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Abstract 

 

Development of multifunctional mannan nanogel 

 

Self-assembled nanogels made of hydrophobized mannan or pullulan were obtained 

using a versatile, simple, reproducible and low-cost method. In a first reaction pullulan or 

mannan were modified with hydroxyethyl methacrylate or vinyl methacrylate, further 

modified in the second reaction with 1-hexadecanethiol. The resultant amphiphilic material 

self-assembles in water via the hydrophobic interaction among alkyl chains, originating the 

nanogel. Structural features, size, shape, surface charge and stability of the nanogels 

were studied using hydrogen nuclear magnetic resonance, cryo-field emission scanning 

electron microscopy and dynamic light scattering. Above the critical micellar concentration 

(cmc), evaluated by fluorescence spectroscopy with Nile red and pyrene, spherical 

polydisperse nanogels reveal long-term colloidal stability in aqueous medium up to six 

months, with a nearly neutral negative surface charge and mean hydrodynamic diameter 

in the nanoscale range, depending on the polymer degree of substitution. Nanogel based 

on vinyl methacrylated mannan was selected for further characterization among others 

because its synthesis is much easier, cheaper and less time consuming, its cmc and size 

are smaller, it is less polydisperse, and more stable at pH 3–8, in salt or urea solutions 

being consequently more suitable for biological applications.  

Proteins (bovine serum albumin or ovalbumin) and hydrophobic drugs (curcumin) are 

spontaneously incorporated in the mannan nanogel, being stabilized by the hydrophobic 

domains randomly distributed within the nanogel, opening the possibility for the 

development of applications as potential delivery systems for therapeutic molecules.  

No cytotoxicity is detected up to about 0.4 mg/mL of mannan nanogel in mouse embryo 

fibroblast cell line 3T3 and mouse bone marrow-derived macrophages (BMDM) using cell 

proliferation, lactate dehydrogenase and Live/Dead assays. Comet assay, under the 

tested conditions, reveals no DNA damage in fibroblasts, which seems to occur in the 

case of BMDM.  

The internalization kinetics, uptake mechanisms and intracellular trafficking pathways of 

mannan nanogel in mouse BMDM was assessed by flow cytometry and confocal laser 

scanning microscopy, using fluorescently conjugated nanogel. A time-, concentration- and 

energy-dependent uptake profile of the mannan nanogel is observed. Inhibition analysis 

unraveled mannose receptor-mediated phagocytosis and clathrin-mediated endocytosis to 

be involved in nanogel uptake. The mannan nanogel is also visualized in the cytosol 

suggesting that a fraction was able to escape from the endolysosomal system.  
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The protein corona formed in human plasma around mannan nanogel was 

characterized by mass spectrometry after size exclusion chromatography or centrifugation 

followed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. It consists of a 

very specific set of proteins, apolipoproteins B-100, A-I and E and human serum albumin, 

slowly formed following a dynamic protein exchange process.  

The mannan nanogel does not affect blood coagulation, does not induce complement 

activation and retards the fibril formation of both Alzheimer’s disease-associated amyloid 

β peptide and haemodialysis-associated amyloidosis β2 microglobulin, as was assessed 

by fluorometric thrombin generation assay, Western blot, and continuous thioflavin T 

fluorescence assay, respectively.  

Mannan nanogel has potential immunological adjuvant activity, as evaluated on the 

specific immune response to ovalbumin in intradermally immunized BALB/c mice. Elicited 

ovalbumin-specific antibodies were predominantly of IgG1 subclass indicating a T helper 

2-type bias. 

Physicochemical characteristics, loading ability of biological agents, cytocompatibility 

and uptake of mannan nanogel by mouse BMDM, biosafety and biocompatibility studied 

at molecular level, and adjuvant activity are pronounced hints of the potential applicability 

of this nanosystem for macrophages targeted delivery of vaccines or drugs, acting as 

promising nanomedicines, always with the key goal of preventing and/or treating 

diseases. 
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Resumo 

 

Desenvolvimento de um nanogel de manano multifuncional 

 

Nanogéis poliméricos auto-organizados foram obtidos a partir de manano e pululano 

hidrofobicamente modificados por um método versátil, simples, reprodutível e económico. 

Numa primeira reação, manano ou pululano foram enxertados com hidroxietil metacrilato 

ou vinil metacrilato, que por sua vez foram substituídos numa segunda reação com 1-

hexadecanetiol. O material anfifílico resultante auto-organiza-se em água através da 

associação das cadeias alquílicas hidrofóbicas, originando o nanogel. As características 

estruturais, o tamanho, a forma, a carga de superfície e a estabilidade dos nanogéis 

foram estudados por espectroscopia de ressonância magnética nuclear 1H, microscopia 

crio-eletrónica de varrimento e dispersão dinâmica de luz. Acima da concentração micelar 

critica (cmc), avaliada por espectroscopia de fluorescência usando o vermelho de Nilo e o 

pireno, os nanogéis esféricos polidispersos revelam longa estabilidade coloidal em meios 

aquosos até seis meses, com carga de superfície negativa praticamente neutra, e 

diâmetro médio num intervalo nanométrico, cujo valor depende do grau de substituição 

do polímero. Dos nanogéis produzidos, o nanogel baseado em manano enxertado com 

vinil metacrilato foi selecionado para uma caracterização mais aprofundada porque a sua 

síntese é mais fácil, económica e rápida, a cmc e o tamanho são menores, é menos 

polidisperso e mais estável no intervalo de pH 3–8 bem como na presença de sal e ureia, 

sendo consequentemente mais apropriado para aplicações biológicas.  

Proteínas (albumina sérica bovina ou ovalbumina) e drogas hidrofóbicas (curcumina) 

são incorporadas espontaneamente no nanogel de manano, sendo estabilizados nos 

domínios hidrofóbicos aleatoriamente distribuídos no interior do nanogel, abrindo 

perspetivas para o desenvolvimento de aplicações em sistemas de libertação de 

moléculas terapêuticas. 

Nenhuma citotoxicidade é detetada com o nanogel de manano até 0.4 mg/mL na linha 

celular de fibroblastos de embrião de ratinho 3T3 e nos macrófagos derivados da medula 

óssea de ratinho usando ensaios de proliferação celular, lactato desidrogenase e 

“Live/Dead”. O ensaio cometa nas condições testadas, não revela dano no ADN dos 

fibroblastos, que possivelmente ocorre, no entanto, no caso dos macrófagos. 

A cinética de internalização, os mecanismos de internalização e as vias de tráfego 

intracelular do nanogel de manano nos macrófagos derivados da medula óssea de 

ratinho foram avaliados por citometria de fluxo e microscopia de confocal de varrimento 

laser, usando o nanogel conjugado com um fluorocromo. O perfil de internalização do 
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nanogel é dependente do tempo, da concentração e de energia. A análise com inibidores 

revelou que a fagocitose mediada pelo receptor da manose e a endocitose mediada por 

clatrina estão envolvidos na internalização do nanogel. O nanogel de manano é também 

visualizado no citosol sugerindo que uma fração é capaz de escapar do sistema 

endolisossomal.   

A corona de proteínas formada no plasma humano em redor do nanogel de manano foi 

caracterizada por espectrometria de massa, após cromatografia de exclusão por tamanho 

ou centrifugação, seguidas de eletroforese em gel de poliacrilamida na presença de 

dodecil sulfato de sódio. A corona consiste num conjunto específico de proteínas, 

apoliproteínas B-100, A-I e E e albumina sérica humana, que se forma após um lento e 

dinâmico processo de troca de proteínas.  

O nanogel de manano não afeta a coagulação do sangue, não induz ativação do 

complemento e retarda a formação de fibras do péptido β amiloide associado à doença 

de Alzheimer e de β2 microglobulina na amiloidose associada à hemodiálise, como foi 

avaliado por teste fluorimétrico de geração de trombina, Western blot e análise continua 

da fluorescência de tioflavina T, respectivamente. 

O nanogel de manano tem potencial atividade adjuvante, avaliada na resposta imune 

específica para ovalbumina em ratinhos BALB/c imunizados por via intradérmica. Os 

anticorpos específicos para ovalbumina induzidos foram predominantemente da 

subclasse IgG1, o que indica uma propensão para induzir uma resposta mediada por 

células “T helper” tipo 2.  

