
A Derivative-Free Filter Driven Multistart
Technique for Global Optimization

Florbela P. Fernandes1,3, M. Fernanda P. Costa2,3, and Edite M. G. P.
Fernandes4

1 Polytechnic Institute of Bragança, ESTiG, 5301-857 Bragança, Portugal,
fflor@ipb.pt

2 Department of Mathematics and Applications, University of Minho, 4800-058
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Abstract. A stochastic global optimization method based on a multi-
start strategy and a derivative-free filter local search for general con-
strained optimization is presented and analyzed. In the local search pro-
cedure, approximate descent directions for the constraint violation or the
objective function are used to progress towards the optimal solution. The
algorithm is able to locate all the local minima, and consequently, the
global minimum of a multi-modal objective function. The performance
of the multistart method is analyzed with a set of benchmark problems
and a comparison is made with other methods.
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1 Introduction

Global optimization problems arise in many engineering applications. Owing to
the existence of multiple minima, it is a challenging task to solve a multilocal
optimization problem and to identify all the global minima.

The purpose of this paper is to present a technique for solving constrained
global optimization problems based on a multistart method that uses a filter
methodology to handle the constraints of the problem. The problem to be ad-
dressed is of the following type

min f(x)
subject to gj(x) ≤ 0, j = 1, ...,m

li ≤ xi ≤ ui, i = 1, ..., n
(1)

where, at least one of the functions f, gj : Rn −→ R is nonlinear and F = {x ∈
Rn : li ≤ xi ≤ ui, i = 1, . . . , n, gj(x) ≤ 0, j = 1, . . . ,m} is the feasible region.



Problems with general nonlinear equality constraints can be reformulated in the
above form by introducing h(x) = 0 as inequality constraints |h(x)| − τ ≤ 0,
where τ is a small positive relaxation parameter. Since this kind of problems
may have many global and local (non-global) optimal solutions (convexity is not
assumed), it is important to develop a methodology that is able to explore the
entire search space, find all the (local) minima guaranteeing, in some way, that
convergence to a previously found minimum is avoided, and identify the global
ones.

The two major classes of methods for solving problem (1) globally are the
deterministic and the stochastic one. One of the most known stochastic algo-
rithms is the multistart. In the last decade some research has been focused on
this type of methods [1, 6, 9–11]; see also [7] and the references therein included.
The underlying idea of this method is to sample uniformly a point from the
search region and to perform a local search, starting from this point, to obtain
an optimal (local) solution, using a local technique. This is repeated until the
stop conditions are met. One of the advantages of multistart is that it has the
potential of finding all local minima; although, it has the drawback of locating
the same solution more than once.

Here, we are specially interested in developing a simple to implement and
efficient method for the identification of at least one global optimal solution
of problem (1) that is based on a multistart paradigm. A multistart strategy is
chosen due to its simplicity and previously observed practical good performance.

The herein proposed method does not compute or approximate any deriva-
tives or penalty parameters. Our proposal for the local search relies on a pro-
cedure, namely, the approximate descent direction (ADD) method, which is a
derivative-free procedure with high ability of producing a descent direction. The
ADD method is combined with a (line search) filter method to generate trial
solutions that might be acceptable if they improve the constraint violation or
the objective function. Hence, the progress towards a solution that is feasible
and optimal is carried out by a filter method. This is a recent strategy that has
shown to be highly competitive with penalty function methods [2–4].

This paper is organized as follows. In Section 2, the algorithm based on the
multistart strategy and on the filter methodology is presented. In Section 3,
we report the results of our numerical experiments with a set of benchmark
problems. In the last section, conclusions are summarized and recommendations
for future work are given.

2 The Filter Driven Multistart Method

This section describes a multistart approximate descent direction filter-based ap-
proach, hereafter denoted by MADDF, that relies on a derivative-free local search
procedure to converge to the local solutions of the problem. The exploration fea-
ture of the method is carried out by a multistart strategy that aims at generating
points randomly spread all over the search space. Exploitation of promising re-
gions are made by a simple local search approach. A derivative-free technique



that computes approximate descent directions, for either the constraint violation
or the objective function, is implemented with reduced computational costs. To
measure progress towards an optimal solution a filter methodology, as outlined
in [4], is integrated into the local search procedure. The filter methodology ap-
pears naturally from the observation that an optimal solution of the problem (1)
minimizes both constraint violation and objective function [2, 3, 5, 4].

