Anatole France

“Not everything that counts can be counted, and not everything that can

be counted counts.” Albert Einstein

xxi

xxii

Chapter 1

Introduction

Software has grown in importance to a level that has become ubiquitous, supporting

our society. With such role, it is critical that software is regarded as a product, where its

lifecycle (planning, development and maintenance) is supported by rigorous process

with tools and methodologies. An important activity in this lifecycle is the software

quality assurance which is responsible to make all process manageable and predictable.

Due to the ubiquity of software, software quality assurance, which was used to

be seen as an expensive and secondary activity, it is now being seen as a primary

need. This increase of importance poses a stronger demand for better methodologies

and techniques to enable more proficiently software quality assurance, hence creating

plenty opportunities for innovation (e.g. evaluating software quality).

Software quality evaluation is done through measurement. Although measurement

already takes place in different software-engineering activities (e.g. risk control, im-

provement and estimation) the focus in this dissertation is on evaluation, i.e., to achieve

an objective representation of quality.

Measuring quality allows one to objectively speak about it, to express it in numbers

and to gain knowledge about it. This enables a well-founded decision-making process.

Understanding and communicating about the overall quality, allows decision makers

to rationalize it and decide, for instance, whether there is need for improvement.

1

2 1 Introduction

Software quality assurance can act upon four complementary areas: process, project,

people and product. For all these areas except product, software quality assurance is

well defined and widely accepted in industry. Software product assurance, on the other

hand, which is responsible for the concrete thing that is being developed or modified,

is commonly achieved only by testing. This dissertation focus on the use of general

measurements, derived from the software product, to provide a complementary quality

view to support software quality assurance.

For software product quality measurement to be of relevance it should go beyond

a theoretical exercise, be applied in practice and yield results. The fulfillment of these

three requirements has been demanded by many practitioners before adopting any ad-

vance made in software quality research into practice [8]. This was the reason that the

work presented in this PhD dissertation required to be done in an industrial environ-

ment, to be close to the problems that matter and to have a better feedback about what

actually works in practice.

The Software Improvement Group (SIG) provided such industrial environment.

Established around the year 2000, SIG provides consultancy services to help their

clients to achieve a more controlled and efficient software lifecycle. The uniqueness

of their services is the use of a fact-based approach, which lies on extracting metrics

from software products using tools. Source code metrics and other analyses (facts)

are then interpreted by SIG consultants and turned into actionable recommendations

that clients can follow to meet their goals. Not only SIG has been innovative in their

approach, but also has been a continuous contributor to science with their research.

This duality between consultancy and research offered, on one hand, access the de-

veloped technology, industrial projects and client feedback and, on the other hand, a

challenging and demanding research environment.

The research in this dissertation will be introduced as follows. Section 1.1 first dis-

cusses software product evaluation under the umbrella of software quality assurance.

Section 1.2, reviews the ISO/IEC 9126 International Standard for Software Engineer-

ing – Product Quality [44] as applicable framework for this purpose. Section 1.3 intro-

1.1 Software quality assurance 3

People
(individual)

Process
(organizational)

Project
(individual)

Product

ISO 9001
SPICE (ISO 15504)
CMMI

OCP (Oracle)
MCP (Microsoft)

Prince2
PMBOK / PMI
RUP (IBM)
Scrum

ISO 9126
ISO 25010

Figure 1.1: Bermuda triangle of software quality. The corners of the triangle indicate the main areas
of focus of the software quality product assurance. In the center of the triangle is the software product
which is an area commonly overlooked. Next to each area are examples of applicable standards.

duces the SIG quality model for maintainability as starting point for software product

measurement. Section 1.4 proposes the use of software benchmarks to support the

interpretation of measurements. Section 1.5 introduces the problem statement and the

research questions. Section 1.6 presents the structure of the dissertation and the origin

of the chapters. Finally, Section 1.7 lists other contributions made in the context of this

PhD.

1.1 Software quality assurance

The traditional approach to software quality focuses on three main areas: process,

people and project. Quality assurance on the product itself, i.e., the concrete thing

that is being developed or maintained, is however often disregarded. This situation is

depicted in Figure 1.1 as the “Bermuda Triangle of Software Quality”, introduced by

Visser [88].

For process, the most known frameworks are ISO 9001 [47], SPICE [46] (or

ISO/IEC 15504) and CMMI [83]. These frameworks define generic practices, require-

ments and guidelines to help organizations to meet their goals in a more structured

and efficient way. They promote specification, control and procedures allowing the

organization to improve the way they work. For CMMI and SPICE, organizations are

4 1 Introduction

appraised to a certain compliance level (called maturity level in CMMI and capabil-

ity level in SPICE) defining the extent to which the organization follows the defined

guidelines. For ISO 9001, organizations can be certified via a certification body.

For people, most software vendors provide their own professional certification ser-

vices. The Microsoft Certified Professional (MCP) and the Oracle Certification Pro-

gram (OCP) are well known examples of vendor-specific professional certifications.

These certifications cover a broad range of technologies, from programming languages

to the optimization or tailoring of specific products. There are also several levels each

identifying a specific degree of knowledge.

For project, the most known standards are Prince2 [69] (PRojects IN Controlled

Environment) by the UK Government, PMBOK [43] (A Guide to Project Management

Body of Knowledge) from the Project Management Institute, RUP [55] (Rational Uni-

fied Process) from IBM and Scrum [76] by Ken Schwaber. In general they all provide

guidelines to start, organize, execute (and control) and finalize temporary activities to

achieve a defined project goal. For some of these standards software tools are available

to support the project management activities.

There are several commonalities in quality assurance standards for process, people

and project. They are all supported by specific certifications provided by third-parties

and these certifications must be periodically renewed in order to remain valid. They all

provide general guidelines leaving the specific definition of the actions to the people

implementing them. The implementation of these standards offer confidence that a

goal is going to be achieved although they are not bullet-proof against failure. Finally,

these standards are well accepted by industry since both organizations and profession-

als recognize their importance and value.

The value of using standards for quality assurance comes basically from two sce-

narios: improvement and capability determination.

The value of using standards for improvement comes from efficiency increase. Pro-

cess and project standards offer organizations and individuals a framework they can

use to measure and evaluate their practices, leading for instance to a better usage of

1.1 Software quality assurance 5

resources, time or money. This improvement scenario then offers the possibility of in-

creasing the internal value, i.e., the value within the organization or project. Similarly,

professional certification also offers internal value, offering the professional capabili-

ties to develop certain activities more efficiently.

The value of using standards for capability determination comes from demonstrat-

ing to other that the organizations or individuals have advantages over their competi-

tors. By following process and project standards, organizations or individuals, provide

evidence that they are capable of delivering a service or a product, hence increasing

their perceived or external value to others. The same is also applicable to personal

certification, where the individuals can provide evidence that they are capable of de-

livering on a specific area.

A key aspect to the success of these standards and frameworks is the fact that

they provide foundations for measurement, comparison and evaluation. Making these

operational is key, providing added value to those who use them. The motivation and

benefits that arise from the use of quality assurance standards/frameworks for quality

assurance of process, people and projects are clear. They are wide-spread and well-

accepted in industry.

Software product assurance, except for testing, has been given less importance

when compared to other areas of quality assurance. For long time, reliability (as mea-

sured in number of failures) has been the single criteria for gauging software product

quality [44]. Also, the mutual influence between product and process is well known,

i.e., product quality affects process quality and vice-versa. The recognition of the need

of a more well-defined criteria for software product quality lead to the development

of the ISO/IEC 9126 [44] International Standard for Software Engineering – Product

Quality. As of March 2011, ISO/IEC 9126 is being replaced by ISO/IEC 25010 [49],

but since it is still very recent we will focus only on the former. Although ISO/IEC

9126 is well known it does not have the same acceptance as the other above mentioned

quality assurance standards. Also, another fundamental problem is its operationaliza-

tion, i.e., the implementation of this framework in practice such that it can be used to

6 1 Introduction

ISO/IEC 9126

Internal and
External Quality

Security

Suitability
Accuracy
Interoperability

Recoverability

Maturity
Fault Tolerance

Atractiveness

Understandability
Learnability
Operability

Resource Utilisation
Time Behaviour

Testability

Analyzability
Changeability
Stability

Replaceability
Co-existence
Installability
Adaptability

Are the required functions
available in the software?

Functionality

Reliability
How reliable is the software?

Is the software easy to use?

How efficient is the software?

How easy is to modify the
software?

How easy is to transfer the
software to another environment?

Usability

Efficiency

Maintainability

Portability

Figure 1.2: Quality Characteristics, sub-characteristics and attributes of the ISO/IEC 9126.

measure, compare and evaluate a software product [1].

1.2 ISO/IEC 9126 for Software Product Quality

The ISO/IEC 9126 [44] International Standard for Software Engineering – Product

Quality, defines a model to support the definition of quality requirements (by setting

quality goals) and the evaluation of quality of software products (by verifying if the

goals are met). This model is meant to be applicable to every kind of software (e.g.

source code and data) and is hierarchically decomposed into characteristics and sub-

characteristics, covering all aspects of software product quality. Figure 1.2 shows at the

highest level, on the left-hand side, the quality characteristics and its relation with the

sub-characteristics of the ISO/IEC 9126 quality model. The lowest level of this model,

on the right-hand side, consists of the software quality attributes that are going to be

measured. Quality evaluation should be performed by specifying appropriate metrics

1.2 ISO/IEC 9126 for Software Product Quality 7

(to measure software quality attributes) and acceptable ranges. The acceptable ranges

are intended to verify if the quality for the attributes are met, hence validating the

requirements for the quality sub-characteristics and then for the quality characteristics.

Whenever quality is a requirement, it is commonly specified in terms of external

quality. External quality is the capability of the software product as perceived by the

user during the execution of the system in a specific environment. Since software

products are meant to be executed, external quality is clearly the final goal. External

quality can be captured by measuring software product behavior, by testing, operating

and observing the running system. The ISO/IEC 9126 defines that “before acquiring

or using a software product it should be evaluated using metrics based on business

objectives related to the use, exploitation and management of the product in a specified

organizational and technical environment.” This means that external quality can only

be measured and evaluated after the product is ready. Also, this means that if only

external quality is used as criteria, there will be a quality assurance gap between start

of development/maintenance and delivery for external quality evaluation. Naturally

this will lead to higher risks of the project not meeting the imposed requirements and

higher costs to fix problems found during execution.

In addition to external quality, the ISO/IEC 9126 considers internal quality. Inter-

nal quality measures intrinsic properties of software products, including those derived

from simulated behaviors, indicating external attributes of a software product. This

is achieved by the analysis of the static properties of intermediate or deliverable soft-

ware products. The majority of source code metrics, e.g. McCabe or Source Lines of

Code (SLOC), and dependency analyses, e.g. coupling and cohesion metrics, provide

measurements about static properties. The main advantage of using internal measure-

ments is that they can be used at early stages of the development. At the earlier stages

only resources and process can be measured. However, as soon as there are interme-

diate products or product deliverables (e.g. documentation, specifications or source

code) it is possible to start using internal measurements and thus validating targets at

various stages of development. Internal measurements allow users, evaluators, testers,

8 1 Introduction

and developers to benefit from the evaluation of the software product quality and iden-

tify quality issues early before the software product is finalized. Hence, internal met-

rics complement external metrics and together they cover the quality assurance of the

whole software life-cycle.

It is important to stress, as stated by the ISO/IEC 9126, that the main goal of inter-

nal metrics is to predict/achieve external quality. For this reason, the internal attributes

should be used to predict values of external metrics and hence used as indicators of

external quality. However, ISO/IEC 9126 recognizes the challenge that “it is generally

difficult to design a rigorous theoretical model which provides a strong relationship be-

tween internal and external metrics” and that “one attribute may influence one or more

characteristic, and a characteristic may be influenced by more than one attribute.” Al-

though much research has been done in software metrics validation, this is still an

open challenge. Moreover, it is partly due to this lack of evidence, that internal metrics

can be predictors of external quality, that it is difficult to implement metrics programs

within organizations.

This dissertation, will focus on internal metrics (metrics that are statically derived).

Although a core set of metrics is used in this research, the goal is to provide a solution

to solve some of the challenges of using metrics, in general, for software analysis and

evaluation. In line with the ISO/IEC 9126, it is a concern that these internal metrics be

predictors of external quality.

1.3 SIG quality model for maintainability

The ISO/IEC 9126 standard provides a framework for software product assurance.

However, as noted by many authors [1, 20, 41, 52], the defined framework guidelines

are not precise enough, leaving room for different interpretations which can lead to in-

consistent evaluations of software product quality. Also, ISO/IEC 9126 does not fore-

see automatization when evaluating software product quality. Evidence of this lack of

automatization can be found in the proposed internal metrics [45] which strongly de-

1.3 SIG quality model for maintainability 9

Volume

Duplication

Unit complexity

Unit size

Unit interfacing

Testing

Analysability

Changeability

Stability

Testability

Maintainability

ISO/IEC 9126 product properties source code measurements

Functionality

Reliability

Usability

Efficiency

Portability functional + unit testing / coverage

Figure 1.3: Quality model overview. On the left-hand side, the quality characteristics and the main-
tainability sub-characteristics of the ISO/IEC 9126 standard for software product quality are shown.
The right-hand side relates the product properties defined by SIG with the maintainability sub-
characteristics. In the source code measurements, the empty rectangle indicates system-level measure-
ments, the four-piece rectangles indicate measurements aggregated using risk profiles, and the dashed-
line rectangle indicates the use of criteria. This figure was adapted from Luijten et al. [63].

pend on human observation of software product behavior and its environment instead

of its objective measurement.

To support the automatic analysis and evaluation of software products, Heitlager

et al. proposed the SIG quality model for maintainability based on the ISO/IEC 9126.

An extended version of this model is presented in Figure 1.3.

The SIG quality model for maintainability not only operationalizes ISO/IEC 9126,

but also enables fully automatic evaluation of software quality. The automatization is

possible due to the use of statically-derived source code metrics. Metrics are extracted

using the Software Analysis Toolkit (SAT) also developed by SIG.

The SIG quality model was designed to use metrics that follow three requirements:

technology independence, simplicity, and root-cause analysis capabilities. Technology

independence is required in order to support multiple programming-languages hence

not restricting the model to a single technology but enabling its general application.

Simplicity was required both in terms of implementation/computation (so that it can

scale to very large systems) and in terms of definition (so that it can be easily explained

and used to communicate with non-technical people). Finally, root-cause analysis is

required to narrow down the area of a potential problem and provide an explanation

for it.

10 1 Introduction

The quality model presented in Figure 1.3 makes use of seven system properties

which are defined by the following metrics: volume, duplication, unit complexity, unit

size, unit interfacing and test quality. While volume, duplication and test quality are

measured at system-level, all the other metrics are measured at unit-level. “Unit”

is used as generic term for designating the smallest block of code of a programming

language. For Java and C# programming languages a unit will correspond to a method,

while for C/C++ it will correspond to a function. Volume measures the overall system

size in man-years via backfiring functions points, which is achieved by counting SLOC

per technology and using the Programming Languages Table of Software Productivity

Research LLC [59] to arrive at the final value in man-years. Duplication measures the

percentage of code, in SLOC, that occurs more than once, in identical blocks of code

of at least 6 lines. Unit complexity or McCabe cyclomatic complexity [67] measures

the number of paths or conditions defined in a unit. Unit size measures the size in

SLOC (blank lines and comments excluded). Unit interfacing measures the number of

arguments that need be used to call this unit. Test quality measures the percentage of

the overall system code that is covered by tests.

Each system-property is measured using a 5-point rating scale, obtained by ag-

gregating the raw source code metrics as defined in [41]. System-level metrics are

scaled to a rating by comparing the metric value to a rating interval. Unit-level metrics

are aggregated in a two-level process using thresholds. Using first risk thresholds, a

risk profile is created representing the percentage of SLOC that falls into Low, Mod-

erate, High and Very-high categories. Then, using rating thresholds, the risk profile is

aggregated to a rating. After computing the rating for all system-properties, the rat-

ing for the maintainability sub-characteristics and characteristics is computed by the

weighted mean of one or more system properties and one or more sub-characteristics,

respectively.

The SIG quality model for maintainability and the SAT that supports it were used

as the starting point of this PhD research. These provided initial guidance on quality

evaluation since this model was validated by SIG’s consultants. SAT also allowed

1.4 Benchmarks for software evaluation 11

for rapidly producing metrics for a representative set of industrial and Open-Source

Software (OSS) systems which were used throughout this research. Although based

on SIG’s quality model and SAT, this research is not restricted in any way to this

quality model metrics or to the SAT tool. As will become apparent in due course,

all the results presented in this dissertation should be equally applicable, with minor

effort, to other metrics or tools.

1.4 Benchmarks for software evaluation

One of the key challenges in software empirical studies is to have a large and repre-

sentative set of software systems to analyze. For this research we used a benchmark of

100 systems constructed in modern Object-Oriented (OO) technologies (Java and C#).

The benchmark systems, which come from both SIG customers and OSS projects,

were developed by different organizations and cover a broad range of domains. Sys-

tem sizes range from over 3K LOC to near 800K SLOC, with a total of near 12 million

SLOC. These numbers correspond to manually-maintained production code only (test,

generated and library code are not included), as defined in [3]. Table 1.1 records the

number of systems per technology (Java or C#) and license type (proprietary or OSS).

Table 1.2 classify such software systems functionality according to the taxonomy de-

fined by International Software Benchmarking Standards Group (ISBSG) in [61].

This benchmark was collected and curated during the SIG consultancy activities

and their use is authorized by clients as long as the data remain anonymous. In con-

trast to other benchmarks, such as the Quality Corpus [85] or that made from Source-

Forge1 projects as reported in [37], the SIG’s benchmark offers two main advantages.

The first advantage is that it contains a large percentage (near 80%) of industrial sys-

tems. Although having industrial systems pose some challenges for others to replicate

measurements, their inclusion in the benchmark offers a more representative view of

software systems than other OSS benchmarks. The second advantage is the access to
1http://sourceforge.net/

12 1 Introduction

Table 1.1: Number of systems in the benchmark per technology and license.

Technology License # Systems Overall size (SLOC)

Java Proprietary 60 8,435K
OSS 22 2,756K

C# Proprietary 17 794K
OSS 1 10K

Total 100 11,996K

Table 1.2: Number of systems in the benchmark per functionality according to the ISBSG classification.

Functionality type # Systems

Catalogue or register of things or events 8
Customer billing or relationship management 5
Document management 5
Electronic data interchange 3
Financial transaction processing and accounting 12
Geographic or spatial information systems 2
Graphics and publishing tools or system 2
Embedded software for machine control 3
Job, case, incident or project management 6
Logistic or supply planning and control 8
Management or performance reporting 2
Mathematical modeling (finance or engineering) 1
Online analysis and reporting 6
Operating systems or software utility 14
Software development tool 3
Stock control and order processing 1
Trading 1
Workflow support and management 10
Other 8

Total 100

key personnel with knowledge about the systems in SIG’s benchmark. Whenever there

is a question about a particular system either this question can be directly answered by

a SIG consultant, who has overall knowledge of the system, or the consultant can di-

rectly contact the owner company to find the answer. This easy access to knowledge

is not so common in OSS projects, even for those projects that are supported by large

communities, since it is sometimes difficult to find the right person to answer a ques-

tion and it always requires a lot of communication effort.

Another key issue of using a benchmark of software systems is the definition of

system measurement scopes, i.e., the definition, for each system, of how the different

software artifacts are taken into account and used in an analysis. This problem was

1.5 Problem statement and research questions 13

identified in [85] and further investigated in [3]. An example of scope configuration

can contain the distinction between production and test code, manually-maintained

and generated code, etc. For instance, as reported in [3], the generated code for some

systems can represent as high as 80% of the overall system code (in SLOC). It is clear

that the correct differentiation of the system artifacts is of extreme importance since

failure to recognize one of these categories can lead to an incorrect interpretation of

results.

Unless otherwise stated, this research will use the SIG benchmark introduced in

this section.

1.5 Problem statement and research questions

This dissertation deals with two fundamental problems that have been hindering the

adoption and use of software product metrics for software analysis and evaluation: (i)

how to interpret raw measurements? and (ii) how to obtain a meaningful overview of a

given metric? The aim of this dissertation is to establish a body of knowledge allowing

a software engineering to select a set of metrics and use these to infer knowledge about

a particular software system.

The stakes are quite high. Metrics have been around since the beginning of the

programming languages (e.g. SLOC). An extensive literature about software product

metrics has been developed, including definition and formalization of software metrics,

measuring theory, case studies and validation. Yet, it is still difficult to use metrics to

capture and communicate about the quality of a system. This is mainly due to the

lack of methodologies for establishing baseline values for software metrics and for

aggregating and combining metrics in ways that make it possible to trace back the

original problem. This dissertation aims to solve these problems. More specifically,

the research questions that this dissertation aims to answer are:

(i) How to establish thresholds of software product metrics and use them to show

14 1 Introduction

the extent of problems in the code?

(ii) How to summarize a software product metric while preserving the capability of

root-cause analysis?

(iii) How can quality ratings based on internal metrics be validated against external

quality characteristics?

(iv) How to combine different metrics to fully characterize and compare the quality

of software systems based on a benchmark?

Research Question 1

How to establish thresholds of software product metrics and use them to

show the extent of problems in the code?

The most serious criticism about metrics is that they are simply numbers and hence

very little can be said about them. Information about the numerical properties of the

metrics can be derived. For instance, for metrics in ordinal scale we can compare

two individual measurements and state that one is bigger/smaller than the other. We

can additionally quantify the difference between two measurements. However, this

does not allow one to infer which action (if any) to undertake driven by a specific

measurement.

The real value of using metrics starts when comparing individual measurements

with thresholds. This allows the division of the measurement space into regions,

e.g. acceptable or non-acceptable, putting measurements into context, adding con-

text to measurements. Based on this information, we can investigate and quantify

non-acceptable measurements, taking action on them if necessary. This is the first

step to infer knowledge about what is being measured. Then it is of importance to es-

tablish meaningful thresholds, i.e., thresholds that are easy to derive, explainable and

justifiable, and that can be used in practice.

1.5 Problem statement and research questions 15

Several methodologies have been attempted in the past but failed by making un-

justifiable assumptions. Thus, the challenge of developing a methodology for deriving

metric thresholds is still to be met. In this dissertation, a new methodology is pro-

posed by applying a series of transformations to the data, weighting measurements by

relative size and deriving thresholds that are representative of benchmark data.

Research Question 2

How to summarize a software product metric while preserving the capa-

bility of root-cause analysis?

The second serious problem when using metrics is that they provide very little infor-

mation about the overall system. Metrics such as overall size, duplication and test

coverage are defined at system level hence providing information about the overall

system. However, the majority of metrics are defined at smaller granularity levels such

as method, class or packages. Hence, using these metrics directly does not allow one

to infer information about the system as a whole.

To infer information about the system from a given metric it is necessary to syn-

thesize the measurements into a meaningful value. By meaningful it is meant that,

this value not only captures the information of all measurements, but also it enables

(some) traceability back to the original measurements. This synthesized value can then

be used to communicate about the system, perform comparisons among systems or be

used to track evolution or to establish targets.

The common techniques to summarize metrics at system level aggregate measure-

ments using arithmetical addition or average functions (e.g. median, weighted/geo-

metric/vanilla mean). However these techniques fail to capture the information of all

measurements and the results are not traceable. In this dissertation a new methodology

is proposed to synthesize metrics into ratings achieved by calibrating ratings using a

large benchmark of software systems.

16 1 Introduction

Research Question 3

How can quality ratings based on internal metrics be validated against

external quality characteristics?

By showing how to evaluate and compare systems according to an internal quality

view obtained from source code metrics does not necessarily mean that this quality

view can have a relation with external quality as perceived by a user. Although much

research have been done in order to prove that in general source code metrics can

be used as predictors for external quality characteristics, does this also apply when

aggregating metrics using benchmark-derived thresholds?

By deriving thresholds for a new metric introduced in this dissertation, Static Es-

timation of Test Coverage (SETC), we investigate whether this static estimator can

predict real coverage and be validated against bug solving efficiency.

We demonstrate that not only SETC can be used as early indicator for real coverage

but also that SETC has a positive correlation with bug solving efficiency. This provides

indirect evidence, that using thresholds to aggregate metrics is a powerful and valuable

mechanisms for interpretation and evaluation of metrics.

Research Question 4

How to combine different metrics to fully characterize and compare the

quality of software systems based on a benchmark?

When the SIG quality model was introduced it made use of thresholds defined by ex-

pert opinion. By using benchmark-based thresholds is it still possible to infer valuable

information about a software system?

The use of benchmark-based thresholds allow us to relate the final evaluation of a

particular system with the systems of the benchmark. This way, measurements are put

into context not only acting as a form of validation, but also adding knowledge to the

evaluation results.

1.6 Sources of chapters 17

This dissertation demonstrates how to use thresholds obtained from a benchmark in

order to do meaningful analysis and comparison of software systems. First, thresholds

are used to investigate about quality issues. Second, using such thresholds to aggregate

measurements into ratings, a quality comparison between the two different systems is

done.

1.6 Sources of chapters

Each chapter of this dissertation is based on one peer-reviewed publication presented

in an international conference. The first author is the main contributor of all chapters.

The publication title, conference and list of co-authors is presented below for each

individual chapter.

Chapter 2. Deriving Metric Thresholds from Benchmark Data. The source of

this chapter was published in the proceedings of the 26th IEEE International Confer-

ence on Software Maintenance (ICSM 2010) as [6]. It is co-authored by Christiaan

Ypma and Joost Visser.

Chapter 3. Benchmark-based Aggregation of Metrics to Ratings The source of

this chapter was published in the proceedings of the Joint Conference of the 21th In-

ternational Workshop on Software Measurement and the 6th International Conference

on Software Process and Product Measurement (IWSM/MENSURA 2011) as [4]. It is

co-authored by José Pedro Correia and Joost Visser.

Chapter 5. Assessment of Product Maintainability for Two Space Domain Simu-

lators The source of this chapter was published in the proceedings of the 26th IEEE

International Conference on Software Maintenance (ICSM 2010) as [2].

Chapter 4. Static Estimation of Test Coverage The source of this chapter was

published in the proceedings of the 9th IEEE International Working Conference on

18 1 Introduction

Source Code Analysis and Manipulation (SCAM 2009) as [5]. It is co-authored by

Joost Visser.

1.7 Other contributions

During the course of this PhD other contributions were made in related areas of re-

search which have indirectly contributed to the author’s perspective on software qual-

ity. Such side stream contributions are listed below.

Categories of Source Code in Industrial Systems This paper was published in the

proceedings of the 5th International Symposium on Empirical Software Engineering

and Measurement (ESEM 2011), IEEE Computer Society Press.

Comparative Study of Code Query Technologies This paper was published in the

proceedings of the 11th IEEE International Working Conference on Source Code Anal-

ysis and Manipulation (SCAM 2011), IEEE Computer Society Press. It is co-authored

by Peter Rademaker and Jurriaan Hage.

A Case Study in Grammar Engineering This paper was published in the pro-

ceedings of the 1st International Conference on Software Language Engineering (SLE

2008), Springer-Verlag Lecture Notes in Computer Science Series. It is co-authored

by Joost Visser.

Type-safe Evolution of Spreadsheets This paper was published in the proceedings

of the conference Fundamental Approaches to Software Engineering (FASE 2011),

Springer-Verlag Lecture Notes in Computer Science. It is authored by Jácome Cunha

and co-authored by Joost Visser and João Saraiva.

Constraint-aware Schema Transformation This paper was accepted and presented

at the 9th International Workshop on Rule-Based Programming (RULE 2008). Due to

1.7 Other contributions 19

editorial problems, the proceedings of this conference were still not available at the

time of writing this dissertation. It is co-authored by Paulo F. Silva and Joost Visser.

20 1 Introduction

Chapter 2

Benchmark-based Derivation of Risk

Thresholds

A wide variety of software metrics have been proposed and a broad range of tools is

available to measure them [35, 22, 21, 90, 71]. However, the effective use of software

metrics is hindered by the lack of meaningful thresholds. Thresholds have been pro-

posed for a few metrics only, mostly based on expert opinion and a small number of

observations.

Previously proposed methodologies for systematically deriving metric thresholds

have made unjustified assumptions about the statistical properties of source code met-

rics. As a result, the general applicability of the derived thresholds is jeopardized.

The design of a method that determines metric thresholds empirically from mea-

surement data is the main subject of this chapter. The measurement data for different

software systems are pooled and aggregated after which thresholds are selected that

(i) bring out the metric’s variability among systems and (ii) help focusing on a rea-

sonable percentage of the source code volume. The proposed method respects the

distributions and scales of source code metrics, and it is resilient against outliers in

metric values or system size.

The method has been tested by applying it to a benchmark of 100 Object-Oriented

21

22 2 Benchmark-based Derivation of Risk Thresholds

(OO) software systems, both proprietary and Open-Source Software (OSS), to de-

rive thresholds for metrics included in the Software Improvement Group (SIG) quality

model for maintainability.