As características físico-químicas, a capacidade de incorporação de agentes 

biológicos, a citocompatibilidade e a internalização do nanogel de manano por 

macrófagos derivados da medula óssea de ratinho, a biossegurança e biocompatibilidade 

estudadas a nível molecular, e a atividade adjuvante deixam entrever a potencial 

aplicação deste nanosistema na libertação direcionada a macrófagos, quer de vacinas 

quer de fármacos, atuando como promissores nanomedicamentos, sempre com o 

objetivo chave de prevenir e/ou tratar doenças. 
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Figure 8. Influence of pH on size and zeta potential of mannan-C16 nanogel dispersions (1 
mg/mL) at 37 ºC in water, PBS (pH 7.4) and phosphate-citrate buffer (pH 2.2–8.0). 
The results shown were calculated in DLS (mean ± S.D., n = 3). 71 

Figure 9. Influence of NaCl on the size of mannan-C16 nanogel dispersions (1 mg/mL) at 37 
°C in NaCl solution (0–0.6 M). The results shown were calculated in DLS (mean ± 
S.D., n = 3). 72 

Figure 10. Influence of urea on size of mannan-C16 nanogel dispersions (1 mg/mL) at 37 °C 
in urea solution (0–7 M). The results shown were calculated in DLS (mean ± S.D., 
n = 3). 73 
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Figure 1. The 
1
H NMR spectra of mannan-VMA (5 mg/mL) in (a) D2O and of mannan-C16 (5 

mg/mL) in (b) DMSO-d6, (c) 10% D2O in DMSO-d6, and (d) D2O for MVC16-29-15 
as an example. 87 

Figure 2. Determination of the cac of mannan-C16 using NR fluorescence: area normalized 
fluorescence (a) excitation (λem 650 nm) and (b) emission (λex 570 nm) spectra of 
NR (2×10

-7
 M) in the mannan-C16/water system as a function of mannan-C16 

concentration; (c) area-normalized fluorescence emission intensity (closed circle) 
and position of maximum emission wavelength (open circle) of NR in the mannan-
C16/water system as a function of mannan-C16 concentration (λex 570 nm), using 
MVC16-20-8 as an example. 90 

Figure 3. Determination of the cac of mannan-C16 using Py fluorescence: (a) excitation (λem 
390 nm) and (b) emission (λex 339 nm) spectra of Py (6×10

-7
 M) in the mannan-

C16/water system as a function of mannan-C16 concentration; (c) fluorescence 
intensity ratio I3/I1 as a function of the mannan-C16 concentration (λex 339 nm), 
using MVC16-20-8 as an example. 91 

Figure 4. The cryo-FESEM negatively stained micrographs of mannan-C16 (scale bar = 1µm): 
(a, b) MVC16-20-8, (c, d) MVC16-20-11, (e) MVC16-20-16 and (f) solvent. 92 

Figure 5. The size of mannan-C16 water dispersions (1 mg/mL) over a six months storage 
period, at room temperature (25 °C), measured periodically by DLS (mean ± S.D., 
n = 10). 93 
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Figure 6. The size distribution by intensity, z-average and PdI of the mannan-C16 water 
dispersions (1 mg/mL) measured by DLS (mean ± S.D., n = 10) after a six months 
storage period, at room temperature (25 ºC). 94 

Figure 7. The size and zeta potential of mannan-C16 colloidal dispersions (a) (0.05–2 mg/mL) 
in water; (b) (1 mg/mL) in solutions of NaCl (0–0.6 M); (c) (1 mg/mL) in water, PBS, 
and phosphate-citrate buffer (pH 3–8.0); and (d) (1 mg/mL) in solutions of urea (0–
7 M). Mean diameter and zeta potential were calculated by DLS at 37 ºC (mean ± 
S.D. n = 10). 96 

Figure 8. The mannan-C16 nanogel as potential host for curcumin. UV-Vis spectra of 
curcumin (0.1 mg/mL) incubated 24 h at 25 ºC in water (negative control), ethanol 
(positive control) and mannan-C16 colloidal dispersions in water. 98 

Figure 9. Effect of mannan-C16 nanogel on cell viability and cell growth. Images of mouse 
embryo fibroblast 3T3 and mouse macrophage-like J774 growth, after 48 h of 
incubation, in absence (control) or presence of mannan-C16 nanogel obtained by 
optical microscopy (scale bar = 100 µm). MTT cell proliferation assay results, using 
both cell lines (mean ± S.D.), after 24 and 48 h of incubation with nanogel at 
different concentrations (0.045–0.72 mg/mL). No statistical significant differences 
were obtained with fibroblast 3T3 viability. Statistical significant differences (p < 
0.01) were obtained with all J774 viability results in all tested conditions. 100 

Figure 10. Time-series confocal images of mouse macrophage-like J774 cells incubated with 
mannan-C16 nanogel. Cells were initially labeled with DAPI (blue fluorescence), FM 
4-64 (red fluorescence). PI was used to screen the viability of the cells. The 
nanogel at 0.6 mg/mL (green fluorescence) effect was followed by a series of time 
scans at a certain Z-stack. DIC images (in grey) illustrate the cell morphology 
changes (scale bar = 20 µm). 102 
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Figure 1. Effect of mannan nanogel, at the indicated concentrations, in mouse embryo 
fibroblast 3T3 cells and BMDM, assessed with the MTS assay. Results correspond 
to the mean ± S.D. of the cell proliferation index (CPI, * p < 0.05 and ** p < 0.01), 
obtained for the different groups at 24 and 48 h of incubation with mannan nanogel 
at the indicated concentrations. The results shown are from one experiment, 
representative of three independent experiments performed in triplicate. 116 

Figure 2. Cytotoxic effect of mannan nanogel, at the indicated concentrations, in mouse 
embryo fibroblast 3T3 cells and BMDM, assessed with the LDH assay. Results 
represent the mean ± S.D. of the obtained absorbance measurements at 3 and 20 
h of incubation of the different nanogel samples, low control (Low C) and high 
control (High C), as indicated. Statistical significant differences (p < 0.01) within 
results were obtained with all tested concentrations of different nanogel samples in 
comparison with the High C, at same incubation period, for both fibroblasts and 
macrophages. The results shown are from one experiment, representative of two 
independent experiments. 117 

Figure 3. Fluorescence images of mouse embryo fibroblast 3T3 cells (left) and BMDM (right) 
stained using a Live/Dead

® 
viability/cytotoxicity kit at 24 h of incubation in absence 

(control) or presence of mannan nanogel. Live cells are stained in green and dead 
cells are stained in red (scale bar = 200 µm). 118 

Figure 4. Confocal images of mouse BMDM incubated 6 h (a) without and (b) with mannan 
nanogel labeled with SAMSA fluorescein at 0.1 mg/mL (green fluorescence). 
Nuclei of fixed cells are stained with DAPI (blue fluorescence). Images correspond 
to a central Z-stack of a representative experiment preformed in duplicate. 120 

Figure 5. Confocal microscopy analysis of entrance and exit of mannan nanogel using live 
mouse BMDM. Confocal images at a certain Z-stack (scale bar = 10 µm) of a 
representative experiment of three independent experiments: (a) control cells 
labeled with DAPI (blue fluorescence) and FM 4-64 (red fluorescence); (b) cells 
after 3 h of incubation with the nanogel at 0.1 mg/mL (green fluorescence) and FM 
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4-64 present in culture medium; (c) cells after 1 h of incubation in fresh culture 
medium. PI was used to screen the viability of the cells. 122 
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Figure 1. Physical properties of SAMSA fluorescein-labeled mannan nanogel: (a) the size 
and zeta potential calculated by DLS at 37 °C (mean ± S.D., n = 5) and (b) the 
fluorescence emission spectra of SAMSA fluorescein-labeled mannan nanogel in 
cRPMI (0.1 mg/mL) in absence (positive control) or in presence of different 
inhibitors at the concentration used in in vitro uptake inhibition analysis. The 
negative control (cRPMI only) emission spectrum was subtracted from the 
spectrum obtained in each condition. 136 

Figure 2. FACS analysis of mouse BMDM internalization of SAMSA fluorescein-labeled 
mannan nanogel at three different concentrations. Each point represents the MFI ± 
S.D. of duplicate samples of one experiment, representative of two independent 
experiments. 137 

Figure 3. Uptake mechanism inhibition analysis of mannan nanogel by mouse BMDM. 
Results represent the mean of % inhibitory effect ± S.D. obtained by FACS 
analysis in a representative experiment performed in triplicate (* p < 0.05, **p < 
0.01 and ***p < 0.001). 139 

Figure 4. Confocal microscopy uptake and intracellular trafficking inhibition analysis of 
mannan nanogel in mouse BMDM. (a) Confocal images of a representative cell at 
a certain Z-stack (scale bar = 5 µm). Blue indicates DAPI-stained nuclei. (b) 
Fluorescence intensity measurements of Texas Red transferrin and SAMSA 
fluorescein-labeled nanogel present in the cytoplasm (mean of % inhibitory effect ± 
S. D.; n = 20; * p < 0.05, **p < 0.01 and ***p < 0.001) obtained by image analysis. 
Results are from one experiment representative of two independent experiments. 140 

Figure 5. Confocal microscopy uptake and intracellular trafficking inhibition analysis of 
mannan nanogel by mouse BMDM. (a) Confocal images of a representative cell at 
a certain Z-stack (scale bar = 5 µm). Blue indicates DAPI-stained nuclei. (b) 
Fluorescence intensity measurements of LysoTracker and SAMSA fluorescein-
labeled nanogel present in the cytoplasm (mean of % inhibitory effect ± S. D.; n = 
20; * p < 0.05, **p < 0.01 and ***p < 0.001) obtained by image analysis. Results are 
from one experiment representative of two independent experiments. 141 
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Figure 1. Protein corona around mannan nanogel. (a) Colloidal dispersion of mannan 
nanogel in PBS incubated with human plasma for 24 h at 37 °C or pure plasma as 
control were separated by size exclusion chromatography: average absorbance at 
280 nm of collected fractions of loaded human plasma in the absence (open 
circles) or in the presence (closed circles) of nanogel (upper panel); coomassie 
stained gels of plasma proteins associated with the nanogel (middle panel) and 
control with only plasma (lower panel), within individual fractions 22 to 37 pooled 
from four different experiments, precipitated with trichloroacetic acid. Coomassie 
stained gels of plasma proteins co-pelleted with mannan nanogel after (b) 1 h and 
(c) 24 h of incubation stirring at 37 °C of constant amount of mannan nanogel and 
increasing amount of plasma from left to right, in a fixed final volume. (d) Protein 
profile of the human plasma used in this study. Coomassie stained gel of proteins 
in 0.5 μL (middle lane) or 1 μL (right lane) of plasma. 159 