2.1 A Multistart Strategy

The basic multistart algorithm starts by randomly generating a point x from
the search space S ⊂ Rn, and a local search procedure is applied from x to
converge to a local minimum y. We will denote the implementation of the local
procedure to provide the minimum y by y = L(x). Subsequently, another point
is randomly generated from the search space and the local search is again applied
to give another local minimum. This process is repeated until a stopping rule is
satisfied. The pseudo-code of this procedure is presented below in Algorithm 1.

Algorithm 1 Basic multistart algorithm

1: Set k = 1;
2: Randomly generate x from S;
3: Compute y1 = L(x);
4: while the stopping rule is not satisfied do
5: Randomly generate x from S;
6: Compute y = L(x);
7: if y /∈ {yi, i = 1, . . . , k} then
8: k = k + 1;
9: Set yk = y;

10: end if
11: end while

Unfortunately, this multistart strategy has a drawback since the same local
minimum may be found over and over again. To prevent the repetitive invo-
king of the local search procedure, converging to previously found local minima,
clustering techniques have been incorporated into the multistart strategy. To
guarantee that a local minimum is found only once, the concept of region of
attraction of a local minimum is introduced.

Definition 1. The region of attraction of a local minimum associated with a
local search procedure L is defined as:

Ai ≡ {x ∈ S, yi = L(x)} , (2)

where yi = L(x) is the minimizer obtained when the local search procedure L is
started at point x.



This concept is very important because it guarantees that the local search
applied to any point x from the region of attraction Ai will converge eventually
to the same minimizer yi. Thus, after yi has been found there is no point in
starting the local search from any other point in that region of attraction.

Let N be the number of local minima in S. From the previous definition it
follows that

S =

N⋃
i=1

Ai and Ai ∩Aj = ∅, for i 6= j. (3)

A multistart method that uses the concept of region of attraction proceeds as
follows: it starts by randomly generating a point from S, and applies a local
search to obtain the first minimum y1 with the region of attraction A1. After-
wards, other points are randomly generated from S until a point is found that
does not belong to A1. Next, the local search is performed and a new minimizer
y2 is obtained, with the region of attraction A2. The next point from which a
local search will start does not belong to A1∪A2. This procedure continues until
a stopping rule is satisfied. The corresponding multistart algorithm is presented
in the Algorithm 2:

Algorithm 2 Multistart Clustering algorithm

1: Set k = 1;
2: Randomly generate x from S;
3: Compute y1 = L(x) and the corresponding A1;
4: while the stopping rule is not satisfied do
5: Randomly generate x from S;
6: if x /∈ ∪k

i=1Ai then
7: Compute y = L(x);
8: k = k + 1;
9: Set yk = y and compute the corresponding Ak;

10: end if
11: end while

Theoretically, this algorithm invokes the local search procedure only N times,
where N is the number of existing minima of (1). In practice, the regions of
attraction Ak of the minima found so far are not easy to compute. A simple
stochastic procedure is used to estimate the probability, p, that a randomly
generated point will not belong to a specific set, which is the union of a certain
number of regions of attraction, i.e., p = P [x /∈ ∪ki=1Ai]. Using this reasoning, the
new steps of the regions of attraction based multistart algorithm are described
in Algorithm 3.

The probability p is estimated as follows [11]. Let the maximum attractive
radius of the minimizer yi be defined by:

Ri = max
j

{∥∥∥x(j)i − yi∥∥∥} , (4)



Algorithm 3 Ideal Multistart algorithm

1: Set k = 1;
2: Randomly generate x from S;
3: Compute y1 = L(x) and the corresponding A1;
4: while the stopping rule is not satisfied do
5: Randomly generate x from S;
6: Compute p = P [x /∈ ∪k

i=1Ai];
7: Let ζ be a uniform distributed number in (0, 1);
8: if ζ < p then
9: Compute y = L(x);

