
Parameter estimation and dependeneharaterization of the MAR(1) proessMarta FerreiraCenter of Mathematis of Minho University, Campus de Gualtar4710 - 057 Braga, Portugal∗AbstratClassial linear ARMA with normal distributed noises are not suitablefor heavy tailed phenomena. MARMA proesses obtained by replaingsummation by the maximum operator are more appropriate. We on-sider unit Fréhet �rst order MARMA, denoted MAR(1), and present aharaterization based on ordinal autoorrelation. An estimator of themodel's parameter and respetive onsisteny and asymptoti normalityproperties are also stated.Keywords : autoregressive proesses, heavy tail, estimation of parameters,ordinal autoorrelation2000 Mathematis Subjet Classi�ation: 60G10, 62M101 INTRODUCTIONIt is now well reognized that heavy tailed phenomena ours in nature andsoiety and annot be desribed by the normal distribution. A useful lass ofproesses for modeling heavy tails and extremal strutures of dependent eventsare the max-ARMA or MARMA proesses introdued in Davis and Resnik ([4℄,1989), whih are analogous to ARMA by replaing summation by the maximumoperator:
Xn =

p∨

i=1

αiXn−i ∨

q∨

j=0

βjZn−jwhere parameters αi, βj ≥ 0, 1 ≤ i ≤ p, 0 ≤ j ≤ q, are non-negative indepen-dent and identially distributed (i.i.d.) innovations. Besides a more suitableformulation than heavy tailed ARMA given easily de�nable �nite dimensionaldistributions, they have a wide appliation to various natural phenomena (Hel-land and Nielsen [7℄ 1976, Daley and Haslett [5℄ 1982, Hooghiemstra and She�er[8℄ 1986, Todorovi and Gani [12℄ 1987, Coles [3℄ 1993), reliability (Davis andResnik ([4℄, 1989) or �nanial series (Zhang and Smith [13℄ 2001).
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2 M. FerreiraSeveral �rst order max-autoregressive formulations that inlude random o-e�ients and power transformations have also been onsidered in literature(Alpuim [1℄ 1989, Alpuim and Athayde [2℄ 1990, Ferreira and Canto e Castro[6℄, 2010).Stationary MARMA proesses with Fréhet marginal d.f. are maximum-stable and thus onvenient for alulations. Here we fous on �rst order max-autoregressive MARMA. Indeed, sine our proedures also apply to ontinuousstritly inreasing funtions of the proess and that the values an be normalizedso that they ome from an unit Fréhet model, we shall onsider unit Fréhetmargins, i.e., F (x) = exp(−1/x). For more details, see Lebedev ([10℄ 2008, [11℄2009).Given the maximum stability property satis�ed by independent unit Fréhetdistributed r.v.'s, ξ1, ξ2 and ξ, i.e.,
c1ξ1 ∨ c2ξ2 = (c1 + c2)ξwe shall de�ne the �rst order max-autoregressive proess, denoted MAR(1), as

Xi = cXi−1 ∨ (1− c)Zi, 0 ≤ c < 1 (1)with margins and noises having unit Fréhet d.f. F .An estimation proedure for model's parameter c have been stated in Lebe-dev ([10℄, 2008) based on �utuation probabilities,
f1 := P (Xn−1 < Xn) =

1

2− c
.We derive estimators for cm (m ≥ 1) using a similar methodology and stateonsisteny and asymptoti normality (Setion 2). In partiular, m an be ho-sen in order to obtain the smallest variane.A drawbak of very heavy tailed proesses is that �rst and seond ordermoments do not exist and the usual auto-orrelation funtion (ACF) of lassiallinear models annot be used. Alternatively, we onsider ordinal autoorrelationbased on Spearman's rho oe�ient. Besides an alternative estimator for theparameter, it provides a haraterization for MAR(1) proesses (Setion 3).2 Estimation of the model's parameterIn the following we use the m-step (m ≥ 1) transition probability funtion (tpf)of the proess, given by

Qm(x, ]0, y]) = P (Xn+m ≤ y|Xn = x) =

{ ∏m−1
j=0 F

(
y

cj(1−c)

)
, x ≤ y/cm

0 , x > y/cm,

=

{
exp

(
− 1−cm

y

)
, x ≤ y/cm

0 , x > y/cm.