2.1 Introduction

Software metrics have been around since the dawn of software engineering. Well-

known source code metrics include Source Lines of Code (SLOC), the McCabe met-

ric [67], and the Chidamber-Kemerer suite of OO metrics [22]. Metrics are intended

as a control instrument in the software development and maintenance process. For

example, metrics have been proposed to identify problematic locations in source code

to allow effective allocation of maintenance resources. Tracking metric values over

time can be used to assess progress in development or to detect quality erosion dur-

ing maintenance. Metrics can also be used to compare or rate the quality of software

products, and thus form the basis of acceptance criteria or service-level agreements

between software producer and client.

In spite of the potential benefits of metrics, their effective use has proven elusive.

Although metrics have been used successfully for quantification, their use have gener-

ally failed to adequately support subsequent decision-making [34].

To promote the use of metrics from measurement to decision-making, it is essential

to define meaningful threshold values. These have been defined for some metrics. For

example, McCabe proposed a threshold value of 10 for his complexity metrics, beyond

which a subroutine was deemed unmaintainable and untestable [67]. This threshold

was inspired by experience in a particular context and not intended as universally ap-

plicable. For most metrics, thresholds are lacking or do not generalize beyond the

context of their inception.

This chapter, presents a method to derive metric threshold values empirically from

the measurement data of a benchmark of software systems. The measurement data for

different software systems are first pooled and aggregated. Then thresholds are deter-

2.2 Motivating example 23

mined that (i) bring out the metric’s variability among systems and (ii) help focusing

on a reasonable percentage of the source code volume.

The design of the proposed method takes several requirements into account to avoid

the problems of thresholds based on expert opinion and of earlier approaches to sys-

tematic derivation of thresholds. The method should:

1. be driven by measurement data from a representative set of systems (data-driven),

rather than by expert opinion;

2. respect the statistical properties of the metric, such as metric scale and distri-

bution and should be resilient against outliers in metric values and system size

(robust);

3. be repeatable, transparent and straightforward to carry out (pragmatic).

In the explanation of the method given in the sequel the satisfaction of these require-

ments will be addressed in detail.

This chapter is structured as follows. Section 2.2 demonstrates the use of thresh-

olds derived with the method introduced in this chapter, taking the McCabe metric as

example. In fact, this metric is used as a vehicle throughout the chapter for explain-

ing and justifying the method to derive thresholds. Section 2.3 provides an overview

of the method itself and Section 2.4 provides a detailed explanation of its key steps.

Section 2.5 discusses variants of the method and possible threats. Section 2.6 provides

evidence of the wider applicability of the method by generalization to other metrics

included in the SIG quality model for maintainability [41]. Section 2.7 presents an

overview of earlier attempts to determine thresholds. Finally, Section 2.8 summarizes

the contributions of this chapter.

24 2 Benchmark-based Derivation of Risk Thresholds

Table 2.1: Risk profiles for the McCabe metric of four P2P systems.

System version Low risk (%) Moderate risk (%) High risk (%) Very-high risk (%)

JMule 0.4.1 70.52 6.04 11.82 11.62
LimeWire 4.13.1 78.21 6.73 9.98 5.08
FrostWire 4.17.2 75.10 7.30 11.03 6.57

Vuze 4.0.04 51.95 7.41 15.32 25.33

Figure 2.1: Risk profiles for the McCabe metric of four P2P systems.

2.2 Motivating example

Suppose one wants to compare the technical quality of four Peer-to-Peer (P2P) sys-

tems: JMule, LimeWire, FrostWire and Vuze1. Using the SIG quality model for main-

tainability [41] we can arrive at a judgement of technical quality of those systems, first

by calculating risk profiles for each metric and then combining them into a rating. Fo-

cusing on the risk profiles, and using as example throughout this chapter the McCabe

metric, the importance of thresholds to analyze quality will be demonstrated.

A risk profile defines the percentages of SLOC of all methods that fall in each

of the following categories: low risk, moderate risk, high risk and very-high risk.

To categorize the methods thresholds are used. For now let us assume thresholds 6,

8 and 15 that represent 70%, 80% and 90% of all code. This assumption will be

justified in sequel when explaining the methodology for deriving thresholds from a

benchmark of systems. Hence, using these thresholds it is possible to define four

1http://jmule.org/, http://www.limewire.com/, http://www.frostwire.com/, http://www.vuze.com/

2.3 Benchmark-based threshold derivation 25

intervals2 that divide the McCabe measurements into four categories:]0, 6] for low

risk,]6, 8] for moderate risk,]8, 15] for high risk, and]15,∞[for very-high risk. Using

the categorized measurements, the risk profiles are then calculated by summing the

SLOC of all methods in each category and dividing by the overall system SLOC.

Figure 2.1 and Table 2.1 show the risk profiles of four P2P systems. Pinpointing

potential problems can be done by looking at the methods that fall in the very-high risk

category. Looking at the percentages of the risk profiles we can have an overview about

overall complexity. For instance, the Vuze system contains 48% of code in moderate or

higher risk categories, of which 25% is in the very-high risk category. Finally, quality

comparisons can be performed: LimeWire is the least complex of the four systems,

with 22% of its code in moderate or higher risk categories, followed by FrostWire

(25%), then by JMule (30%) and, finally, Vuze (48%).

2.3 Benchmark-based threshold derivation

The methodology proposed in this section was designed according to the requirements

declared earlier: (i) it should be based on data analysis from a representative set of

systems (benchmark); (ii) it should respect the statistical properties of the metric, such

as scale and distribution; (iii) it should be repeatable, transparent and straightforward

to execute.

With these requirements in mind, Figure 2.2 summarizes the six steps of the method-

ology proposed in this chapter to derive thresholds.

1. Metrics extraction: metrics are extracted from a benchmark of software sys-

tems. For each system System, and for each entity Entity belonging to System (e.g.

method), we record a metric value, Metric, and metric weight, Weight for that sys-

tem’s entity. As weight we will consider the SLOC of the entity. As example, the

method (entity) called MyTorrentsView.createTabs(), from the Vuze sys-

tem, has a McCabe metric value of 17 and weight value of 119 SLOC.
2Intervals are represented using the ISO/IEC 80000–2 notation [48].

26 2 Benchmark-based Derivation of Risk Thresholds

1. metrics extraction

System � (Entity � Metric × Weight)

2. weight ratio calculation

System � (Entity � Metric × WeightRatio)

3. entity aggregation

System � (Metric � WeightRatio)

4. system aggregation

Metric � WeightRatio

5. weight ratio aggregation

Metric Metric Metric

WeightRatio � Metric

6. thresholds derivation

80%70% 90%

Legend

�

×

System

Entity

Metric

Weight

WeightRatio

map relation (many-to-one
relationship)

product (pair of columns or
elements)

Represents ind iv idua l
systems (e.g. Vuze)

Represents a measurable
entity (e.g java method)

Represents a metric value
(e.g. McCabe of 5)

Represents the weight
value (e.g. LOC of 10)

Represents the weight
percentage inside of the
system (e.g. entity LOC
divided by system LOC)

Figure 2.2: Summary of the methodology steps to derive risk threshold.

2. Weight ratio calculation: for each entity, we compute its weight percentage

within its system, i.e., we divide the entity weight by the sum of all weights of the

same system. For each system, the sum of all entities WeightRatio must be 100%.

As example, for the MyTorrentsView.createTabs() method entity, we divide

119 by 329, 765 (total SLOC for Vuze) which represents 0.036% of the overall Vuze

system.

3. Entity aggregation: we aggregate the weights of all entities per metric value,

which is equivalent to computing a weighted histogram (the sum of all bins must be

100%). Hence, for each system we have a histogram describing the distribution of

weight per metric value. As example, all entities with a McCabe value of 17 represent

1.458% of the overall SLOC of the Vuze system.

4. System aggregation: we normalize the weights for the number of systems and

then aggregate the weight for all systems. Normalization ensures that the sum of all

2.4 Analysis of the methodology steps 27

bins remains 100%, and then the aggregation is just a sum of the weight ratio per metric

value. Hence, we have a histogram describing a weighted metric distribution. As

example, a McCabe value of 17 corresponds to 0.658% of all code in the benchmark.

5. Weight ratio aggregation: we order the metric values in ascending way and take

the maximal metric value that represents each weight percentile, e.g. 1%, 2%, ..., 100%

of the weight. This is equivalent to computing a density function, in which the x-axis

represents the weight ratio (0-100%), and the y-axis the metric scale. As example,

according to the benchmark used in this dissertation, for 60% of the overall code the

maximal McCabe value is 2.

6. Thresholds derivation: thresholds are derived by choosing the percentage of the

overall code we want to represent. For instance, to represent 90% of the overall code

for the McCabe metric, the derived threshold is 14. This threshold is meaningful, since

not only it means that it represents 90% of the code of a benchmark of systems, but it

also can be used to identify 10% of the worst code.

As a final example, SIG uses thresholds derived by choosing 70%, 80% and 90%

of the overall code, which yields thresholds 6, 8 and 14, respectively. This allows

to identify code to be fixed in long-term, medium-term and short-term, respectively.

Furthermore, these percentiles are used in risk profiles to characterize code according

to four categories: low risk [0%, 70%], moderate risk]70%, 80%], high risk]80%, 90%]

and very-high risk]90%, 100%].

An analysis of these steps is presented in Section 2.4.

2.4 Analysis of the methodology steps

The methodology introduced in Section 2.3 makes two major decisions: weighting

by size, and using relative size as weight. This section, provides thorough explana-

tions based on data analysis about these decisions that are a fundamental part of the

methodology. The representativeness of the derived thresholds is also investigated.

Section 2.4.1 introduces the statistical analysis and plots used throughout the dis-

28 2 Benchmark-based Derivation of Risk Thresholds

(a) Histogram (b) Quantiles

Figure 2.3: McCabe distribution for Vuze system depicted with a histogram and a quantile plot.

sertation. Section 2.4.2 provides a detailed explanation about the effect of weighting

by size. Section 2.4.3 shows the importance of the use of relative size when aggre-

gating measurements from different systems. Finally, Section 2.4.4 provides evidence

of the representativeness of the derived thresholds by applying the thresholds to the

benchmark data and checking the results. Variants and threats are discussed later in

Section 2.5.

2.4.1 Background

A common technique to visualize a distribution is to plot a histogram. Figure 2.3a

depicts the distribution of the McCabe metric for the Vuze system. The x-axis repre-

sents the metric values and the y-axis represents the number of methods that have such

a metric value (frequency). Figure 2.3a allows us to observe that more than 30.000

methods have a McCabe value ≤ 10 (the frequency of the first bin is 30.000).

Histograms, however, have several shortcomings. The choice of bins affects the

shape of the histogram possibly causing misinterpretation of data. Also, it is difficult

to compare the distributions of two systems when they have different sizes since the

y-axis can have significantly different values. Finally, histograms are not very good to

2.4 Analysis of the methodology steps 29

represent the bins with lower frequency.

To overcome these problems, an alternative way to examine a distribution of val-

ues is to plot its Cumulative Density Function (CDF) or the CDF inverse, the Quan-

tile function. Figure 2.3b depicts the distribution of the McCabe values for the Vuze

system using a Quantile plot. The x-axis represents the percentage of observations

(percentage of methods) and the y-axis represents the McCabe metric values. The use

of the quantile function is justifiable, because we want to determine thresholds (the

dependent variable, in this case the McCabe values) as a function of the percentage

of observations (independent variable). Also, by using the percentage of observations

instead of the frequency, the scale becomes independent of the size of the system mak-

ing it possible to compare different distributions. In Figure 2.3b we can observe that

96% of methods have a McCabe value ≤ 10.

Despite that histograms and quantile plots represent the same information, the lat-

ter allows for better visualization of the full metric distribution. Therefore, in this

dissertation all distributions will be depicted with quantile plots.

All the statistical analysis and charts were done with the R tool [84].

2.4.2 Weighting by size

Figure 2.4a depicts the McCabe metric distribution for the Vuze system already pre-

sented in Figure 2.3b in which we annotated the quantiles for the first three changes

of the metric value. We can observe that up to the 66% quantile the McCabe value

is 1, i.e., 66% of all methods have a metric value of 1. Up to the 77% quantile, the

McCabe values are smaller than or equal to 2 (77 − 66 = 11% of the methods have a

metric value of 2), and up to the 84% quantile have a metric value smaller than or equal

to 3. Only 16% of methods have a McCabe value higher than 3. Hence, Figure 2.4a

shows that the metric variation is concentrated in just a small percentage of the overall

methods.

Instead of considering every method equally (every method has a weight of 1),

30 2 Benchmark-based Derivation of Risk Thresholds

(a) Non-weighted (b) Weighted

Figure 2.4: McCabe distribution for the Vuze system (non-weighted and weighted by SLOC) annotated
with the x and y values for the first three changes of the metric.

SLOC will be used as its weight. Figure 2.4b depicts the weighted distribution of the

McCabe values for the Vuze system. Hence, the x-axis instead of representing the

percentage of methods will now represent the percentage of SLOC.

Comparing Figure 2.4a to Figure 2.4b, we can observe that in the weighted distri-

bution the variation of the McCabe values starts much earlier. The first three changes

for the McCabe values are at 18%, 28% and 36% quantiles.

In sum, for the Vuze system, both weighted and non-weighted plots show that large

McCabe values are concentrated in just a small percentage of code. However, while

in the non-weighted distribution the variation of McCabe values happen in the tail of

the distribution (66% quantile), for the weighted distribution the variation starts much

earlier, at the 18% quantile.

Figure 2.5 depicts the non-weighted and weighted distributions of the McCabe

metric for 100 projects. Each line represents an individual system. Figures 2.5a

and 2.5c depict the full McCabe distribution and Figures 2.5b and 2.5d depict a cropped

version of the previous, restricted to quantiles at least 70% and to a maximal McCabe

value of 100.

When comparing Figure 2.4 to Figure 2.5 we observe that, as seen for the Vuze

2.4 Analysis of the methodology steps 31

(a) All quantiles (b) All quantiles (cropped)

(c) All weighted quantiles (d) All weighted quantiles (cropped)

Figure 2.5: Non-weighted and weighted McCabe distributions for 100 projects of the benchmark.

system, weighting by SLOC emphasizes the metric variability.

Hence, weighting by SLOC not only emphasizes the difference among methods

in a single system, but also make the differences among systems more evident. A

discussion about the correlation of the SLOC metric with other metrics and its impact

on the methodology presented in Section 2.5.1.

2.4.3 Using relative size

To derive thresholds it is necessary to summarize the metric, i.e., to aggregate the

measurements from all systems.

32 2 Benchmark-based Derivation of Risk Thresholds

(a) Full distribution (b) Cropped distribution

Figure 2.6: Summarized McCabe distribution. The line in black represents the summarized McCabe
distribution. Each gray line depicts the McCabe distribution of a single system.

To summarize the metric, first a weight normalization step is performed. For each

method, the percentage of SLOC that it represents in the system is computed, i.e.,

the method’s SLOC is divided by the total SLOC of the system it belongs to. This

corresponds to Step 2 in Figure 2.2 where upon all measurements can be used together.

Conceptually, to summarize the McCabe metric, one takes all density function

curves for all systems and combine them into a single curve. Performing weight nor-

malization ensures that every system is represented equally in the benchmark, limiting

the influence of bigger systems over small systems in the overall result.

Figure 2.6 depicts the density functions of the summarized McCabe metric (plotted

in black) and the McCabe metric for all individual systems (plotted in gray), also

shown in Figure 2.5d. As expected, the summarized density function respects the

shape of individual system’s density function.

A discussion of alternatives to summarize metric distributions will be presented in

Section 2.5.2.

2.4 Analysis of the methodology steps 33

(a) Distribution mean differences (b) Risk profiles variability

Figure 2.7: McCabe distribution variability among benchmark systems.

2.4.4 Choosing percentile thresholds

We have observed in Figures 2.5 and 2.6 that systems differentiate the most in the last

quantiles. This section provides evidence that it is justifiable to choose thresholds in

the tail of the distribution and that the derived thresholds are meaningful.

Figure 2.7a quantifies the variability of the McCabe distribution among systems.

The full line depicts the McCabe distribution (also shown in Figure 2.6) and the dashed

lines depict the median absolute deviation (MAD) above the distribution and below the

distribution. The MAD is a measure of variability defined as the mean of the absolute

differences between each value and a central point. Figure 2.7a shows that both the

MAD above and below the curve increase rapidly towards the last quantiles (it has a

similar shape as the metric distribution itself). In summary, from Figure 2.7a, we can

observe that the variability among systems is concentrated in the tail of the distribu-

tion. It is important to take this variability into account when choosing a quantile for

deriving a threshold. Choosing a quantile for which there is very low variability (e.g.

20%) will result in a threshold unable to distinguish quality among systems. Choosing

a quantile for which there is too much variability (e.g. 99%) might fail to identify code

in many systems. Hence, to derive thresholds it is justifiable to choose quantiles from

34 2 Benchmark-based Derivation of Risk Thresholds

the tail of the distribution.

As part of our methodology it was proposed the use of the 70%, 80% and 90%

quantiles to derive thresholds. For the McCabe metric, using the benchmark, these

quantiles yield to thresholds 6, 8 and 14, respectively.

Now we are interested to investigate if the thresholds are indeed representative of

such percentages of code. For this, risk profiles for each system in the benchmark

were computed. For low risk, it was consider the SLOC for methods with McCabe

between 1–6, for moderate risk 7–8, for high risk 9–14, and for very-high risk > 14.

This means that for low risk we expect to identify around 70% of the code, and for

each of the other risk categories 10% more. Figure 2.7b depicts a box plot for all

systems per risk category. The x-axis represents the four risk categories, and the y-

axis represents the percentage of volume (SLOC) of each system per risk category.

The size of the box is the interquartile range (IQR) and is a measure of variability.

The vertical lines indicate the lowest/highest value within 1.5 IQR. The crosses in the

charts represent systems whose risk category is higher than 1.5 IQR. In the low risk

category, we observe large variability which is explained because it is considering a

large percentage of code. For the other categories, from moderate to very-high risk,

variability increases. This increase of variability is to be expected, since the variability

of the metric is higher for the last quantiles of the metric. Only a few crosses per risk

category exist, which indicates that most of the systems are represented by the box

plot. Finally, for all risk categories, look at to the line in the middle of the box, the

median of all observations, to observe that indeed this meets our expectations. For

low risk category, the median is near 70%, while for other categories the median is

near 10% which indicates that the derived thresholds are representative of the chosen

percentiles.

Summing up, the box plot shows that the derived thresholds allow for observing

differences among systems in all risk categories. As expected, around 70% of the code

is identified in the low risk category and around 10% is identified for the moderate,

high and very-high risk categories since the boxes are centered around the expected

2.5 Variants and threats 35

percentages for each category.

2.5 Variants and threats

This section presents a more elaborated discussion and alternatives taken into account

regarding two decisions in the methodology: weighting with size, and using relative

size. Issues such as regarding removal of outliers and other issues affecting metric

computation are also discussed.

Section 2.5.1 addresses the rationale behind using SLOC to weight the metric and

possible risks due to metric correlation. Section 2.5.2 discusses the need for aggregat-

ing measurements using relative weight, and discusses possible alternatives to achieve

similar results. Section 2.5.3 explains how to identify outliers and to find criteria to

remove them. Finally, Section 2.5.4 explains the impact of using different tools or

configurations when deriving metrics.

2.5.1 Weight by size

A fundamental part of the methodology is the combination of two metrics. More

precisely, a metric for which thresholds are going to be derived with a size metric such

as e.g. SLOC. In some contexts, particular attention should be paid when combining

two metrics. For instance, when designing a software quality model it is desirable

that each metric measures a unique attribute of the software. When two metrics are

correlated it is often the case that they are measuring the same attribute. In this case

only one should be used. We acknowledge such correlation between McCabe and

SLOC. The Spearman correlation value between McCabe and SLOC for our data set

(100 systems) is 0.779 with very-high confidence (p-value < 0.01).

The combination of metrics has a different purpose in the methodology. SLOC is

regarded as a measure of size and used to improve the representation of the part of

the system we are characterizing. Instead of assuming every unit (e.g. method) of

36 2 Benchmark-based Derivation of Risk Thresholds

(a) Effect of large systems in aggregation (b) Mean, Median as alternatives to Rela-
tive Weight

Figure 2.8: Effect of using relative weight in the presence of large systems and comparison with alter-
natives.

the same size, we take its size in the system measured in SLOC. Earlier on, it was

emphasized that the variation of the metric allows for a more clear distinction among

software systems. Hence, the correlation among SLOC and other metrics poses no

problem.

The SLOC metric was measured considering physical lines of code, however log-

ical lines of code could also been used. Similar results are to be expected in any case,

since these metrics are highly correlated. Although other SLOC metrics could be con-

sidered, the study of such alternatives being deferred to future work.

2.5.2 Relative weight

Section 2.4.3 advocates the use of relative weight in aggregating measurements from

all systems. The rationale is that, since all the systems have similar distributions, the

overall result should equally represent all systems. If we consider all measurements

together without applying any aggregation technique the larger systems (systems with

a bigger SLOC) would take over and influence the overall result.

Figure 2.8 compares the influence of size between simply aggregating all measure-

2.5 Variants and threats 37

ments together (black dashed line) and using relative weight (black full line) for the

Vuze and JMule McCabe distributions (depicted in gray). Vuze has about 330 thousand

SLOC, while JMule has about 40 thousand SLOC. In Figure 2.8a, were all measure-

ments were simply added together, we can observe that the dashed line is very close to

the Vuze system. This means that the Vuze system has a strong influence in the overall

result. In comparison, Figure 2.8b shows that using the relative weight results in a

distribution in the middle of the Vuze and JMule distributions as depicted in the full

line. Hence, the use of relative weight is justifiable since it ensures size independence

and takes into account all measurements in equal proportion.

As alternative to the use of relative weight, the mean/median quantile for all sys-

tems could be considered. With these techniques, the aggregated distribution would be

computed by taking the mean/median of all distributions for each quantile. Figure 2.8b

compares relative weight to mean quantile and median quantile. As can be observed,

all distribution shapes are similar, thought the thresholds for the 70%, 80% and 90%

quantiles would be different. However, there are reasons that point that use of the

mean/median quantiles is not indicated. Mean is a good measure of central tendency

if the underneath distribution is normal. Shapiro-Wilk test [65] for normality was ap-

plied for all quantiles and verified that the distribution is not normal. Additionally, the

mean is sensitive to extreme values, and would favor higher values when aggregating

measurements which is a non-desirable property. Finally, by using the mean/median

the metric maximal value will not correspond to the maximal observable value, hiding

information about the metric distribution. For the benchmark, the maximal McCabe

value is 911. However, from Figure 2.8b, for the mean and median, the metric values

for the 100% quantile (maximal value of the metric) are much lower.

2.5.3 Outliers

In statistics, it is common practice to check for the existence of outliers. An outlier

is an observation whose value is distant relative to a set of observations. According

38 2 Benchmark-based Derivation of Risk Thresholds

(a) McCabe distribution with an outlier (b) McCabe characterization with and
without an outlier

Figure 2.9: Example of outliers and outlier effect on the McCabe characterization.

to Mason et al. [65], outliers are relevant because they can obfuscate the phenomena

being studied or may contain interesting information that is not contained in other

observations. There are several strategies to deal with outliers: observations removal,

or use of outlier-resistant techniques.

When preparing the SIG benchmark, the metric distribution among all systems

were compared. Figure 2.9a depicts the distribution of the McCabe metric for our data

set of 100 systems (in gray) plus one outlier system (in black) that was not included in

the benchmark. Clearly, the outlier system has a metric distribution radically different

from the other systems.

Figure 2.9b depicts the impact of the outlier on summarizing the McCabe metric.

The full line represents the curve that summarizes the McCabe distribution for 100

systems, previously shown in Figure 2.6, and the dashed line represents the result of

the 100 systems plus the outlier. Figure 2.9b, shows that the presence of the outlier

has limited influence in the overall result, meaning that the methodology has resilience

against outliers.

2.6 Thresholds for SIG’s quality model metrics 39

2.5.4 Impact of the tools/scoping

The computation of metric values and metric thresholds can be affected by the mea-

surement tool and by scoping.

Different tools implement different variations of the same metrics. Taking as ex-

ample the McCabe metric, some tools implement the Extended McCabe metric, while

others might implement the Strict McCabe metric. As the values from these met-

rics can be different, the computed thresholds can also be different. To overcome this

problem, the same tool should be used both to derive thresholds and to analyze systems

using the derived thresholds.

The configuration of the tool with respect to which files to include or exclude in the

analysis (scoping) also influences the computed thresholds. For instance, the existence

of unit test code, which contains very little complexity, will result in lower threshold

values. On the other hand, the existence of generated code, which is normally of

very high complexity, will result in higher threshold values. Hence, it is extremely of

crucial importance to know which data is used for calibration. As previously stated, for

deriving thresholds we removed both generated code and test code from our analysis.

2.6 Thresholds for SIG’s quality model metrics

Thus far, the McCabe metric was used as case study. To further investigate the appli-

cability of the method to other metrics, its analysis was repeated for the SIG quality

model metrics. The conclusion was that the method can be successfully applied to

derive thresholds for all these metrics.

Table 2.2 summarizes the quantiles adopted and the derived thresholds for all the

metrics from the SIG quality model.

Figures 2.10, 2.11, 2.12, and 2.13 depict the distribution and the box plot per risk

category for unit size (method size in SLOC), unit interfacing (number of parameters

per method), module inward coupling (file fan-in), and module interface size (number

40 2 Benchmark-based Derivation of Risk Thresholds

Table 2.2: Metric thresholds and adopted quantiles for the SIG quality model metrics.

Metric / Quantiles 70% 80% 90%

Unit complexity 6 8 14
Unit size 30 44 74
Module inward coupling 10 22 56
Module interface size 29 42 73

Metric / Quantiles 80% 90% 95%

Unit interfacing 2 3 4

(a) Metric distribution (b) Box plot per risk category

Figure 2.10: Unit size (method size in SLOC).

(a) Metric distribution (b) Box plot per risk category

Figure 2.11: Unit interface (number of parameters).

of methods per file), respectively.

The distribution plots shows that, as for McCabe, for all metrics both the highest

values and the variability among systems is concentrated in the last quantiles.

2.6 Thresholds for SIG’s quality model metrics 41

(a) Metric distribution (b) Box plot per risk category

Figure 2.12: Module Inward Coupling (file fan-in).

(a) Metric distribution (b) Box plot per risk category

Figure 2.13: Module Interface Size (number of methods per file).

As for the McCabe metric, for all metrics it was verified if the thresholds were

representative of the chosen quantiles. The results are again similar. For all metrics

except unit interfacing metric, the low risk category is centered around 70% of the

code and all other categories around 10%. For the unit interfacing metric, since the

variability is relative small until the 80% quantile, 80%, 90% and 95% quantiles were

used instead to derive thresholds. For this metric, the low risk category is around

80%, the moderate risk is nearly 10% and the other two around 5%. Hence, from the

box plots we can observe that the thresholds are indeed recognizing code around the

defined quantiles.

42 2 Benchmark-based Derivation of Risk Thresholds

2.7 Related Work

This section reviews previous attempts to define metric thresholds and compares it to

the method proposed in this chapter. Works where thresholds are defined by experience

are first discussed. Then, a comparison with other methods that derive thresholds based

on data analysis is presented. An overview about approaches to derive thresholds based

on error information and from cluster analysis is made. Finally, techniques to analyze

and summarize metric distributions are discussed.

2.7.1 Thresholds derived from experience

Many authors have defined metric thresholds according to their experience. For exam-

ple, for the McCabe metric 10 was defined as the threshold [67], and for the NPATH

metric 200 was defined as the threshold [68]. Above these values, methods should

be refactored. For the Maintainability Index metric, 65 and 85 are defined as thresh-

olds [23]. Methods whose metric values are higher than 85 are highly-maintainable,

between 85 and 65 are moderately maintainable and, smaller than 65 are difficult to

maintain.

Since these values rely on experience, they are difficult to reproduce or generalize.

Also, lack of scientific support leads to disputes about the values. For instance, some-

one dealing with small and low complexity systems would suggest smaller thresholds

for complexity than someone dealing with very large and complex systems.

In contrast, having a methodology to define metric thresholds enables reproducibil-

ity and validation of results.

2.7.2 Thresholds from metric analysis

Erni et al. [30] propose the use of mean (µ) and standard deviation (σ) to derive a

threshold T from project data. A threshold T is calculated as T =µ+ σ or T =µ− σ

when high or low values of a metric indicate potential problems, respectively. This

2.7 Related Work 43

methodology is a common statistical technique which, when data are normally dis-

tributed, identifies 16% of the observations. However, Erni et al. do not analyze the

underlying distribution, and only apply it to one system, albeit using three releases.

The problem with the use of this method is that metrics are assumed to be nor-

mally distributed without justification, thus compromising its validity in general. Con-

sequently, there is no guarantee that 16% of observations will be identified as prob-

lematic code. For metrics with high values and high variability, this methodology will

identify less than 16% of code, while for metrics with low values or low variability, it

will identify more than 16% of code.

