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Abstract. This paper presents a derivative-free nonmonotone hybrid tabu search to compute a solution of overdetermined
systems of inequalities and equalities through the global optimization of an appropriate merit function. The proposed
algorithm combines global and local searches aiming to reduce computational effort. Preliminary numerical results show
the effectiveness of the combined heuristic.
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INTRODUCTION

The primary goal of the paper is to show that a straightforward heuristic used in global optimization can be effective
and as efficient as classical methods in solving systems of nonlinear inequalities and equalities. In this paper, we
examine the behavior of a derivative-free nonmonotone hybrid tabu search approach when solving nonlinear systems
of p inequalities and equalities and n variables, where p > n. We assume that the overdetermined system has the form:
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where each f; : Q C R” — R and Q is a closed convex set. The motivation of this work comes mainly from the detection
of feasibility in nonlinear optimization problems. This type of systems appear frequently in bound constrained
variational inequalities and nonlinear complementarity problems [1]. Classical methods for solving problem (1) use
Newton-type methods [2]. In [3], the authors propose a method that combines the use of a modified Newton step and a
conventional first-order step and in [4], a solution of (1) is obtained by applying successively a Levenberg-Marquardt
algorithm to solve smoothed versions of the problem. The authors use first-order derivatives to construct a smooth
function to approximate the objective function of the problem. Smooth reformulation of (1) have also been proposed
in [5]. Our strategy however is to solve (1) by reformulating the inequalities into equalities and yielding:
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Since some functions in the equivalent system (2) are nonsmooth, Newton’s method cannot be directly applied to solve
it. In this paper, we present a derivative-free hybrid tabu search strategy to obtain a solution of systems of inequalities
and equalities by solving the equivalent system of equations alone (2). The most famous techniques to solve nonlinear
equations are based on the Newton’s method [6]. They are computationally expensive since the Jacobian matrix with
analytical first derivatives and the solution of a system of linear equations may be required at each iteration. Quasi-
Newton methods are less expensive than the Newton’s method since they avoid computing derivatives and solving a
full linear system of equations at each iteration [7]. The problem of solving a nonlinear system of equations can be
naturally formulated as a global optimization problem. Problem (2) is equivalent to
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in the sense that they have the same solutions. These required solutions are the global minima, and not just the local
minima, of the function M(x), known as merit function, in the set Q. Problem (3) is similar to the usual least squares



problem for which many iterative methods have been proposed. They basically assume that the objective function is
twice continuously differentiable. However, the objective M in (3) is only once differentiable even if all f;,i=1,...,p
are twice continuously differentiable. Thus, methods for solving the least squares problem cannot be directly applied
to solve (3). Further, local optimization techniques guarantee globality only under certain convexity assumptions.
Preventing premature convergence to a local solution, while trying to compute a global optimum, is a very important
property of the global solution methods.

The Tabu Search (TS) method is a heuristic for global optimization and aims at exploring all the search space for
global optimal solutions. It has the ability to guide the search out of local optima and explore new regions. It is an
iterative procedure that maintains a list of the movements most recently made, avoiding in subsequent iterations the
execution of movements that lead to solutions already known to have been visited. TS was developed primary for
solving combinatorial problems and introduced in continuous optimization in [8]. Like most heuristics for global
optimization, TS converges slowly near the global solution. This issue is normally addressed by incorporating a
classical local search strategy into the main algorithm. The Directed Tabu Search (DTS) method of Hedar and
Fukushima [9] is a variant of the TS that implements a local search in the final stage of the process, therein denoted
by the intensification search. Another recent strategy that proved to be very effective in solving systems of equations
[10] and inequalities [11] uses a combination of global and local searches. Several conditions to choose which search
is the most appropriate at each iteration have already been tested [11, 10]. They rely on the behavior of the merit
function. If a sufficient reduction in the merit function is observed, when compared with the merit function value at the
previous iteration, a fast downhill progress has been detected and a local search is implemented to refine the search in
the vicinity of a global solution. Otherwise, the region does not look to be promising and a global diversifying search
is to be carried out looking for a promising region with a global minimum. Numerical experiments have shown that in
this combined version, the global search dominates and the iterative process turns out to be expensive.

In general, a monotone decreasing sequence of merit function values is required when global convergence is to
be guaranteed in an optimization context. Relaxing the sufficient descent condition on the merit function allows that
iterates may be selected even if they do not provide an improvement on the merit function. As a consequence, iterates
are accepted more often and a reduction on the number of function evaluations is obtained. We brought this idea to
the combined algorithm and use a nonmonotone condition on the merit function to choose between local and global
search. Furthermore, our strategy is to use a simple and effective local search. The well-known coordinate directions
search procedure is used. During global search, a simplified version of the DTS method is used.

The remaining paper is organized as follows. Firstly, the main steps of the nonmonotone combination of global and
local searches are described. Then, some numerical results and remarks are presented.