Figure 2. Far-UV CD (a and b) and tryptophan fluorescence emission (λex 290 nm) (d and e) 
spectra of protein in the absence (black dashed line) or in the presence of a 
colloidal dispersion of mannan nanogel in PBS at 0.5 mg/mL (grey solid line) and at 
1 mg/mL (black solid line) after subtraction of respective blank (c and f) recorded at 
37 °C after 1 h of incubation stirring at 37 °C; (a and d) with apoA-I at 0.1 mg/mL or 
(b and e) with HSA 0.2 mg/mL. 161 

Figure 3. Tryptophan fluorescence emission (λex 290 nm) spectra of apoA-I (0.1 mg/mL; a 
and b) and HSA (0.1 mg/mL; c and d) titrations after (a and c) 1 h and (b and d) 24 
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h of incubation stirring at 37 °C. Protein only (black dash line) and protein 
incubated with mannan nanogel colloidal dispersion in PBS in a range of 

concentrations (0.011.25 mg/mL; grey gradient from lower to higher 
concentrations). 163 

Figure 4. Time dependent binding (a) of apoA-I (black) and HSA (grey) at 0.1 mg/mL to 
mannan nanogel at 0.6 mg/mL in PBS at 37 ºC. Normalized tryptophan emission 
intensity (λex 290 nm) at 345 nm as function of time. (b) Fluorescence titration of 
apoA-I (black) and HSA (grey) solutions at 0.1 mg/mL in the presence of colloidal 
dispersions of mannan nanogel at various concentrations in PBS after stirring 1 h 
(open circles) and 24 h (closed circles) at 37 °C; normalized fluorescence intensity 
at 345 nm as function of mannan nanogel concentration. 164 

Figure 5. Non-influence of HSA (0.2 mg/mL) and concentration of mannan nanogel (0.05–1 
mg/mL) on the z-average or mean hydrodynamic diameter of mannan nanogel 
colloidal dispersions in PBS after incubation stirring 1 h (bright grey) or 24 h (dark 
grey) at 37 °C. The results shown (mean ± S.D., n = 5) were calculated by DLS. 
The PdI of all samples ranged from 0.22 and 0.47. 165 

Figure 6. Isothermal titration calorimetry data at 37 °C from titration of HSA stock (5 mg/mL) 
into a colloidal dispersion of mannan nanogel (2 mg/mL). Each injection was 1 µL 
with a total of 45 injections. Raw data (upper panel) and integrated data (lower 
panel) of a representative experiment of four independent experiments. The black 
line shows the fitted curve assuming a simple 1:1 binding model with one kind of 
sites after adjusting the baseline, deleting the bad data, and subtracting the 
reference (injection of protein in buffer). The parameter values obtained were for 
heat change, ΔH = −25 ± 2 kcal/mol and for dissociation constant, KD = 5.9 ± 4.6 
µM (mean ± S.D., n = 4). 165 

Figure 7. The effect on thrombin generation by mannan nanogel. Plasma was incubated in 
the absence (solid line) or in the presence (dashed line) of a colloidal dispersion of 
mannan nanogel at 1 mg/mL, and tested for thrombin generation using the 
thrombin generation assay. The first derivative, fluorescence units/min, is shown 
(mean, n = 3). 166 

Figure 8. The effect on thrombin generation by NIPAM coated gold particles. Plasma was 
incubated in the absence (black line) or in the presence of NIPAM coated gold 
particles at 1.2×10

-10 
M (dark grey line) and at 2.4×10

-11
 M (bright grey line), and 

tested for thrombin generation using the thrombin generation assay. The first 
derivative, fluorescence units/min, is shown (mean, n = 3). The mean 
hydrodynamic diameter of the particles is 478 nm as measured by DLS. 167 

Figure 9. Fibrillation of Aβ(M1-40) (a and b) and of β2m (c and d) at 37 °C monitored by the 
temporal development of ThT binding. (a) ThT fluorescence intensity as function of 
time for 10 μM Aβ(M1-40), in 20 mM sodium phosphate buffer pH 7.4, 200 μM 
EDTA, 0.02% NaN3 or (c) 40 μM β2m, in 20 mM sodium phosphate buffer pH 2.5, 
50 mM NaCl, 0.02% NaN3, in the absence (dash line) or in the presence (solid line) 
of mannan nanogel at 0.03 mg/mL, as an example. Each sample contained 20 μM 
ThT. Five replicates of a representative experiment are shown. Half-time of 
fibrillation (t1/2) as function of the log of mannan nanogel concentration (0–0.9 
mg/mL) for (b) Aβ(M1-40) and (d) β2m. Error bars indicate the S.D. of the mean of 
11 replicates, 5 and 6 of two independent experiments. 168 
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Figure 1. Analysis of complement system activation by Western blot. The upper band of 
~115 KDa corresponds to C3 (α chain) and the lower band ~43 KDa corresponds 
to C3-cleavage product(s) (C3c, iC3b[C3α’] for mannan nanogel (nanogel), PBS as 
negative control (C-) and cobra venom factor as positive control (C+). C3 
degradation was evaluated by densitometry using image analysis software (NIH 
Image J software), after normalizing the percentage of the lower band of the 
positive control as the maximum degradation that can be achieved (100%): 41 ± 
8% for negative control and 33 ± 7% for mannan nanogel. 183 
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Figure 2. Characterization of OVA-mannan nanogel formulation with silver-stained SDS-
PAGE gels: (a) OVA (0.2 mg/mL) integrity in formulation, examined comparing the 
freshly prepared (x) with the incubated 24 h at 25 °C (y); (b) ultrafiltration of OVA-
mannan nanogel formulation obtained by incorporation (24 h at 25 °C) of OVA (0.2 
mg/mL) in mannan nanogel colloidal dispersion (4 mg/mL) in comparison with OVA 

solution (0.2 mg/mL) and empty nanogel colloidal dispersion (4 mg/mL) in PBS  
initial sample (i), first filtrate (f), and retentate (r) obtained after washing (filtrates 1w 
and 2w); (c) OVA-mannan nanogel samples used to immunize mice intradermally 
obtained by mixture (M) or incorporation (I) in comparison with OVA (O) and 
nanogel (N) in PBS. 184 

Figure 3. Effect of mannan nanogel on serum OVA-specific antibody titres. Groups of male 
BALB/c mice were trice immunized intradermally on days 1, 16 and 42 with 20 μg 
OVA formulated with one of the following delivery vehicles (100 μL): mannan 
nanogel (400 µg) colloidal dispersion in PBS, immediately mixed before injection 
(OVA-mannan nanogel-M) or obtained after 24 h of incubation at 25 °C (OVA-
mannan nanogel-I); PBS; control adjuvant 1:1 PBS/alum suspension. As control, 
mannan nanogel (400 µg) colloidal dispersion in PBS was also injected, completing 
the five groups in study. The titres are presented as mean ± S.D. (n = 3, OVA in 
1:1 PBS/alum; n = 4, in other groups) for (a) IgM, IgG (13 days after priming), (b) 
IgG1 (13 days after priming, 12 day after first boost, and 15 days after second 
boost) and (c) IgG3 (15 days after second boost). Statistical significant differences 
with regard to the OVA in PBS group were designated as *p < 0.05 and ***p < 
0.001 and those with OVA in 1:1 PBS/alum group were designated as 

a
p < 0.05, 

aa
p < 0.01 and

 aaa
P < 0.001; not detected (n.d.). 186 

Figure 4. Effect of mannan nanogel on OVA, concanavalin A (con A) and anti-CD3 
stimulated splenocyte proliferation. Groups of male BALB/c mice were trice 
immunized intradermally on days 1, 16 and 42 with 20 μg OVA formulated with one 
of the following delivery vehicles (100 μL): mannan nanogel (400 µg) colloidal 
dispersion in PBS after 24 h of incubation at 25 °C (OVA-mannan nanogel-I); PBS; 
and control adjuvant 1:1 PBS/alum suspension. As control, mannan nanogel (400 
μg) colloidal dispersion in PBS was also injected, completing the four groups in 
study. Splenocytes were prepared 26 days after the last immunization, and 
cultured with OVA (25 μg/mL), Con A (5 μg/mL), anti-CD3 (0.5 μg/mL), or cRPMI, 
for 72 h. Splenocyte proliferation was measured (a) by flow cytometry using cell 
counting beads and (b) by the MTT method. The stimulation index (SI) is presented 
as mean ± S.D. (n = 3, OVA in 1:1 PBS/alum; n = 4, in other groups). For each 
treatment, statistical significant differences with OVA in PBS group were 
designated as *p < 0.05 and **p < 0.01 and those with OVA in 1:1 PBS/alum group 
designated as 

aa
p < 0.01. 187 

Figure 5.  IFN-γ profile of mice immunized with OVA formulated with proposed adjuvant 
mannan nanogel. Groups of male BALB/c mice were trice immunized intradermally 
on days 1, 16 and 42 with 20 μg OVA formulated with one of the following delivery 
vehicles (100 μL): mannan nanogel (400 μg) colloidal dispersion in PBS after 24 h 
of incubation at 25 °C (OVA-mannan nanogel-I); PBS; and control adjuvant 1:1 
PBS/alum suspension. As control, mannan nanogel (400 μg) colloidal dispersion in 
PBS was also injected, completing the four groups in study. Splenocytes were 
prepared 26 days after the last immunization, and stimulated in vitro with OVA (25 
μg/mL), Con A (5 μg/mL), or anti-CD3 (0.5 μg/mL) for 72 h. The production of IFN-γ 
was measured in the culture supernatants by ELISA according to manufacturer 
instructions. The values are presented as mean ± S.D. (n = 3, OVA in 1:1 
PBS/alum; n = 4, in other groups). For each treatment, significant differences with 
OVA in PBS group were designated as ***p < 0.001; those with OVA in 1:1 
PBS/alum group were designated as 

aaa
p < 0.001; and those with OVA-mannan 

nanogel-I group were designated as 
ii
p < 0.01 . 188 
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PBS Phosphate buffered saline 