In contrast, the method proposed in this chapter does not assume data normality.

Moreover, it has been applied to 100 projects, both proprietary and OSS.

French [36] also proposes a formula based on the mean (µ) and standard deviation

(σ) but using additionally the Chebyshev’s inequality theorem.

A metric threshold T , whose validity is not restricted to normal distributions, is

calculated as T = µ+k×σ, where k is the number of standard deviations. According to

Chebyshev’s theorem, for any distribution 1/k2 is the maximal portion of observations

outside k standard deviations. As example, to identify a 10% maximum of code, we

determine the value of k by resolving 0.1 = 1/k2.

However, French’s method divides the Chebyshev’s formula by two, which is only

valid for two-tailed symmetric distributions. The assumption of two-tailed symmetric

distributions is not justified. For one tailed distributions, the Cantelli’s formula, 1/(1+

k2), should have been used instead.

Additionally, this formula is sensitive to large numbers or outliers. For metrics

with high range or high variation, this technique will identify a smaller percentage of

observations than its theoretical maximum.

In contrast, the proposed method derives thresholds from benchmark data and is

resilient to high variation of data outliers. Also, while French applies his technique to

eight Ada95 and C++ systems, the proposed methods uses 100 Java and C# systems.

44 2 Benchmark-based Derivation of Risk Thresholds

2.7.3 Thresholds using error models

Shatnawi et al. [79] investigate the use of the Receiver-Operating Characteristic (ROC)

method to identify thresholds for predicting the existence of bugs in different error

categories. They perform an experiment using the Chidamber and Kemerer (CDK)

metrics [22] and apply the technique to three releases of Eclipse.

Although Shatnawi et al. were able to derive thresholds to predict errors, there are

two drawbacks in their results. First, the methodology does not succeed in deriving

monotonic thresholds, i.e., lower thresholds were derived for higher error categories

than for lower error categories. Second, for different releases of Eclipse, different

thresholds were derived.

In comparison, the proposed methodology is based only in metric distribution anal-

ysis, it guarantees monotonic thresholds and the addition of more systems causes only

negligible deviations.

Benlarbi et al. [14] investigate the relation of metric thresholds and software fail-

ures for a subset of the CDK metrics using linear regression. Two error probability

models are compared, one with threshold and another without. For the model with

threshold, zero probability of error exists for metric values below the threshold. The

authors conclude that there is no empirical evidence supporting the model with thresh-

old as there is no significant difference among the models.

El Eman et al. [29] argue that there is no optimal class size based on a study com-

paring class size and faults. The existence of an optimal size is based on the Goldilocks

conjecture which states that the error probability of a class increases for a metric values

higher or lower a specific threshold (resembling a U-shape).

The studies of Benlarbi et al. [14] and El Eman et al. [29] show that there is no

empirical evidence for the threshold model used to predict faults. However, these

results are only valid for the specific error prediction model and for the metrics the

authors took into account. Other models can, potentially, give different results.

In contrast to using errors to derive thresholds, the proposed method derives mean-

2.7 Related Work 45

ingful thresholds which represent overall volume of code from a benchmark of sys-

tems.

2.7.4 Thresholds using cluster techniques

Yoon et al. [92] investigate the use of the K-means Cluster algorithm to identify outliers

in the data measurements.

Outliers can be identified by observations that appear either in isolated clusters

(external outliers), or by observations that appear far away from other observations

within the same cluster (internal outliers). However, this algorithm suffers from several

shortcomings: it requires an input parameter that affects both the performance and

the accuracy of the results; the process of identifying the outliers is manual; after

identifying outliers the algorithm should be executed again; if new systems are added

to the sample the thresholds might change significantly.

In contrast, the accuracy of the proposed method is not influenced by input param-

eters, it is automatic and it is stable (the addition of more systems results only in small

variation).

2.7.5 Methodologies for characterizing metric distribution

Chidamber and Kemerer [22] use histograms to characterize and analyze data. For

each of their 6 metrics, they plot histograms per programming language to discuss

metric distribution and spot outliers in two C++ projects and one Smaltalk project.

Spinellis [82] compares metrics of four operating system kernels: Windows, Linux,

FreeBSD and OpenSolaris. For each metric, box plots of the four kernels are put

side-by-side showing the smallest observation, lower quantile, median, mean, higher

quantile, highest observation and identify outliers. The box-plots are then analyzed by

the author in a way which associates ranks, + or −, to each kernel. However, as the

author states, ranks are given subjectively.

46 2 Benchmark-based Derivation of Risk Thresholds

Vasa et al. [87] propose the use of Gini coefficients to summarize a metric distri-

bution across a system. Their analysis of the Gini coefficient for 10 class-level metrics

using 50 Java and C# systems reveals that most of the systems have common values.

Moreover, higher Gini values indicate problems and, when analyzing subsequent re-

leases of source code, a difference higher than 0.04 indicates significant changes in the

code.

Finally, several studies show that different software metrics follow power law dis-

tributions [24, 62, 89]. Concast et al. [24] show that for a large Smalltalk system most

Chidamber and Kemerer metrics [22] follow power laws. Louridas et al. [62] show that

the dependencies of different software artifacts also follow power laws. Wheeldon et

al. [89] show that different class relationships follow power laws distributions.

All such data analyses studies clearly demonstrate that metrics do not follow nor-

mal distributions, invalidating the use of any statistical technique assuming a normal

distribution. However the same studies fall short in concluding how to use these distri-

butions, and the coefficients of the distributions, to establish baseline values to judge

systems. Moreover, should such baseline values be established it would not be possible

to identify the code responsible for deviations (there is no traceability of results).

In contrast, the method proposed in this chapter is focused on defining thresholds

with direct application to differentiate software systems, judge quality and pinpoint

problems.

2.8 Summary

Contributions A novel method for deriving software metric thresholds was pro-

posed. The used strategy improves over others by fulfilling three fundamental require-

ments: (i) it is based on data analysis from a representative set of systems (bench-

mark); (ii) it respects the statistical properties of the metric, such as metric scale and

distribution; (iii) it is repeatable, transparent and straightforward to carry out. These

requirements were achieved by aggregating measurements from different systems us-

2.8 Summary 47

ing relative size weighting. The proposed method was applied to a large set of systems

and thresholds were derived by choosing specific percentages of overall code of the

benchmark.

Discussion A new method for deriving thresholds was explained in detail using as

example the McCabe metric and a benchmark of 100 OO systems (C# and Java), both

proprietary and OSS. it was shown that the distribution of the metric is preserved and

that the method is resilient to the influence of large systems or outliers. Thresholds

were derived using 70%, 80% and 90% quantiles and checked against the benchmark to

show that thresholds indeed represent these quantiles. The analysis of these results was

replicated with success using four other metrics from the SIG quality model. Variants

in the method were analyzed as well as threats to the overall methodology.

The method has proven effective in deriving thresholds for all the metrics of the

SIG quality model. For unit interfacing the 80%, 90% and 95% triple was considered

since the metric variability only increases much later than for other metrics whose

thresholds are 70%, 80% and 90%. For all metrics, the method shows that the derived

thresholds are representative of the chosen quantiles.

Industrial applications Thresholds derived with the method introduced in this chap-

ter have been successfully put into practice by SIG for software analysis [41], bench-

marking [26] and certification [27]. Thresholds that were initially defined based on

expert opinion have been replaced by the derived thresholds and have been used with

success.

This method has also been applied to other metrics. Luijten et al. [63] found em-

pirical evidence that systems with higher technical quality have higher issue solving

efficiency. The thresholds used for classifying issue efficiency were derived using the

methodology described in this chapter.

48 2 Benchmark-based Derivation of Risk Thresholds

Chapter 3

Benchmark-based Aggregation of

Metrics to Ratings

Software metrics have been proposed as instruments, not only to guide individual de-

velopers in their coding tasks, but also to obtain high-level quality indicators for entire

software systems. Such system-level indicators are intended to enable meaningful

comparisons among systems or to serve as triggers for a deeper analysis.

Common methods for aggregation range from simple mathematical operations (e.g.

addition [58, 22] and central tendency [82, 23]) to more complex techniques such as

distribution fitting [24, 89, 62], wealth inequality metrics (e.g. Gini coefficient [87] and

Theil Index [78]) and custom formulae [50]. However, these methodologies provide

little guidance for interpreting the aggregated results and tracing back to the individual

measurements. To resolve such limitations, Heitlager et al. [41] proposed a two-stage

rating approach where (i) measurement values are compared to thresholds and sum-

marized into risk profiles, and (ii) risk profiles are mapped to ratings.

This chapter extends the technique for deriving risk thresholds from benchmark

data, presented in Chapter 2, into a methodology for benchmark-based calibration of

two-stage aggregation of metrics into ratings. The core algorithm behind this process

will be explained, together with a demonstration of its application to various metrics

49

50 3 Benchmark-based Aggregation of Metrics to Ratings

of the Software Improvement Group (SIG) quality model, using a benchmark of 100

software systems. The sensitivity of the algorithm to the underlying data will also be

addressed.

3.1 Introduction

Software metrics have been proposed to analyze and evaluate software by quantita-

tively capturing a specific characteristic or view of a software system. Despite much

research, the practical application of software metrics remains challenging.

One of the main problems with software metrics is how to aggregate individual

measurements into a single value capturing information of the overall system. This is

a general problem, as noted by Concas et al. [24], since most metrics do not have a

definition at system-level. For instance, the McCabe metric [67] has been proposed

to measure complexity at unit level (e.g. method or function). The use of this metric,

however, can easily generate several thousands of measurements which will be difficult

to analyze in order to arrive to a judgement about how complex the overall system is.

Several approaches have been proposed for measurement aggregation but they suf-

fer from several drawbacks. For instance, mathematical addition is meaningless for

metrics such as e.g. Coupling between Object Classes [22]; central tendency measures

often hide underlying distributions; distribution fitting and wealth inequality measures

(e.g Gini factor [87] and Theil Index [78]) are hard to interpret and their result difficult

to trace back to the metric measurements; custom formulae are hard to validate. In

sum, these approaches lack the ability of aggregating measurements into a meaningful

result that: i) is easy to explain and interpret; ii) is representative of real systems allow-

ing comparison and ranking, and iii) captures enough information to enable traceability

to individual measurements allowing to pinpoint problems.

An alternative approach to aggregate metrics is to use thresholds to map measure-

ments to a particular scale. This was first introduced by Heitlager et al. [41] and later

demonstrated by Correia and Visser [27] to certify software systems. Measurements

3.1 Introduction 51

are aggregated to a star-rating in a two-step process. First, thresholds on metrics are

used to aggregate individual measurements into risk profiles. Second, rating thresholds

are used to map risk profiles into a 5-point rating scale. When this method of aggre-

gation was proposed in [41] and [27] both 1st and 2nd-level thresholds were based on

experience. Later, a technique for deriving metric thresholds (1st-level) from bench-

mark data was proposed by the author and others in [6] and explained in Chapter 2.

In the present chapter, a methodology is proposed to calibrate rating thresholds (2nd-

level).

This approach for aggregating individual measurements into an N -point rating

scale based on thresholds relies on a novel algorithm that calibrates a set of thresholds

per rating based on benchmark data, chained with another algorithm which calculates

ratings based on those thresholds. The algorithm is applied to all metrics of the SIG

quality model using an industry-based benchmark of 100 systems and an analysis of

the sensitivity of these thresholds to the underlying data is performed. Justification for

this algorithm is provided and various choices made in its design are discussed. The

ratings are easy to explain and interpret, representative of an industry benchmark of

software systems and enable traceability back to individual measurements.

This chapter is structured as follows. Section 3.2 provides a high-level overview

of the process, explaining how measurements are aggregated to a rating, how the rat-

ing can be interpreted and its meaning traced back to individual measurements. Sec-

tion 3.3 defines both the algorithm to calibrate rating thresholds and the algorithm that

uses the thresholds to calculate ratings. Section 3.4 provides further explanation of

the calibration algorithm and investigates possible alternatives. Section 3.5 demon-

strates the applicability of rating calibration to the metrics of the SIG quality model

using the benchmark already introduced in Section 1.4. Section 3.6 provides an anal-

ysis of algorithm stability with respect to the used data. Section 3.7 discusses related

methodologies to aggregate measurements. Finally, Section 3.8 presents a summary

of contributions.

52 3 Benchmark-based Aggregation of Metrics to Ratings

McCabe

2nd level
aggregation

Low risk: 74.2%
Moderate risk: 7.1%

High risk: 8.8%
Very-high risk: 9.9%

Benchmark

risk profiles
thresholds derivation

ratings thresholds
calibration

1st-level
aggregation

HHHII (2.68)

Risk profile

Moderate High

-

Rating

-

10.6%HHHII

16.7%39.1%HHIII

16.9%
HHHHH

-
29.8%

9.9%
Very-high

HIIII

6.7%HHHHI

3.3%17.9%

23.8%31.3%
23.4%

Cumulative rating thresholds

Low risk:]0,6]
Moderate risk:]6,8]

High risk:]8,14]
Very-high risk:]14,∞ [

Risk thresholds

Rating

Figure 3.1: Process overview of the aggregation of code-level measurements to system-level ratings,
using as example the McCabe complexity metric for ArgoUML 0.29.4. In the 1st-level aggregation,
thresholds are used to define four ranges and classify measurements into four risk categories: Low,
Moderate, High and Very-high. The categorized measurements will then be used to create a risk profile,
which represents the percentage of volume of each risk category. In the 2nd-level aggregation, risk pro-
files are aggregated into a star-rating using 2nd-level thresholds (depicted with a table). The ArgoUML
rating is 3 out of 5 stars (or 2.68 stars in a continuous scale). 1st-level thresholds are derived from a
benchmark using the technique explained in Chapter 2. The calibration of 2nd-level thresholds from a
benchmark is explained in this chapter.

3.2 Approach

Figure 3.1 presents an overview of the approach to aggregate measurements to ratings

using benchmark-based thresholds. This section explains how to aggregate measure-

ments to ratings using thresholds and trace back individual measurements from ratings.

The McCabe metric was chosen as example since it is a very well known source code

metric. ArgoUML was chosen since it is, probably, one of the most studied projects in

software engineering research.

3.2 Approach 53

3.2.1 Aggregation of measurements to ratings

The aggregation of individual measurements to ratings is a two-level process based on

two types of thresholds, as illustrated in Figure 3.1.

First, individual measurements are aggregated to risk profiles using metric thresh-

olds [41, 6]. A risk profile represents the percentage of overall code that falls into

each of the four risk categories: Low, Moderate, High and Very-high. Throughout this

work, we will refer to the aggregation of measurements to risk profiles as 1st-level ag-

gregation, and to the thresholds used in this process as 1st-level thresholds. 1st-level

thresholds can be derived from a benchmark by a methodology previously presented

in Chapter 2.

Second, risk profiles are aggregated to a 5-point star scale using rating thresholds.

Each rating is calibrated to represent a specific percentage of systems in the bench-

mark. Throughout this work, we will refer to the aggregation of risk profiles to a star

rating as 2nd-level aggregation, and to the thresholds used in this process as 2nd-level

thresholds. The calibration of 2nd-level thresholds from a benchmark will be intro-

duced in Section 3.3.

1st-level aggregation

The aggregation of individual measurements to risk profiles using 1st-level thresholds

is done by computing the relative size of the system that falls into each risk category.

Size is measured using the Source Lines of Code (SLOC) metric.

Since a risk profile is composed of four categories, we need four intervals to clas-

sify all measurements. The intervals defining these categories for the McCabe metrics

are shown in Figure 3.1 and are represented using the ISO/IEC 80000–2 notation [48].

These intervals were defined with three thresholds, 6, 8 and 14, representing the upper

bound of the Low, Moderate and High risk categories, respectively. The thresholds

were derived with the methodology presented in Chapter 2 from a benchmark of 100

systems, representing 70%, 80% and 90% of the benchmark code, respectively.

54 3 Benchmark-based Aggregation of Metrics to Ratings

To compute a risk profile for the ArgoUML system, we use the intervals shown

in Figure 3.1 to categorize all the methods into four risk categories. Then, for each

category we sum the size of all those methods and then divide them by the overall size

of the system, resulting in the relative size (or percentage) of the system that falls into

each risk category. For instance, the Low risk category of ArgoUML is computed by

considering all methods that have a McCabe value that fall in the]0, 6] interval, i.e.,

all methods that have a McCabe value up to 6. Then, we sum the SLOC of all those

methods (95, 262) and divide by the overall size1 of ArgoUML (128, 316), resulting in

a total of 74.2%. The risk profile for ArgoUML is depicted in Figure 3.1 containing

74.2% of code in the Low risk, 7.1% for Moderate risk, 8.8% for High risk, and 9.9%

for Very-high risk.

2nd-level aggregation

The aggregation of risk profiles into a rating is done by determining the minimum

rating for which the cumulative relative size of all risk profile categories does not

exceed a set of 2nd-level thresholds.

Since we are using a 5-point star rating scale, a minimum of 4 sets of thresholds

defining the upper-bound are necessary to cover all possible risk profile values2. Each

set of thresholds defines the cumulative upper-boundaries for the Moderate, High and

Very-high risk categories. The cumulative upper-boundary for a category takes into

account the volume of code for that category plus all higher categories (e.g. the cumu-

lative upper-boundary for Moderate risk takes into account the percentage of volume

of the Moderate, High and Very-high categories of a risk profile). Note that, since

the cumulative Low risk category will always be 100% there is no need to specify

thresholds for it. Figure 3.1 shows a table containing the 2nd-level thresholds for the

McCabe metric, calibrated with the algorithm introduced in this chapter. These ratings

1For the analysis of ArgoUML only production code was considered - test code was not included in
these numbers since it hinders the overall complexity of the system.

2For an N -point scale a minimum of N − 1 sets of thresholds are needed.

3.2 Approach 55

were calibrated for a 5-point scale with a distribution 20–20–20–20–20, meaning that

each star represents equally 20% of the systems in the benchmark. The distribution of

the 2nd-level thresholds is an input of the calibration algorithm and will be detailed

later, in Section 3.3.

To determine the rating for ArgoUML, we first calculate the cumulative risk profile,

i.e., the cumulative relative size for the Moderate, High and Very-high risk categories.

This is done by considering the relative size of the each risk category plus all higher

categories, resulting in 25.8% for Moderate risk, 18.7% for High risk, and 9.9% for

the Very-high risk. These values are then compared to the McCabe rating thresholds,

shown in Figure 3.1, and a rating of 3 stars is obtained. Using an interpolated function

results in a rating value of 2.68. The rating for ArgoUML is depicted in Figure 3.1:

the stars in black depict the rating, and the stars in white represents the scale. Since

the rating thresholds were calibrated with a 20–20–20–20–20 distribution, a rating of

3 stars indicates that ArgoUML has average quality, meaning that there are 40% of

systems that are better and 40% of systems that are worse. The functions to calculate

ratings are defined in Section 3.3.2.

3.2.2 Ratings to measurements traceability

The traceability of the 3 star rating back to individual measurements is achieved by

using again the 2nd and 1st-level thresholds. This traceability is important not only

to be able to explain the rating, but also to gain information about potential problems

which can then be used to support decisions.

Let us then try to understand why ArgoUML rated 3 stars. This can be done by

comparing the values of the risk profile to the table defining the 2nd-level thresholds

presented in Figure 3.1. By focusing on the Very-high risk category, for instance, we

can see that ArgoUML has a total of 9.9% of code which is limiting the rating to 3 stars.

By looking at the intervals defining the 1st-level thresholds we can see that methods

with a McCabe value higher than 14 are considered Very-high risk. The use of 1st

56 3 Benchmark-based Aggregation of Metrics to Ratings

and 2nd-level thresholds allow us to identify the ArgoUML methods responsible for

limiting the ArgoUML rating to 3 stars, calling for further investigation to determine

if these methods are indeed problematic.

This traceability approach can also be used to support decision making. Let us

consider a scenario where we want to improve ArgoUML from a rating of 3 to 4 stars.

In order for ArgoUML to rate 4 stars, according to 2nd-level thresholds shown in Fig-

ure 3.1, it should have a maximum of 6.7% of the code in the Very-high risk category,

16.9% in High and Very-high risk categories, and 23.4% of code in Moderate, High

and Very-high risk categories. Focusing in the Very-high risk category, the ArgoUML

rating can improve by reducing the percentage of code in that category from 9.9% (cur-

rent value) to 6.7% (maximum allowed value). Hence, improving the ArgoUML rating

from 3 to 4 stars amounts to fixing 3.2% of the overall code. This can be achieved by

refactoring methods with a McCabe higher than 14 to a maximum McCabe value of

6. Of course, it might not be feasible to refactor such methods for having a maximum

McCabe value of 6. In this case, the rating will remain unchanged requiring extra

refactoring effort to reduce the code in the higher risk categories. For instance, if we

were only able to refactor 3.2% of the code classified as Very-high risk to High risk

(with a maximum McCabe value of 14), this would change the ArgoUML risk pro-

file in the following way: the Very-high risk category would decrease from 9.9% to

6.7%, and the High risk category would increase from 8.8% to 12%, while all other

categories remain unchanged. Although the percentage of code in the High risk cate-

gory increases, the cumulative value in the High risk is still the same3 as the code just

moves from Very-High to High risk, accounting for 18.7%. Since the cumulative value

in the High risk category is higher than the threshold for 4 stars (16.9%) the rating will

remain unchanged. The use of cumulative thresholds will be further justified in Sec-

tion 3.4.4. A higher rating can still be achieved, albeit with extra effort, by refactoring

code that is considered High risk into code that is considered Moderate risk.

3Not only the cumulative value of the High risk is the same, but also the cumulative value of all
lower risk categories will remain unchanged.

3.3 Rating Calibration and Calculation Algorithms 57

Algorithm 1 Ratings calibration algorithm for a given N-point partition of systems.
Require: riskprofiles : (Moderate×High× V eryHigh)∗, partitionN−1

1: thresholds ← []

2: ordered[Moderate] ← sort(riskprofiles.Moderate)
3: ordered[High] ← sort(riskprofiles.High)
4: ordered[V eryHigh] ← sort(riskprofiles.V eryHigh)

5: for rating = 1 to (N − 1) do
6: i ← 0

7: repeat
8: i ← i+ 1

9: thresholds[rating][Moderate] ← ordered[Moderate][i]
10: thresholds[rating][High] ← ordered[High][i]
11: thresholds[rating][V eryHigh] ← ordered[V eryHigh][i]

12: until distribution(riskprofiles, thresholds[rating]) ≥ partition[rating] or i =
length(riskprofiles)

13: index ← i

14: for all risk in (Moderate,High, V eryHigh) do
15: i ← index

16: done ← False

17: while i > 0 and not done do
18: thresholds.old ← thresholds

19: i ← i− 1
20: thresholds[rating][risk] ← ordered[risk][i]

21: if distribution(riskprofiles, thresholds[rating]) < partition[rating] then
22: thresholds ← thresholds.old

23: done ← True

24: end if
25: end while
26: end for
27: end for
28: return thresholds

3.3 Rating Calibration and Calculation Algorithms

In short, what the calibration algorithm does is to take the risk profiles for all systems

in a benchmark, and search for the minimum thresholds that can divide those systems

according to a given distribution (or system partition). This section provides the defini-

tion and explanation of the algorithm which calibrates thresholds for an N -point scale

58 3 Benchmark-based Aggregation of Metrics to Ratings

rating, and the algorithm to use such thresholds for ratings calculation.

3.3.1 Ratings calibration algorithm

The algorithm to calibrate N -point ratings is presented in Algorithm 1. It takes two

arguments as input: cumulative risk profiles for all the systems in the benchmark, and

a partition defining the desired distribution of the systems per rating. The cumulative

risk profiles are computed using the 1st-level thresholds, as specified before, for each

individual system of the benchmark. The partition, of size N − 1, defines the number

of systems for each rating (from the highest to the lowest rating). As example, for our

benchmark of 100 systems and a 5-point rating with uniform distribution, each rating

represents equally 20% of the systems and thus the partition is 20–20–20–20–20.

The algorithm starts, in line 1, by initializing the variable thresholds which will

hold the result of the calibration algorithm (the rating thresholds). Then, in lines 2–4,

each risk category of the risk profiles is ordered and saved as a matrix in the ordered

variable. The columns of the matrix will be the three risk categories and the lines will

represent the values for the risk categories of the benchmark. This matrix plays an

important role, since each position will be iterated in order to find thresholds for each

rating.

The main calibration algorithm, which executes for each rating, is defined in lines

5–27. The algorithm has two main parts: finding an initial set of thresholds that ful-

fills the desired number of systems for that rating (lines 7–12), and an optimization

part, which is responsible for finding the smallest possible thresholds for the three risk

categories (lines 13–26).

Finding an initial set of thresholds is done in lines 7–12. The index is incremented

by one for iterating through the ordered risk profiles (line 8). Then, thresholds are set

from the values of the ordered risk profiles for that index (lines 9–11). Two conditions

are verified (line 12): first if the current thresholds can identify at least as many systems

as specified for that specific rating; second, if the counter i is not out of bounds, i.e.,

3.3 Rating Calibration and Calculation Algorithms 59

if counter has not exceeded the total number of systems. What the first condition

does is to check if the combination of three thresholds allows to identify the specified

number of systems. However this condition is not sufficient to guarantee that all three

thresholds are as strict as possible.

To guarantee that all three thresholds are as strict as possible, the optimization part

(lines 13–26) is executed. In general, the optimization tries, for each risk category,

to use smaller thresholds while preserving the same distribution. The optimization

starts by saving the counter i containing the position of the three thresholds previously

found (line 13) which will be the starting point to optimize the thresholds of each

risk category. Then, for each risk category, the optimization algorithm is executed

(lines 14–26). The counter is initiated to the position of the three thresholds previously

found (line 15). The flag done, used to stop the search loop, is set to False (line 16).

Then, while the index i is greater than zero (the index does not reach the beginning

of the ordered list) and the flag is not set to true, it performs a search for smaller

thresholds (lines 17–25). This search first saves the previously computed thresholds

in the thresholds.old variable (line 18). Then, it decreases the counter i by one (line

19) and sets the threshold for the risk category currently under optimization (line 20).

If the intended distribution is not preserved (line 21), then it means that the algorithm

went one step to far. The current thresholds are replaced with the previously saved

thresholds thresholds.old (line 22) and the flag done is set to True to finalize the

search (line 23). If the intended distribution is still preserved, then the search continues.

The algorithm finishes (line 28) by returning, for each risk profile category, N − 1

thresholds. These thresholds define the rating maximum values for each risk category.

The lowest rating is attributed if risk profiles exceed the thresholds calibrated by the

algorithm.

60 3 Benchmark-based Aggregation of Metrics to Ratings

3.3.2 Ratings calculation algorithm

Ratings can be represented in both discrete and continuous scales. A discrete scale is

achieved by comparing the values of a risk profile to thresholds. A continuous scale is

achieved by using an interpolation function among the values of the risk profiles and

the lower and upper thresholds. Below, we will provide the algorithm and explanation

how to compute ratings for both scales.

Discrete scale

The calculation of a discrete rating, for an N -point scale, is done by finding the set

of minimum thresholds such that these thresholds are higher or equal to the values

of risk profiles, and then from the order of such thresholds deriving the rating. This

calculation is formally described as follows.

RPM×H×V H ×

��������������

TM1 TH1 TV H1

TM2 TH2 TV H2

.

TMN−1 THN−1 TV HN−1

��������������

� R

Meaning that a rating R ∈ {1, N}, is computed from a risk profile RP and a set of

N − 1 thresholds, such that:

R = N −min(IM , IH , IV H) + 1

The rating R is determined by finding the minimum index I of each risk profile cat-

egory, and then adjusting that value for the correct order. Since the thresholds are

placed in ascending order (from low values to higher values) representing ratings in

descending order (from higher rating to lower rating) we need to adjust the value of

the index to a rating. For instance, if the minimum index is 1 the rating should be N .

The index for each risk category is determined as follows:

3.3 Rating Calibration and Calculation Algorithms 61

IM = minI(RPM ≤ TMI)

IH = minI(RPH ≤ THI)

IV H = minI(RPV H ≤ TV HI)

The index for each risk category is determined by finding the position of the lowest

thresholds such that the value of the risk category is lower than or equal to the thresh-

old. For the case that all N − 1 thresholds are lower than the value in the risk category,

then the index will be equal to N .

Continuous scale

A continuous scale can be obtained using the linear interpolation function of Equa-

tion 3.1, which is parametric on the discrete rating and the lower and upper thresholds

for the risk profile:

s(v) = s0 + 0.5− (v − t0)
1

t1 − t0
(3.1)

where

s(v) Final continuous rating.

v Percentage of volume in the risk profile.

s0 Initial discrete rating.

t0 Lower threshold for the risk profile.

t1 Upper threshold for the risk profile.