NONMONOTONE COMBINED GLOBAL AND LOCAL SEARCHES

The goal of a nonmonotone strategy is to relax the condition that is usually used to control the decreasing behavior of
merit function values along the iterative process, i.e., the progress towards a minimizer of the merit function [12]. The
Algorithm 1 contains the pseudo-code of the herein presented nonmonotone combined global search and local search
(nm—CGSLS) method.

Algorithm 1 nm—CGSLS algorithm

Given: 2%, 1" >0, >n*,0< B < 1,0 <y <1, kmax > 0, Smax > 0
Setk =0, s* =0, flag=1
While M (x*) > n* and k < kiax do
If flag=1 then compute x**! by local search else compute x**! by global search endif
If M(x*t1) <y omanM (x¥=7) then set flag=1 else set flag=0 endif
<Jjss
Setk=k+1, N =max{n*, pM_1 }, s* = min{s* 1+ 1, sax }
Endwhile

It is required that the solution x**! obtained by either the local search or the global search be an 1;-approximation,
where the sequence of 1), values decreases and converges to n*: 1 = max{n*, %M1} for 0 < 9» < 1. This means
that as the iterative process proceeds, higher accurate solutions are required. The condition
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that requires a nonmonotone reduction of the merit function to choose the local search, allows separate local inten-
sification of the DTS more often. As a consequence, the initial approximation of the next iteration will be closer to
the optimal solution and a reduction on the overall number of function evaluations is observed. The condition in (4)
compares the merit function value at the current iterate with the maximum value of the merit function attained within
the last s + 1 iterations. s* is a nondecreasing integer, bounded by some fixed integer Syax.

Local Search. The local search procedure of the Algorithm 1 is the classical coordinate search method [13]. At
each iteration, a pattern search type method uses a pattern of points to search for a minimizer. At least n+ 1 points
are provided by the pattern, where n is the number of variables. One of these points is the current point, x/, where
Jj represents the iteration counter in this inner iterative process, and one of the others, denoted by trial point, yi , 1S
generated along a search direction (starting from the current point) with a certain step size A/ > 0:

Y =x/ +Ad

where d' is the search direction chosen from a finite set 2 of positive spanning directions in R". The most
used set contains the 2n coordinate directions, defined as the positive and negative unit coordinate vectors & =
{e1,...,en,—e1,...,—ey }. The most important property is that at least one of the coordinate directions is a descent
direction for M, so long as the current point is not a stationary point of M. In this coordinate search method, all 2n
points y',i = 1...,2n are computed and evaluated. The point with the smallest merit function value is chosen, y?*, and
compared with the merit function at x/. If this search fails to generate a trial point that is better than the current point,
the iteration is called unsuccessful, the step size A/ is halved, in order to refine the search hereafter, and x/*! <— x/. The
step size is then compared to a specified stopping tolerance. Since an Tg-approximate solution is required, when the
step size falls below 1, the local search terminates and the current point is the required x**!. However, if at the end of
each iteration, a simple decrease in M is verified, then the iteration is successful, A/ is not changed and x/*1 < y?es,

Global Search. The global search in the Algorithm 1 is based on the DTS heuristic of Hedar and Fukushima [9].
The DTS method is composed of three main search procedures: exploration, diversification and intensification. The
main loop of the DTS method consists of the exploration and diversification search procedures. The exploration search
aims to explore the search space Q and uses a direct search method to be able to stabilize the search, in particular in
the vicinity of a local minimum. Cycling is prevented by the standard Tabu List, as well as by other four TS memory
elements: the multi-ranked Tabu List, the Tabu Region, the Semi-Tabu Region and the Visited Region List (VRL).
The reader is refereed to [9] for details. The diversification procedure aims to generate new trial points outside the
previously visited regions. The VRL works as a diversification tool and is used to direct the search towards regions
that have not been visited in the search space. When one of the best obtained trial solutions is sufficiently close to a
global minimum, or its value has not been changed for a specified number of iterations, the DTS algorithm leaves the
exploration and diversification search procedures and enters the intensification procedure. Our implementation of the
DTS heuristic also uses the classical coordinate search method in this intensification phase.

NUMERICAL RESULTS AND REMARKS

In this section, we report some preliminary numerical results to test the performance of the nm—CGSLS algorithm.
The results of these experiments were obtained in a personal computer with an AMD Turion 2.20 GHz processor and
3 GB of memory. Due to the stochastic nature of the algorithm, each problem was run 30 times and the best of the
30 solutions is shown. We tested the nm—CGSLS algorithm with smax = 5 and 71 = 0.995. The values set to the other
parameters of the algorithm are: 79 = 0.1, 75 = 0.1, A° = 0.01 and 107 maximum iterations in DTS and coordinate
search. If a solution is found with a merit function value less or equal to * = 10~ the algorithm stops. However, if this
last condition fails to be verified, we choose to stop the algorithm when the number of iterations exceeds 15n. We tested
the algorithm using five problems and compare our results with those from the literature: Ex. 6.2 and Ex. 6.6 from
[5], Ex. 4.4 and Ex. 4.5 from [3] and Ex. 1, a nonlinear complementarity problem, from [1]. The results obtained with
different initial points are depicted in Table 1, where ‘k’ is the number of iterations, ‘nfeval’ is the number of function
evaluations (each F-vector evaluation counts for one), ‘M (x*)’ is the merit value at the found solution and ‘-’ means
that data is not available. The results show that the nm—CGSLS algorithm is able to reach a solution of the problem.
We observed that the overall computational requirements are acceptable and reduced and any randomly generated
initial approximation is as effective as any other approximation in the vicinity of a minimizer, when converging to a
solution. A nonmonotone combined global search and local search algorithm for solving overdetermined nonlinear
systems of inequalities and equalities has been presented. The nonmonotone perspective of the algorithm is directly