PCL Poly(ε-caprolactone) 

PdI Polydispersity index 

PEG Poly(ethylene glycol)  

PEI Poly(ethylenimine) 

PGA Poly(glycolic acid) 

γ-PGA Poly-(γ-glutamic acid) 

PHC16 Amphiphilic molecules pullulan-HEMA-C16  

PI Propidium iodide  

PLA Poly(D,L-lactic acid) 

PLGA Poly(D,L-lactic-co-glycolic acid) 

PLL Poly-L-lysine 

PMMA Poly(methyl methacrylate) 

PMS Phenazine methosulfate 

poly-U Poly(uridylic acid) 

PRR Pattern-recognition receptors 

PS-PE-PC Phosphatidylserine-phosphatidylethanolamine-phosphatidylcholine  

Pullulan-C16 Amphiphilic pullulan or hydrophobized pullulan 

Pullulan-HEMA Hydroxyethyl methacrylated pullulan 

Pullulan-VMA Vinyl methacrylated pullulan  

PVC16 Amphiphilic molecules pullulan-VMA-C16  
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PVDF Polyvinylidene fluoride 

Py Pyrene 

R Overlap coefficient  

R Number of red pixels 

RAW 264.7 Murine macrophage cell line 

ROIs Regions of interest 

RNA Ribonucleic acid 

Rp Pearson’s correlation coefficient  

RPMI Roswell Park Memorial Institute medium 

RSV Respiratory syncytial virus 

SAMSA fluorescein 5-((2-(and-3)-S-(acetylmercapto)succinoyl)amino)fluorescein 

s.c. Subcutaneously 

S.D. Standard deviation 

SDS Sodium dodecyl sulphate 

SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SEC Size exclusion chromatography 

SI Stimulation index 

sIgA Secretory immunoglobulin A 

SHIV-KU-2 Simian and human immunodeficiency chimeric virus  

3T3 Mouse embryo fibroblast cell line  

T Number of total pixels 

TAA Tumor-associated antigen 

TEA Triethylamine 

TH T helper 

THP-1  Human acute monocytic leukemia cell line 

ThT Thioflavin T 

TLR Toll-like receptors 

TMC N-trimethyl chitosan 

TNF Tumor-necrosis factor 

TRP-2 Tyrosinase related protein-2  

TST Tris-buffered saline 

TT Tetanus toxoid  

UK United Kingdom 

USA United States of America 

UV-Vis Ultraviolet-visible  

VEGF Vascular endothelium growth factor  

VMA Vinyl methacrylate 

VP1 Viral protein 1 
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Aims and thesis outline  

 

Polymeric nanogels plenty of remarkable intrinsic properties have been extensively and 

successfully exploited as promising biomedical formulations arising as great alternatives 

with potential applicability in vaccination and in new therapeutic approaches.  

The prime motivation of this work was to design self-assembled mannan and pullulan 

nanogels in order to supply a vaccine or therapeutic delivery platform based on the 

bioactive properties of mannan to target mannose receptor expressed on the surface of 

antigen-presenting cells and of pullulan to target asialoglycoprotein receptor expressed on 

the sinusoidal surface of the hepatocytes, combined with the performance of polymeric 

nanogels as carriers of biologically active agents.  

Chapter 1 covers the recent published data concerning the modulation of innate and 

adaptive immune responses using engineered polymeric nanogels and their potential 

application as delivery systems in vaccination.   

Chapters 2, 3 and 4 describe the synthesis of self-assembled mannan and pullulan 

nanogels by Michael addition and report their characterization in terms of structure, size, 

shape, surface charge and stability. Achieved results conducted to the selection of 

nanogel based on hydrophobized vinyl methacrylated mannan to be further studied to 

evaluate its potential for biological applications.  

Chapter 5 provides details of mannan nanogel cytocompatibility in mouse embryo 

fibroblast cell line 3T3 and bone marrow-derived macrophages. 

Chapter 6 unravels the mannan nanogel uptake profile in mouse bone marrow-derived 

macrophages. 

Chapter 7 reveals the protein corona around mannan nanogel formed in human plasma, 

and the effect of mannan nanogel on blood coagulation and in protein fibrillation. 

In chapter 8, the mannan nanogel potential as an adjuvant/delivery system is evaluated 

in a preliminary immunization study in mice using ovalbumin as a model antigen. 

In the final chapter, chapter 8, a summary of the main conclusions and some future 

perspectives are portrayed. 



 

 



 

 

 

 

 

Chapter 1 

 

General Introduction: Polymeric nanogels as vaccine 

delivery systems 

 

Polymeric nanogels find a relevant field of application in the formulation of a new 

generation of therapeutic and preventive vaccines, aiming the fine-tuned modulation of the 

immune response. Intrinsic properties of polymeric nanogels, such as material chemistry, 

size and shape, surface charge, and hydrophobicity/hydrophilicity may be determining 

factors in shaping the induced immune response. These materials can thus work as 

synthetic adjuvants, which can also be conjugated with immunostimulants. Polymeric 

nanogels protect vaccine antigens from degradation in vivo and, surface-conjugated with 

antibodies or specific ligands could increase active targeting specificity. This review 

covers the recent published data concerning the modulation of innate and adaptive 

immune responses by engineered polymeric nanogels and their potential application as 

delivery systems in vaccination.   
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The induction of an antigen-specific immune response is a key principle of vaccination. 

Usually, immunogenicity depends on the action of antigen-presenting cells (APC) into 

which antigens must be carried to be internally processed for surface presentation to T-

cells. In addition to antigen presentation, APC-dependent activation of the T-cells also 

needs the up-regulated expression of surface co-stimulatory molecules or secreted factors 

such as cytokines (Figure 1). Cytokines released from APC drive the differentiation of T-

cells, which acquire effector functions including antigen-specific cytotoxicity or specific 

help to cellular or humoral immunity. In naturally occurring immunizations, especially in 

the course of infection, the up-regulated expression of T-cell co-stimulatory molecules or 

cytokines by APC is triggered by ligands characteristic of invading pathogens, generally 

designated as pathogen-associated molecular patterns (PAMP). These may be 

recognized by specific pattern-recognition receptors (PRR) on the surface, in the cytosol 

or inside intracellular compartments, of which Toll-like receptors (TLR) are the prototypical 

example.1 When PAMP are absent in subunit vaccine formulations, adjuvants might be 

necessary to potentiate such mechanisms of T-cell stimulation and therefore 

immunogenicity. Some adjuvants can act on APC by engaging specific PRR, thus 

mimicking signals usually provided by pathogens.2 In addition, some delivery systems, 

e.g., liposomes or virus-like particles preparations, can combine adjuvant activity with the 

targeted delivery of antigens to APC.3 Only a few adjuvants are currently licensed for 

human vaccines, which include alum (aluminum salts), MF59TM, Adjuvant System 03 

(AS03), Montanide™ ISA 51, Adjuvant System 04 (AS04), and virosomes.2, 4, 5 Approved 

adjuvants are mostly used in preventive vaccines of diseases caused by virus or 

extracellular bacteria, for which specific antibodies provide significant protection.5 This 

illustrates one of the limitations of current vaccines, i.e., their efficacy mostly relies on the 

induction of protective antibodies rather than on cell-mediated immunity.6 This may 

hamper the immune-based prevention of diseases caused by intracellular pathogens or 

cancer, where cellular immunity is a key effector mechanism.7 To overcome the 

mentioned limitation and improve vaccine performance or potency as well, novel 

compounds or formulations are currently being rationally designed. Among them, 

polymeric nanogels have potential to arise as safe and effective alternatives to the current 

way of vaccine delivery being able to induce not only strong and long-lasting antibody 

responses but also potent cell mediated immunity based on CD4+ and CD8+ T-cell 

responses. Polymeric nanogels may combine immunomodulatory properties with targeted 

antigen delivery features, working as integrated adjuvants.8, 9 
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Figure 1. Vaccination antigens (Ag), e.g., purified proteins, may be internalized by APC from the external 

millieu by phagocytosis or other endocytic processes (1). Within endocytic compartments (EC), antigen is 

processed at acidic pH into peptide fragments (pt) (2). Peptides are then loaded to major histocompatibility 

complex class II molecules (MHC II) transported into endocytic compartments in Golgi apparatus (Golgi)-

originated vesicles (3). Mature endosomes fuse with the plasma membrane where peptides loaded to MHC 

class II molecules are exposed. Antigens may also be delivered to the cytosol and cleaved within the 

proteasome (Prt) originating peptides (4). These are transported into the endoplasmic reticulum (ER) where 

they are loaded to MHC class I molecules (MHC I) in a chaperone-assisted process (5). Peptide-loaded MHC 

class I molecules are transported to the cell membrane (6), where they can be recognized by specific CD8+ T-

cells, whereas CD4+ T-cells recognize peptides presented in the context of MHC class II molecules (7). APC 

also provide co-stimulatory stimuli by either surface molecules (8) or soluble factors such as cytokines (9). 