10: if y /∈ {yi, i = 1, ..., k} then
11: k = k + 1;
12: Set yk = y and compute the corresponding Ak;
13: end if
14: end if
15: end while

where x
(j)
i are the generated points which led to the minimizer yi. Given a

randomly generated point x, let z = ‖x−yi‖
Ri

. Clearly, if z ≤ 1 then x is likely
to be inside the region of attraction of yi. On the other hand, if the direction
from x to yi is ascent then x is likely to be outside the region of attraction of
yi. Based on a suggestion presented in [11], an estimate of the probability that
x /∈ Ai is herein computed by:

p(x /∈ Ai) =

{
1, if z > 1 or the direction from x to yi is ascent
% φ(z, l), otherwise

(5)

where 0 ≤ % ≤ 1 is a factor that depends on the directional derivative of f
along the direction from x to yi, l is the number of times yi has been identi-
fied/recovered so far and the function φ(z, l) satisfies the properties:

lim
z→0

φ(z, l)→ 0, lim
z→1

φ(z, l)→ 1, lim
l→∞

φ(z, l)→ 0 and 0 < φ(z, l) < 1.

In the Ideal Multistart method [11], Voglis and Lagaris propose the

φ(z, l) = z exp
(
−l2(z − 1)2

)
for all z ∈ (0, 1). (6)

Since the Algorithm 3 has the potential of finding all local minima and one
global solution is to be required, each solution is compared with the previously
identified solutions and the one with the most extreme value is always saved.

2.2 The Derivative-Free Filter Local Procedure

The local search procedure is an iterative method that is applied to a randomly
generated point x and provides a trial point y that is an approximate minimizer
of problem (1). Our proposal for the local search L is an Approximate Descent



Direction Filter (ADDF) method. The point y is computed based on a direction
d and a step size α ∈ (0, 1] in such a way that

y = x+ αd. (7)

The procedure that decides which step size is accepted to generate an accept-
able approximate minimizer is a filter method. The herein proposed multistart
method uses the filter set concept [4] that has the ability to explore both feasible
and infeasible regions. This technique incorporates the concept of nondominance,
present in the field of multiobjective optimization, to build a filter that is able
to accept a trial point if it improves either the objective function or the con-
straint violation, relative to the current point. Filter-based algorithms treat the
optimization problem as a biobjective problem aiming to minimize both the ob-
jective function and the nonnegative constraint violation function. In this way,
the previous constrained problem (1) is reformulated as a biobjective problem
involving the original objective function f and the constraint violation function
θ, as follows:

min
x∈S

(f(x), θ(x)) (8)

where for β ∈ {1, 2}

θ(x) =

m∑
i=1

(
max
i
{0, gi(x)}

)β
+

n∑
i=1

((
max
i
{0, xi − ui}

)β
+
(

max
i
{0, li − xi}

)β)
.

(9)
After a search direction d has been computed, a step size α is determined by
a backtracking line search technique. A decreasing sequence of α values is tried
until a set of acceptance conditions are satisfied. The trial point y, in (7), is
acceptable if sufficient progress in θ or in f is verified, relative to the current
point x, as shown:

θ(y) ≤ (1− γθ) θ(x) or f(y) ≤ f(x)− γf θ(x) (10)

where γθ, γf ∈ (0, 1). However, when x is (almost) feasible, i.e., in practice when
θ(x) ≤ θmin, the trial point y has to satisfy only the condition

f(y) ≤ f(x)− γf θ(x) (11)

to be acceptable, where 0 < θmin � 1. To prevent cycling between points that
improve either θ or f , at each iteration, the algorithm maintains the filter F
which is a set of pairs (θ, f) that are prohibited for a successful trial point. During
the backtracking line search procedure, the y is acceptable only if (θ(y), f(y)) /∈
F . If the stopping conditions are not satisfied (see (14) ahead), x← y and this
procedure is repeated.

The filter is initialized with pairs (θ, f) that satisfy θ ≥ θmax, where θmax > 0
is the upper bound on θ. Furthermore, whenever y is accepted because condition
(10) is satisfied, the filter is updated by the formula

F = F ∪
{

(θ, f) ∈ R2 : θ > (1− γθ)θ(x) and f > f(x)− γfθ(x)
}
.



When it is not possible to find a point y with a step size α > αmin (0 <
αmin << 1) that satisfy one of the conditions (10) or (11), a restoration phase is
invoked. In this phase, the algorithm recovers the best point in the filter, herein
denoted by xbestF , and a new trial point is determined according to the strategy
based on equation (7).