The final interpolated rating R ∈ {0.5, N +0.5}, for N -point scale is then obtained by

taking the minimum rating of all risk categories, defined as follows:

R = min (s(RPM), s(RPH), s(RPV H))

62 3 Benchmark-based Aggregation of Metrics to Ratings

The choice of range from 0.5 to N + 0.5 is so that the number of stars can be calcu-

lated by standard, round half up, arithmetic rounding. Note that it is possible, in an

extreme situation, to achieve a maximum continuous rating of N + 0.5. This implies

that, for instance in a 5-point scale, a continuous rating value of 5.5 is likely. Hence,

when converting a continuous to a discrete rating, this situation should be handled by

truncating the value instead of rounding it.

3.4 Considerations

Previous sections deferred the discussion of details of the algorithm and implicit deci-

sions. In this section we provide further explanation about rating scales, distributions,

use of cumulative risk profiles and data transformations.

3.4.1 Rating scale

The rating scale defines the values to which the measurements will be mapped. Sec-

tion 3.2 proposes the use of a 5-point scale represented using stars, 1 star representing

the lowest value and 5 stars the highest value.

The use of a 5-point scale can be found in many other fields. An example from

social sciences is the Likert scale [60] used for questionnaires.

The calibration algorithm presented in Section 3.3 calibrates ratings for an N -point

scale. Hence, 3-point or 10-point scales could be used as well. However, a scale with a

small number of points might not discriminate enough (e.g. 1 or 2 points), and a scale

with many points (e.g. 50) might be too hard to explain and use. Also, for an N -point

scale a minimum of N systems in the benchmark is necessary. Nevertheless, in order

to ensure that the thresholds are representative, the larger the number of systems in the

benchmark the better.

3.4 Considerations 63

3.4.2 Distribution/Partition

A distribution defines the percentage of systems of a benchmark that will be mapped

to each rating value. A partition is similar, but it is instantiated for a given benchmark,

defining the number of systems per rating.

Section 3.2 proposes the use of a uniform distribution, meaning that each rating

represents an equal number of systems. Using a 5-point scale, the distribution will be

20–20–20–20–20, indicating that each star represents 20% of the systems in the bench-

mark. A uniform distribution was chosen for the sake of simplicity, as the calibration

algorithm works for any given partition. For instance, it is possible to calibrate ratings

for a 5–30–30–30–5 distribution, as proposed by Baggen et al. [11], or for a normal-

like distribution (e.g. 5–25–40–25–5), resulting in a different set of rating thresholds.

However changing neither the aggregation or traceability methodology, the choice of

partition might influence the results when using ratings for empirical validation.

3.4.3 Using other 1st-level thresholds

An essential part of the aggregation of individual metrics to ratings is to compute risk

profiles from 1st-level thresholds. A method for deriving 1st-level thresholds from

benchmark data has been proposed previously in Chapter 2 and both Sections 3.2

and 3.5 use the thresholds presented in that chapter. However, the calibration algo-

rithm presented in Section 3.3 does not depend on those specific thresholds.

The requirement for the 1st-level thresholds is that they should be valid for the

benchmark data that is used. By valid it is meant that the existing systems should

have measurements both higher and lower than those thresholds. Calibration of rat-

ing thresholds for the McCabe metric with 1st-level thresholds 10, 20 and 50 was

attempted with success. However, if the chosen 1st-level thresholds are too high, the

calibration algorithm will not be able to guarantee that the desired distribution will

be met. Furthermore, the calibration of rating thresholds is independent of the metric

distribution. This chapter only uses metrics with an exponential distribution and for

64 3 Benchmark-based Aggregation of Metrics to Ratings

which high values indicate higher risk. However, the calibration of ratings for metrics

with different distributions was achieved with success. Chapter 4 will show the cali-

bration of test coverage, which has a normal-like distribution and for which low values

indicate higher risk.

3.4.4 Cumulative rating thresholds

Cumulative rating thresholds were introduced in Sections 3.2 and 3.3 but a more de-

tailed explanation of their use was deferred. Cumulative thresholds are necessary to

avoid problems arising from the values of the risk profile being very close to the thresh-

olds.

As an example, we will use the rating thresholds for the McCabe metric (presented

in Section 3.2) in two scenarios: cumulative and non-cumulative. In the first scenario,

let us assume that a given system has a cumulative risk profile of 16.7% in the High

risk category and 6.7% in the Very-high risk category. In this boundary situation,

according to the McCabe rating thresholds (16.9% and 6.7%, for High and Very-high

risk, respectively), the system will rate 4 stars. Now let us assume that, by refactoring,

we move 1% of code from the Very-high risk to High risk category. In the risk profile,

the Very-high risk category will decrease from 6.7% to 5.7% and the High risk category

will remain the same (since it is cumulative, the decrease of the Very-high risk category

is cancelled by the increase in the High risk category). After the refactoring, although

the complexity decreases, the rating remains unchanged as expected.

In the second scenario, let us assume the use of non-cumulative rating thresholds.

The non-cumulative risk profile, for the two highest categories, for the same system

is then 10% for the High risk and 6.7% for the Very-high risk. The rating thresholds

will be non-cumulative as well, being 10.2% for the High risk and 6.7% for the Very-

high risk categories. Performing the same refactoring, where 1% of the code is moved

from the Very-high risk to the High risk category, will decrease the Very-high risk

code from 6.7% to 5.7% but increase the High-risk code from 10% to 11%. With the

3.4 Considerations 65

● ●

●

●
●

●

● ●
●

●

●

●

●
●

●

0
1

2
3

4

(a) None

●

●

●
●

●

●

● ●

●

●

●

●
●

●
●

0
1

2
3

4
(b) Interpolation

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

0
1

2
3

4

(c) Moving mean

Figure 3.2: Example effect of data transformations. The y-axis represents the percentage of code in the
very-high risk category and the x-axis represents 15 systems of the benchmark.

non-cumulative thresholds, since the High risk code now exceeds the thresholds the

system rating will decrease from 4 to 3 stars, contradicting the expectations. Having

observed this in practice, it was decided to introduce cumulative thresholds to prevent

the decrease of rating in cases where there is an improvement in quality.

3.4.5 Data transformations

One potential threat to validity in this approach is the risk of over-fitting a particular set

of systems. Namely, the specific thresholds obtained can be conditioned by particular

discontinuities in the data. In order to reduce this effect, smoothing transformations

can be applied to each risk category where thresholds are picked out from.

Two transformations were experimented: (i) interpolation, in which each data point

is replaced by the interpolation of its value and the consecutive one, and (ii) moving

mean, in which each data point is replaced by the mean of a window of points around

it (this example used a 2-point window).

The effect of each transformation is shown in Figure 3.2, using a part of the Very-

high risk category for the Module Inward Coupling metric where a discontinuity can

be observed in the raw data. Other transformations could be used and easily added to

the algorithm. In practice, due to the large number of data points used, no significant

differences in the calibrated thresholds were observed. Also, no other issues were

66 3 Benchmark-based Aggregation of Metrics to Ratings

observed with the use of thresholds from transformed data.

When using a small number of data points (benchmark with few systems) there

might be many discontinuities and data transformations might be relevant to smooth

the data. In theory, by smoothing the data we are compensating for the lack of more

systems, hence reducing the risk of over-fitting a particular set of systems. Smooth-

ing the data requires only minimal changes to the calibration algorithm, the ratings

calculation algorithm and the traceability capabilities being the same. However, other

implications of this approach are still open for research.

3.4.6 Failing to achieve the expected distribution

When calibrating rating thresholds for some metrics, it was observed in practice cases

where the final distribution differs from the expected distribution.

Small differences, where the partition of a rating contains one or two more systems

than expected, might be due to the existence of ties. A tie exists when two or more

systems have the same values for the Moderate, High and Very-high risk categories

and hence it is not possible to distinguish them. If the set of chosen thresholds matches

systems with ties, it is likely that the final distribution will differ the expected one. For

small differences, this situation it is not problematic and the calibration thresholds can

be used anyway. However, the presence of ties should be investigated because it might

indicate the presence of the same system repeated or different releases of the same

system which are very similar.

Big differences, where there is an unbalanced distribution with too many systems

calibrated for one rating and too few for other ratings, might be due to the use of wrong

1st-level thresholds. An arbitrary choice of 1st-level thresholds might not allow to dif-

ferentiate systems (e.g. choosing thresholds higher than those of the benchmark) and

hence the final calibration will differ from the expected. This situation can be solved

by choosing a different set of thresholds or using the method presented in Chapter 2 to

derive thresholds.

3.5 Application to the SIG quality model metrics 67

Big differences between the final and expected distributions might also be due to

the metric properties themselves causing a large number of ties. This situation might

be solved by choosing a rating scale with a smaller number of points such as e.g. 3-

point rating instead of a 5-point rating. In an extreme case, where there are still big

differences for a rating scale with a small number of points, this might indicate that the

metric does not capture enough information to differentiate software systems.

3.5 Application to the SIG quality model metrics

Using the benchmark described in Section 1.4, the methodology to calibrate rating

thresholds was successfully applied to all metrics of the SIG quality model [41]: unit

complexity (McCabe at method level), unit size (SLOC at method level), unit interfac-

ing (number of parameters at method level) and module inward coupling (Fan-in [42]

at file level). This section discusses the calibrated thresholds.

Table 3.1 presents both the 1st-level thresholds derived as in Chapter 2, and the

2nd-level thresholds calibrated with the algorithm presented in Section 3.3. The metric

thresholds for the unit complexity were previously presented in Section 3.2.

As we can observe, all the thresholds are monotonic between risk categories and

ratings, i.e., thresholds become more lenient from high to lower risk categories and

from higher to lower ratings. Moreover, there are no repeated thresholds for all met-

rics. This indicates that the calibration algorithm was successful in differentiating the

benchmark systems and consequently deriving good rating thresholds.

For all metrics, all benchmark systems were rated from the calibrated rating thresh-

olds. The idea was to verify if the expected distribution, 20–20–20-20–20, was in fact

met by the calibration algorithm. For all metrics we verified that the expected distri-

bution was achieved with no deviations.

68 3 Benchmark-based Aggregation of Metrics to Ratings

Table 3.1: Risk and rating thresholds for the SIG quality model metrics. Risk thresholds are defined in
the headers, and rating thresholds are defined in the table body.

(a) Unit Size metric (SLOC at method level).

Star rating Low risk Moderate risk High risk Very-high risk
]0, 30]]30, 44]]44, 74]]74,∞[

★★★★★ - 19.5 10.9 3.9
★★★★✩ - 26.0 15.5 6.5
★★★✩✩ - 34.1 22.2 11.0
★★✩✩✩ - 45.9 31.4 18.1

(b) Unit Complexity metric (McCabe at method level).

Star rating Low risk Moderate risk High risk Very-high risk
]0, 6]]6, 8]]8, 14]]14,∞[

★★★★★ - 17.9 9.9 3.3
★★★★✩ - 23.4 16.9 6.7
★★★✩✩ - 31.3 23.8 10.6
★★✩✩✩ - 39.1 29.8 16.7

(c) Unit Interfacing metric (Number of parameters at method level).

Star rating Low risk Moderate risk High risk Very-high risk
[0, 2] [2, 3[[3, 4[[4,∞[

★★★★★ - 12.1 5.4 2.2
★★★★✩ - 14.9 7.2 3.1
★★★✩✩ - 17.7 10.2 4.8
★★✩✩✩ - 25.2 15.3 7.1

(d) Module Inward Coupling metric (Fan-in at file level).

Star rating Low risk Moderate risk High risk Very-high risk
[0, 10] [10, 22[[22, 56[[56,∞[

★★★★★ - 23.9 12.8 6.4
★★★★✩ - 31.2 20.3 9.3
★★★✩✩ - 34.5 22.5 11.9
★★✩✩✩ - 41.8 30.6 19.6

3.6 Stability analysis

In order to assess the reliability of the obtained thresholds, a stability analysis was

performed. The general approach is to run the calibration algorithm n times, each with

a randomly sampled subset of the systems present in the original set. The result is

n threshold tables per metric. Two ways of assessing these numbers make sense: (i)

3.6 Stability analysis 69

Table 3.2: Variability of the rating thresholds for 100 runs, randomly sampling 90% of the systems in
the benchmark.

(a) Unit Size metric.

Star rating Moderate risk High risk Very-high risk

★★★★★ 18.5 - 20.6 8.9 - 11.1 3.7 - 3.9
★★★★✩ 24.6 - 28.2 14.4 - 18.0 5.8 - 7.8
★★★✩✩ 33.5 - 35.9 21.1 - 26.0 10.0 - 12.7
★★✩✩✩ 43.2 - 46.4 30.0 - 33.3 17.3 - 19.5

(b) Unit Complexity metric.

Star rating Moderate risk High risk Very-high risk

★★★★★ 17.3 - 20.0 9.8 - 12.3 3.2 - 4.2
★★★★✩ 23.5 - 25.5 16.1 - 18.9 6.2 - 8.5
★★★✩✩ 29.5 - 32.9 20.8 - 24.8 9.7 - 12.6
★★✩✩✩ 35.9 - 40.9 28.0 - 30.8 14.5 - 17.1

(c) Unit Interfacing metric.

Star rating Moderate risk High risk Very-high risk

★★★★★ 11.1 - 13.0 4.7 - 5.7 2.0 - 2.3
★★★★✩ 14.8 - 15.7 6.9 - 7.6 2.8 - 3.5
★★★✩✩ 17.2 - 21.2 8.3 - 10.2 4.5 - 5.0
★★✩✩✩ 25.2 - 27.6 12.8 - 18.0 6.1 - 7.1

(d) Module Inward Coupling metric.

Star rating Moderate risk High risk Very-high risk

★★★★★ 23.0 - 26.0 12.8 - 15.1 5.7 - 7.4
★★★★✩ 29.3 - 31.6 18.6 - 20.7 8.4 - 10.0
★★★✩✩ 34.5 - 36.9 21.9 - 23.7 10.1 - 13.3
★★✩✩✩ 41.5 - 48.7 28.9 - 36.4 15.1 - 20.7

inspect the variability in the threshold values; (ii) apply the thresholds to the original

set of systems and inspect the differences in ratings.

Using, again, the benchmark presented in Section 1.4, 100 runs (n = 100) were

performed, each of these with 90% of the systems (randomly sampled).

To assess the stability of the rating thresholds, it was calculated for each threshold

the absolute relative differences from its median throughout all the runs4. This amounts

4Thus, for a threshold ti (calculated in run number i ∈ [1, n[) one has δti =
|ti−median(tn)|

median(tn)
.

70 3 Benchmark-based Aggregation of Metrics to Ratings

Table 3.3: Summary statistics on the stability of rating thresholds.

Q1 Median Q3 95% Max µ

Unit size 0.0 0.4 3.2 10.7 23.8 2.6
Unit complexity 0.0 0.3 4.4 11.7 27.3 3.2
Unit interfacing 0.0 0.0 5.5 14.1 25.9 3.3
Module coupling 0.0 0.0 5.3 18.0 23.4 3.3

Table 3.4: Summary statistics on stability of the computed ratings.

Q1 Median Q3 95% Max µ

Unit size 0.0 0.3 1.0 3.5 7.9 0.8
Unit complexity 0.0 0.3 1.5 4.3 9.7 1.0
Unit interfacing 0.0 0.4 1.5 5.1 12.1 1.1
Module coupling 0.0 0.4 1.4 5.9 14.3 1.2

to 12 threshold values per run, thus 100×12 = 1200 data points. Table 3.2 presents the

obtained threshold ranges for the individual metrics and Table 3.3 presents summary

statistics as percentages. Looking at Table 3.3 we observe that all properties exhibit a

very stable behavior, with 75% of the data points (Q3) deviating less than 6% from the

medians. There are some extreme values, the largest one being a 27.3% deviation in

Unit complexity. Nevertheless, even taking into account the full range, thresholds were

observed to never overlap and maintain their strictly monotonous behavior, increasing

confidence in both the method and the calibration set.

In order to assess the stability of the threshold values in terms of the computed

ratings, for each system it was calculated the absolute differences from its median

rating throughout all the runs. This amounts to 100 × 100 = 10000 data points. Ta-

ble 3.4 presents summary statistics on the results, made relative to the possible range

of 5.5 − 0.5 = 5 (shown as percentages). Again, all properties exhibit a very stable

behavior, with 75% of the data points (Q3) deviating less than 1.6% from the medians.

We observe that the model is more stable at the ratings level than at the threshold

level. This is to be expected since differences in thresholds of different risk categories

3.7 Related work 71

for the same rating cancel each other.

As conclusion, the impact of including or excluding specific systems or small

groups of systems is limited and small. This indicates good stability of the results

obtained using this benchmark.

3.7 Related work

Various alternatives for aggregating measurements have been proposed: addition, cen-

tral tendency measures, distribution parameter fitting, wealth inequality measures or

custom formulae. This section, discusses these alternatives and compares them to the

approach introduced in this chapter.

3.7.1 Addition

A most basic way of aggregating measurements is addition. Individual measurements

are all added together and the total is reported at system level. Lanza and Mari-

nescu [58] use addition to aggregate the NOM (Number of Operations) and CYCLO

(McCabe cyclomatic number) metrics at system-level. Chidamber and Kemerer [22]

use addition to aggregate the individual complexity numbers of methods into the WMC

(Weighted Methods per Class) metric at class level.

However, addition does not make sense for all metrics (e.g. the Fan-in metric which

is not defined at system-level). Also, when adding measurements together we lose

information about how these measurements are distributed in the code, thus precluding

pinpointing potential problems. For example, the WMC metric does not distinguish

between a class with many methods of moderate size and complexity and a class with

a single huge and highly complex method. In the introduced approach, the risk profiles

and the mappings to ratings ensure that such differences in distribution are reflected in

the system-level ratings.

72 3 Benchmark-based Aggregation of Metrics to Ratings

3.7.2 Central tendency

Central tendency functions such as mean (simple, weighted or geometric) or the me-

dian have also been used to aggregate metrics by many authors. For example, Spinel-

lis [82] aggregates metrics at system level using mean and median, and uses these val-

ues to perform comparisons among four different operating-system kernels. Coleman

et al. [23], in the Maintainability Index model, aggregate measurements at system-level

using mean.

The simple mean directly inherits the drawbacks of aggregation by addition, since

the mean is calculated as the sum of measurements divided by their number.

In general, central tendency functions fail to do justice to the skewed nature of most

software-related metrics. Many authors have shown that software metrics are heavily

skewed [22, 87, 24, 89, 62] providing evidence that metrics should be aggregated using

other techniques. Spinellis [82] provided additional evidence that central tendency

measures should not be used to aggregate measurements, concluding that they are

unable to clearly differentiate the studied systems.

The skewed nature of source code metrics is accommodated by the use of risk

profiles in the introduced methodology. The derivation of thresholds from benchmark

data ensure that differences in skewness among systems are captured well at the first

level [6]. In the calibration of the mappings to ratings at the second level, the rank-

ing of the systems is also based on their performance against thresholds, rather than

on a central tendency measure, which ensures that the ranking adequately takes the

differences among systems in the tails of the distributions into account.

3.7.3 Distribution fitting

A common statistical method to describe data is to fit it against a particular distribution.

This involves the estimation of distribution parameters and quantification of goodness

of fit. These parameters can then be used to characterize the distribution data. Hence,

fitting a distribution parameter can be seen as a method to aggregate measurements

3.7 Related work 73

at system-level. For instance, Concas et al. [24], Wheeldon and Counsell [89] and

Louridas et al. [62] have shown that several metrics follow power-law or log-normal

distributions, computing the distribution parameters for a set of systems as case study.

This method has several drawbacks. First, the assumption that for all systems a

metric follows the same distribution (albeit with different parameters) may be wrong.

In fact, when a group of developers starts to act on the measurements for the code

they are developing, the distribution of that metric may rapidly change into a different

shape. As a result, the assumed statistical model no longer holds and the distribu-

tion parameters stop to be meaningful. Second, to understand the characterization of

a system by its distribution parameters requires software engineering practitioners to

understand the assumed statistical model, which undermines the understandability of

this aggregation method. Third, root-cause analysis, i.e., tracing distribution parame-

ters back to problems at particular source code locations, is not straightforward.

The introduced methodology does not assume a particular statistical model, and

could therefore be described as non-parametric in this respect. This makes it robust

against lack of conformance to such a model by particular systems, for instance due to

quality feedback mechanisms in development environments and processes.

3.7.4 Wealth inequality

Aggregation of software metrics has also been proposed using the Gini coefficient by

Vasa et al. [87] and the Theil index by Serebrenik and Van den Brand [78]. The Gini

coefficient and the Theil index are used in economics to quantify the inequality of

wealth. An inequality value of 0 means that measurements follow a constant distri-

bution, i.e., all have the same value. A high value of inequality, on the other hand,

indicates a skewed distribution, where some measurements are much higher than the

others.

Both Gini and Theil adequately deal with the skewness of source code metrics

without making assumptions about an underlying distribution. Both have shown good

74 3 Benchmark-based Aggregation of Metrics to Ratings

results when applied to software evolution analysis and to detect automatically gener-

ated code. Still they suffer of major shortcomings when used to aggregate source code

measurement data.

Both Gini and Theil provide indications of the differences in quality of source code

elements within a system, not of the degree of quality itself. This can easily be seen

from an example. Let us assume that for a class-level metric M , higher values indicate

poorer quality. Let be a system A with three equally-sized classes with metric values

1, 1 and 100 (Gini=0.65 and Theil=0.99), and B be another system also with three

equally-sized classes with values 1, 100 and 100 (Gini=0.33 and Theil=0.38). Clearly,

system A has higher quality, since one third rather than two thirds of its code suffers

from poor quality. However, both Gini and Theil indicate that A has greater inequality

making it score lower than B. Thus, even though inequality in quality may often

indicate low quality, they are conceptually different.

Both Gini and Theil do not allow root-cause analysis, i.e., they do not provide

means to directly identify the underlying measurements which explain the computed

inequality. The Theil index, which improves over the Gini factor, provides means to

explain the inequality according to a specific partition by reporting a value for how

much a specific partition of measurements accounts for the overall inequality. How-

ever, Theil is limited to provide insight at the partition level not providing information

at lower levels.

Similarly to the Gini and Theil, the ratings based on risk-profile proposed in this

chapter capture differences among systems that occur when quality values are dis-

tributed unevenly over source code elements. But, by contrast, the proposed approach

is also based on the magnitude of the metric values rather than exclusively on the

inequality among them.

3.8 Summary 75

3.7.5 Custom formula

Jansen [50] proposed the confidence factor as a metric to aggregate violations reported

by static code checkers. The confidence factor is derived by a formula taking into

account the total number of rules, the number of violations, the severity of violations

and the overall size of the system, and the percentage of files that are successfully

checked, reporting a value between 0 and 100. The higher the value the higher the

confidence on the system. A value of 80 is normally set as minimum threshold.

Although Jansen reports the usefulness of the metric, he states that the formula

definition is based on heuristics and requires formal foundation and validation. Also,

root-cause analysis can only be achieved by investigating the extremal values of un-

derlying measurements. In contrast the proposed approach to derive thresholds from

benchmark data can be used both to aggregate measurements into ratings and to trace

back the ratings back to measurements.

3.8 Summary

This chapter was devoted to the calibration of mappings from code-level measurements

to system-level ratings. Calibration is done against a benchmark of software systems

and their associated code measurements. The presented methodology adds to earlier

work, described in Chapter 2, on deriving thresholds for source code metrics from such

benchmark data [6].

The core of our approach is an iterative algorithm that (i) ranks systems by their

performance against pre-determined thresholds and (ii) based on the obtained ranking

determines how performance against the thresholds translates into ratings on a unit-less

scale. The contributions of this chapter are:

• An algorithm to perform calibration of thresholds for risk profiles;

• Formalization of the calculation of ratings from risk profiles;

76 3 Benchmark-based Aggregation of Metrics to Ratings

• Discussion of the caveats and options to consider when using the approach;

• An application of the method to determine thresholds for 4 source code metrics;

• A procedure to assess the stability of the thresholds obtained with a particular

data set.

The combination of methods to derive thresholds and calibrate ratings enable a generic

blueprint for building metrics-based quality models. As such, both methods combined

can be applied to any situation where one would like to perform automatic qualitative

assessments based on multi-dimensional quantitative data. The presence of a large,

well-curated repository of benchmark data is, nevertheless, a prerequisite for success-

ful application of our methodology. Other than that, one can imagine applying it to

assess software product quality but using a different set of metrics, assessing software

process or software development community quality, or even applying it to areas out-

side software development.

The methodology is applied by SIG to annually re-calibrate the SIG quality model [41,

27], which forms the basis of the evaluation and certification of software maintainabil-

ity conducted by SIG and TÜViT [10].

Chapter 4

Static Evaluation of Test Quality

Test coverage is an important indicator for unit test quality. Tools such as Clover1

compute coverage by first instrumenting the code with logging functionality, and then

logging which parts are executed during unit test runs.

Since computation of test coverage is a dynamic analysis, it assumes a working

installation of the software. In the context of software quality assessment by an inde-

pendent third party, a working installation is often not available. The evaluator may not

have access to the required libraries or hardware platform. The installation procedure

may not be automated or documented.

This chapter proposes a technique for estimating test coverage at method level

through static analysis only. The technique uses slicing of static call graphs to esti-

mate the dynamic test coverage. Both the technique and its implementation are ex-

plained. The metric calculated with this technique will be called Static Estimation of

Test Coverage (SETC) to differentiate it from dynamic coverage metrics. The results

of the SETC metric are validated by statistical comparison to values obtained through

dynamic analysis using Clover. A positive correlation with high significance will be

found at system, package and class levels.

To evaluate test quality using the SETC metric, risk thresholds are derived for

1http://www.atlassian.com/software/clover/

77

78 4 Static Evaluation of Test Quality

class-level coverage and rating thresholds calibrated to compute a system-level cov-

erage rating. In validating coverage rating against system-level coverage a significant

and high correlation between the two metrics is found. Further validation of cover-

age ratings against indicators for performance of issue resolution is done indicating

that systems with higher coverage rating have higher productivity in resolving issues

reported in an Issue Tracking System (ITS).

4.1 Introduction

In the Object-Oriented (OO) community, unit testing is a white-box testing method for

developers to validate the correct functioning of the smallest testable parts of source

code [13]. OO unit testing has received broad attention and enjoys increasing popular-

ity, also in industry [40].

A range of frameworks has become available to support unit testing, including

SUnit, JUnit, and NUnit2. These frameworks allow developers to specify unit tests in

source code and run suites of tests during the development cycle.

A commonly used indicator to monitor the quality of unit tests is code coverage.

This notion refers to the portion of a software application that is actually executed dur-

ing a particular execution run. The coverage obtained when running a particular suite

of tests can be used as an indicator of the quality of the test suite and, by extension, of

the quality of the software if the test suite is passed successfully.

Tools are available to compute code coverage during test runs [91] which work

by instrumenting the code with logging functionality before execution. The logging

information collected during execution is then aggregated and reported. For exam-

ple, Clover3 instruments Java source code and reports statement coverage and branch

coverage at the level of methods, classes, packages and the overall system. Emma4

instruments Java bytecode, and reports statement coverage and method coverage at the
2http://sunit.sourceforge.net, http://www.junit.org, http://www.nunit.org
3http://www.atlassian.com/software/clover/
4http://emma.sourceforge.net/

4.1 Introduction 79

same levels. The detailed reports of such tools provide valuable input to increase or

maintain the quality of test code.

Computing code coverage involves running the application code and hence requires

a working installation of the software. In the context of software development, satis-

faction of this requirement does not pose any new challenge.

However, in other contexts this requirement can be highly impractical or impos-

sible to satisfy. For example, when an independent party evaluates the quality and

inherent risks of a software system [86, 56], there are several compelling reasons that

put availability of a working installation out of reach. The software may require hard-

ware not available to the assessor. The build and deployment process may not be

reproducible due to a lack of automation or documentation. The software may require

proprietary libraries under a non-transferrable license. In embedded software, for in-

stance, instrumented applications by coverage tools may not run or may display altered

behavior due to space or performance changes. Finally, for a very large system it might

be too expensive to frequently execute the complete test suite, and subsequently, com-

pute coverage reports.

These limitations derive from industrial practice in analyzing software that may be

incomplete and may not be possible to execute. To overcome these limitations a light-

weight technique to estimate test coverage prior to running the test cases is necessary.

The question that naturally arises is: could code coverage by tests possibly be

determined without actually running the tests? And which trade-off may be made

between sophistication of such a static analysis and its accuracy?

Further investigation into the possibility of using static coverage as indicator for

test quality was done. Aiming for 100% coverage is most of the time unpractical (if

not at all impossible). Thus, the question arises: can we define an objective baseline,

that is representative of a benchmark of software systems that allow us to reach to an

evaluation about test quality?

This chapter is structured as follows. A static analysis technique for estimating

code coverage, SETC, based on slicing of call graphs, is proposed in Section 4.2. A

80 4 Static Evaluation of Test Quality

discussion of the sources of imprecision inherent in this analysis as well as the im-

pact of imprecision on the results is the subject of Section 4.3. Section 4.4 provides

experimental assessment of the quality of the static estimates compared to the dynam-

ically determined code coverage results for a range of proprietary and Open-Source

Software (OSS) software systems. Derivation of risk and rating thresholds for static

coverage and experimental analysis of their relation with external quality using metrics

for defect resolution performance is given in Section 4.5. Related work is reviewed in

Section 4.6 which is followed by a summary of contributions in Section 4.7.