 

 

Polymeric nanogels as vaccine delivery/adjuvant systems 

 

Nanometer-sized polymeric hydrogels, i.e., nanogels or hydrogel nanoparticles (NPs; 

size from 1 to 1000 nm) are swollen networks composed of amphiphilic or hydrophilic 

polyionic polymers, either natural or synthetic. Nanogels are promising multifunctional 

polymeric NPs with potential as delivery systems because of their sui generis properties. 

These include tunable chemical and physical structures, flexible nanosize, large surface 

area for multivalent conjugation, high water content, biocompatibility,10, 11 loading capacity, 
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stability, ability to target specific cells and specific cell compartments, immunomodulatory 

properties and responsiveness to environmental factors.12 As nanocarriers must be 

delivered to specific sites upon injected into body fluids, the possibility to modulate the 

chemical and physical properties of NPs could be most helpful in the overcoming of major 

biological barriers such as the reticuloendothelial system, clearance through kidney 

glomeruli and nonspecific accumulation in different organs.  

Nanogels have been designed using different approaches, which can be divided into  

physical self-assembly of interactive polymers, polymerization of monomers in a 

homogeneous phase or in a micro- or nanoscale heterogeneous environment, cross-

linking of preformed polymers, and template-assisted nanofabrication.13 Several natural 

biopolymers have been commonly used to develop nanogels, e.g., dextran, dextrin, 

pullulan, mannan, chitosan, poly-L-lysine (PLL), poly-(γ-glutamic acid) (γ-PGA), heparin, 

hyaluronic acid, and alginate. Synthetic biodegradable and biocompatible polymers, e.g., 

poly(methyl methacrylate) (PMMA), poly(D,L-lactic acid) (PLA), poly(glycolic acid) (PGA), 

poly(D,L-lactic-co-glycolic acid) (PLGA), and poly(ε-caprolactone) (PCL), approved for 

human administration by the USA FDA,14 have been frequently used in the development 

of potential vaccine delivery systems.  

NPs may be engineered as to either stimulate or suppress the triggered immune 

response, thus providing the appropriate activity: upregulation or downregulation of the 

immune response, respectively in the prevention or treatment of infections and cancer or 

of allergies and autoimmune diseases.15 A compilation of studies in which different NPs 

have been used as antigen- or nucleic acid-delivery systems in different experimental or 

clinical settings is presented in Table 1. The interaction of particulate delivery systems 

with APC may stimulate these cells in a way resembling the one triggered by pathogens, 

which are commonly recognized, phagocytozed, and processed by professional APC. In 

vitro studies have shown that exposing dendritic cells (DC) to polymeric NPs resulted in 

their activation and maturation, as evidenced by upregulated surface expression of major 

histocompatibility complex (MHC) class II or co-stimulatory molecules (CD40, CD80, 

CD83, and CD86),16-18 secretion of cytokines19 and chemokines, and expression of 

chemokine receptors.20 Activated DC migrate to regional lymph nodes where they present 

antigen to T-cells, thereby triggering cellular immunity, which in turn may provide help to 

humoral immunity. The intrinsic adjuvant properties of NPs to stimulate APC may thus be 

an additional advantage towards their usage as antigen-delivery systems for vaccination. 

In vaccination, the relationship between the rate of antigen availability and the induction of 

the immune response is poorly understood as, apparently, no clear or direct correlation 
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could be found between in vitro antigen release profile and the antigen-specific in vivo 

immune response. Indeed, both rapid and extended in vitro antigen release profiles have 

been shown to induce similar immune responses in animal studies upon intranasal (i.n.) 

administration.21, 22 Continuous antigen delivery is usually considered to be more effective 

in inducing immunity, as prolonged antigen exposure allows enough time for affinity 

maturation and isotype switching to occur, and immune memory to be generated.23 

Moreover, in a DNA-based vaccine delivery system, controlled release of DNA in 

synchrony with the natural development of the immune response seems to be crucial for 

the efficacy of the vaccine.24 However, it has been suggested that antigen presentation by 

APC to naϊve and effector T-cells may only be required over the first few days for an 

efficient induction of T-cell expansion and differentiation, and that antigen presentation for 

weeks or months may instead lead to T-cell death, decreased effector expansion and 

reduced cytokine production by recovered effectors.25   

 



 

  

Table 1. Usage of polymeric nanogels as antigen- or nucleic acid-delivery systems 

Polymeric nanogels 

(+ immunostimulant) 
Antigen/nucleic acid Model Response Route(s) Ref 

CHP HER2 Human IgG, CD4+, CD8+ T-cells s.c. 
105, 106, 

110 

CHP NY-ESO-1 Human IgG, CD4+, CD8+ T-cells s.c. 
107, 108, 

110 

chitosan-deoxycholic acid MAGE-3 peptide 615 mice IFN-γ, cytotoxic T-cells s.c. 99 

chitosan TT BALB/c IgG, IgA i.n. 67 

chitosan TT BALB/c IFN-γ, IgG i.n. 114 

chitosan HBsAg BALB/c IgG i.m./i.n. 115 

chitosan-alginate (+ CpG) HBsAg BALB/c IgG, IgA i.n. 93 

chitosan 
Leishmania superoxide 
dismutase 

BALB/c IgG s.c. 113 

chitosan 
plasmid DNA encoding 
peanut allergen  

AKR/J mice decreased IgE oral 149 

chitosan 
plasmid DNA encoding 
HBsAg 

BALB/c IFN-γ, IL-2, IgG, IgA i.n. 140 

chitosan 
plasmid DNA encoding M. 
tuberculosis peptides 

HLA-A2 
transgenic 
mice 

IFN-γ i.m./pulmonary 18 

chitosan 
plasmid DNA encoding 
VP1 of CVB3 

BALB/c IgG, IgA, cytotoxic T-cell i.n. 65 

chitosan 
plasmid DNA encoding 
RSV antigens 

BALB/c IFN-γ, IgG, IgA, cytotoxic T-cells i.n. 66 

chitosan/TMC OVA BALB/c IgG intraduodenally 118 

TMC OVA BALB/c IgG i.d. 17 



 

 

Table 1. cont. 

Polymeric nanogels 

(+ immunostimulant) 
Antigen/nucleic acid Model Response Route(s) Ref 

TMC OVA BALB/c IgG i.m. 88, 119 

TMC OVA BALB/c IgG, IgA i.n. 119 

TMC (+LPS/CTB/ 

PAM3CSK4/MDP/CpG) 
OVA BALB/c IgG, IgA i.d./i.n. 87 

TMC-hyaluronic acid OVA BALB/c IgG i.n./i.d. 120 

TMC HBsAg BALB/c IgG/IgA i.n. 117 

TMC DT BALB/c IgG i.d. 17 

TMC influenza A subunit H3N2 C57BL/6 IgG/IgA i.m./i.n 22 

TMC-MCC TT BALB/c IgG i.n. 70 

TMC-alginate urease 
Kunming 
mice 

IgG/IgA s.c./oral 49 

γ-hPGA listerolysin peptide C57BL/6 survival rear footpad 73 

γ-hPGA Tax peptide C3H mice cytotoxic T-cells s.c. 100 

γ-hPGA gp100  peptide C57BL/6 IFN-γ s.c. 100 

γ-hPGA EphA2 peptide C57BL/6 IFN-γ, cytotoxic T-cells i.p. 101 

γ-hPGA OVA C57BL/6 cytotoxic T-cells s.c. 124 

γ-hPGA OVA C57BL/6 IgG, cytotoxic T-cells rear footpad 73 

γ-hPGA HIV-1 gp120 BALB/c IFN-γ, cytotoxic T-cells i.n. 36 

γ-hPGA HIV-1 p24 BALB/c IFN-γ, IgG s.c. 121 

γ-hPGA influenza HA BALB/c IFN-γ, IL-4, IL-6, IgG, cytotoxic T-cells s.c. 122 

γ-hPGA influenza HA BALB/c IFN-γ, IL-4, IL-6, IgG/IgA s.c./i.n. 123 

PEI/γ-PGA 
plasmid DNA encoding P. 
yoelii MSP-1 C-terminal 

C57BL/6 IFN-γ, IL12p40, IgG i.v. 143, 144 



 

  

Table 1. cont. 