TABLE 1. Comparative results.

Problem X0 nm-CGSLS results in [5], [3] and [1]
k nfeval M(x*) k nfeval

Ex. 6.2 (p=6,m=p,n=2)in [5] 0,0) 2 11 0 7 9
(-1,-1) 2 11 0 - -

random 2 11 0 - -

Ex. 6.6 (p=3,m=1,n=2)in[5] 0,0) 7 96 2.0e-7 4 4
(-1,1) 8 72 1.2e-8 - -

random 8 495 3.3e-8 - -

Ex. 44 (p=3,m=p,n=2)in [3] (0.5,-6.0) 2 16 0 5 -
(1,-1) 2 20 0 - -

random 2 21 0 - -

Ex.45(p=10,m=p,n=T)in[3] (3,0,2,-1.5,1.5,5,0) 2 104 0 8 -
random 7 874 0 - -

Ex.1(p=3,m=2,n=2)in[1] (1,1 8 82  3.5e-7 4 9
2,2) 8 89 8.8e-7 12 33

random 8 97  7.0e-7 - -

related with the condition that chooses the implementation of a local search in detriment of an exploratory global
search. Future developments will be focused on further extending the numerical comparisons, and solving the problem
(1) by attacking an equivalent inequality constrained global optimization problem.

ACKNOWLEDGMENTS

This research has been supported by CIDEM (Centre for Research & Development in Mechanical Engineering,
Portugal), FCT (Foundation for Science and Technology, Portugal) and FEDER COMPETE (Operational Programme
Factors of Competitiveness) under projects PEst-OE/EME/UI0615/2011 and FCOMP-01-0124-FEDER-022674.

REFERENCES

1. P-y. Nie, J.-y. Fan, A derivative-free filter method for solving nonlinear complementarity problems, Appl. Math. Comput. 161,
787-797 (2005).

2. J.W. Daniel, Newtont’s method for nonlinear inequalities, Numer. Math. 21(5), 381-387 (1973)

3. D.Q. Mayne, E. Polak, A.J. Heunis, Solving nonlinear inequalities in a finite number of iterations, J. Optimiz. Theory App.
33(2), 207-221 (1981).

4. H.X. Yin, Z.H. Huang, L. Qi, The convergence of a Levenberg-Marquardt method for the 12-norm solution of nonlinear
inequalities, Numer. Func. Anal. Opt. 29(5-6), 687-716 (2008).

5. Y. Zhang, Z.-H. Huang, A nonmonotone smoothing-type algorithm for solving the system of equalities and inequalities, J.
Comput. Appl. Math. 233, 2312-2321 (2009).

6. J.E. Dennis, R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall Inc.,
1983.

7. A. Friedlander, M.A. Gomes-Ruggiero, D.N. Kozakevich, J.M. Martinez, S.A. Santos, Solving nonlinear systems of equations
by means of Quasi-Newton methods with a nonmonotone strategy, Optim. Method. Softw. 8, 25-51 (1997).

8. D. Cvijovi¢, J. Klinowski, Taboo search: an approach to the multiple minima problem, Science 267, 664—666 (1995).

9. A. Hedar, M. Fukushima, Tabu search direct by direct search methods for nonlinear global optimization, Eur. J. Oper. Res. 170,
329-349 (2006).

10. G.C.V. Ramadas, E.M.G.P. Fernandes, Self-adaptive combination of global tabu search and local search for nonlinear
equations, Int. J. Comput. Math. DOI:10.1080/00207160.2012.687727 (2012).

11. G.C.V. Ramadas, E.M.G.P. Fernandes, Combining global tabu search with local search for solving systems of equalities and
inequalities, Numerical Analysis and Applied Mathematics, ICNAAM 2011, T.E. Simos et al. (Eds.), AIP Conf. Proc. 1389,
2011, pp. 743-746.

12. L. Grippo, F. Lampariello, S. Lucidi, A class of nonmonotone stabilization methods in unconstrained optimization, Numer.
Math. 59, 779-805 (1991).

13. T.G. Kolda, R.M. Lewis, V. Torczon, Optimization by direct search: New perspective on classical and modern methods, SIAM
Rev. 45(3), 385-482 (2003).