4.2 Approach

The approach for estimating code coverage involves reachability analysis on a graph

structure (also known as graph slicing [57]). This graph is obtained from source code

via static analysis. The granularity of the graph is at the method level, and control or

data flow information is not assumed. Test coverage is estimated (SETC) by calculat-

ing the ratio between the number of production code methods reached from tests and

the overall number of production code methods.

An overview of the various steps of the static estimation of test coverage is given

in Figure 4.1. We briefly enumerate the steps before explaining them in detail in the

upcoming sections:

1. From all source files F , including both production and test code, a graph G is

extracted via static analysis which records both structural information and call

information. Also, the test classes are collected in a set T .

2. From the set of test classes T , test methods are determined and used as slicing

criteria. From test method nodes, the graph G is sliced, primarily along call

edges, to collect all methods that are reached in a set M .

3. For each production class in the graph, the number of methods defined in that

class is counted. Also the set of covered methods is used to arrive at a count

4.2 Approach 81

3. count

4. estimate

P ⇀ ! !C ⇀ !

C ⇀ " # "

M

2. slice

G

1. extract

T

F

Figure 4.1: Overview of the approach. The input is a set of files (F). From these files, a call graph is
constructed (G) and the test classes of the system are identified (T). Slicing is performed on the graph
with the identified test classes as entry points, and the production code methods (M) in the resulting
slice are collected. The methods thus covered allow to count for each class (C) in the graph (i) how
many methods it defines (ii) how many of these are covered. Finally, coverage ratio estimation is then
computed on the class, package and system levels. The harpoon arrow denotes a finite map.

of covered methods in that class. This is depicted in Figure 4.1 as a map from

classes to a pair of numbers.

4. The final estimates at class, package, and system levels are obtained as ratios

from the counts per class.

Note that the main difference between the steps of this approach and dynamic analysis

tools, like Clover, can be found in step 2. Instead of using precise information recorded

by logging the methods that are executed, we use an estimation of the methods that are

called, determined via static analysis. Moreover, while some dynamic analysis tools

take test results into account, this approach does not.

This proposed approach is designed with a number of desirable characteristics in

82 4 Static Evaluation of Test Quality

Foo

a

Test

test()

method1()

method2()

package a;

class Foo {
void method1() { }
void method2() { }

}

package a;

import junit.framework.TestCase;

class Test extends TestCase {
void test() {

Foo f = new Foo();
f.method1();
f.method2();

} }

Figure 4.2: Source code fragment and the corresponding graph structure, showing different types of
nodes (package, class and method) and edges (class and method definition and method calls).

mind: only static analysis is used; the graph contains call information extracted from

the source code; it is scalable to large systems; granularity is limited to the method

level to keep whole-system analysis tractable; it is robust against partial availability of

source code; finally, missing information is not blocking, though it may lead to less

accurate estimates. The extent to which these properties are realized will become clear

in Section 4.4. First, the various steps of our approach will be explained in more detail.

Graph construction

Using static analysis, a graph is derived representing packages, classes, interfaces,

and methods, as well as various relations among them. An example is provided in

Figure 4.2. Below, the node and edge types that are present in such graphs will be

explained. Derivation of the graph relies on Java source code extraction provided by

the SemmleCode tool [28]. This section provides a discussion of the required func-

tionality, independent of that implementation.

A directed graph can be represented by a pair G = (V,E), where V is the set

of vertices (nodes) and E is the set of edges between these vertices. four types of

vertices are distinguished, corresponding to packages (P), classes (C), interfaces (I),

and methods (M). Thus, the set V of vertices can be partitioned into four disjoint

subsets which can be written as Nn ∈ V where node type n ∈ {P,C, I,M}. In the

4.2 Approach 83

various figures in this chapter, packages will be represented as folder icons, classes

and interfaces as rectangles, and methods as ellipses. The set of nodes that represent

classes, interfaces, and methods is also partitioned to differentiate between production

(PC) and test code (TC). N c

n
is written where code type c ∈ {PC, TC}. The various

figures show production code above a gray separation line and test code below. The

edges in the extracted graph structure represent both structural and call information.

For structural information two types of edges are used: The defines type edges (DT)

express that a package contains a class or an interface; the defines method edges (DM)

express that a class or interface defines a method. For call information, two types

of edges are used: direct call and virtual call. A direct call edge (DC) represents a

method invocation. The origin of the call is typically a method but can also be a class

or interface in case of method invocation in initializers. The target of the call edge is

the method definition to which the method invocation can be statically resolved. A

virtual call edge (VC) is constructed between a caller and any implementation of the

called method that might be resolved to during runtime, due to dynamic dispatch. An

example will be shown in Section 4.3.1. The set of edges is actually a relation between

vertices such that E ⊆ {(u, v)e | u, v ∈V }, where e ∈ {DT,DM,DC, V C}. Ee is

written for the four partitions of E according to the various edges types. In the figures,

solid arrows depict defines edges and dashed arrows depict calls. Further explanation

of the two types of call edges are provided in Section 4.3.1.

Identifying test classes

Several techniques can be used to identify test code, namely, recognizing the use of

test libraries or naming conventions. The possibility to statically determine test code

by recognizing the use of a known test library, such as JUnit, was investigated. A

class is considered as a test class if it uses the testing library. Although this technique

is completely automatic, it fails to recognize test helper classes, i.e., classes with the

single purpose of easing the process of testing, which do not need to have any reference

84 4 Static Evaluation of Test Quality

C1 C2 C3

m1 m2 m4 m5 m6

Figure 4.3: Modified graph slicing algorithm in which calls are taken into account originating from both
methods and object initializers. Black arrows represent edges determined via static analysis, and grey
arrows depict the slicing traversal. Full lines are used for method definitions and dashed lines are used
for method calls.

to a test framework. Alternatively, naming conventions are used to determine test code.

For the majority of proprietary and OSS systems production and test code are stored

in different file system paths. The only drawback of this technique is that, for each

system, this path must be manually determined since each project uses its own naming

convention.

Slicing to collect covered methods

In the second step, graph slicing [57] is applied to collect all methods covered by tests.

The identified set of test classes and their methods are used as slicing criteria (starting

points). The various kinds of call edges are then followed in forward direction to reach

all covered methods. In addition, the slicing algorithm is refined to take into account

call edges originating from the object initializers. The modification consists in fol-

lowing define method edges backward from covered methods to their defining classes,

which then triggers subsequent traversal to the methods invoked by the initializers of

those classes. The modified slicing algorithm is depicted in Figure 4.3. The edge from

C2 to m4 illustrates an initializer call.

The modified slicing algorithm can be defined as follows. We write n call−→ m for an

edge in the graph that represents a node n calling a method m, where the call type can

be vanilla or virtual. Notation m
def←− c means the inverse of a define method edge, i.e.,

meaning a function that returns the class c in which a method m is defined. We write

n
init−→ m for n call−→ mi

def←− c
call−→ m, i.e., to denote that a method m is reached from

a node n via a class initialization triggered by a call to method mi (e.g., m1
init−→ m4,

4.2 Approach 85

in which m1
call−→ m2

def←− C2
call−→ m4). Finally, n invoke−−−→ m is written for n call−→ m or

n
init−→ m. Now, let n be a graph node corresponding to a class, interface or a method

(package nodes are not considered). Then, a method m is said to be reachable from a

node n if n invoke−−−→+ m where R+ denotes the transitive closure of the relation R.

These declarative definitions can be encoded in a graph traversal algorithm in a

straightforward way. The implementation, however, was carried out in the relational

query language .QL [28], in which these definitions are expressed almost directly.

Count methods per class

The third step computes the two core metrics for the static test coverage estimation:

• Number of defined methods per class (DM), defined as DM : nC � N. This

metric is calculated by counting the number of outgoing define method edges

per class.

• Number of covered methods per class (CM), defined as CM : nC � N. This

metric is calculated by counting the number of outgoing define method edges

where the target is a method contained in the set of covered methods.

These statically computed metrics are stored in a finite map nC � N× N. This map

will be used to compute coverage at class, package and system levels as shown below.

Estimate static test coverage

After computing the two basic metrics we can obtain derived metrics: coverage per

class, packages, and system.

• Class coverage Method coverage at the class level is the ratio between covered

and defined methods per class:

CC (c) =
CM (c)

DM(c)
× 100%

86 4 Static Evaluation of Test Quality

• Package coverage Method coverage at the package level is the ratio between

the total number of covered methods and the total number of defined methods

per package,

PC (p) =

�
c∈p

CM (c)

�
c∈p

DM (c)
× 100%

where c ∈ p iff c ∈ V P ∧ c
def←− p, i.e., c is a production class in package p.

• System coverage Method coverage at system level is the ratio between the total

number of covered methods and the total number of defined methods in the

overall system,

SC =

�
c∈G

CM(c)
�
c∈G

DM(c)
× 100%

where c ∈ G iff c ∈ V P , i.e., c is a production class.

4.3 Imprecision

The static coverage analysis is based on a statically derived graph, in which the struc-

tural information is exact and the method call information is an estimation of the dy-

namic execution. The precision of the estimation is a function of the precision of the

call graph extraction. As mentioned before, this relies on SemmleCode.

This section discusses various sources of imprecision independent of tool of choice:

control flow, dynamic dispatch, framework/library calls, identification of production

and test code, and failing tests. How to deal with imprecision is also discussed here.

4.3.1 Sources of imprecision

Control flow Figure 4.4 presents an example where the graph contains imprecision

due to control flow, i.e., due to the occurrence of method calls under conditional state-

ments. In this example, if value is greater than zero method1 is called, otherwise

4.3 Imprecision 87

ControlFlowTest

ControlFlow

+ test () : void

+ method1 () : void

+ method2 () : void

+ ControlFlow (value : int)

class ControlFlow {
ControlFlow(int value) {

if (value > 0)
method1();

else
method2();

}
void method1() { }
void method2() { }

}

import junit.framework.*;

class ControlFlowTest
extends TestCase {

void test() {
ControlFlow cf =

new ControlFlow(3);
} }

Figure 4.4: Imprecision related to control flow.

method2 is called. In the test, the value 3 is passed as argument and method1

is called. However, without data flow analysis or partial evaluation, it is not pos-

sible to statically determine which branch is taken, and which methods are called.

For now we will consider an optimistic estimation, considering both method1 and

method2 calls. Further explanations about how to deal with imprecision are given in

Section 4.3.2.

Other types of control-flow statements will likewise lead to imprecision in call

graphs, namely switch statements, looping statements (for, while), and branch-

ing statements (break, continue, return).

Dynamic dispatch Figure 4.5 presents an example of imprecision due to dynamic

dispatch. A parent class ParentBar defines barMethod, which is redefined by two

subclasses (ChildBar1 and ChildBar2). In the test, a ChildBar1 object is as-

signed to a variable of the ParentBar type, and the barMethod is invoked. During

test execution, the barMethod of ChildBar1 is called. Static analysis, however,

identifies all three implementations of barMethod as potential call targets, repre-

sented in the graph as three edges: one direct call edge to the ParentBar and two

88 4 Static Evaluation of Test Quality

DispatchingTest

ParentBar

+ test() : void

+ barMethod() : void

+ barMethod() : void + barMethod() : void

ChildBar1 ChldBar2

+ ChildBar2()+ ChildBar1()

class ParentBar {
void barMethod() { };

}

class ChildBar1
extends ParentBar {

ChildBar1() { }

void barMethod() { }
}

class ChildBar2
extends ParentBar {

ChildBar2() { }

void barMethod() { }
}

import junit.framework.*;

class DynamicDispatchTest
extends TestCase {

void test() {
ParentBar p =

new ChildBar1();
p.barMethod();

} }

Figure 4.5: Imprecision: dynamic dispatch.

OverloadingTest

Overloading

+ test () : void

+ checkValue(x : Integer) : void

+ checkValue(x : Float) : void

class Overloading {
void checkValue(Integer x) {}
void checkValue(Float x) {}

}

import junit.framework.*;

class ControlFlowTest
extends TestCase {

void test() {
Overloading o =

new Overloading();
o.checkValue(3);

} }

Figure 4.6: Imprecision: method overloading.

virtual call edges to the ParentChild1 and ParentChild2 implementations.

Overloading Figure 4.6 presents an example where the graph is imprecise due to

overloading. The class Overloading contains two methods with the same name

but with different argument types: Integer and Float. The test calls the checkValue

method with the constant value 3 and the method with Integer argument is called.

4.3 Imprecision 89

LibrariesTest

+ test() : void

Pair Chart

+ addPair(p:Pair) : void

+ Chart()+ Pair(x:Integer, y:Integer)

+ hashCode() : int

+ equals(obj:Object) : boolean + checkForPair(p:Pair) : boolean

class Pair {
Integer x; Integer y;

Pair(Integer x, Integer y) {
...
}
int hashCode() { ... }
boolean equals(Object obj) {

...
} }
class Chart {

Set pairs;

Chart() { pairs = new HashSet(); }

void addPair(Pair p) {
pairs.add(p);

}
void checkForPair(Pair p) {

return pairs.contains(p);
} }

import junit.framework.*;

class LibrariesTest
extends TestCase {

void test() {
Chart c = new Chart();

Pair p1 = new Pair(3,5);
c.addPair(p1);

Pair p2 = new Pair(3,5);
c.checkForPair(p2);

} }

Figure 4.7: Imprecision: library calls.

However, the call graph is constructed without dynamic type analysis and will include

calls to both methods.

Frameworks / Libraries Figure 4.7 presents yet another example of imprecision

caused by frameworks/library calls of which no code is available for analysis. The

class Pair represents a two-dimensional coordinate, and class Chart contains all

the points of a chart. Pair defines a constructor and redefines the equals and

hashCode methods to enable the comparison of two objects of the same type. In

the test, a Chart object is created and coordinate (3, 5) is added to the chart. Then

another object with the same coordinates is created and checked to exist in the chart.

90 4 Static Evaluation of Test Quality

When a Pair object is added to the set, and when checking if an object exists in a set,

the methods hashCode and equals are called. These calls are not present in the

call graph.

Identification of production and test code Failing to distinguish production from

test code has a direct impact on test coverage estimation. Recognizing tests as pro-

duction code increases the size of the overall production code and hides calls from

tests to production code, possibly causing a decrease of coverage (underestimation).

Recognizing production code as tests has the opposite effect, decreasing the size of

overall production code and increasing the number of calls resulting in either a higher

(overestimation) or lower (underestimation) coverage.

As previously stated, the distinction between production and test code is done using

file system path information. A class is considered test code if it is inside a test folder,

and considered production code if it is inside a non-test folder. Since most projects

and tools (e.g. Clover) respect and use this convention this can be regarded as a safe

approach.

Failing tests Unit testing requires assertion of the state and/or results of a unit of

code to detect faults. If the test succeeds the unit under test is considered as test

covered. However, if the test does not succeed two alternatives are possible. First, the

unit test is regarded as not covered, but the unit under test is considered as test covered.

Second, both the unit test and the unit under test are considered as not test covered.

Emma is an example of the first case, while Clover is an example of the second.

Failing tests can cause imprecision since Clover will consider the functionality

under test as not covered while the static approach, which is not sensitive to test results,

will consider the same functionality as test covered. However, failing tests are not

common in released software.

4.3 Imprecision 91

4.3.2 Dealing with imprecision

Among all sources of imprecision, we shall be concerned with control flow, dynamic

dispatch and frameworks/libraries only. Less common imprecision caused by method

overloading, test code identification and failing tests will not be considered.

Two approaches are possible in dealing with imprecision without resorting to de-

tailed control and data flow analyses. In the pessimistic approach, only call edges that

are guaranteed to be exercised during execution are followed. This will result in a sys-

tematic underestimation of test coverage. In an optimistic approach, all potential call

edges are followed, even if they are not necessarily exercised during execution. Under

this approach, test coverage will be overestimated.

In the particular context of quality and risk assessment, only the optimistic ap-

proach is suitable. A pessimistic approach would lead to a large number of false neg-

atives (methods that are erroneously reported to be uncovered). In the optimistic ap-

proach, methods reported to be uncovered are with high certainty indeed not covered.

Since the purpose is to detect the lack of coverage, only the optimistic approach makes

sense. Hence, only values for the optimistic approach we will reported. However, the

optimistic approach is not consistently optimistic for all the uncertainties previously

mentioned: imprecision due to library/framework will always cause underestimation.

This underestimation can influence coverage estimation to values lower than Clover

coverage. Nevertheless, if a particular functionality is only reached via frameworks/li-

braries, i.e., it can not be statically reached from a unit test, it is fair to assume that this

functionality is not unit test covered, albeit considered covered by a test.

In the sequel, the consequences of these choices for the accuracy of the analysis

will be experimentally investigated.

92 4 Static Evaluation of Test Quality

Table 4.1: Description of the systems used in the experiment

System Version Author / Owner Description

JPacMan 3.04 Arie van Deursen Game used for OOP education
Certification 20080731 SIG Tool for software quality rating
G System 20080214 C Company Database synchronization tool
Dom4j 1.6.1 MetaStuff Library for XML processing
Utils 1.61 SIG Toolkit for static code analysis
JGAP 3.3.3 Klaus Meffert Library of Java genetic algorithms
Collections 3.2.1 Apache Library of data structures
PMD 5.0b6340 Xavier Le Vourch Java static code analyzer
R System 20080214 C Company System for contracts management
JFreeChart 1.0.10 JFree Java chart library
DocGen r40981 SIG Cobol documentation generator
Analyses 1.39 SIG Tools for static code analysis

4.4 Comparison of static and dynamic coverage

A comparison of the results of static estimation of coverage against dynamically com-

puted coverage for several software systems was experimented. An additional com-

parison for several revisions of the same software system was also done in order to

investigate if our static estimation technique is sensitive to coverage fluctuations.

Coverage will be reported at system, package and class levels to gain insight about

the precision of the static coverage when compared to dynamic coverage.

4.4.1 Experimental design

Systems analyzed Twelve Java systems were analyzed, ranging from 2.5k to 268k

Source Lines of Code (SLOC), with a total of 840k SLOC (production and test code).

The description of the systems is listed in Table 4.1 and metric information about those

systems is listed in Table 4.2. The systems are diverse both in terms of size and scope.

JPacMan is a tiny system developed for education. Dom4j, JGAP, Collections and

JFreeChart are Open-Source Software (OSS) libraries and PMD is an OSS tool5. G

System and R System are anonymized proprietary systems. Certification, Analyses

and DocGen are proprietary tools and Utils is a proprietary library.

5http://www.dom4j.org, http://jgap.sourceforge.net, http://commons.apache.org/collections, http://
www.jfree.org/jfreechart, http://pmd.sourceforge.net

4.4 Comparison of static and dynamic coverage 93

Table 4.2: Characterization of the systems used in the experiment.

System SLOC # Packages # Classes # Methods

Prod. Test Prod. Test Prod. Test Prod. Test

JPacMan 1,539 960 2 3 29 17 223 112
Certification 2,220 1,563 14 9 71 28 256 157
G System 3,459 2,910 15 16 56 70 504 285
Dom4j 18,305 5,996 14 11 166 105 2921 685
Utils 20,851 16,887 37 32 323 183 3243 1290
JGAP 23,579 19,340 25 20 267 184 2990 2005
Collections 26,323 29,075 12 11 422 292 4098 2876
PMD 51,427 11,546 66 44 688 206 5508 1348
R System 48,256 34,079 62 55 623 353 8433 2662
JFreeChart 83,038 44,634 36 24 476 399 7660 3020
DocGen 73,152 54,576 111 85 1359 427 11442 3467
Analyses 131,476 136,066 278 234 1897 1302 13886 8429

Additionally, 52 releases of the Utils project were analyzed with a total of over

1.2M LOC, with sizes ranging from 4.5k LOC, for version 1.0, to 37.7k LOC, for

version 1.61, spanning several years of development.

For all the analyzed systems, production and test code could be distinguished by

file path and no failing tests existed.

Measurement For the dynamic coverage measurement, XML reports were produced

by the Clover tool. While for some projects the Clover report was readily available,

others had to be computed by modifying the build scripts, finding all necessary li-

brary and running the tests. XSLT transformations were used to extract the required

information: names of packages and classes; numbers of total and covered methods.

For the static estimation of coverage, the extract, slice, and count steps of the ap-

proach were implemented in relational .QL queries in the SemmleCode tool [28].

Statistical analysis For statistical analysis the R tool was used [84]. Histograms

were created to inspect the distribution of the estimate (static) coverage and the true

(Clover) coverage. To visually compare these distributions, scatter plots of one against

the other, and histograms of their differences were created. To inspect central ten-

dency and dispersion of the true and estimated coverage as well as of their differences,

94 4 Static Evaluation of Test Quality

we used descriptive statistics, such as median and interquartile range. To investigate

correlation of true and estimated coverage a non-parametric method (Spearman’s rank

correlation coefficient [81]) and a parametric method (Pearson product-moment corre-

lation coefficient [70]) were used. Spearman is used when no assumptions about data

distributions can be made. Pearson, on the other hand, is more precise than Spearman,

but can only be used if data are assumed to be normal. For testing data normality the

Anderson-Darling test [7] for a 5% significance level was used The null hypothesis

of the test states that the data can be assumed to follow the normal distribution, while

the alternative hypothesis states that the data cannot be assumed to follow a normal

distribution. The null hypothesis is rejected for a computed p-value smaller or equal

than 0.05.

4.4.2 Experiment results

The results of the experiment are discussed, first at the level of complete systems and

then by analyzing several releases of the same project. Further analysis is done by

looking at at class and package level results and, finally, by looking at one system in

more detail.

System coverage results Table 4.3 and the scatter plot in Figure 4.8 show the esti-

mated (static) and the true (Clover) system-level coverage for all systems. Each dot in

Figure 4.8 represents a system. Table 4.3 shows that the differences range from −16.5

to 19.5 percent points. In percent points, the average of absolute differences is 9.35

and the average difference is 3.57. Figure 4.8 shows that static coverage values are

close to the diagonal, which depicts the true coverage. For one third of the systems

coverage was underestimated while two thirds was overestimated.

Assuming no distribution about data normality, Spearman correlation can be used.

Spearman correlation reports 0.769 with high significance (p-value < 0.01). Using

Anderson-Darling test for data normality, the p-values are 0.920 and 0.522 for static

4.4 Comparison of static and dynamic coverage 95

Table 4.3: Static and dynamic (Clover) coverage, and coverage differences at system level.

System Static (%) Clover (%) Differences (%)

JPacMan 88.06 93.53 −5.47
Certification 92.82 90.09 2.73
G System 89.61 94.81 −5.19
Dom4j 57.40 39.37 18.03
Utils 74.95 70.47 4.48
JGAP 70.51 50.99 19.52
Collections 82.62 78.39 4.23
PMD 80.10 70.76 9.34
R System 65.10 72.65 −7.55
JFreeChart 69.88 61.55 8.33
DocGen 79.92 69.08 10.84
Analyses 71.74 88.23 −16.49

Covered

methods

Defined

methods
Coverage

Covered

methods

Defined

methods

jpacman-3.04 177 201 0.8806 188 201

certification 194 209 0.9282 191 212

g system 345 385 0.8961 365 385

dom4j-1.6.1 1474 2568 0.5740 1013 2573

utils-1.61 2065 2755 0.7495 1938 2750

jgap-3.3.3 1595 2262 0.7051 1154 2263

pmd-5.0b6340 3385 4226 0.8010 3025 4275

r system 3611 5547 0.6510 4053 5579

jfreechart-1.0.10 4652 6657 0.6988 4334 7041

docgen 7847 9818 0.7992 6781 9816

analysis-1.39 7212 10053 0.7174 8765 9934

collections-3.2.1 2514 3043 0.8262 2387 3045

Spearman: 0.7692308

p-value: 0.00495

System

Static coverage Clover coverage

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Static coverage

C
lo

v
e
r
 c

o
v
e
r
a
g

e

Figure 4.8: Scatter plot comparing static and dynamic (Clover) coverage for each system.

coverage and clover coverage, respectively. Since, the null hypothesis cannot be reject,

i.e., it is not possible to reject that the data does not belong to a normal distribution, a

more accurate method for correlation can be used, Pearson correlation, which reports

0.802 and p-value < 0.01. Hence, static and clover coverage are highly correlated with

high significance.

Coverage comparison for the Utils project releases Figure 4.9 plots a comparison

between static and dynamic coverage for 52 releases of Utils, from releases 1.0 to 1.61

(some releases were skipped due to compilation problems).

96 4 Static Evaluation of Test Quality

40%

45%

50%

55%

60%

65%

70%

75%

80%

U
til
s-
1.

0

U
til
s-
1.

4

U
til
s-
1.

6

U
til
s-
1.

8

U
til
s-
1.

12

U
til
s-
1.

14

U
til
s-
1.

16

U
til
s-
1.

18

U
til
s-
1.

20

U
til
s-
1.

22

U
til
s-
1.

24

U
til
s-
1.

26

U
til
s-
1.

29

U
til
s-
1.

31

U
til
s-
1.

33

U
til
s-
1.

35

U
til
s-
1.

38

U
til
s-
1.

40

U
til
s-
1.

42

U
til
s-
1.

44

U
til
s-
1.

46

U
til
s-
1.

52

U
til
s-
1.

54

U
til
s-
1.

56

U
til
s-
1.

58

U
til
s-
1.

60

Static coverage Coverage Clover coverage Coverage

Figure 4.9: Plot comparing static and dynamic coverage for 52 releases of Utils.

Static coverage is consistently higher than Clover coverage. Despite this over-

estimation, static coverage follows the same variations as reported by Clover which

indicates that static coverage is able to detect coverage fluctuations.

The application of Anderson-Darling test rejects the null hypothesis for 5% of sig-

nificance. Hence, correlation can only be computed with the non-parametric Spearman

test. Spearman correlation reports a value of 0.888 with high significance (p-value <

0.01), reinforcing that estimated and true system-level coverage are highly correlated

with high significance.

From Figure 4.9 we can additionally observe that although static coverage is con-

sistently higher than Clover coverage, this difference decreases along releases. This

can be due to the increasing size of the system or simply due to the increase of cover-

age.

Using Spearman correlation to test between system size, measured in SLOC, and

coverage difference resulted in a value of −0.851, meaning high negative correlation

with high significance (p-value < 0.01). This means that the bigger the system the

lower the coverage difference.

Spearman correlation between real (Clover) coverage and coverage differences re-

4.4 Comparison of static and dynamic coverage 97

Table 4.4: Statistical analysis reporting correlation between static and dynamic (Clover) coverage, and
median and interquartile ranges (IQR) for coverage differences at class and package levels. Stars are
used to depict correlation significance, no star for not significant, one star for significant and two stars
for highly significant.

System Spearman Median IQR

Class Package Class Package Class Package

JPacMan 0.467∗ 1.000 0 −0.130 0.037 -
Certification 0.368∗∗ 0.520 0 0.000 0.000 0.015
G System 0.774∗∗ 0.694∗∗ 0 0.000 0.000 0.045
Dom4j 0.584∗∗ 0.620∗ 0.167 0.118 0.333 0.220
Utils 0.825∗∗ 0.778∗∗ 0 0.014 0.000 0.100
JGAP 0.733∗∗ 0.786∗∗ 0 0.000 0.433 0.125
Collections 0.549∗∗ 0.776∗∗ 0 0.049 0.027 0.062
PMD 0.638∗∗ 0.655∗∗ 0 0.058 0.097 0.166
R System 0.727∗∗ 0.723∗∗ 0 −0.079 0.043 0.162
JFreeChart 0.632∗∗ 0.694∗∗ 0 0.048 0.175 0.172
DocGen 0.397∗∗ 0.459∗∗ 0 0.100 0.400 0.386
Analyses 0.391∗∗ 0.486∗∗ 0 −0.016 0.333 0.316

ports −0.848, high negative correlation, with high significance (p-value < 0.01). This

means that the higher the coverage the lower the coverage difference.

However, measuring correlation between system size and real coverage reports

0.851, high correlation, with high significance (p-value < 0.01). This means that

as code is increasing there was also an effort to simultaneously improve coverage.

Hence, from these data, it is not conclusive whether code size has an effect on coverage

difference or not.

Package and Class coverage results Despite the encouraging system-level results,

it is also important, and interesting, to analyze the results at class and package levels.

Table 4.4 reports for each system the Spearman correlation and significance, and

the median (central tendency) and interquartile range (IQR) of the differences be-

tween estimated and true values. Correlation significance is depicted without a star

for p-value ≥ 0.05, meaning not significant, with a single star for p-value < 0.05,

meaning significant, and two stars for p-value < 0.01, meaning highly significant.

Since Anderson-Darling test rejected that the data set belongs to a normal distribution,

Spearman correlation was used.

98 4 Static Evaluation of Test Quality

At class level, except for JPacMan (due to its small size), all systems report high

significance. The correlation, however, varies from 0.368 (low correlation) for Certi-

fication, to 0.825 (high correlation) for Utils. Spearman correlation, for all systems,

reports a moderate correlation value of 0.503 with high significance (p-value < 0.01).