Polymeric nanogels 

(+ immunostimulant) 
Antigen/nucleic acid Model Response Route(s) Ref 

PLA (+ poly-U) OVA C57BL/6 IFN-γ, IgG s.c. 90 

PLA HIV-1 p24 and/or gp120 BALB/c IL-2, IL-6, IL-10, IgG, cytotoxic T-cells s.c. 127, 128 

PLA HBsAg Wistar Rats IFN-γ, IgG i.m. 54 

PLGA (+ 7-acyl lipid A) TRP-2 peptide C57BL/6 CD8+-derived IFN-γ s.c. 102 

PLGA, PLGA/TMC OVA BALB/c IgG i.m. 119 

PLGA (+ 7-acyl lipid A) OVA BALB/c IFN-γ, CD4+, CD8+ T-cells i.p./s.c. 133 

PLGA (+ MPL) OVA BALB/c IgG, IgA oral 134 

PLGA (+ CpG) TT C57BL/6 IFN-γ, IgG s.c. 85 

PLGA 
B. pertussis toxoid and 
filamentous HA 

BALB/c IFN-γ, IL-5, IgG i.p./oral 55 

PLGA BSA BALB/c IgG s.c./oral/i.n. 57 

PLGA 
protein from N. 
meningitides type B 

CD1 mice IgG i.m./i.p. 58 

PLGA (+ LTK63) HIV-1 gp140 BALB/c IgG i.n.+i.m. 58 

PLGA (+ MPL) HBcAg C57BL/6 IFN-γ s.c. 131 

PLGA-PEI Rv1733c DNA /protein BALB/c IFN-γ i.m./pulmonary 19 

PCL, PLGA, PLGA-PCL DT BALB/c IFN-γ, IL-6, IgG i.n./i.m. 71 

PCL-based (+ CTB) S. equi proteins BALB/c IL-2, IL-4, IgG i.n. 92 

acid-degradable 
polyacrylamide (+ CpG) 

OVA C57BL/6 cytotoxic T-cells s.c. 16, 29, 30 

PMMA-Eudragit L100-55 HIV-1 Tat protein BALB/c IFN-γ, IL-4, IgG, cytotoxic T-cells i.n. 136 

ref, references; BALB/c and C57BL/6 are mice strains unless otherwise indicated. 
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Properties of the nanodevice vs immune response 

 

Nanogels themselves may be intrinsically immunologically active, by virtue of their 

particular character or as a result of protein adsorption, being recognized as a “danger” 

signal. Properties of the nanodelivery systems, such as material chemistry, size and 

shape, surface charge, and hydrophobicity/hydrophilicity are determining factors on the 

induced immunity and will be discussed below. 

 

Material Chemistry 

The molecular weight and the copolymer composition can modulate the load release 

mechanism; higher polymer molecular weight results in slower in vitro release of the 

biological agent.26 On the other hand, the functional groups at the nanogel surface can be 

modified with various targeting moieties for site-specific vaccine delivery. A number of 

materials chemistries have been engineered to promote release of NPs payload within the 

endolysosomal compartments, attending both pH and the reductive-oxidative gradient 

experienced during endolysosomal processing.27 Nanomaterials sensitive to acid 

hydrolysis (orthoesters, hydrazide or acetal bonds)28-30 or to reduction (glutathione-

responsive)31 have been investigated for endosomal release of biological agents. 

Whereas the endosomal/phagosomal compartment is the aimed target for MHC class II 

loading, MHC class I presentation requires the antigen payload to be present in the 

cytosol.32 Thus, disruption of the endosomal membrane barrier in order that exogenous 

antigens could gain access the cytosol is an important target and a challenging problem. 

Endosomal disruption is also necessary for DNA-based vaccination, in which plasmid 

DNA must be expressed to produce the antigen.33 To avoid lysosomal trafficking, “smart” 

polymers have been designed. Both pH-sensitive and reductive-sensitive nanomaterials 

release oligonucleotides and peptides into the cytosol as the endosome is acidified, 

avoiding the lysosomal fusion. As a consequence, antigen processing may occur through 

the cytosolic (MHC class I) pathway instead of the exogenous (MHC class II) pathway, 

thus promoting cross-presentation. Indeed, endosomal escape following uptake of PLGA 

NPs loaded with ovalbumin (OVA)  have been linked to an increase in the presence of 

antigen in the cytosol and promoted cross-presentation, enhancing and sustaining antigen 

presentation via MHC class I to a much higher degree than soluble antigen, in murine 

bone marrow-derived dendritic cells (BMDC).34 Protamine-coated PLGA NPs stimulated 

murine BMDC and enhanced the cross-presentation of encapsulated exogenous antigen 

(OVA) by facilitating antigen uptake and lysosomal escape.35 Moreover, HIV envelope 
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glycoprotein (gp)120 loaded in hydrophobically modified γ-PGA (γ-hPGA, γ-PGA-graft-L-

phenylalanine copolymers) NPs have shown induced antigen specific effector and CD8+ 

T-cell memory response in i.n.-immunized mice.36 Acid-degradable particles, which 

components exert an osmotic pressure on the endosomal/phagosomal membrane leading 

to its rupture, have been used to enhance antigen presentation in vitro and vaccination in 

vivo.16, 37, 38 CD205 (dendritic and epithelial cells, 205-kDa integral membrane glycoprotein 

(DEC-205))-targeted acid-degradable acetal-cross-linked OVA-loaded particles enhanced 

antigen presentation by DC via both MHC class I and II pathways, leading to an improved 

cellular immune response.37 Codelivery with adjuvants (unmethylated CpG and anti-

interleukin-10 anti-sense oligonucleotides) increased secretion of interleukin (IL)-12 and 

maximized the elicited cellular immune response.38 Acid-degradable acetal-cross-linked 

NPs encapsulating both OVA and CpG (TLR9 agonist) induced an OVA-specific CD8+ T-

cell response.16 Same system but with CpG covalently attached, enhanced the efficacy of 

antigen presentation via MHC class I leading to a greater cytotoxic T-cell activity, as 

compared with particles subcutaneously (s.c.) coadministered with adjuvant in an 

unbound form in mice.30 This system effectively showed to induce protective immunity 

using the MO5 murine melanoma model until the moment when the cancer cells 

apparently stopped expressing the antigen, due to in vivo selection pressure.30  

Immune potentiation can also be achieved by activating the complement system. 

Triggering of complement activates a series of proteins and enzymes that can promote 

inflammation, macrophage phagocytosis, anaphylaxis, B-cell activation, and T-cell 

response, as well as enhance antigen presentation to B-cells by follicular DC.9 Certain 

primary hydroxyls39 or amine groups40 on the pathogen molecules or on the material 

surface can bind to the exposed thioester of C3b to activate complement by alternative 

pathway.39, 41 Furthermore, activating materials also facilitate the binding of Factor B to 

C3b, forming the C3 convertase, which catalyzes the cleavage of more C3, thus 

amplifying the response.41 Interestingly, C1q binds to hydrophobic molecules or 

aggregates, such as lipopolysaccharide (LPS) and liposomes.42 Hence, the incorporation 

of hydrophobic domains could activate complement through the classical pathway. In 

summary, although much of biomaterials research seeks to avoid interactions with the 

complement system, immunobioengineering may exploit surface-mediated complement 

activation and of diverse ways in which it could affect innate and adaptive immunity.  
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Size and Shape 

The size of the polymeric particulate vaccine delivery systems and their interactions with 

APC influence the immune response both qualitatively and quantitatively.13 The nanoscale 

size is advantageous in vaccine delivery, improving the safety, stability and targeted 

delivery of biological agents, enhancing the transport across biological barriers and hence 

the bioavailability, extending the effect in the target tissue.12 

Particle size is the critical factor for lymphatic uptake from the interstitial space.43 

Therefore, particles greater than 100 nm frequently remain near the administration site 

and are internalized by immature peripheral DC that then migrate to lymph nodes, mature 

and present antigen to T-cells. Particles smaller than 50 nm in diameter are more 

efficiently carried into lymphatic vessels by the interstitial flow and transported to regional 

draining lymph nodes, where concentrated populations of resident immature DC 

internalize them.39, 44, 45 Therefore the size of particles is determinant for their applicability 

towards targeting peripheral versus lymph-node DC. Interestingly, size may also affect 

internalization of targeted biomaterials by APC. DC have been described to internalize 

PLGA-based DC-SIGN-targeted NPs and microparticles (MPs; size from 1 to 1000 µm) 

more effectively than nontargeted controls. However, NPs were more effectively targeted 

than MPs, as demonstrated by the relatively high nonspecific uptake of MPs by DC. 

Contrastingly, scavenging by other phagocytes occurred more efficiently for targeted MPs 

rather than for NPs.46   

Transport across mucosal surfaces may also be affected by particle size. Mucosae are 

both an appealing and challenging route for vaccination. NPs must gain access to the 

mucosal epithelia for antigen delivery or transfection. Therefore, they must be able to 

penetrate the mucous layer. The mucus consists of a physically cross-linked, viscoelastic 

hydrogel, with mesh sizes in the order of 10–100 nm.47 Barrier penetration has been 

shown largely restricted for particles greater in diameter than a few hundred 

nanometers,47, 48 whereas particles of about 50 nm could diffuse in mucus almost as freely 

as in water.47 NPs have been described to improve transmucosal transport and 

transcytosis by microfold (M) cells.49 Indeed, NPs crossed the mucosal epithelium better 

than MPs, since not only M cells overlaying the mucosa-associated lymphoid tissues 

(MALT) but also the epithelial cells were involved in the transport of NPs.21 A better 

uptake by Peyer’s patches was observed for negatively charged PLGA particles having a 

mean diameter of 1 µm or less.50  

Nanomaterial size may also determine its immunological activity, by influencing uptake 

by APC and their maturation.51 Indeed, it has been shown that cell uptake of NPs was 
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relatively high, when compared to that of MPs.52, 53 The NPs size-dependent 

immunomodulation is a key feature towards their usage in vaccination. Immunization with 

PLA NPs entrapping hepatitis B surface antigen (HBsAg) has been previously linked with 

higher levels of interferon (IFN)-γ production and with antibody isotypes associated with T 

helper (TH)1-type immune response. Conversely, immunization with MPs promoted IL-4 

secretion and favored TH2-type immune response.54 However, immunization with PLGA 

MPs loaded with Bordetella pertussis antigens elicited a marked TH1 immune response, 

whereas similarly loaded NPs favored a TH2 immune response.55 In another model, 

synthetic peptide malaria vaccine SPf66-loaded PLGA NPs showed to be poorly 

immunogenic while SPf66-loaded MPs elicited potent, long lasting systemic antibody 

levels and mixed TH1/TH2 immune response in i.n.-immunized mice.56 Therefore, the type 

of size-dependent polarization of the immune response may also depend or be affected 

by the particular loaded antigen or other NPs characteristics.  