(2)



MAR(1) proess 3Proposition 2.1. Let {Xi}i≥1 be a MAR(1) proess. Then, for eah m ≥ 1,
cm = 2− 1/fm. (3)Proof. Observe that the m-step �utuation probabilities fm := P (Xn−m < Xn)are given by

fm : = P (Xn ≤ Xn−m) =

∫ ∞

0

P (Xn ≤ x|Xn−m = x)dFX (x)

=

∫ ∞

0

Qm(x, ]0, x]dFX(x) =

∫ ∞

0

F (x)1−cmdFX(x)

=
1

2− cm
.

(4)
The �utuation probabilities an be used to estimate the proess parameter,

c. Considering
f̂m =

1

n−m

n∑

j=m+1

1{Xj≤Xj−m}, m ≥ 1.we will see that estimator
ĉm = 2− 1/f̂mis onsistent and asymptotially normal.Proposition 2.2. Let {Xi}i≥1 be a MAR(1) proess. Then, for eah m ≥ 1,

n1/2(ĉm − cm)
D
→ N(0, σ2

m/f4
m) (5)where

σ2
m = fm(1− fm)(1 − 2fm + χm)/(1− χm), (6)with fm given in (4) and

χm = c(2−cm)
2

(
1

cm−2c−2 − 2
cm−2c−1 + 1

cm+2c

)
.Proof. Just observe that f̂m orresponds to the mean of Bernoulli trials withMarkov dependene and results on this an be found in Klotz ([9℄, 1973). Morepreisely, we have that, n1/2(f̂m − fm)

D
→ N(0, σ2

m) holds for σ2
m given in (6),where χm = P (Xj−m < Xj |Xj−m−1 < Xj−1) with max(0, (2fm − 1)/fm) ≤

χm ≤ 1. The result in (5) is now straightforward by the Delta Method, i.e.,
n1/2(g(f̂m)−g(fm))

D
→ N(0, σ2

m(g′(fm))2), with g(x) = 2−x−1. In the followingwe ompute the variane, σ2
m.

P (Xm+j ≤ Xj, Xm+j−1 ≤ Xj−1)

=

∫ ∞

0

∫ ∞

0

∫ x

0

Q(w, ]−∞, y])Qm−1(y, dw)Q(x, dy)K(dx).



4 M. FerreiraNow onsidering (2), the following development holds:
P (Xm+j ≤ Xj, Xm+j−1 ≤ Xj−1) =

∫ ∞

0

∫ ∞

0

∫ min(x,y/c)

0

F (y)Qm−1(y, dw)Q(x, dy)F (dx)

=

∫
∞

0

{∫ xc

0

F (y)Qm−1(y, ]−∞, y/c])+

∫
∞

xc

F (y)Qm−1(y, ]−∞, x])

}
Q(x, dy)F (dx)

=

∫ ∞

0

{∫ xc

0

F (y)[F (y/c)]1−cm−1
) +

∫ x/cm−1

xc

F (y)[F (x)]1−cm−1

}
Q(x, dy)F (dx).Considering f the density funtion of the unit Fréhet d.f. F , the transitiondensity of Q(x, ]0, y]) is given by q(x, y) = f(y)1{xc<y} + F(xc)1{xc=y}. Henewe have,

P (Xm+j ≤ Xj, Xm+j−1 ≤ Xj−1)

=

∫ ∞

0

{
F (xc)[F (x)]1−cm−1

+ [F (x/cm−1)]2−[F (xc)]2

2 [F (x)]1−cm−1
}
F (dx)

=
c

2

( 1

cm − 2c− 2
−

2

cm − 2c− 1
+

1

cm + 2c

)
.Observe that, after some alulations, we obtain the variane of ĉm given by

σ2

m/f4
m = −

(cm − 2)2(cm − 1)2(c2m − 2c− 2cm(1 + c)))