With respect to the median, all systems are centered in zero, except for Dom4j in

which there is a slight overestimation. The IQR is not uniform among systems varying

from extremely low values (Collections) to relatively high values (JGAP and DocGen),

meaning that the dispersion is not uniform among systems. For the systems with a high

IQR, Spearman shows lower correlation values, as to be expected.

At package level, except for JPacMan, Certification and Dom4j, all systems report

high significance. Dom4j correlation is significant at 0.05 level while for JPacMan

and Certification it is not significant. Such low significance levels are due to the small

number of packages. Correlation, again, varies from 0.459 (moderate correlation) for

DocGen, to 0.786 (high correlation) for JGAP. The correlation value for JPacMan is

not taken into account since it is not significant. Spearman correlation, for all systems,

reports a moderate correlation value of 0.536 with high significance (p-value < 0.01).

Regarding the median, and in contrast to what was observed for class level, only three

systems reported a value of 0. However, except for JPacMan, Dom4j and DocGen all

other systems report values very close to zero. IQR shows more homogeneous values

than at class level, with values below 0.17 except for JPacMan (which does not have

IQR due to its sample size of 3) and Dom4j, DocGen and Analyses whose values are

higher than 0.20.

The results for the Collections project are scrutinized below. Since similar results

were observed for other systems they will not be shown.

Collections system analysis Figure 4.10 shows two histograms for the distributions

of estimated (static) and true (Clover) class-level coverage for the Collections library.

The figure reveals that static coverage was accurate to estimate true coverage in all

ranges, with minor oscillations in the 70–80% and in the 80–90% ranges, where a

4.4 Comparison of static and dynamic coverage 99

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

(a) Static coverage

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

(b) Dynamic (Clover) coverage

Figure 4.10: Histograms of static and dynamic (Clover) class coverage for Collections

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Static and Clover coverage at class level

Static coverage

C
lo

ve
r

co
ve

ra
g

e

(a) Static vs. dynamic coverage

Histogram of the differences at class level

0
5

0
1

0
0

1
5

0

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

(b) Histogram of differences

Figure 4.11: Scatter of static and Clover coverage and histogram of the coverage differences for Collec-
tions at class level.

lower and higher number of classes was recognized, respectively.

Figure 4.11 depicts a scatter plot for estimate and true value (with a diagonal line

where the estimate is correct), and a histogram of the differences between estimated

and true values. The scatter plot shows that several points are on the diagonal, and

an similar number of points lies above the line (underestimation) and below the line

(overestimation). The histogram shows that for a big number of classes static coverage

matches Clover coverage (difference between −0.5% and 0.5% coverage). This can

100 4 Static Evaluation of Test Quality

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1

2
3

4
5

6

(a) Static coverage

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1

2
3

4
5

6

(b) Dynamic (Clover) coverage

Figure 4.12: Histograms of package-level static and Clover coverage for Collections.

be observed by a high bar represented above 0. On both sides of this bar, differences

decrease resembling a normal distribution. For a large number of classes estimated

coverage matched true coverage. This can be observed in the scatter plot, in which

several points are on the diagonal, and in the histogram, by the high bar above 0.

The histogram additionally shows that, on both sides of this bar, differences decrease

indicating a small estimation error.

Recalling Spearmans’s correlation value, 0.549, we understand that the correla-

tion is not higher due to the considerable number of classes for which static coverage

overestimates or underestimates results without a clear trend.

Package-level results are shown in Figure 4.12. In contrast to class-level results,

the histograms at package level do not look so similar. In the 50–70% range static

estimate fails to recognize coverage. Comparing to Clover, in the 70–80% and 90–

100% ranges static estimate reports lower coverage and in the 80–90% range reports

higher coverage.

Figure 4.13 shows the scatter plot and the histogram of differences at the package

level. In the scatter plot we can observe that for a significant number of packages,

static coverage was overestimated. However, in the histogram, we see that for 6 pack-

ages estimates are correct, while for the remaining 5 packages, estimates are slightly

4.4 Comparison of static and dynamic coverage 101

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Static and Clover coverage at package level

Static coverage

C
lo

ve
r

co
ve

ra
g

e

(a) Static vs. dynamic

Histogram of the differences at package level

0
2

4
6

8

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

(b) Histogram of difference

Figure 4.13: Scatter of static and Clover coverage and histogram of the coverage differences for Collec-
tions at package level.

overestimated. This is in line with the correlation value of 0.776, of Table 4.4.

Thus, for the Collections project, the estimated coverage at class and package level

can be considered good.

4.4.3 Evaluation

Static estimation of coverage is highly correlated with true coverage at all levels for

a large number of projects. The results at system level allow us to positively answer

the question: can test coverage be determined without running tests? The tradeoff, as

we have shown, is some precision loss with a mean of the absolute differences around

9%. The analysis on 52 releases of the Utils project provides additional confidence in

the results for system coverage. As observed, static coverage not only can be used as

predictor for real coverage, but it also detects coverage fluctuations.

According to the expectations, static coverage at package level reports better cor-

relation than at class level. However, the correlation for all systems at package level is

just slightly higher than for class level. Grouping classes was expected to possibly can-

cel more imprecision and hence provide better results. However, this is not always the

case. For a small number of packages, static coverage produces large overestimations

102 4 Static Evaluation of Test Quality

or underestimations, causing outliers, having a negative impact in both correlation and

dispersion.

At class level, the correlation values are quite high, but the dispersion of differences

is still high, meaning that precision at class level could be further improved.

As can be observed, control flow and dynamic dispatch cause an overestimation,

while frameworks/libraries cause underestimation of coverage which, in some cases,

is responsible for coverage values lower than true coverage.

4.5 Static coverage as indicator for solving defects

Risk and rating thresholds are derived from the benchmark described in Chapter 1,

using the techniques introduced in Chapter 2 and 3, respectively. Static coverage rating

was used as internal quality metric and an experiment was set up to validate it against

external quality captured by different defect resolution efficiency metrics extracted

from an ITS. The correlation analysis between internal and external metrics is reported

and analyzed. The correlation between static coverage rating and different metrics for

defect resolution efficiency from an ITS was analyzed for several releases of software

systems.

4.5.1 Risk and rating thresholds

Figure 4.14 shows a cumulative quantile plot depicting the distribution of the SETC

metric. Each gray line represents one out of 78 systems of the benchmark described

in Section 1.4. The black line characterizes the SETC metric for those 78 systems,

by applying the relative size aggregation technique introduced in Section 2.4.3. The

y-axis represents the SETC metric values, and the x-axis represents the percentage of

volume of classes (measured in SLOC).

Although the benchmark defined in Section 1.4 consists of 100 systems written

in both Java and C#, for the SETC metric only 78 systems are taken into account.

4.5 Static coverage as indicator for solving defects 103

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Figure 4.14: Distribution of the SETC metric for 78 Java systems of the benchmark. Each line depicted
in gray represents an individual system. The black line characterizes the distribution of all benchmark
systems. The y-axis represents coverage values per class and the x-axis represents the percentage of
size (SLOC) of all classes.

This is due to two reasons. First, the SETC analysis is only available for Java thus

far. Second, only systems that have more than 5% of test coverage were considered to

avoid the analysis of systems with just a couple of tests.

Focusing on the black line of Figure 4.14, we observe that for up to 25–26% of

all classes (x-axis) the SETC is 0% (y-axis). This means that for a software system,

typically around 25% of its volume is not test covered. Then, from around 25% to 90%

of the volume, we observe a linear growth in terms of coverage indicating that there

is a linear growth of coverage for the classes. Finally, from around 90% upwards, in

volume, classes have 100% of coverage, indicating that only 10% of a system classes

are fully test covered (100% of test coverage).

When comparing the SETC metric distribution to the distributions of the Soft-

ware Improvement Group (SIG) quality model metrics, presented in Section 2.6, we

can observe two main differences. The first difference is the distribution shape: the

SETC metric does not have an exponential distribution as the metrics of the SIG qual-

104 4 Static Evaluation of Test Quality

Table 4.5: Risk and rating thresholds for the static coverage metric. The risk thresholds are defined in
the headers, and the rating thresholds are defined in the table body.

Star rating Low risk Moderate risk High risk Very-high risk
]83.74, 100]]54.88, 83.74]]0, 54.88] 0

★★★★★ - 72.04 40.09 9.82
★★★★✩ - 78.71 48.77 19.84
★★★✩✩ - 84.26 58.22 34.28
★★✩✩✩ - 93.07 77.44 53.05

ity model. Instead, the SETC metric follows a normal-like distribution, which can

be confirmed by the fact that Figure 4.14 resembles the cumulative distributions of a

normal probability function. The second difference is that while for the SIG quality

model metrics, large values are associated with higher risks, for the SETC metric this

is the opposite. Small values of the SETC indicate higher risk, as it indicates lack

of coverage, and higher values of the SETC indicate lower risk, as it indicates full

coverage.

Risk thresholds for the SETC metric are derived using the methodology introduced

in Section 2.3. As input for the methodology 25%, 50% and 75% quantiles were chosen

since this allows to create equal risk categories, i.e., each risk category represents

equally 25% of the code. The choice of these quantiles is justified due to the shape of

the distribution, i.e., there is a clear distinction among metric values. The outcome of

the methodology to derive thresholds, using the above defined quantiles, was 0, 54.88

and 83.74. Table 4.5 shows the risk intervals defined by these thresholds. We consider

as Low risk code all classes that have a coverage in the]83.74, 100] interval, Moderate

risk in the]54.88, 83.74] interval, High risk in the]0, 54.88] interval, and Very-high

risk all classes that are not covered (0% of coverage).

Identical to what was done in Chapter 3, ratings for the SETC metric were cali-

brated using a 5-point scale and a distribution of 20–20–20–20–20. This means that

the SETC metric will have a rating from 1 to 5 stars, each star representing equally

20% of the systems of the benchmark. However, it is not possible to equally distribute

4.5 Static coverage as indicator for solving defects 105

78 systems by 5 ratings (as this would give a total of 15.6 systems per rating). Hence,

a partition containing 15–16–16–16–15 systems is defined, representing a distribution

of 19.23–20.51–20.51–20.51–19.23. Table 4.5 shows the calibrated rating thresholds.

Using the SETC risk and rating thresholds the ratings for all the 78 systems of the

benchmark are calculated. This was done to verify if the expected distribution was in

fact met, i.e., if each star rating represents around 20% of the systems. It was found,

that the ratings do not follow exactly the partition defined for 78 systems - some ratings

have 1 system more and other ratings have 1 system less, which was due to ties (two

systems having identical risk profiles). Since the deviations were small, by only 1

system, we considered them as insignificant.

Is the SETC rating correlated with SETC at system-level? The rational behind this

is that if ratings are meant to be a representative means to aggregate metrics at high-

level then there should be a significant and positive correlation between SETC ratings

and SETC values at system-level. In order to investigate this we started by analyzing

if the data from both both metrics are normally distributed using Anderson-Darling

test [7]. For both SETC rating and SETC at system-level it was not possible to reject

normality (the p-value for both tests was greater than 0.05) and, hence, one can use

Pearson correlation test. Computing the Pearson correlation between SETC rating and

SETC at system-level, resulted in a value of 0.809 with a p-value of 0.001. This in-

dicates high correlation with high significance, meaning that ratings are representative

of the metric at system-level.

4.5.2 Analysis of defect resolution metrics

To validate the SETC rating against an external quality metric a benchmark of ITS

metrics is used. Table 4.6 characterizes the benchmark showing the systems6, the

number of releases analyzed, the size for the latest release (in SLOC), number of total
6http://ant.apache.org/, http://argouml.tigris.org/, http://checkstyle.sourceforge.net/, http://www.

hibernate.org/, http://hsqldb.org/, http://ibatis.apache.org/, http://jabref.sourceforge.net/, http://jmol.
sourceforge.net/, http://logging.apache.org/log4j/, http://lucene.apache.org/, http://www.omegat.org/,
http://www.springsource.org/, http://www.stripesframework.org/, http://subclipse.tigris.org/

106 4 Static Evaluation of Test Quality

Table 4.6: Characterization of the benchmark used for external quality validation. ITS metrics were
derived for each system.

System # versions SLOC (latest) Total issues Total defects

Ant 7 100, 340 25, 608 17, 733
ArgoUML 9 162, 579 11, 065 8, 568
Checkstyle 7 47, 313 5, 154 2, 696
Hibernate-core 3 105, 460 10, 560 6, 859
HyperSQL 6 68, 674 6, 198 4, 890
iBATIS 4 30, 179 2, 496 1, 453
JabRef 5 82, 679 4, 616 3, 245
Jmol 4 91, 631 2, 090 1, 672
log4j 5 23, 549 4, 065 3, 357
Lucene 4 81, 975 37, 036 32, 586
OmegaT 5 111, 960 3, 965 1, 857
Spring Framework 4 144, 998 23, 453 11, 339
Stripes Framework 4 17, 351 2, 732 1, 359
SubEclipse 4 92, 877 3, 469 2, 585

N = 14 71 1, 161, 565 142, 507 100, 199

issues (open and resolved) and number of total defects (open and resolved). This

benchmark is being collected by SIG as an effort to validate their quality model for

maintainability. Further descriptions about this benchmark and results of the validation

of the SIG quality model can be found in Bijlsma [16], Bijlsma et. al [17], Luijten and

Visser [63] and Athanasiou [9].

To validate the SETC metric against external quality, two ITS metrics initially7

defined by Bijlsma [16] are adopted: Throughput and Productivity. These two ITS

metrics are defined as indicators for issue handling efficiency, i.e., as quality indicators

for how developers solve issues reported about a software system.

Throughput is defined as follows:

throughput =
resolved issues per month

KLOC

Throughput measures the overall efficiency of the team based on resolved issues. This

7The metrics defined by Bijlsma [16] are called project and developer productivity. However, in
later works they were redefined and renamed as throughput and productivity, respectively. The later
designation is also used by Athanasiou [9].

4.5 Static coverage as indicator for solving defects 107

metric is normalized per month, to minimize fluctuations caused by specific events

(e.g. vacations) and by size, measured in SLOC, to allow comparison among projects

of different sizes.

Productivity is defined as follows:

productivity =
resolved issues per month

developers

Productivity measures the efficiency of the developers based on resolved issues. This

metric is again normalized per month, and per number of developers.

We want to validate SETC rating against these metrics. The rationale is that sys-

tems with a higher coverage allow developers to do changes faster, not only because

it gives developers more confidence in changing the code with less impact, but also

because tests act as a form of documentation helping developers to understand the

behavior of code. Hence two hypotheses to validate are defined:

Hypothesis 1 SETC rating is positively correlated with Throughput.

Hypothesis 2 SETC rating is positively correlated with Productivity.

To validate the SETC rating with both metrics, we first analyze if the benchmark data

follows a normal distribution using Anderson-Darling test [7] in order to chose be-

tween Pearson and Spearman correlations tests. Using Anderson-Darling test to check

if the SETC rating for the ITS benchmark results in a p-value smaller than 0.05, which

means that it is not possible to assume normally distributed data and hence Spearman

correlation test will have to be used, choosing the standard 95% of significance.

Hypothesis 1 Using the Spearman correlation test between SETC ratings and Through-

put results in a correlation value of 0.242 with a p-value of 0.047. The p-value is

smaller that 0.05, indicating a significant correlation. The correlation value is positive

but low. This confirms that there is a significant positive correlation between the two

108 4 Static Evaluation of Test Quality

metrics. However, since the correlation is low the SETC rating cannot be assumed as

a good predictor for Throughput.

Hypothesis 2 Using Spearman correlation test between SETC rating and Productiv-

ity results in a correlation value of 0.439 with a p-value of 0.001. The p-value is smaller

than 0.01, indicating a highly significant correlation. The correlation value is positive

and moderate. This moderate correlation and highly significance level indicates that

SETC rating predicts Productivity. This result indicates that for systems with a higher

SETC rating the developers have higher productivity in resolving issues.

4.5.3 Evaluation

This chapter started by introducing a methodology to estimate test coverage based

on static analysis, SETC. The SETC metric proves to not only correlate with real

coverage but also SETC ratings correlate with the efficiency of developers resolving

issues. These findings show promising results for both the SETC metric and for the

use of risk and rating thresholds approach introduced in Chapters 2 and 3.

The empirical validation used in this section was inspired on previous work by

Athanasiou [9] and Bijlsma [16]. Hence, the threats of validity (construct, internal,

external and conclusion) are similar and for this reason deferred to those works.

In spite of good results about the correlations found it would be interesting to fur-

ther extend the benchmark of systems used for validation. This would allow stronger

claim about how coverage rating affects developer productivity in resolving issues.

4.6 Related Work

No attempt to compute test coverage using static analysis was found in the literature.

However, there is a long record of work sharing similar underlying techniques.

Koster et al. [54] introduce a new test adequacy criterion, state coverage. A pro-

4.6 Related Work 109

gram is state-covered if all statements that contribute to its output or side effects are

covered by a test. The granularity of state coverage is at the statement level, while our

technique is at the method level. State coverage limits coverage to system only, while

we report system, package and class coverage. State coverage also uses static analysis

and slicing. However, while a data flow graph from bytecode is used, SETC uses a

call graph extracted from source code. Koster et al. do not identify sources of impre-

cision, and use as case study a small OSS project. In contrast, this chapter describes

sources of imprecision and presents a comparison using several projects ranging from

proprietary and OSS and from small to large sizes.

Ren et al. [72] propose a tool, Chianti, for change impact analysis. The tool analy-

ses two versions of a program, original and modified. A first algorithm identifies tests

potentially affected by changes, and a second algorithm detects a subset of the code

potentially changing the behavior of tests. Both algorithms use slicing on a call graph

annotated with change information. Ren et al. use dynamic analysis for deriving the

graph. However, in a previous publication of Chianti [75], Ryder et al. used static anal-

ysis. Our technique also makes use of graph slicing at method level granularity with

the purpose of making the analysis more amenable. Chianti performs slicing twice.

First, from production code to test code and second from tests to production code. By

contrast, SETC requires slicing to be performed only once, from tests to production

code, to identify production code reached by tests. Finally, despite using a similar

technique to Chianti the purpose of SETC is to estimate test coverage.

Binkley [18] proposes a regression test selection (RTS) technique to reduce both

the program to be tested and the tests to be executed. This technique is based on two

algorithms. The first algorithm extracts a smaller program, differences, from the se-

mantics differences between a previously tested program, certified, and the program to

be tested, modified. The second algorithm identifies and discards the tests for which

certified and differences produce the same result, avoiding the execution of unneces-

sary tests. Both algorithms make use of static slicing (backward and forward) over

a system dependence graph, containing statement-level and control-flow information.

110 4 Static Evaluation of Test Quality

By contrast, SETC uses only forward slicing over a call graph, which contains less

information and requires a simpler program analysis to construct.

Rothermel and Harrold [73], present comprehensive surveys in which they ana-

lyze and compare thirteen techniques for RTS. As previously stated, RTS techniques

attempt to reduce the number of tests to execute, by selecting only those who cover

the components affected in the evolution process. RTS techniques share two impor-

tant ingredients with our technique: static analysis and slicing. However, while most

RTS techniques use graphs with detailed information, e.g., system dependence graphs,

program dependence graphs, data flow graphs, SETC uses less detailed information.

Moreover, SETC also shares with these techniques the basic principles. RTS tech-

niques analyze code that is covered by tests in order to select which tests to run. SETC,

on the other hand, analyzes code under test in order to estimate coverage.

Harrold [39] and Bertolino [15] present a survey about software testing and re-

search challenges to be met. Testing is a challenging and expensive activity and there

are ample opportunities for improvement in, for instance, test adequacy, regression test

selection and prioritization. This chapter shows that SETC can be used to assess test

adequacy. Rothermel et al. [74] surveys nine test prioritization techniques from which

four are based on test coverage. These four techniques assume the existence of cov-

erage information produced by prior execution of test cases. Our technique could be

used as input replacing the execution of tests. Finally, Lyu [64] has surveyed the state

of the art of software reliability engineering. Lyu describes and compares eight reports

of the relation between static coverage and reliability. In the presence of a very large

test suite, SETC could be used to substitute the coverage value by an approximation

and used as input of a reliability model.

4.7 Summary

An approach for estimating code coverage through static analysis was described. This

approach does not require detailed control or data flow analysis in order to scale to

4.7 Summary 111

very large systems and it can be applied to incomplete source code.

The sources of imprecision of the analysis are discussed leading to experimental

investigation of their accuracy. The experiments comparing static and dynamic anal-

ysis show a strong correlation at system, package and class level. The correlation at

system-level is higher than at package and class levels, indicating opportunities for

further improvement.

The use of risk and rating thresholds was investigated as an approach to evaluate

test quality on a 1 to 5 star rating basis. Experimental investigation of the correlation

between this rating and indicators for performance of issue resolution and revealed that

higher static coverage rating indicates better developer performance resolving issues.

112 4 Static Evaluation of Test Quality

Chapter 5

Assessment of Product Maintainability

for Two Space Domain Simulators

The software life-cycle of applications supporting space missions follows a rigorous

process in order to ensure the application complies with all the specified requirements.

Ensuring the correct behavior of the application is critical since an error can lead,

ultimately, to the loss of a complete space mission. However, it is not only important to

ensure the correct behavior of the application but also to achieve good product quality

since applications need to be maintained for several years. Then, the question arises:

is a rigorous process enough to guarantee good product maintainability?

In this chapter the software product maintainability of two simulators used to sup-

port space missions is assessed. The assessment is carried out using both a standard-

ized analysis, using the Software Improvement Group (SIG) quality model for main-

tainability, and a customized copyright license analysis. The assessment results reveal

several quality problems leading to three lessons. First, rigorous process requirements

by themselves do not ensure product quality. Second, quality models can be used not

only to pinpoint code problems but also to reveal team issues. Finally, tailored analy-

ses, complementing quality models, are necessary for in-depth quality investigation.

113

114 5 Assessment of Product Maintainability for Two Space Domain Simulators

5.1 Introduction

A space mission running a satellite is a long-term project that can take a decade to

prepare and that may run for several decades. Simulators play an important role in

the overall mission. Before the spacecraft launch, simulators are used to design, de-

velop and validate many spacecraft components; validate communications and control

infrastructure; train operations procedures. After the launch, they are used to diagnose

problems or validate new conditions (e.g. hardware failure, changes in communication

systems).

During such a long period of time, inevitably, glitches in both hardware and soft-

ware will appear. To minimize the impact of these problems it has become clear that

standards are necessary to achieve very high quality [51]. The first standards were de-

fined in 1977 [51] being currently under administration of the European Cooperation

for Space Standardization (ECSS). The ECSS1 is represented by the European Space

Agency (ESA), the Eurospace2 organization representing European space industry and

several European national space agencies.

ECSS standards are enforced by ESA and applicable to all projects developed for

the space domain, covering project management, product assurance and space engi-

neering. Two standards are specific for software. The space engineering software

standard [31] defines the requirements for the software life-cycle process. The soft-

ware product assurance standard [32] defines quality requirements for software devel-

opment and maintenance activities.

In the ECSS space engineering standard [31] a rigorous software process is defined.

This includes clear project phases (e.g. requirements), activities which can determine

if the project is continued (e.g. reviews), and deliverables to be produced (e.g. docu-

ments). For example, in the requirements phase the Requirement Baseline document

must be produced. Only after the review and approval of this document to be done

1http://www.ecss.nl/
2http://www.eurospace.org/

5.1 Introduction 115

by all the parties involved in the System Requirements Review phase, the project is

allowed to continue.

In the ECSS software product assurance standard [32] the use of a quality model

is considered. However, the standard does not define or provide recommendations for

any specific quality model. This omission in the standard explains why, no quality

model being enforced, software suppliers are given the freedom to choose or propose

a model. As consequence, the product quality of space software, in practice, relies

only on the strict process standards.

The question arises: is the current rigorous process enough to guarantee good

product quality? To answer this question, it was analzed the software product main-

tainability of two simulators used in the space domain, developed with similar stan-

dards: EuroSim and SimSat. The EuroSim is a commercially available simulator sys-

tem developed by a consortium of companies. The SimSat is a simulator owned by

ESA and developed by external companies selected via a bidding process.

Both EuroSim and SimSat were analyzed using the SIG quality model for main-

tainability [41], based on the ISO/IEC 9126 standard for software product quality [44].

Additionally, for EuroSim a custom analysis of the copyright licenses was performed

to check for possible software distribution restrictions.

From the results of the analysis three lessons were learned.

i) Rigorous process requirements do not assure good product maintainability, sup-

ported by the fact that both the EuroSim and SimSat ranked less than four stars in the

SIG quality model.

ii) Quality models can reveal team problems, supported by the discovery that some

of the code issues pinpointed by the quality model could be attributed to specific teams

involved in the project.

iii) Tailored analyses are necessary for further investigation of product quality,

supported by the discovery of code structure problems using copyright license analysis.

We conclude that having a quality model is a fundamental element to achieve good

quality allowing to pinpoint potential problems and monitor quality degradation. Also,

116 5 Assessment of Product Maintainability for Two Space Domain Simulators

Volume Duplication Unit sizeUnit size Unit complexity Test quality

Volume rating Duplication rating Unit size ratingUnit size rating Unit complexity rating Test quality rating

Overall ratingOverall ratingOverall ratingOverall ratingOverall ratingOverall rating

Estimated maintenance effortEstimated maintenance effortEstimated maintenance effortEstimated maintenance effortEstimated maintenance effortEstimated maintenance effort

Current maintenance effortCurrent maintenance effortCurrent maintenance effort Improved maintenance effortImproved maintenance effortImproved maintenance effort

Requirements for Technical Quality of Software Products

Ground Systems software follows a well-
defined process as defined by the Software
Engineering Standards for Ground
Segments in ESA (BSSC). From the
specification to the actual deployment and
operation of the software, every step of the

process is rigorously documented to ensure
a correct implementation of the functional
requirements. Technical quality of software
is addressed, as part of that process, in the
Software Product Assurance Plan and
through code reviews using Telelogic's

Logiscope. However, is this enough to
ensure high technical quality of ground
system software?
Using as case study SimSat, we present the
findings of an assessment of the technical
quality of software products. We identify

several technical quality problems. Low
technical quality leads to high maintenance
effort. We conclude that maintenance effort
could be reduced by imposing and
enforcing measurable requirements on
technical quality of software products.

Reducing software maintenance effort by addressing poor technical quality

Volume Duplication Unit size Unit complexity Test quality

Analyzability x x x
Changeability x x

Stability x
Testability x x x

IS
O

 9
1

2
6

m
a

in
ta

in
a

b
il

it
y

System
properties

44%

14%

18%

23%

Low risk

Moderate risk

High risk

Very high risk

2%4%
7%

86%

Low risk

Moderate risk

High risk

Very high risk

17% of the maintenance effort could be reduced by improving the technical quality.

SimSat case study

The ISO 9126 international standard for
software product qual i ty identi f ies
maintainability as one of the six main quality
characteristics. Maintainability is then sub-
divided into analyzability, changeability,
stability and testability. For rating these
characteristics on the basis of the source

code a quality model* employing metrics
has been proposed by the Software
Improvement Group: Volume (the overall
size in staff-years), Duplication (the
percentage of code that is exactly copied),
Unit size (size of methods and procedures
measured in LOC), Unit complexity (number

of decisions per method or procedure), and
Test quality (the existence of both unit and
integration tests). The analysis of these
metrics allows the identification of potential
risks and the calculation of ratings. Ratings
are expressed in stars: five stars mean

excellent quality, four stars good, three stars
fair, two stars poor and one star very poor.
We analyzed the source code quality of the
Simulation Infrastructure for Modelling of
Satellites (SimSat), version 4.0.1, according
to the metrics above referred. SimSat is
available as two modules: Kernel and MMI.

The overall rating for SimSat is two stars,
indicating poor maintainability. Based on
industry average productivity statistics, and
assuming that 15% of the code is changed
yearly, we estimate that SimSat has a
maintenance effort of 6 staff-years. We
estimate, that when duplication and
complexity are improved, the maintenance

effort could be reduced to 5 staff-years (17%
reduction).
To conclude, although SimSat was
developed following a strict process, quality
problems were still found, in particular
regarding duplication, complexity and unit
size. We recommend that actions should be
taken to solve these problems and that the

degradation of quality is monitored. This
would not only improve overall quality but
also reduce maintenance effort. Moreover,
new projects could benefit from adding to
the requirements that all software have at
least four stars for quality. Generalizing from
this SimSat case study, the application of
these techniques to other ESA ground

systems software would offer a better
overview of the overall quality, insight about
the existent risks and decision support for
controlling and improving software quality.
* The quality model used for the analysis
of project is a simplified model than
those used by SIG and the thresholds are
subject to change.