In addition to its type, the intensity of the humoral immune response seems to be also 

affected by particle size, as significant variations on antibody titers were observed after a 

single immunization, using differently sized PLA particles entrapping HBsAg.54 NPs have 

been shown to be efficiently taken up by macrophages but elicited lower antibody titers in 

comparison to MPs. PLA MPs eliciting the highest and long-lasting antibody titers after 

single immunization were found attached to the macrophage cell surface, not being 

internalized.54 Bovine serum albumin (BSA)-loaded PGLA particles (1 µm) induced a 

higher humoral response, immunoglobulin (Ig)G-mediated, than smaller particles 

administered by oral and i.n. routes.57 Other studies did not reveal the same size-

dependent effect. PLGA NPs and MPs vaccine systems delivering a recombinant protein 

antigen from Neisseria meningitidis type B (intramuscularly (i.m.) or intraperitonealy (i.p.)), 

and a HIV-1 envelop gp140 (i.n. followed by an i.m. boost) elicited comparable immune 

response in mice.58  

Although it is not obvious how one specific size range could be optimal for particular 

vaccine formulations, it is however clear that controlling the size of a vaccine particle 

could be a mean to bias the immune response.59, 60 

The particle geometry has been described as a strategic feature regarding transport 

through the vasculature, circulation half-life, targeting efficiency, endocytosis, and 

subsequent intracellular transport.61, 62 Spherical and cylindrical particles have been 

described to be phagocytozed more effectively than the ellipsoid or disc-shaped. 

Elongated particles have been reported to avoid phagocytosis and remained in circulation 



General Introduction: Polymeric nanogels as vaccine delivery systems 
 

 

                                                                                    - 13 -                                                  Ferreira, S.A. | 2012  

for longer times, whereas both elongated and flat particles targeted the diseased site 

better than their spherical counterparts.61  

 

Surface charge 

Surface charge may affect bioadhesivity, entrapment efficiency, percent loading, 

stability and in vivo immunogenic performance of a vaccine formulation.63 Due to the 

supercoiled structure and negative charge, the entrapment efficiency and stability of DNA-

based vaccine formulations is usually low. Cationic nanomaterials complex plasmid DNA 

by electrostatic interactions, increasing stability and entrapment efficiency.64, 65 A net 

positive surface charge can facilitate transfection by favoring the interaction with the 

negatively charged glycoproteins at the cell membrane. However, electrostatic 

interactions with solutes or proteins from blood and interstitial fluid can lead to competitive 

binding, destabilization of the carrier, and subsequent premature release of the nucleic 

acid payload.33 These cationic delivery systems have been shown to enhance mucosal 

and systemic immunogenicity, including the generation of efficient mucosal antibody 

response and cytotoxic T-cells after i.n. administration,66 hence providing an attractive 

alternative to parenteral administration. It is therefore critical to control the cationic charge 

density to minimize toxicity – frequently associated to polycationic materials, e.g., 

poly(ethylenimine) (PEI) – while attaining high immune response. 

The electrostatic interactions between the mucus – an anionic polyelectrolyte – and the 

cationic NPs, resulting in mucoadhesion, may provide sufficient residence time for an 

efficient antigen uptake. Mucoadhesive, hydrophilic NPs have received much attention to 

deliver protein antigens via the nasal route.21, 67-69 Mucoadhesive NPs improve mucosal 

absorption, because they strongly attach to the mucosa and increase the viscosity of 

mucin. Thereby they significantly decrease the nasal mucociliary clearance rate and, thus, 

increase the residence time of the formulation in the nasal cavity. For instance, carriers of 

chitosan and derivatives – polyampholyte mono-N-carboxymethyl chitosan (MCC) and 

positively charged N-trimethyl chitosan (TMC) – loading tetanus toxoid (TT) have shown 

enhanced mucosal immune response in i.n.-immunized mice.68 MCC induced relatively 

lower IgG titers for TT when compared with TMC and chitosan, yet producing the smallest 

NPs, with narrower size distribution and higher loading capacity.68 TT loaded TMC/MCC 

NPs, obtained without using any organic solvent or cross-linker, induced both mucosal 

and systemic immune responses in  i.n.-immunized mice.70 
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Hydrophobicity/hydrophilicity 

Certain material features can mimic pathogen surfaces leading to the activation of 

innate immune pathways. Some biomaterials, particularly polymers that contain 

hydrophobic domains, exhibit natural adjuvant behavior. A positive correlation was 

observed between hydrophobicity of diphtheria toxoid (DT)-loaded PLGA, PCL and PLGA-

PCL NPs, their in vitro uptake and the serum levels of antigen-specific IgG achieved in 

i.n.-immunized mice.71 The mechanism(s) by which biomaterials hydrophobicity affects the 

inflammatory and antibody responses, although not fully elucidated, may involve the 

complement system and/or TLR. TLR4 binds to a variety of structurally dissimilar ligands, 

many of them, including LPS and bacterial fimbriae, having hydrophobic domains. The 

hydrophobic domains of these ligands might be sensed as a “danger signal” by TLR to 

initiate innate immune response.72 Similarly, hydrophobic portions of polymers in vehicles 

might interact specifically with TLR and induce DC maturation and adaptive immunity.42 

For example, LPS-free γ-hPGA NPs stimulated DC through TLR2 and TLR4, possibly 

through the hydrophobic regions.20 This was reached through MyD88-mediated NF-κB 

activation and p38 mitogen-activated protein kinase (MAPK) pathways, in a manner 

somewhat similar to LPS signaling through TLR4.20, 73-75 

Once exposed to a biological environment, hydrophobic material surfaces are obscured 

by protein adsorption faster than the hydrophilic ones,33 affecting the phagocytosis and 

clearance by macrophages (e.g., through scavenger receptor) and hence potentially 

affecting distribution and delivery to the intended target sites.76 Immunoglobulins, 

complement components or other opsonins adsorption might be advantageous to induce 

immunity.76 A study with DC-SIGN-targeted PLGA NPs, coated with hydrophilic 

poly(ethylene glycol) (PEG) of various chain lengths in order to shield non-specific 

interactions, demonstrated that PEG chains cannot be extended beyond a certain length 

without compromising the efficacy of targeted delivery.77 The addition of PEG and other 

hydrophilic polymers can also result in lower transfection efficiency.33 

An hydrophilic surface (e.g., PEG, poly(ethylene oxide), Pluronic or poloxamers) is 

relevant to withstand aggregation and adsorption of particles to components of the mucus 

and permit their transport as individual particles. Shorter, denser graft layers of PEG tend 

to sterically stabilize the NPs surface whereas longer, sparser grafts allow interpenetration 

of the grafted chains and the mucous network, leading to adhesion to the mucus, 

associated with entanglement and disentanglement, and unfavorable slower NPs 

penetration.78 Therefore, PEG chains long enough (2 KDa)48 to prevent adsorption, but not 

long enough (10 KDa)78 to lead to entanglement, are desirable. PEG coating of PGLA 



General Introduction: Polymeric nanogels as vaccine delivery systems 
 

 

                                                                                    - 15 -                                                  Ferreira, S.A. | 2012  

NPs have shown to enhance diffusion in human cervical mucus in a manner strongly 

dependent on PEG molecular weight and density;79 in PLA NPs, PEG coating has favored 

penetration across rat nasal mucosa.27 The role of the hydrophobicity/hydrophilicity of the 

transmucosal nanocarriers is controversial in different reports and remains a dilemma.80 

 

 

Multifunctional vaccine delivery systems  

 

A range of technologies and approaches have been used for the development of nano-

sized vaccine delivery systems, aiming at improving preventive and therapeutic 

vaccination methods.26 They are designed to protect antigen from enzymatic 

degradation,12, 18, 81 to extend antigen release,23 to closely mimic the size, shape, surface 

molecular organization,82 composition, and immunological processing of actual 

pathogens; to actively or passively target APC for efficient delivery;83 direct the nature of 

the resulting immune response and at last, to induce APC maturation by interacting with 

elements of the innate immune system, such as TLR.59, 82  Polymeric vehicles also have 

the significant benefit of reducing the toxicity due to inflammatory cytokines often 

observed after injection, a common side effect of immunostimulants, by directly targeting 

APC.84  

Vaccines may include synthetic peptides representing an epitope of a pathogen protein; 

a full-length protein carrying several epitopes that may be recognizable by B- and T-cells, 

produced either by pathogens, synthetically or recombinantly; or a gene encoding a 

particular protein fused into a DNA or RNA plasmid. These vaccines offer considerable 

advantages over traditional empiric vaccines, based in live-attenuated, inactivated or killed 

pathogens, in terms of safety, stability and production cost. However, in most cases, 

subunit vaccines have limited immunogenicity and require the addition of adjuvants to 

induce a protective and long-lasting effective immune response.38, 59 Antigens in subunit 

vaccines are taken up by DC but usually lack the necessary “danger signals” to induce DC 

maturation. Several immunostimulants may therefore be coadministrated either by 

coinjection, or by physical linkage to the carrier via surface adsorption and 

coencapsulation.85-87 An antigen-adjuvant mixture stimulates the activation of immature 

DC, but an antigen-adjuvant conjugate increases the chance of simultaneous uptake of 

both adjuvant and antigen to the same endocytic compartment, resulting in higher 

numbers of mature antigen-carrying DC,88 which are necessary to ensure optimal antigen 
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presentation to CD4+ T-cells, cross-presentation and induction of CD8+ T-cell response,89 

and increased humoral immune response.88, 90 

Adjuvants are molecules, compounds or macromolecular complexes that evoke or 

enhance the potency and longevity of a specific immune response against coinoculated 

antigens.4, 6, 26 The adjuvants choice should follow several criteria, like target site, 

antigens, type of  desired immune response, route of administration, animal species to be 

vaccinated, duration of immunity, prevention of adverse effects or stability of the vaccine.4, 

91 An optimally formulated adjuvant must be able to promote an antigen specific immune 

response and should be safe, intrinsically non-immunogenic, biocompatible, readily 

biodegraded and eliminated, inexpensive to produce, stable before administration, and 

physicochemically well-defined to facilitate quality control important to ensure reproducible 

manufacturing and activity.4, 6  

Multivalent vaccines that encapsulate not only a combination of multiple antigens,66, 92 

necessary in many diseases associated with multi-antigenic variability and shedding, but 

that also combine the synergy between different adjuvant mechanisms,87, 93 using 

mixtures of immunostimulants and delivery systems have been under preclinical studies.  