The algorithm implements the ADD method [5] to compute the direction d,
required in (7). This strategy has a high ability of producing a descent direction
for a specific function. The ADD method is a derivative-free procedure which
uses several points around a given point x ∈ Rn to generate an approximate
descent direction for a function ψ at x [5]. More specifically, the ADD method
chooses r exploring points close to x, in order to generate an approximate descent
direction d ∈ Rn for ψ at x. Hence, the direction d = v

‖v‖ is computed at x, after

generating r points {ai}ri=1 close to x, as shown:

v =

r∑
i=1

wi ei (12)

where

wi =
∆ψi

r∑
j=1

|∆ψj |
, ∆ψi = ψ(ai)− ψ(x), i = 1, . . . , r

ei = − ai − x
‖ai − x‖

i = 1, . . . , r.

(13)

In the ADDF context, the ADD method generates the search direction d, at a
given point x, according to the following rules:

– If x is feasible (in practice, if θ(x) < θtol), the ADD method computes an
approximate descent direction d for the objective function f at x and then
ψ = f in (13);

– If x is infeasible, the ADD method is used to compute an approximate de-
scent direction d for the constraint violation function θ, at x, and in this
case ψ = θ.

To judge the success of the ADDF algorithm, the three below presented
conditions are applied simultaneously, i.e., if

|f(y)− f(x)| ≤ 10−4 |f(y)|+ 10−6 ∧ |θ(y)− θ(x)| ≤ 10−4θ(y) + 10−6

∧ ‖y − x‖ ≤ 10−4‖y‖+ 10−6
(14)

hold, the local search procedure stops with a successful approximate local mini-
mizer of problem (1). The proposed algorithm for the local procedure is presented
in Algorithm 4.



Algorithm 4 ADDF algorithm

Require: x (sampled in multistart); Set xbestF = x and x̃ = x;
1: Initialize the filter;
2: while the stopping conditions are not satisfied do
3: Set x = x̃;
4: Use ADD to compute v by (12);
5: Set α = 1;
6: Compute y using (7);
7: while new trial y is not acceptable do
8: Check acceptability of trial point, using (10) and (11);
9: if acceptable by the filter then

10: Update the filter if appropriate;
11: Set x̃ = y; Update xbestF ;
12: else
13: Set α = α/2;
14: if α < αmin then
15: Set α = 1; Set x = xbestF ;
16: Invoke restoration phase;
17: end if
18: Compute y using (7);
19: end if
20: end while
21: end while

2.3 Stopping Rule

Good stopping rules to identify multiple optimal solutions should combine re-
liability and economy. A reliable rule is one that stops only when all minima
have been identified with certainty. An economical rule is one that invokes the
local search the least number of times to verify that all minima have been found.
A lot of research about stopping rules has been carried out in the past (see [6]
and the references therein included). There are three established rules that have
been successfully used [6].

We choose to use the following stopping condition [6]. If s denotes de number
of recovered local minima after having performed t local search procedures, then
the estimate of the fraction of the uncovered space is given by

P (s) =
s(s+ 1)

t(t− 1)
(15)

and the stopping rule is

P (s) ≤ ε (16)

with ε being a small positive number.



3 Experimental Results

The MADDF method was coded in MatLab and the results were obtained in a
PC with an Intel(R) Core(TM)2 Duo CPU P7370 2.00GHz processor and 3 GB
of memory.

To perform some comparisons between other methods, it is necessary to set
the MADDF parameters. The parameter τ used to reformulate equality into
inequality constraints was set to τ = 10−5. Since derivatives are not provided to
the algorithm, the factor % is estimated and set to 0.05. The closer the direction
(y − x) is to the greatest decrease of f , the smaller is %. The power factor
used in equation (9) was set to 2 and to generate the approximate descent
directions we set r = 2 and rADD = 10−3 (the radius of the neighborhood in
which the exploring points are generated), as suggested in [5]. In ADDF method,
γθ = γf = 10−5, αmin = 10−6, θtol = 10−5, θmin = 10−3 max{1, 1.25θ(xinitial)},
θmax = max{1, 1.25θ(xinitial)}, where xinitial is the initial point in the local
search.