5% 10% 15% 20% 25% 30%

5 stars 4 stars 3 stars

2 stars 1 star

SimSat

Tiago L. Alves

Software Improvement Group, The Netherlands

University of Minho, Portugal

t.alves@sig.nl

25 50 75 100 125 150 175 200

5 stars 4 stars 3 stars

2 stars 1 star

SimSat

Kernel: 140K LOC, C++

MMI: 170K LOC, Java

Rebuild value: 47 staff years

Kernel: 7% LOC

MMI: 11% LOC
! ! ! ! !

functional and unit testing with

high coverage

! ! ! !

functional or unit testing with

high coverage

! ! !

 functional or unit testing with

good or fair coverage

! !

functional or unit testing with

poor coverage

! no tests

LOC / unit McCabe / unit

= 6 x (staff / year) = 5 x (staff / year)

Figure 5.1: Poster presented to European Ground System Architecture Workshop (ESAW’09) in the
early phase of the work which lead to Chapter 5 of this dissertation.

5.2 Systems under analysis 117

quality models should be complemented with tailored analysis in order to check for

further potential problems.

This chapter is structured as follows. Section 5.2 provides a description of the

two analyzed simulators. Section 5.3 introduces the quality model and the copyright

license analysis used to evaluate product quality. Section 5.4 presents the results of

the quality assessment and describes the quality issues found and how they could be

prevented. Summary of the lessons learned is presented in Section 5.6 and of the

contributions in Section 5.7.

5.2 Systems under analysis

This section provides a brief overview of the two simulators analyzed: EuroSim (Eu-

ropean Real Time Operations Simulator) and SimSat (Simulation Infrastructure for the

Modeling of Satellites).

5.2.1 EuroSim

EuroSim is a commercial simulator3 developed and owned by a consortium of compa-

nies including Dutch Space, NLR and TASK244.

The development of EuroSim started in 1997. It is mainly developed in C/C++,

supporting interfaces for several programming languages (e.g. Ada, Fortran, Java

and MATLAB). EuroSim supports hard real-time simulation with the possibility of

hardware-in-the-loop and/or man-in-the-loop additions.

EuroSim is used to support the design, development and verification of critical

systems. These include, for instance, the verification of spacecraft on-board software,

communications systems and other on-board instruments. Additionally, outside the

space domain, EuroSim has been used for combat aircraft training purposes and to

simulate autonomous underwater vehicles.
3http://www.eurosim.nl/
4http://www.dutchspace.nl/ http://www.nlr.nl/ http://www.task24.nl

118 5 Assessment of Product Maintainability for Two Space Domain Simulators

For the analysis EuroSim mk4.1.5 was used.

5.2.2 SimSat

SimSat is a simulator owned by ESA5, developed and maintained by different external

companies chosen via a bidding process. In contrast to EuroSim, SimSat is not a

commercial tool and is freely available to any member of the European Community.

The development of SimSat started in 1998 but its code has been rewritten several

times. The analyzed version is based on the codebase developed in 2003. SimSat

consists of two main modules: the simulation kernel, developed in C/C++; and the

Graphical User Interface (GUI), developed in Java using Eclipse RCP [66]. Only soft

real-time simulation is supported.

SimSat is used for spacecraft operation simulations. This involves the simulation of

the spacecraft state and control communication (housekeeping telemetry and control).

The on-board instruments (payload) are not simulated. The simulator is used to train

the spacecraft operator team and validate operational software, such as the systems to

control satellites, ground station antennas and diverse network equipment.

For the analysis SimSat 4.0.1 issue 2 was used.

EuroSim and SimSat have three commonalities. First, they are used to support

the validation of space sub-systems. Second, according to companies involved in the

development of EuroSim [33] and SimSat [80], they are both used for the simulation of

(different) components of the European Global Navigation System (Galileo). Third,

both EuroSim and SimSat were developed using strict equivalent software process

standards, compatible with the ECSS standards.

5http://www.egos.esa.int/portal/egos-web/products/Simulators/SIMSAT/

5.3 Software analyses 119

Volume

Duplication

Unit complexity

Unit size

Unit interfacing

Testing

Analysability

Changeability

Stability

Testability

Maintainability

ISO/IEC 9126 product properties source code measurements

Functionality

Reliability

Usability

Efficiency

Portability functional + unit testing / coverage

Figure 5.2: Quality model overview. On the left-hand side, the quality characteristics and the main-
tainability sub-characteristics of the ISO/IEC 9126 standard for software product quality are shown.
On the right-hand side, the product properties defined by SIG and its relation with the maintainability
sub-characteristics are shown. In the source code measurements, the empty rectangle indicates the use
system-level measurements, the four-piece rectangles indicate measurements aggregated using risk pro-
files, and the dashed-line rectangle indicates the use of criteria. This figure is adapted from Luijten et
al. [63].

5.3 Software analyses

Two types of analyses were done. One standardized analysis, applied to both EuroSim

and SimSat, using the SIG quality model for maintainability. One custom analysis,

applied only to EuroSim, for copyright license detection.

5.3.1 SIG quality model for maintainability

The ISO/IEC 9126 standard for software product quality [44] defines a model to char-

acterize software product quality according to 6 main characteristics: functionality,

reliability, maintainability, usability, efficiency and portability. To assess maintainabil-

ity, SIG developed a layered model using statically derived source code metrics [41].

An overview of the SIG quality model and its relation to the ISO/IEC 9126 standard is

shown in Figure 5.2.

The SIG quality model has been used for software analysis [41], benchmark-

ing [26] and certification [27] and is a core instrument in the SIG consultancy services.

Also, Bijlsma [16], Bijlsma et. al [17], Luijten and Visser [63] found empirical evi-

dence that systems with higher technical quality have higher issue solving efficiency.

The model is layered, allowing to drill down from the maintainability level, to

120 5 Assessment of Product Maintainability for Two Space Domain Simulators

sub-characteristic level (as defined in the ISO/IEC 9126: analyzability, changeability,

stability and testability), to individual product properties. Quality is assessed using a

five star ranking: five stars is used for very-good quality, four stars for good, three stars

for moderate, two stars for low and one star for very-low. The star ranking is derived

from source code measurements using thresholds calibrated using a large benchmark

of software systems [27].

To assess maintainability, a simplified version of the quality model was used using

the product properties described below. A short description of each product property

is provided.

Volume: measures overall system size in staff-months (estimated using the Program-

ming Languages Table of Software Productivity Research LLC [59]). The smaller

the system volume, the smaller the maintenance team required avoiding commu-

nication overhead of big teams.

Duplication: measures the relative amount of code that has an exact copy (clone)

somewhere else in the system. The smaller the duplication the easier to do bug

fixes and testing, since functionality is specified in a single location.

Unit size: measures the size of units (methods or functions) in Source Lines of Code

(SLOC). The smaller the units the lower the complexity and the easier it is to

understand and reuse.

Unit complexity: measures the McCabe cyclomatic complexity [67] of units (meth-

ods or functions). The lower the complexity the easier to understand, test and

modify.

Unit interfacing: measures the number of arguments of units (methods or functions).

The smaller the unit interface the better encapsulation and therefore the smaller

the impact of changes.

Testing: provides an indication of how testing is done taking into account the presence

5.3 Software analyses 121

of unit and integration testing, usage of a test framework and the amount of test

cases. The better the test quality the better the quality of the code.

As can be observed, the ratings for product properties are derived in different ways.

Volume and Duplication are calculated at system level.

Unit size, Unit complexity and Unit interfacing are metrics calculated at method

or function level, and aggregated to system level using risk profiles. A risk profile

characterizes a metric through the percentages of overall lines of code that fall into

four categories: low risk, moderate risk, high risk and very-high risk. The methods

are categorized in these categories using metric thresholds. The ratings are calculated

using (a different set of) thresholds to ensure that five stars represent 5% of the (best)

systems, four, three and two stars represent each 30% of the systems, and that one star

represents the 5% of the (worse) systems.

Finally, the rating for Test quality is derived using the following criteria: five stars

for unit and functional testing with high coverage; four stars for unit or function testing

with high coverage; three stars for unit or functional testing with good or fair coverage;

two stars for function or unit testing with poor coverage; one star for no tests. This

method was taken from [27]. Alternatively, a method for estimating test quality as the

one introduced in Chapter 4 could be used. However, the use of this method would

require a C/C++ implementation which, at the time of this work was carried out, was

not available.

For a more detailed explanation of the quality model, are referred to references [41,

25] and [11].

5.3.2 Copyright License Detection

A customized analysis was developed to find and extract copyright licenses used in

EuroSim. This analysis is identical to the one the author used in [3] to identify library

code. The analysis of copyright licenses was done to investigate if any of the used

licenses poses legal restrictions in the distribution of EuroSim.

122 5 Assessment of Product Maintainability for Two Space Domain Simulators

Table 5.1: Criteria to determine the implications of the use of licensed source code.

Open-source license Other license
copyleft copyright consortium external

Mandate distribution of library changes? yes yes no investigate
Mandate all software distribution under same license? yes no no investigate

The analysis of copyright license was executed in two steps. First, by implementing

and running an automatic script to detect copyright and license statements. Second, by

manually checking each license type using Table 5.1.

The developed script was implemented by defining regular expressions in grep [12],

to match keywords such as license, copyright, and author. Although the approach is

simple, it enables a powerful and generic way of detecting copyright statements. This

is necessary since there is no standardized way to specify copyright information (this

is mostly available as free form text in code comments).

Such a copyright statement list was then manually processed to detect false posi-

tives (keywords recognized that do not refer to actual licenses or authorship informa-

tion). After validation, false positives were removed from the list.

Table 5.1 was then used to help checking if a license found poses any risk to the

project. For instance, finding an Open-Source Software (OSS) copyleft license, such

as the GNU GPL license, would not only mandate to distribute library changes (if any)

but also mandate EuroSim to be available under the GNU GPL license. As conse-

quence, this would legally allow the free or commercial distribution of EuroSim by

third-parties. The use of OSS copyright licenses, or licenses from consortium compa-

nies does not pose any restriction in software distribution. However, should external

licenses be found then, this condition should be investigated.

5.4 Analysis results 123

Figure 5.3: Volume comparison for EuroSim and SimSat (scale in staff–year).

5.4 Analysis results

This section describes the results of the application of the SIG quality model for main-

tainability to both EuroSim and SimSat, and those concerning the copyright license

detection analysis done for EuroSim.

5.4.1 Software Product Maintainability

Using the SIG quality model, described in Section 5.3.1, EuroSim ranks three stars

while SimSat ranks two stars. The following sections provide a more detailed analysis

of the 6 product properties measured by the quality model: Volume, Duplication, Unit

complexity, Unit size, Unit interfacing and Testing. The first two metrics are measured

at system-level and are presented in a scale, from five stars to one star, read from left to

right. All the other metrics, except testing, are measured at unit level and are presented

in a pie-chart, in which very-high risk is depicted in black, high risk in gray, moderate

risk in light gray, and low risk in white.

Volume

Figure 5.3 compares the volume of EuroSim and SimSat. EuroSim contains 275K

SLOC of C/C++ and 4K SLOC of Java, representing an estimated rebuild value of

24 staff–year, ranking four stars. SimSat contains 122K SLOC of C/C++ and 189K

SLOC of Java, representing an estimated rebuild value of 32 staff–year, ranking three

stars.

124 5 Assessment of Product Maintainability for Two Space Domain Simulators

Figure 5.4: Duplication comparison for EuroSim and SimSat.

For EuroSim, the Java part is responsible only for exposing API access to Java

programs. Both GUI and core of the application are developed in C/C++.

For SimSat, the Java part is responsible for the GUI, while the C/C++ is respon-

sible for the core of the application. It is interesting to observe that the SimSat GUI is

larger than the core of the application.

Since both simulators rank three stars or higher for volume, this indicates that the

maintenance effort is possible with a small team composed by a couple of elements,

maintenance effort being smaller for EuroSim than for SimSat.

Duplication

Figure 5.4 compares the duplication of EuroSim and SimSat. EuroSim contains 7.1%

of duplication, ranking three stars, while SimSat contains 10.4% of duplication, rank-

ing two stars.

In both EuroSim and SimSat, duplication problems were found in several modules,

showing that this is not a localized problem. Also, for both systems, duplicated files

were found.

For EuroSim, we uncovered several clones in the library code supporting three dif-

ferent operating systems. This fact surprised the EuroSim maintainers as they expected

the code to be completely independent.

For SimSat, surprisingly, we found a large number of duplicates for the Java part

which, in newly-developed code, indicates lack of reuse and abstraction.

As final observations, although EuroSim is much older than SimSat, and hence

5.4 Analysis results 125

(a) EuroSim (b) SimSat

Figure 5.5: Unit size comparison for EuroSim and SimSat.

more exposed to code erosion, the overall duplication in EuroSim is smaller than that

in SimSat. Also, for both systems, several clones found were due to the (different)

implementations of the ESA Simulation Model Portability library (SMP).

Unit size

Figure 5.5 compares the unit size of EuroSim and SimSat using risk profiles. Both

EuroSim and SimSat contain a large percentage of code in the high-risk category, 17%

of the overall code, leading to a ranking of two stars.

Looking at the distribution of the risk categories for both EuroSim and SimSat, we

can see that they have similar amounts of code in (very) high risk categories, indicating

the presence of very-large (over 100 SLOC) methods and functions.

In EuroSim, it was surprising to find a method with over 600 SLOC, and a few over

300 SLOC, most of them regarding the implementation of device drivers. At the result

validation phase, this was explained to be due to manual optimization of code.

In SimSat, the largest C/C++ function contains over 6000 SLOC. However, in-

spection of the function revealed that it is an initialization function, having only a

single argument and a single logic condition. Several methods over 300 SLOC were

also found, most of them are in the Java part.

126 5 Assessment of Product Maintainability for Two Space Domain Simulators

(a) EuroSim (b) SimSat

Figure 5.6: Unit complexity comparison for EuroSim and SimSat.

Unit complexity

Figure 5.6 compares the unit complexity of EuroSim and SimSat using risk profiles.

Both EuroSim and SimSat contain a similar (large) percentage of code in the high-risk

category, 4% and 3%, respectively, leading to a ranking of two stars.

Considering the percentage of code of the three highest risk categories (very-high,

high and moderate risk), EuroSim contains 30% of unit complexity while SimSat con-

tains 20%. For both systems, the highest McCabe value found is around 170 decisions

in a single C/C++ function (for EuroSim) and Java method (for SimSat).

In EuroSim, methods with very-high complexity are spread in the system. Interest-

ingly, faced with module-level measurements, the EuroSim maintainers observed that

particular consortium members were responsible for modules with the worse complex-

ity.

In SimSat, it is worth noting that the majority of the methods with very-high com-

plexity were localized in just a dozen of files.

Unit interfacing

Figure 5.7 compares the Unit interfacing of EuroSim and SimSat using risk profiles.

EuroSim ranks two stars while SimSat ranks three stars.

While EuroSim contains 42% of the overall code in the moderate and (very) high

5.4 Analysis results 127

(a) EuroSim (b) SimSat

Figure 5.7: Unit interfacing comparison for EuroSim and SimSat.

risk categories, SimSat contains 13%. For both systems, the highest number of param-

eters is around 15. Also, for both systems, methods considered as very-high risk are

found spread over the system.

In SimSat, surprisingly, no very-high risk methods were found in the Java code,

only in the C/C++ code. This was surprising since for all other product properties we

observed an abnormal quantity of problems in the Java code.

Testing

Both EuroSim and SimSat have similar test practices, both ranking two stars for test-

ing due to the existence of only functional tests. Most of the testing is done manually

by testing teams who follow scenarios to check if the functionality is correctly imple-

mented.

Automatic functional/component tests are available for both systems. However,

none of the systems revealed unit tests, i.e. tests to check the behavior of specific

functions or methods.

Test frameworks were only found for the SimSat system, but restricted to the Java

code only, and without test coverage measuring. For the C/C++ code, for both sys-

tems, no test framework has been used in the development of the tests.

For both systems test coverage information was not available. However, comparing

128 5 Assessment of Product Maintainability for Two Space Domain Simulators

the ratio between test and production code, for both systems, showed that there is

roughly 1 line of test code per 10 lines of production code, which typically indicates

low test coverage.

Regarding to EuroSim, it was observed that for different parts of the system, slightly

different naming conventions were used, indicating that tests were developed in a non-

structured way.

In summary, the testing practices could be improved for both systems.

5.4.2 Copyright License Detection

The copyright license analysis in EuroSim identified a total of 25 different licenses:

2 LGPL licenses, 7 licenses from consortium members, 11 licenses from hardware

vendors and libraries, and 5 licenses copyrighting software to individuals.

None of the copyright licenses found poses restrictions on software distribution.

However, copyright license analysis revealed OSS library code mixed with code de-

veloped by the EuroSim consortium. While for some external libraries specific folders

were used, this practice was not consistent, indicating code structure problems. This

issue is particularly important when updating libraries, requiring to keep track of the

locations of these libraries (or to manually determine them), thus calling for extra

maintenance effort.

Additionally, for software developed by a consortium of companies, the code would

be expected to sit under a unique license defined by the consortium. Instead, it was

discovered that each consortium company used its own license. While this is not a

problem, extra effort is required in case any of the licenses needs to be updated.

Finally, it was surprising to find copyright belonging to individual developers in

some files. Since this happens only for device driver extension code this also poses no

serious problem.

The analysis, despite using a very simple technique, provided valuable information

to the EuroSim team. Not only the team was not aware of the number and diversity of

5.5 Given recommendations 129

licenses in the source code, but also they were surprised to discover copyright state-

ments to individuals.

In summary, although this analysis did not reveal copyright license issues, it helped

to uncover code structure issues.

5.5 Given recommendations

Based on the analysis presented in the previous section the following recommendations

were given to EuroSim and SimSat owners.

For both systems, if significant maintenance effort is planned, it was advised to

monitor the code quality in order to prevent further code degradation and to improve

automatic testings. Furthermore, a clear separation between production and test code

should be made and testing frameworks with coverage support should be adopted.

Code monitoring should focus on Duplication (specially for SimSat, since part of

it was recently built). It is also important to monitor Unit size and Unit complexity to

check if the large and/or complex methods are subject of frequent maintenance. If they

are, they should be refactored as this can reduce the maintenance effort and can make

the testing process easier. In case of SimSat, the large methods in the recently built

Java part indicate lack of encapsulation and reuse, hence requiring more attention.

With respect to overall volume, in SimSat, we recommended to completely divide

the system into two parts if continuous growth is observed in order to reduced mainte-

nance effort.

Finally, for EuroSim, it was recommended that code from external libraries should

be clearly separated from production code and that the use of a unique license for all

the consortium should be considered.

130 5 Assessment of Product Maintainability for Two Space Domain Simulators

5.6 Lessons learned

Strict process requirements do not assure product quality

Both EuroSim and SimSat were developed using similar process requirements. Al-

though the development is done following a rigorous process, the product quality anal-

yses revealed moderate maintainability for EuroSim (three stars) and low maintainabil-

ity for SimSat (two stars). For both systems, in-depth analysis revealed duplication,

size and complexity problems causing several product properties to rank down to two

stars.

To assure good software product quality it is necessary to define clear criteria to

assess quality, establish quality targets and provide means to check if the targets are

being met (preferably using tool-based analyses). This can be achieved using a tool-

supported quality model.

The quality model defines criteria, i.e. defines the metrics/analyses that are going

to be applied to the software and that check if the results are within boundaries. When

using the SIG quality model, an example of a quality target is that the overall main-

tainability should rank a minimum of four stars. Finally, to validate that the quality

target is being met it is necessary to continuously apply the quality model to monitor

the evolution of the system quality.

The continuous application of a quality model during the software life-cycle offers

many advantages: it allows, at any moment, to check if the quality targets are be-

ing met; it can provide early-warning when a potential quality problem is introduced

- pinpointing the problem; and it allows for continuous monitoring of code quality

degradation.

Quality models can reveal team problems

When assessing software product maintainability using a quality model, potential team

problems can be revealed by the observation of rapid software degradation or by the

5.6 Lessons learned 131

unusual lack of quality in newly-built software. Team problems were revealed for both

EuroSim and SimSat.

EuroSim was developed by several teams (from the consortium of companies)

which, through time, contributed with different parts of the system. When analyzing

software quality we observed quality differences that could be attributed to specific

teams, i.e., some teams delivered code with worse quality than others. Homogeneous

code quality among the consortium members can be achieved by using a shared quality

model and establishing common quality targets.

SimSat was developed and maintained by external companies selected via a bid-

ding process. In the last iteration of the product, a new technology, Eclipse RCP [66],

was used to develop the GUI. When analyzing software quality for the GUI it was ob-

served unusual duplication, size and complexity for the newly developed part, respon-

sible for the system low maintainability rating. These quality problems suggested low

expertise of the contracted company with this new technology, which was confirmed

by ESA. A shared quality model between ESA and the external company responsible

for software development would allow to reveal the before mentioned quality issues

during development. Also, the inclusion in the outsourcing contract of the quality

model to be used and the quality targets to be met, would enforce legal obligations for

the external company to deliver high quality software.

In summary, the adoption of a quality model and establishing common quality

targets allows to create independence between code quality and the development team.

This is particular important in environments where team composition changes over

time.

Tailored analyses are necessary for further investigation of product

quality

Quality models evaluate a fixed set of the software characteristics hence only revealing

a limited set of potential problems. Under suspicion of a particular problem, quality

132 5 Assessment of Product Maintainability for Two Space Domain Simulators

models should be complemented with tailored analyses to check for the existence of

such problem. Additionally, even if evidence of such particular problem is not found,

the analyses can reveal other problems.

For EuroSim, the customized analysis to check for copyright licenses revealed the

existence of OSS code mixed with production code without clear separation, providing

evidence of problems in code structure. These problems were already suspected since

during test quality analysis it was observed inconsistent naming of test folders.

Code structure inconsistencies are an example of a problem that can not be detected

using a quality model. Quality models are important, because they can automatically

produce an overview of the system quality and provide a basis for quality comparison

among systems. However, as we learned from this example, it is important to com-

plement the quality assessment of a quality model with tailored analysis and expert

opinion.

5.7 Summary

This chapter presented a quality assessment of two simulators used in the space do-

main: EuroSim and SimSat. To analyze both systems the SIG quality model for main-

tainability based on ISO/IEC 9126 standard for software product quality was used.

Although both systems followed similar strict standards, quality problems were found

in both systems. Not only do both systems rank less than four stars, also problems in

duplication, size and complexity were found.

From the analyses of both the EuroSim and SimSat three lessons were learned.

i) Rigorous process requirements do not assure product quality:

ii) Quality models can reveal team problems:

iii) Tailored analyses are necessary for further investigation of quality:

The analyses reported in this chapter provide evidence that, although a quality

model does not reveal all problems, it can be an important instrument to manage soft-

ware quality and to steer the software development and maintenance activities.

Chapter 6

Conclusions

This dissertation is devoted to the evaluation of software product quality using bench-

marked quality indicators. This chapter summarizes the main contributions, revisits

the starting research questions, and presents avenues for future work.

6.1 Summary of Contributions

The overall contribution of this dissertation is a well-founded and pragmatic approach

to use source code metrics to gain knowledge about a software system. Knowledge is

obtained at both measurement (micro) and overall system (macro) levels, by turning

quantitative values into a qualitative evaluation.

At micro level, the approach divides the measurement space into several risk cat-

egories, separated by specific thresholds. By associating a risk category to a mea-

surement, this becomes more than just a number (or a quantitative value) leading to

a qualitative evaluation of that measurement. For example, by identifying a particu-

lar measurement as very-high risk, we are assigning information to this measurement

indicating that this value might be worth investigating.

At macro level, the approach allows one to aggregate all individual measurements

into a single meaningful qualitative evaluation. This aggregation is achieved using

133

134 6 Conclusions

both risk and rating thresholds. The conversion of all measurements into an N -point

star rating allows the possibility of having manageable facts about a system that can be

used to communicate and discuss with others. Risk and rating thresholds additionally

allow traceability from the rating to individual measurements (drill down), enabling

root-cause analysis: using rating thresholds allows one to decompose the rating into

different risk areas, and then, subsequently using risk thresholds allows us identify

the individual measurements. For example, if the overall result of a metric is 1 star,

representing the worst quality evaluation, one has a clear indication that there is some-

thing worth investigating about the system. One can also decompose the rating into

the measurements that justify that rating by using rating and risk thresholds.

The novelty of the approach comes from the use of a benchmark of software sys-

tems.

At micro level, when categorizing a specific measurement as very-high risk, one

can relate that evaluation to all the measurements of the benchmark. The benchmark

is used to characterize the distribution of a metric which is thereupon used to derive

thresholds for each risk category. As example for the McCabe metric, if a measure-

ment is higher than 14 it can be considered as very-high risk because it is among the

benchmark 10% highest measurements. This approach, based on benchmark-based

thresholds, adds knowledge to individual measurements allowing for better micro-level

interpretation of software systems.

At macro level, stating that a system rating is 1 star relates such a rating to all

systems (and their measurements) of the benchmark. The benchmark contains a rep-

resentative sample of software systems from which thresholds are calibrated such that

they can be ranked from 1 to N stars ranging from the worst to the best systems, re-

spectively. When aggregating the measurements of a system, using benchmark-based

thresholds, the system is rated as 1 star, for a 5 star scale and assuming a uniform dis-

tribution in which each star represents equally 20% of the systems. What is asserted

is that this system is among the 20% worst systems of the benchmark. This approach,

again using benchmark-based thresholds, adds qualitative information to the aggrega-

6.2 Research Questions Revisited 135

tion of all measurements.

This approach relying on source code metrics to gain knowledge about software

systems is demonstrated through two case studies. In the first case study, this method-

ology is applied to qualitative assessment of test quality. A new metric to estimate test

coverage, Static Estimation of Test Coverage (SETC), is proposed with accompanied

risk and rating thresholds. When validating this metric against bug resolution effi-

ciency a positive correlation is found. This correlation not only indicates that systems

having higher static test coverage allow bugs to be solved more efficiently, but also

indirectly validates the methodology. The second case study is more industrial and

applies this methodology to rank and evaluate two space-domain systems. The results

were validated with the systems owners which confirmed the qualitative evaluation and

acknowledged the problems pinpointed.

6.2 Research Questions Revisited

This section revisits the research questions put forward in the beginning of the dis-

sertation, providing a detailed summary on how, and in which chapters, such research

question are addressed and answered.

Research Question 1

How to establish thresholds of software product metrics and use them to

show the extent of problems in the code?

Chapter 2 introduces a methodology to derive risk thresholds from a benchmark for

a given metric. Based on data transformation, the methodology starts by characteriz-

ing a metric distribution that represents all systems in the benchmark. To characterize

a metric, the use of the measurement weight is introduced, using Source Lines of

Code (SLOC) for each system distribution, and an aggregation technique to obtain

136 6 Conclusions

a single metric distribution representative of all benchmark systems. After charac-

terizing a metric, thresholds are selected by choosing the percentage of code they will

represent. Moreover, Chapter 2 analyzes metrics whose distribution resemble an expo-

nential distribution and higher values of the metric indicate worse quality. Thresholds

for these metrics are proposed from the tail of the distribution choosing to represent,

for the majority of the metrics, 70%, 80% and 90%, defining the minimum boundaries

for moderate, high and very-high risk categories, respectively. Finally, Chapter 4 an-

alyzes a metric whose distribution resembles a normal distribution and higher values

of the metric indicate good quality. For this metric, the distribution was divided into

equal parts, choosing to represent 25%, 50% and 75%, to define minimum boundaries

for the very-high, high and moderate risk categories, respectively.

Research Question 2

How to summarize a software product metric while preserving the capa-

bility of root-cause analysis?

Chapter 3 demonstrates how to aggregate metrics into an N -point star rating. This

is achieved by a two-step process, first by using risk thresholds proposed earlier in

Chapter 2 and then by using rating thresholds. These rating thresholds are calibrated

with an algorithm proposed in Chapter 3 providing the capability of summarizing a

set of measurements into a qualitative evaluation (a rating). The calibration process

ensures that, similar to risk thresholds, this rating is representative of systems from a

benchmark. The use of thresholds allows one to keep essential information while to

decomposing the rating into their measurements for root-cause analysis. Root-cause

analysis capability is made possible by decomposing the rating into different risk areas,

using the rating thresholds, and then by identifying the measurements that fall into

each risk category, using the risk thresholds. Chapters 3 and 4 show how to calibrate

a 5-point star rating such that each rating represents equally 20% of the benchmark

systems. Moreover, Chapter 3 provides an example of the usage of this methodology

6.2 Research Questions Revisited 137

to compare software systems, and Chapter 4 demonstrates that ratings can be correlated

with external quality. Finally, Chapter 5 presents a case study where the quality of two

space-domain simulators is compared and analyzed.

Research Question 3

How can quality ratings based on internal metrics be validated against

external quality characteristics?

A new metric called SETC is introduced in Chapter 4 to estimate test coverage, at

method level, from static source code measurements. This metric is validated against

real coverage (coverage measured with dynamic analysis tools) and a positive correla-

tion is found. After establishing this correlation between static and dynamic coverage,

the approach introduced in Chapters 2 and 3 is applied to identify thresholds and de-

fine a 5-point star rating based on benchmark data. Using a static coverage rating for

several systems an experiment is conducted to check if positive correlation could be

found with external quality measurements. It is found that systems with higher SETC

rating have a higher developer performance when resolving issues.