2c+ c3m + cm(2 + c+ 6c2 + 4c3)− c2m(3 + 2c(1 + c))
.In partiular, m an be hosen in order to obtain the smallest variane,provided that f̂m ∈ [1/2, 1). Note also that no de�nite results an be obtainedfor f̂m < 1/2 sine fm ∈ [1/2, 1). Indeed, as observed in Lebedev (2008), theprobability of suh events goes to zero, as n → ∞, and this may also be anindiation of an inonsisteny in our hoie of the model.3 Ordinal auto-orrelationThe main drawbak of a max-autoregressive modeling is that the usual anal-ysis methods based on the auto-orrelation funtion (ACF) of lassial linearmodels annot be used here, sine the �rst and seond moments do not exist.Alternatively, we an use ordinal orrelation. We onsider the Spearman's rhooe�ient whih orresponds to the Pearson orrelation oe�ient applied tomarginal transform (F1(X), F2(Y )) of random pairs (X,Y ) with marginal d.f.'s

F1 and F2, respetively, and thus also stated (Joe, 1997)
ρS = ρS(X,Y ) = 12EF1(X)F2(Y )− 3.For lag-m random pairs, we denote the lag-m Spearman's rho oe�ient,

ρS,m = ρS,m(X1, X1+m).



MAR(1) proess 5Observe that, if Yi = F (Xi) and Ui = F (Zi), then MAR(1) proess given in(1) an be rewritten as
Yi = Y

1/c
i−1 ∨ U

1/(1−c)
i , 0 ≤ c < 1 (7)where all the r.v.'s Yi and Ui are uniformly distributed in the interval (0, 1)(standard uniform).Proposition 3.1. The lag-m Spearman's rho oe�ient of MAR(1) proess is

ρS,m =
3cm

2 + cm
.Proof. We shall use a similar approah of Lebedev (2008), who has only onsiderthe ase m = 1.Note that, for any onstants a > 0 and 0 ≤ b ≤ 1, and W an r.v. withstandard uniform d.f., we have

P (W 1/a ∨ b ≤ x) = xa
1{x>b} + ba1{x=b}and hene

E(W 1/a ∨ b) =

∫ 1

b

axadx+ ba+1 =
a+ ba+1

a+ 1
. (8)Now observe that proess (7) orrespond to

Y1+m = Y
1/cm

1 ∨
m+1∨

j=2

U
1/(cm+1−j(1−c))
jand that

P (

m+1∨

j=2

U
1/(cm+1−j(1−c))
j ≤ x) = x

∑m−1
k=1 ck(1−c) = x1−cmi.e., ∨m+1

j=2 U
1/(cm+1−j(1−c))
j

d
=W 1/(1−cm ). Now we alulate

EY1Y1+m = EY1E(Y1(Y
1/cm

1 ∨
∨m+1

j=2 U
1/(cm+1−j(1−c))
j )|Y1)

= EY1E(Y1(Y
1/cm

1 ∨W 1/(1−cm))|Y1)

= EY1
1−cm+Y

2/cm−1
1

2−cmwhere the last equality is due to (8). We have
EY1

1−cm+Y
2/cm−1
1

2−cm = 1
2−cm

(
(1− cm)EY1 + EY

2/cm

1

)
= 1

2−cm

(
1−cm

2 + cm

2+cm

)

= 1+cm

2(2+cm) .



6 M. FerreiraThus, we an also estimate cm from the ordinal Spearman's rho orrelationoe�ient.Corollary 3.2. In the MAR(1) proess we have, for ρS,m ∈ [0, 1),
cm =

2ρS,m
3− ρS,m

.The following haraterization relationship of MAR(1) is useful for modelidenti�ation.Corollary 3.3. In the MAR(1) proess we have, for fm ∈ [1/2, 1),
ρS,m =

3

2

(
1−

7

4fm

)
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