In this section, we report the performance of the MADDF algorithm on 14
well-known test problems, which are shown in the Appendix of this paper, in an
effort to make the article as self-contained as possible. The MADDF code was
applied 30 times to solve each problem.

In the first set of experiments, summarized in Table 1, the stopping rule (16)
with ε = 0.06 is used. Table 1 summarizes the MADDF results obtained for each

Table 1. Numerical results obtained with MADDF and FSA [5].

Prob. fOPT Method Best Average Worst S.D. Av. f.eval.

g3 -1 MADDF -1.0000968 -0.9998019 -0.9993183 0.000208 45466
in [5] -1.0000015 -0.9991874 -0.9915186 0.001653 314938

g6 -6961.81388 MADDF -6961.23915 -6957.99845 -6954.65040 1.92544 15544
in [5] -6961.81388 -6961.81388 -6961.81388 0.00000 44538

g8 -0.095825 MADDF -0.095825 -0.095825 -0.095825 0.000000 4999
in [5] -0.095825 -0.095825 -0.095825 0.000000 56476

g9 680.630057 MADDF 681.08698 683.31319 685.49488 1.38392 38099
in [5] 680.63008 680.63642 680.69832 0.014517 324596

g11 0.75 MADDF 0.749980 0.750204 0.751048 0.000295 139622
in [5] 0.749999 0.749999 0.749999 0.000000 23722

test problem as well as the best known objective function value for each problem
(‘fOPT ’). In order to show more details concerning the quality of the obtained
solution, the best (‘Best’), the average (‘Average’), the worst (‘Worst’), as well
as the standard deviation (‘S.D.’) of the obtained objective function values are
also reported in Table 1. The average number of function evaluations required to
converge to the solution (‘Av. f.eval.’) is also reported. In this table, the results
for each problem using the Filter Simulated Annealing Method (FSA) proposed
in [5] are also reported.



Problems g3 and g8 were originally maximization problems. They were rewrit-
ten as minimization problems. As it can be seen, for all five problems, MADDF
method finds the global minimum. The quality of the solution is good. The worst
results are obtained with problems g6 and g9. The average number of function
evaluations is much smaller than the one reported by FSA method, for all test
problems, except g11. In [5], a comparison with four evolutionary algorithms
(EA) was made. These EA methods need a higher number of function evalua-
tions than FSA and, consequently, our proposed method. Hence, the MADDF
is better than the EA methods used in [5] as far as the number of function
evaluations is concerned. These four EA-based methods are: Homomorphous
Mappings (HM) method, Stochastic Ranking (SR) method, Adaptive Segrega-
tional Constraint Handling EA (ASCHEA) method and Simple Multimembered
Evolution Strategy (SMES) method. In Table 2, the results of the proposed
MADDF method are repeated, in order to compare them with those of the EA
methods. We may observe that the MADDF method is competitive with the EA
methods relative to the quality of the solution.

Table 2. Numerical results obtained with MADDF and EA methods [5].

Prob. Method Best Average Worst

g3 MADDF -1.0000968 -0.9998019 -0.9993183
HM -0.9997 -0.9989 -0.9978
SR -1.000 -1.000 -1.000
ASCHEA -1 -0.99989 N.A
SMES -1.001038 -1.000989 -1.000579

g6 MADDF -6961.23915 -6957.99845 -6954.65040
HM -6952.1 -6342.6 -5473.9
SR -6961.814 -6875.940 -6350.262
ASCHEA -6961.81 -6961.81 N.A
SMES -6961.813965 -6961.283984 -6961.481934

g8 MADDF -0.095825 -0.095825 -0.095825
HM -0.0958250 -0.0891568 -0.0291438
SR -0.095825 -0.095825 -0.095825
ASCHEA -0.09582 -0.09582 N.A
SMES -0.095826 -0.095826 -0.095826

g9 MADDF 681.08698 683.31319 685.49488
HM 680.91 681.16 683.18
SR 680.630 680.656 680.763
ASCHEA 680.630 680.641 N.A
SMES 680.631592 680.643410 680.719299

g11 MADDF 0.749980 0.750204 0.751048
HM 0.75 0.75 0.75
SR 0.750 0.750 0.750
ASCHEA 0.75 0.75 N.A
SMES 0.749090 0.749358 0.749830



To establish other comparisons with other stochastic global methods, we ap-
plied the following conditions that appear in [8] to the next set of nine problems
and the results are shown in the next two tables. Two conditions to judge the
success of the run were applied. First,∣∣f(xbest)− fOPT

∣∣ ≤ 10−4 |fOPT | (17)

where f(xbest) is the best solution found so far and fOPT is the known optimal
solution available in the literature, is used instead of the stopping rule (16).