Chapter 5 analyzes the ratings of various metrics of two space-domain simulators

as example systems. This includes the Software Improvement Group (SIG) quality

model for maintainability, which makes uses of risk and rating thresholds that can be

derived from approaches presented in Chapters 2 and 3. When analyzing the ratings by

breaking them down into risk areas, using rating thresholds, and then by investigation

measurements, identified with risk thresholds one is able to identify source code prob-

lems (high duplication and complexity). When validating these source code problems

with the systems owners, they confirmed that they were due to team problems.

Finding correlation between source code ratings and developer performance when

resolving issues, and being able to identify team problems by the analysis of source

code ratings are two examples that give evidence of the possibility of identifying ex-

ternal quality characteristics using quality ratings. Furthermore, these two examples

138 6 Conclusions

indirectly demonstrate that risk and rating thresholds are able to capture meaningful

information about software systems.

Research Question 4

How to combine different metrics to fully characterize and compare the

quality of software systems based on a benchmark?

Using the SIG quality model for maintainability, Chapter 5 shows how to fully char-

acterize and compare the quality of various systems, resorting to two space-domain

simulators as examples. Key to this quality model is the use of both risk and rating

thresholds, as presented in Chapters 2 and 3, respectively. Chapter 5 shows that the

blending of different metrics to fully characterize a system quality can be done by com-

bining each metric rating into an overall rating. This overall rating is applied to the

two simulators to characterize and compare their system quality. Not only is the over-

all rating confirmed by the system owners, but one can identify source code risks by

decomposing this rating back to individual measurements, which again are validated

by the system owners and can be translated to external quality issues.

6.3 Avenues for Future Work

Further improvements on the methodology to derive risk thresholds can be considered.

The current methodology requires to choose specific risk percentages to derive thresh-

olds. For most of the SIG quality model metrics, 70%, 80% and 90% have been used

as heuristic. However, although the unit interfacing metric followed the same distribu-

tion as the other metrics of the SIG quality model, a different set of percentages (80%,

90% and 95%) had to be used. For the SETC metric, on the other hand, the distri-

bution resembled a normal distribution and for this reason the percentages 25%, 50%

and 75% were used. This choice of percentages to characterize a metric distribution is

guided by visual inspection. However, this could also be done by curve approximation

6.3 Avenues for Future Work 139

techniques. As example, in theory a fitting technique such as [77] could be used to fit

5 knots into the curve and the 3 inner knots be used as input of the algorithm. It would

also be worth to investigate results of using curve fitting techniques in other sciences.

Further improvements on the methodology to calibrate risk thresholds can also

be considered. These risk thresholds are fundamental as they allow to define risk

profiles that are used as input to the calibration algorithm. The choice of risk thresholds

affects the rating calibration results (both the rating thresholds and the distribution of

systems per rating obtained with such thresholds). Further research should focus on

the impact of risk thresholds on rating thresholds. Moreover, it might be possible to

have a unique algorithm to derive both risk and rating thresholds, providing stronger

guarantees about the expected distribution. A possibility that was not explored was

to start calibrating ratings and then proceed to derive risk thresholds, instead of first

deriving risk thresholds and later calibrating ratings. Rating thresholds were calibrated

for a 5-star rating scale for a uniform distribution. However, the implications of using

different scales and distributions should be further investigated.

The methodologies for deriving risk thresholds and calibrating rating thresholds

have been applied to the metrics of the SIG quality model and to the SETC met-

ric. Within SIG, others have used these methodologies for different metrics (Bi-

jlsma [16], Bijlsma et al. [17] and Athanasiou [9]). The applicability to other metrics,

e.g. CDK [22] or Halstead [38], or to metrics for other types of software artifacts, e.g.,

databases or XML schemas, is also worth investigating. Ratings from different metrics

could also be used for validation purposes, establishing correlations among them and

possibly enabling to identify similar and unique metrics. The methodologies for deriv-

ing risk thresholds and calibrating rating thresholds, enabling aggregation of metrics

into ratings, were applied in the software domain for source-code and Issue Tracking

System (ITS) derived metrics. However, these methodologies are not restricted in any

way to the software domain. Since the methodologies are based on data analysis using

large benchmarks, it would be worth to investigate the applicability to other domains,

e.g. manufacturing.

140 6 Conclusions

The comparison of the SETC metric with real coverage was discussed in Chapter 4,

Analysis of this metric showed that it could be used to predict real coverage de-

spite small errors. Evidence is given in Chapter 4 where a positive correlation with

high significance was found between SETC and real coverage at system, package and

class levels. However, the accuracy of results could be improved by refining the static

derivation of call graphs: commonly used frameworks can be factored into the analy-

sis, bytecode analysis can be used to recognize library/framework calls, and methods

called by reflection can be estimated. Estimation of statement coverage rather than

method coverage could be attempted. To not rely on detailed statement-level informa-

tion, a simple SLOC count for each method could be used to estimate statement cov-

erage. It would be also worth of investigation the use of a more detailed dependency

analysis. The use of a system dependence graph and intra-procedural analysis could,

as in Binkley [18], reduce the imprecision caused by dynamic dispatch, improving the

estimation. Intra-procedural analysis could also allow for more fine-grained cover-

age analysis enabling the estimation of statement or branch coverage. Additionally, it

would be interesting to evaluate the benefit of techniques to predict the execution of

particular code blocks, such as estimation of the likelihood of execution by Boogerd

et al. [19]. Although sophistication in the static analysis may improve accuracy, the

penalties (e.g. scalability loss) should be carefully considered. Finally, the SETC

could be combined with other works, namely by Kanstrén [53]. Kanstrén defines a test

adequacy criterion in which code is considered as test covered if it is tested at both the

unit level and the integration level. These levels are measured using the distance from

the test to the method via the derived call derived dynamically when executing tests.

The dynamic analysis could be replaced by a static analysis similar to the one used for

the SETC metric. Risk and ratings thresholds could be derived for the levels of testing

and a similar empirical validation study against ITS metric could be done.

The use of risk and rating thresholds allows metrics to be aggregated and used to

evaluate a software system. This aggregation is used in the SIG quality model, prior

to combining all metrics. These methodologies put forward in this dissertation can

6.3 Avenues for Future Work 141

be used as a step to construct any other quality model. Further investigation could

address how to combine ratings from different metrics, using (weighted) averages or

more elaborated techniques. Another key issue still not addressed in quality models

is that individual calibration of metrics for a particular distribution does not grant this

distribution holds for all the systems when combining different metrics. This lack of

transitiveness should be investigated.

In this research, although metrics that can be applied to any programming language

were used, measurements were only derived from modern Object-Oriented (OO) pro-

gramming languages, Java and C#. Nevertheless, the majority of systems is built using

many different technologies: different programming languages, schemas, grammars,

databases, configurations, etc. To have a fully comprehensive qualitative view of a

software system it is therefore necessary to take all technologies into account. This re-

search, in particular the work about thresholds, does not make any assumptions about

underlying technologies. However, it is worth investigating how these measurements

can be used together to reach to a single qualitative evaluation of the full software sys-

tem. A possible alternative could derive ratings for each technology separately, and

then compute weighted averages so that the contribution of each technology’s rating is

directly linked to the overall weight it represents in the system.

Once the challenge of fully characterize the quality of software system, consider-

ing all its technologies, is overcome, emphasis should be put in how to characterize the

quality of a set of related systems. This question is of relevance for any organization

responsible for a portfolio of systems. For instance, software house organizations re-

sponsible for developing and/or maintaining different software systems are interested

in having a high-level view of all the software systems they are working on and being

able to identify potential problems. Other organizations owning and using a portfolio

of systems are also interested in having concrete facts about the quality of their soft-

ware asset. Hence, the challenge is to find a way to create a meaningful overview of

a software portfolio. A possible solution could be the use of system-level ratings that

are aggregated to portfolio-level taking into account the importance and weight of each

142 6 Conclusions

system within the organization.

The benchmark of software systems adopted used in this work and reported in this

dissertation is proprietary of the SIG company. The choice to use this benchmark was

due to the fact that all research was done in an industrial environment at the SIG. How-

ever, since this benchmark is not public it is more difficult to reproduce some research

results, in particular the derived risk thresholds and the calibrated rating thresholds. At

the time of writing, SIG welcomes researchers to stay a period of time at their offices

and use their benchmark for research. Naturally, this situation might not be practical

for the majority of researchers. The need of reproducing resutls creates demand for

publicly available and curated benchmarks holding non-Open-Source Software (OSS)

systems. A possibility is to explore whether the Qualitas Corpus [85] could be such a

replacement. It is nevertheless worth exploring the methodologies introduced in this

dissertation to derive thresholds using the Qualitas Corpus.

The SIG benchmark was put together by using client software systems that have

been analyzed by SIG consultants. Before a system is considered to be part of the

benchmark it must undergo a quality checklist to ensure that all technologies are added,

that there are no wrong measurements and that the system is not an outlier. Only

one version of each system is used in the benchmark and all domains are considered.

In Chapter 3 an analysis of the sensitivity of the rating thresholds to the benchmark

was presented. This analysis could be further elaborated into a structure procedure

for deciding the adequacy of a benchmark repository. There are many interesting re-

search questions that can be additional tackled. For instance, can one define a rigorous,

widely accepted criteria for what an outlier system is? Should a benchmark be made

of systems of the same domain or spreading multi-domains? Or are there significant

differences among systems of different domains meaning that benchmarks should be

single-domain only? Should different releases of the same software system be con-

sidered or just the latest release? How frequently should systems in a benchmark be

updated? When should a system be removed from the benchmark? What is the impact

of the evolution of a benchmark? All these questions have started to arise due to the

6.3 Avenues for Future Work 143

use of benchmarks and, at the time of writing, have not been answered.

The importance of benchmarks was shown not only in deriving knowledge from the

metrics themselves but also in validating these metrics against external characteristics.

Chapter 4 demonstrated that SETC is correlated with developers performance when

resolving issues. This may be regarded as a first step for the validation of metrics.

Further empirical studies are still needed to find further evidence that this correlation

is also an indicator for causality. Establishing correlation and causality between source

code metrics and external quality characteristics are two most import steps in metric

validation. Hence, research should focus more and more on these two steps since they

can lead to the use and wide acceptance of metrics in industry.

Finally, it is important that industry gradually adopts these methodologies of au-

tomatic code evaluation as part of their software product quality assurance process.

This adoption would help industry in producing better quality software with less ef-

fort. Equally important is the fact that industry can support research in the field by

merely providing more data about their software and their processes. Sharing this data

could fuel more research in the field which is important to have a better understanding

of software quality.

144 6 Conclusions

Bibliography

[1] Hiyam Al-Kilidar, Karl Cox, and Barbara Kitchenham. The use and usefulness

of the ISO/IEC 9126 quality standard. International Symposium on Empirical

Software Engineering, 0:7 pp., 2005.

[2] Tiago L. Alves. Assessment of product maintainability for two space domain

simulators. In Proceedings of the 26th IEEE International Conference on Soft-

ware Maintenance, pages 1–7. IEEE Computer Society, 2010.

[3] Tiago L. Alves. Categories of source code in industrial systems. In Proceed-

ings of the 5th International Symposium on Empirical Software Engineering and

Measurement, ESEM’11, 2011.

[4] Tiago L. Alves, José Pedro Correio, and Joost Visser. Benchmark-based aggre-

gation of metrics to ratings. In Proceedings of the Joint Conference of the 21th

International Workshop on Software Measurement and the 6th International Con-

ference on Software Process and Product Measurement, IWSM/MENSURA’11,

pages 20–29, 2011.

[5] Tiago L. Alves and Joost Visser. Static estimation of test coverage. In Pro-

ceedings of the 9th IEEE International Workshop on Source Code Analysis and

Manipulation, SCAM’09, pages 55–64. IEEE Computer Society, 2009.

145

146 Bibliography

[6] Tiago L. Alves, Christiaan Ypma, and Joost Visser. Deriving metric thresholds

from benchmark data. In Proceedings of the 26th IEEE International Conference

on Software Maintenance, ICSM’10, pages 1–10. IEEE Computer Society, 2010.

[7] Theodore Wilbur Anderson and Donald A. Darling. Asymptotic theory of certain

“goodness of fit” criteria based on stochastic processes. The Annals of Mathe-

matical Statistics, 23(2):193–212, June 1952.

[8] Jorge Aranda. How do practitioners perceive software engineer-

ing research?, May 2011. http://catenary.wordpress.com/2011/05/19/

how-do-practitioners-perceive-software-engineering-research/.

[9] Dimitrios Athanasiou. Constructing a test code quality model and empirically

assessing its relation to issue handling performance. Master’s thesis, University

of Delft, The Netherlands, 2011.

[10] Robert Baggen, José Pedro Correia, Katrin Schill, and Joost Visser. Standard-

ized code quality benchmarking for improving software maintainability. Software

Quality Journal, pages 1–21, 2011.

[11] Robert Baggen, Katrin Schill, and Joost Visser. Standardized code quality bench-

marking for improving software maintainability. In Proceedings of the 4th Inter-

national Workshop on Software Quality and Maintainability, SQM’10, 2010.

[12] John Bambenek and Angieszka Klus. grep - Pocket Reference: the Basics for an

Essential Unix Content-Location Utility. O’Reilly, 2009.

[13] Kent Beck. Simple smalltalk testing: with patterns. Smalltalk Report, 4(2):16–

18, 1994.

[14] Saida Benlarbi, Khaled El Emam, Nishith Goel, and Shesh Rai. Thresholds for

object-oriented measures. In Proceedings of the 11th International Symposium

on Software Reliability Engineering, ISSRE’00, pages 24–38. IEEE, 2000.

Bibliography 147

[15] Antonia Bertolino. Software testing research: Achievements, challenges,

dreams. In Proceedings of the Workshop on The Future of Software Engineering,

FOSE’07, pages 85–103. IEEE Computer Society, 2007.

[16] Dennis Bijlsma. Indicators of issue handling efficiency and their relation to soft-

ware maintainability. Master’s thesis, University of Amsterdam, The Nether-

lands, 2010.

[17] Dennis Bijlsma, Miguel Ferreira, Bart Luijten, and Joost Visser. Faster issue

resolution with higher technical quality of software. Software Quality Journal,

pages 1–21, 2011.

[18] David Binkley. Semantics guided regression test cost reduction. IEEE Transac-

tions on Software Engineering, 23(8):498–516, 1997.

[19] Cathal Boogerd and Leon Moonen. Prioritizing software inspection results using

static profiling. In Proceedings of the 6th IEEE International Workshop on Source

Code Analysis and Manipulation, SCAM’06, pages 149–160. IEEE Computer

Society, 2006.

[20] P. Botella, X. Burgués, J. P. Carvallo, X. Franch, G. Grau, J. Marco, and C. Quer.

ISO/IEC 9126 in practice: what do we need to know? In Proceedings of the 1st

Software Measurement European Forum, SMEF’04, January 2004.

[21] Jitender Kumar Chhabra and Varun Gupta. A survey of dynamic software met-

rics. Journal of Computer Science and Technology, 25:1016–1029, September

2010.

[22] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.

IEEE Transactions on Software Engineering, 20(6):476–493, 1994.

[23] Don Coleman, Bruce Lowther, and Paul Oman. The application of software

maintainability models in industrial software systems. Journal of Systems and

Software, 29(1):3–16, 1995.

148 Bibliography

[24] Giulio Concas, Michele Marchesi, Sandro Pinna, and Nicola Serra. Power-laws

in a large object-oriented software system. IEEE Transactions on Software Engi-

neering, 33(10):687–708, 2007.

[25] José Pedro Correia, Yiannis Kanellopoulos, and Joost Visser. A survey-based

study of the mapping of system properties to ISO/IEC 9126 maintainability char-

acteristics. In Proceedings of the 25th IEEE International Conference on Soft-

ware Maintenance, ICSM’09, pages 61–70, 2009.

[26] José Pedro Correia and Joost Visser. Benchmarking technical quality of software

products. In Proceedings of the 15th Working Conference on Reverse Engineer-

ing, WCRE’08, pages 297–300. IEEE Computer Society, 2008.

[27] José Pedro Correia and Joost Visser. Certification of technical quality of software

products. In Proceedings of the 2nd International Workshop on Foundations and

Techniques for Open Source Software Certification, OpenCert’08, pages 35–51,

2008.

[28] Oege de Moor, Damien Sereni, Mathieu Verbaere, Elnar Hajiyev, Pavel Avgusti-

nov, Torbjörn Ekman, Neil Ongkingco, and Julian Tibble. .QL: Object-oriented

queries made easy. In Ralf Lämmel, Joost Visser, and Jo ao Saraiva, editors,

Generative and Transformational Techniques in Software Engineering II, pages

78–133. Springer-Verlag, 2008.

[29] Khaled El Emam, Saı̈da Benlarbi, Nishith Goel, Walcelio Melo, Hakim Lounis,

and Shesh N. Rai. The optimal class size for object-oriented software. IEEE

Transactions on Software Engineering, 28(5):494–509, 2002.

[30] Karin Erni and Claus Lewerentz. Applying design-metrics to object-oriented

frameworks. In Proceedings of the 3rd International Software Metrics Sympo-

sium, METRICS’96, pages 64–74. IEEE Computer Society, 1996.

Bibliography 149

[31] European Cooperation for Space Standardization (ECSS), Requirements & Stan-

dards Divison, Noordwijk, The Netherlands. Space engineering: software,

March 2009. ECSS-Q-ST-40C.

[32] European Cooperation for Space Standardization (ECSS), Requirements & Stan-

dards Divison, Noordwijk, The Netherlands. Space product assurance: software

product assurance, March 2009. ECSS-Q-ST-80C.

[33] Eurosim applications: Galileo monitoring and uplink control facility AIVP. http:

//www.eurosim.nl/applications/mucf.shtml. Version of October 2011.

[34] Norman E. Fenton and Martin Neil. Software metrics: roadmap. In Proceedings

of the Conference on The Future of Software Engineering, ICSE’00, pages 357–

370, 2000.

[35] Norman E. Fenton and Shari Lawrence Pfleeger. Software metrics: a rigorous

and practical approach. PWS Publishing Co., 1997. 2nd edition, revised print-

ing.

[36] Vern A. French. Establishing software metric thresholds. In International Work-

shop on Software Measurement (IWSM’99), IWSM’99, 1999.

[37] Mark Grechanik, Collin McMillan, Luca DeFerrari, Marco Comi, Stefano

Crespi, Denys Poshyvanyk, Chen Fu, Qing Xie, and Carlo Ghezzi. An empirical

investigation into a large-scale Java open source code repository. In Proceed-

ings of the 4th International Symposium on Empirical Software Engineering and

Measurement, ESEM’10, pages 11:1–11:10. ACM, 2010.

[38] Maurice H. Halstead. Elements of Software Science, volume 7 of Operating and

Programming Systems Series. Elsevier, 1977.

[39] Mary Jean Harrold. Testing: a roadmap. In Proceedings of the Workshop on The

Future of Software Engineering, ICSE’00, pages 61–72. ACM, 2000.

150 Bibliography

[40] Ilja Heitlager, Tobias Kuipers, and Joost Visser. Observing unit test maturity in

the wild. http://www3.di.uminho.pt/∼joost/publications/UnitTestingInTheWild.

pdf. 13th Dutch Testing Day 2007. Version of October 2011.

[41] Ilja Heitlager, Tobias Kuipers, and Joost Visser. A practical model for measuring

maintainability. In Proceedings of the 6th International Conference on the Qual-

ity of Information and Communications Technology, QUATIC’07, pages 30–39,

2007.

[42] S. Henry and D. Kafura. Software structure metrics based on information flow.

IEEE Transactions on Software Engineering, 7:510–518, September 1981.

[43] Project Management Institute, editor. A Guide To The Project Management Body

Of Knowledge (PMBOK Guides). Project Management Institute, 2008.

[44] International Standards Organisation (ISO). International standard ISO/IEC

9126. Software engineering – Product quality – Part 1: Quality model, 2001.

[45] International Standards Organisation (ISO). International standard ISO/IEC TR

9126-2. Software engineering – Product quality – Part 2: External metrics, 2003.

[46] International Standards Organisation (ISO). International standard ISO/IEC

15505-1. Information technology process assessment Part 1: Concepts and vo-

cabulary, 2008.

[47] International Standards Organisation (ISO). International standard ISO/IEC

9001. Quality management systems – Requirements, 2008.

[48] International Standards Organisation (ISO). International Standard 80000–

2:2009: Quantities and units – Part 2: Mathematical signs and symbols to be

used in the natural sciences and technology, December 2009.

Bibliography 151

[49] International Standards Organisation (ISO). International standard ISO/IEC

25010. Systems and software engineering: Systems and software quality require-

ments and evaluation (SQuaRE) – System and software quality models, 2011.

[50] Paul Jansen. Turning static code violations into management data. In Working

Session on Industrial Realities of Program Comprehension, ICPC’08, 2008. http:

//www.sig.nl/irpc2008/ Version of June 2008.

[51] M. Jones, U.K. Mortensen, and J. Fairclough. The ESA software engineering

standards: Past, present and future. International Symposium on Software Engi-

neering Standards, pages 119–126, 1997.

[52] Yiannis Kanellopoulos, Panagiotis Antonellis, Dimitris Antoniou, Christos

Makris, Evangelos Theodoridis, Christos Tjortjis, and Nikos Tsirakis. Code

quality evaluation methodology using the ISO/IEC 9126 standard. International

Journal of Software Engineering & Applications, 1.3:17–36, 2010.

[53] Teemu Kanstrén. Towards a deeper understanding of test coverage. Journal

of Software Maintenance and Evolution: Research and Practice, 20(1):59–76,

2008.

[54] Ken Koster and David Kao. State coverage: a structural test adequacy crite-

rion for behavior checking. In Proceedings of the 6th Joint Meeting on European

software engineering conference and the ACM SIGSOFT symposium on the foun-

dations of software engineering: companion papers, ESEC-FSE companion’07,

pages 541–544. ACM, 2007.

[55] Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-

Wesley Longman Publishing Co., Inc., 3 edition, 2003.

[56] Tobias Kuipers, Joost Visser, and Gerjon De Vries. Monitoring the quality of

outsourced software. In Jos van Hillegersberg et al., editors, Proceedings of the

152 Bibliography

1st International Workshop on Tools for Managing Globally Distributed Software

Development, TOMAG’09. CTIT, The Netherlands, 2007.

[57] Arun Lakhotia. Graph theoretic foundations of program slicing and integration.

Technical Report CACS TR-91-5-5, University of Southwestern Louisiana, 1991.

[58] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice. Using

Software Metrics to Characterize, Evaluate, and Improve the Design of Object-

oriented Systems. Springer Verlag, 2010.

[59] Software Productivity Research LCC. Programming languages table, Februrary

2006. version 2006b.

[60] Rensis Likert. A technique for the measurement of attitudes. Archives of Psy-

chology, 22(140):1–55, 1932.

[61] Chris Lokan. The Benchmark Release 10 - Project Planning edition. Techni-

cal report, International Software Benchmarking Standards Group Ltd., February

2008.

[62] Panagiotis Louridas, Diomidis Spinellis, and Vasileios Vlachos. Power laws

in software. ACM Transactions on Software Engineering and Methodology

(TOSEM’08), 18(1):2:1–2:26, September 2008.

[63] Bart Luijten and Joost Visser. Faster defect resolution with higher technical qual-

ity of software. In Proceedings of the 4th International Workshop on Software

Quality and Maintainability, SQM’10, 2010.

[64] Michael R. Lyu. Software reliability engineering: A roadmap. In Proceedings of

the Workshop on The Future of Software Engineering, ICSE’07, pages 153–170.

IEEE Computer Society, 2007.

Bibliography 153

[65] Robert L. Mason, Richard F. Gunst, and James L. Hess. Statistical Design and

Analysis of Experiments, with Applications to Engineering and Science. Wiley-

Interscience, 2nd edition, 2003.

[66] Jeff McAffer and Jean-Michel Lemieux. Eclipse Rich Client Platform: Design-

ing, Coding, and Packaging Java(TM) Applications. Addison-Wesley Profes-

sional, 2005.

[67] Thomas J. McCabe. A complexity measure. IEEE Transactions on Software

Engineering, SE-2(4):308–320, December 1976.

[68] Brian A. Nejmeh. NPATH: a measure of execution path complexity and its ap-

plications. Communications of the ACM, 31(2):188–200, 1988.

[69] Offices of Government Commerce. Managing Successful Projects with

PRINCE2. Stationery Office Books, 2009.

[70] Karl Pearson. Notes on the history of correlation. Biometrika, 13(1):25–45,

October 1920.

[71] S. R. Ragab and H. H. Ammar. Object oriented design metrics and tools a survey.

In Proceedings of the 7th International Conference on Informatics and Systems,

INFOS’10, pages 1–7, March 2010.

[72] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley.

Chianti: a tool for change impact analysis of Java programs. In Proceedings

of the 19th annual ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications, OOPSLA’04, pages 432–448. ACM, 2004.

[73] Gregg Rothermel and Mary Jean Harrold. Analyzing regression test selection

techniques. IEEE Transactions on Software Engineering, 22(8):529–551, August

1996.

154 Bibliography

[74] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold.

Prioritizing test cases for regression testing. IEEE Transactions on Software En-

gineering, 27(10):929–948, October 2001.

[75] Barbara G. Ryder and Frank Tip. Change impact analysis for object-oriented pro-

grams. In Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program

Analysis for Software Tools and Engineering, PASTE’01, pages 46–53. ACM,

2001.

[76] Ken Schwaber. Agile Project Management With Scrum. Microsoft Press, Red-

mond, WA, USA, 2004.

[77] Hubert Schwetlick and Torsten Schütze. Least squares approximation by splines

with free knots. BIT, 35:361–384, 1995.

[78] Alexander Serebrenik and Mark van den Brand. Theil index for aggregation of

software metrics values. In Proceedings of the 26th IEEE International Confer-

ence on Software Maintenance, ICSM’10, pages 1–9. IEEE Computer Society,

2010.

[79] Raed Shatnawi, Wei Li, James Swain, and Tim Newman. Finding software met-

rics threshold values using ROC curves. Journal of Software Maintenance and

Evolution: Research and Practice, 22:1–16, January 2009.

[80] Galileo assembly, integration and verification platform, AIVP. http://www.

vegaspace.com/about us/case studies/galileo aivp.aspx. Version of October

2011.

[81] Charles Spearman. The proof and measurement of association between two

things. American Journal of Psychology, 100(3/4):441–471, 1987.

[82] Diomidis Spinellis. A tale of four kernels. In Proceedings of the 30th Inter-

national Conference on Software Engineering, ICSE’08, pages 381–390. ACM,

2008.

Bibliography 155

[83] CMMI Product Team. CMMI for development, version 1.3. Technical Report

CMU/SEI-2010-TR-033, Software Engineering Institute and Carnegie Mellon,

November 2010.

[84] R Development Core Team. R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria, 2009. ISBN

3-900051-07-0.

[85] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe,

Hayden Melton, and James Noble. The Qualitas Corpus: A curated collection of

Java code for empirical studies. In Proceedings of the 17th Asia-Pacific Software

Engineering Conference, APSEC’10, pages 336–345. IEEE Computer Society,

2010.

[86] Arie van Deursen and Tobias Kuipers. Source-based software risk assessment.

In Proceedings of the 21th International Conference on Software Maintenance,

ICSM’03, pages 385–388. IEEE Computer Society, 2003.

[87] Rajesh Vasa, Markus Lumpe, Philip Branch, and Oscar Nierstrasz. Comparative

analysis of evolving software systems using the Gini coefficient. In Proceedings

of the 25th IEEE International Conference on Software Maintenance, ICSM’09,

pages 179–188. IEEE Computer Society, 2009.

[88] Joost Visser. Software quality and risk analysis. Invited lecture Master Software

Technology / Software Engineering, University of Utrecht, Netherlands, October

2007. http://www.cs.uu.nl/docs/vakken/swe/11-swe-softwareimprovementsig.

pdf Version of October 2011.

[89] Richard Wheeldon and Steve Counsell. Power law distributions in class relation-

ships. In Proceedings of the 3rd IEEE International Workshop on Source Code

Analysis and Manipulation, SCAM’03, page 45. IEEE Computer Society, 2003.

156 Bibliography

[90] M. Xenos, D. Stavrinoudis, K. Zikouli, and D. Christodoulakis. Object-oriented

metrics – a survey. In Proceedings of the European Software Measurement Con-

ference, FESMA’00, pages 1–10, 2000.

[91] Qian Yang, J. Jenny Li, and David Weiss. A survey of coverage based testing

tools. In Proceedings of the 1st International Workshop on Automation of Soft-

ware Test, AST’06, pages 99–103. ACM, 2006.

[92] Kyung-A Yoon, Oh-Sung Kwon, and Doo-Hwan Bae. An approach to outlier

detection of software measurement data using the K-means clustering method.

In Proceedings of the 1st International Symposium on Empirical Software Engi-

neering and Measurement, ESEM’07, pages 443–445. IEEE Computer Society,

2007.

	Página 1
	Página 2
	Página 3
	Página 4