In practice, when solving any benchmark problem whose global optimal so-
lution is known, the Algorithm 3 is stopped as soon as a sufficiently accurate
solution is found, according to the condition in (17). We remark that in mul-
tistart clustering methods based on the region of attraction, the stopping rule
of the algorithm is crucial to promote convergence to all local optimal solutions
(cf. [6]). In the presented algorithm, the likelihood of choosing a point that does
not belong to the regions of attraction of previously identified optimal solutions
is very high, although convergence to a local minimum that has not been located
before is not guaranteed. Convergence to an optimal solution more than once
may happen. So far, during the herein presented experiments this situation has
occurred although not frequently.

Table 3 contains the average number of function evaluation obtained after
the 30 runs. A comparison is made with the results reported in [8] - two artifi-
cial fish swarm based methods (AFS and m-AFS) and an electromagnetism-like
mechanism algorithm (EM).

Table 3. Average number of function evaluations, using (17).

Prob. fOPT MADDF AFS m-AFS EM

BR 0.39789 493 550 475 315
CB6 -1.03160 660 331 247 233
GP 3.00000 787 676 417 420
H3 -3.86278 6022 2930 1891 1114
H6 -3.32237 5001 7091 2580 2341
S5 -10.1532 2396 3928 1183 3368
S7 -10.4029 2655 4033 1103 1782
S10 -10.5364 3514 2069 1586 5620
SBT -186.731 938 472 523 358

From the table we may conclude that the performance of the proposed
MADDF is similar to the AFS algorithm, in terms of efficiency (number of
function evaluations), while m-AFS and EM are slightly better than MADDF.

The results shown in Table 4 were obtained using the following stopping
condition, ∣∣f(xbest)− fOPT

∣∣ ≤ 10−3 (18)



instead of (16). This set of experiments is compared with the results obtained
by AFS, m-AFS, two particle swarm algorithms, PSO-RPB and PSO-HS, and a
differential evolution method, DE, available in [8].

Table 4. Average number of function evaluations, using (18).

Prob. fOPT MADDF AFS m-AFS PSO-RPB PSO-HS DE

BR 0.39789 506 651 438 2652 2018 1305
CB6 -1.03160 660 246 245 2561 2390 1127
GP 3.00000 1063 562 485 2817 1698 884
H3 -3.86278 5845 1573 1142 3564 2948 1238
H6 -3.32237 7559 7861 2845 8420 8675 7053
S5 -10.1532 2929 3773 1150 6641 6030 5824
S7 -10.4029 4428 2761 1240 6860 6078 5346
S10 -10.5364 4489 2721 1190 6747 5602 4822
SBT -186.731 1867 659 516 4206 6216 2430

As it can be seen, the MADDF method has a similar performance to AFS
method, outperforms the two variants of the particle swarm optimization and
the differential evolution methods, although is less efficient than m-AFS.

4 Conclusions and Future Work

We present a multistart technique based on a derivative-free filter method to
solve constrained global optimization problems. The multistart strategy relies on
the concept of region of attraction to prevent the repetitive use of the local search
procedure in order to avoid convergence to previously found local minima. Our
proposal for the local search computes approximate descent directions combined
with a (line search) filter method to generate a sequence of approximate solutions
that improve either the constraint violation or the objective function value.

A set of 14 well-known test problems was used and the results obtained are
very promising. In all problems we could reach the global minimum and the
performance of the algorithm, in terms of number of function evaluations and
the quality of the solution is quite satisfactory.

In the future, we aim to extend MADDF method to multilocal programming,
so that all global as well as local (non-global) minimizers are obtained. This is
an interesting and promising area of research due to their real applications in
the chemical engineering field.
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Appendix - Test problems

– Branin (BR)
minf(x) ≡ (x2 − 5.1

4π2x
2
1 + 5

πx1 − 6)2 + 10
(
1− 1

8π

)
cos(x1) + 10

subject to −5 ≤ x1 ≤ 10
0 ≤ x2 ≤ 15

– Camel (CB6)

minf(x) ≡
(

4− 2.1x21 +
x4
1

3

)
x21 + x1x2 − 4(1− x22)x22

subject to −2 ≤ xi ≤ 2, i = 1, 2

– Goldestein and Price (GP)
minf(x) ≡ (1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22))×

×(30 + (2x1 − 3x2)2(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22))
subject to −2 ≤ xi ≤ 2, i = 1, 2



– Hartman3 (H3)

minf(x) ≡ −
4∑
i=1

ciexp

− 3∑
j=1

aij(xj − pij)2


subject to 0 ≤ xi ≤ 1, i = 1, 2, 3
with

a =


3 10 30

0.1 10 35
3 10 30

0.1 10 35

 , c =


1

1.2
3

3.2

 and p =


0.3689 0.117 0.2673
0.4699 0.4387 0.747
0.1091 0.8732 0.5547
0.03815 0.5743 0.8828



– Hartman6 (H6)

minf(x) ≡ −
4∑
i=1

ciexp

− 6∑
j=1

aij(xj − pij)2


subject to 0 ≤ xi ≤ 1, i = 1, . . . , 6

with a =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 ,

c =


1

1.2
3

3.2

 and p =


0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381



– Shekel-5 (S5)

minf(x) ≡ −
5∑
i=1

1

(x− ai)(x− ai)T + ci

subject to 0 ≤ xi ≤ 10, i = 1, . . . , 4
with

a =


4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7

 and c =


0.1
0.2
0.2
0.4
0.4



– Shekel-7 (S7)

minf(x) ≡ −
7∑
i=1

1

(x− ai)(x− ai)T + ci

subject to 0 ≤ xi ≤ 10, i = 1, . . . , 4
with



a =



4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 3 5 3


and c =



0.1
0.2
0.2
0.4
0.4
0.6
0.3



– Shekel-10 (S10)

minf(x) ≡ −
10∑
i=1

1

(x− ai)(x− ai)T + ci

subject to 0 ≤ xi ≤ 10, i = 1, . . . , 4
with

a =



4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3.6 7 3.6


and c =



0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.5


– Shubert (SBT)

minf(x) ≡

(
5∑
i=1

i cos((i+ 1)x1 + i)

)(
5∑
i=1

i cos((i+ 1)x2 + i)

)
subject to −10 ≤ xi ≤ 10, i = 1, 2

– Problem G3
minf(x) ≡ −(

√
n)n

∏n
i=1 xi

subject to
∑n
i=1 x

2
i − 1 = 0

0 ≤ xi ≤ 1, i = 1, 2

– Problem G6
minf(x) ≡ (x1 − 10)3 + (x2 − 20)3

subject to −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0
(x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0
13 ≤ x1 ≤ 100
0 ≤ x2 ≤ 100,



– Problem G8
minf(x) ≡ − sin3(2πx1) sin(2πx2)

x3
1(x1+x2)

subject to x21 − x2 + 1 ≤ 0
1− x1 + (x2 − 4)2 ≤ 0
0 ≤ xi ≤ 10, i = 1, 2

– Problem G9
minf(x) ≡ (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2 + ...

+10x65 + 7x26 + x47 − 4x6x7 − 10x6 − 8x7
subject to v1 + 3v22 + x3 + 4x24 + 5x5 − 127 ≤ 0

7x1 + 3x2 + 10x23 + x4 − x5 − 282 ≤ 0
23x1 + v2 + 6x26 − 8x7 − 196 ≤ 0
2v1 + v2− 3x1x2 + 2x23 + 5x6 − 11x7 ≤ 0
−10 ≤ xi ≤ 10, i = 1, . . . , 7

with v1 = 2x21; v2 = x22

– Problem G11
minf(x) ≡ −x21 + (x2 − 1)2

subject to x2 − x21 − 1 = 0
−1 ≤ xi ≤ 1, i = 1, 2