 

Peptide-based vaccines  

Peptide-epitopes might be recognized by antibody or immune cells. Synthetic peptide-

based immunogens are easily produced, free of bacterial/viral contaminating substances 

as well as devoid of oncogenic potential, present low adverse reactions, low cross-

reactivity and high stability but also poor inherent immunogenicity.26 Peptide-based 

vaccines can include several peptide-epitopes corresponding to subtypes of a pathogen, 

different stages in the life cycle of a pathogen or even epitopes from multiple pathogens.94  

In order to overcome the limitations of using single cytotoxic T-cell epitopes imposed by 

MHC polymorphism, mixtures of separate peptides or polytope vaccines have been 

designed by producing recombinant proteins consisting of a combination of TH and/or 

cytotoxic T-cell epitopes. Physical linking of TH and cytotoxic T-cell peptide-epitopes 

further increased the magnitude of the cytotoxic T-cell response suggesting that 

presentation of both TH and cytotoxic T-cell peptide-epitopes on a single APC is more 

efficient than when the two epitopes are presented on different APC, which may occur 

when these epitopes are delivered as a mixture.95, 96 

Peptide-based vaccine efficacy is determined by how the peptides are recognized by 

the immune system. Specific immune response can be significantly affected by the 

presence of TH epitopes, peptide concentration, multivalency, secondary structure,59 
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geometry,97, 98 orientation (N-terminus or C-terminus of B-cell epitopes could determine 

antibody specificity), chemical linkage between separately synthesized peptide modules,96 

association with adjuvants (self-adjuvanting lipopeptides, such as tripalmitoyl-S-glyceryl 

cysteine coupled to appropriate synthetic epitopes) and size. Long synthetic peptides are 

not able to bind directly to MHC class I or II molecules and are, therefore, taken up, 

processed and presented by APC.59  

The induction of robust CD8+ T-cell response requires a sustained presentation of 

antigen in a stimulatory context. Carrier induced epitope suppression and in vivo 

biodegradation should be avoided. Biodegradation escape can be achieved by using non-

natural “protease-resistant” derivatives of cytotoxic T-cell epitopes that still retain the 

antigenicity and immunogenicity of the parental peptide, or by using a high number of 

repetitive injections with minimal cytotoxic T-cell peptide-epitopes within a week and for 

several courses.95 While vaccines of small peptides can be rapidly biodegraded, larger 

peptides are relatively protected and may actually benefit from additional extracellular 

processing.95 

Some examples of polymeric nanogels tested as potential peptide-based vaccine 

delivery systems with chitosan, γ-PGA and PLGA will be summarized below.  

 

Chitosan 

Chitosan conjugated with deoxycholic acid NPs self-assembled with melanoma-

associated antigen 3 (MAGE-3)-derived CD4+-CD8+ T-cell peptide-epitopes, in s.c.-

immunized mice, have been linked to the generation of MAGE-3-targeted cytotoxic T-

cells, killing MAGE-3-specific tumor cells and causing regression of the growth of mouse 

forestomach carcinoma cell line (MFC).99  

 

γ-PGA  

Mice immunized with γ-hPGA NPs carrying the listerolysin296–307 CD8+ T-cell peptide-

epitope have shown to be protected from a lethal infection with Listeria monocytogenes 

without the need of additional adjuvant.73 γ-hPGA NPs entrapping an endoplasmic 

reticulum (ER)-transport system containing an ER-insertion signal sequence (Eriss)-

conjugated antigenic peptides (Tax38–46 peptide derived from human T-cell leukemia virus 

type-I and gp10025-35 human melanoma peptide) markedly amplified and activated 

cytotoxic T-cells and IFN-γ-secreting cells specific for the antigen in s.c.-immunized 

mice.100 Additionally, in a murine model of tumor metastasis, i.p.-vaccination with γ-hPGA 

NPs loaded with the tumor-associated antigen (TAA)-derived peptide, the ephrin type-A 
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receptor 2 (EphA2), have been reported to exhibit an enhanced EphA2-specific CD8+ T-

cell activation and have demonstrated an antitumor effect by eliciting immunity equivalent 

to that of the antigen administered with complete Freund’s adjuvant.101 

 

PLGA 

PLGA NPs encapsulating both the tyrosinase related protein-2 (TRP-2)180-188 (self-TAA 

peptide) and 7-acyl lipid A (TLR4 agonist) have demonstrated to induce therapeutic 

immunity against highly aggressive B16 melanoma, in s.c.-immunized mice, breaking 

immunotolerance to cancer-associated self-antigens and leading to tumor growth control 

through the induction of TRP-2-specific cytotoxic T-cells. Activated TRP2-specific CD8+ T-

cells have shown to secrete IFN-γ in the lymph nodes and spleens of the vaccinated mice. 

Within the tumor microenvironment there was reversal of the immune suppressive milieu 

through an up-regulation of TH1 cytokines (IL-6, IL-12, IFN-γ, tumor-necrosis factor (TNF)-

α) and a down-regulation of the proangiogenic vascular endothelium growth factor 

(VEGF).102 

 

Protein-based vaccines 

A suitable vaccine must elicit a T-cell response in a background of many different 

human leukocyte antigen (HLA) class I and II alleles. Vaccines providing the immune 

system with complete proteins are ideal over single peptide-epitope vaccines, since the 

latter may not contain all important epitopes suitable to be loaded on antigen-presenting 

molecules of individuals with different HLA haplotypes.95 Intact recombinant proteins are 

thus more likely to bear peptide sequences and to originate peptides that could bind MHC 

class I or II molecules of more than one HLA haplotype.  

Some examples of polymeric nanogels currently being tested as potential protein-based 

vaccine delivery systems will be summarized below according to the main modified 

polymer  mannan and pullulan, chitosan and derivatives, γ-PGA, PLA and PLGA, PCL or 

PMMA. 

 

Mannan and pullulan 

Cholesterol-bearing mannan or pullulan (CHM or CHP) complexed with human 

epidermal growth factor receptor 2 (HER2) oncoprotein have been successfully used to 

induce CD8+ cytotoxic T-cells against HER2+ tumors. Mice s.c.-immunized with CHM-

HER2 or CHP-HER2 before or early after tumor challenge successfully rejected HER2-

transfected tumors.103, 104 In addition, vaccination with CHM-HER2 complexes led to a 
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strongly enhanced production of IgG against HER2.103 In another study, CHP was used in 

combination with New York-esophageous 1 (NY-ESO-1) protein (CHP-NY-ESO-1) to 

pulse DC, which efficiently activated both CD4+ and CD8+ T-cells in vitro.89 This further 

indicated the suitability of CHP to be used as a vaccine delivery system in cancer therapy. 

The evaluation of CHP-based protein vaccine in clinical trials yields encouraging results. 

In a phase I clinical trial conducted in HER2-expressing cancer patients, the CHP-HER2 

complex vaccine, s.c. administered, showed to be safe and to induce HER2-specific CD8+ 

and/or CD4+ T-cell immune responses;105 in a second clinical trial with this vaccine, it was 

further shown to induce a HER2-specific humoral immune response that was increased by 

co-administration of granulocyte-macrophage colony stimulating factor (GM-CSF).106 

Despite the CHP-HER2 formulation was effective in raising the production of antibodies 

specific for the immunogen used, these antibodies were not able to bind to or promote the 

lysis of HER2-expressing tumor cells. Their usefulness however could reside in their 

usage as surrogate markers for the T-cell mediated immune response.106 In a phase I 

clinical trial, CHP-NY-ESO-1 vaccine elicited potent humoral107 and increased CD4+ and 

CD8+ T-cell responses in immunized cancer patients.108 In cancer patients despite CHP-

NY-ESO-1 induced NY-ESO-1 specific immunity, tumor growth was nevertheless 

observed upon vaccination.109 Combined CHP-NY-ESO-1 and CHP-HER2 vaccines s.c. 

administered to esophageal cancer patients elicited limited mild adverse events.110 

Targeting multiple tumor antigens showed to be feasible, without antigenic interactions. 

The combination vaccine elicited a response to NY-ESO-1 comparable to that obtained 

with the single vaccine, while inducing a lower antibody production specific for HER2.110 

Although the induction of antigen-specific T-cell responses upon vaccination is a 

promising result, further studies will be necessary to fully understand the true potential or 

effectiveness of CHP and CHM based cancer vaccination. The identification of 

immunologic biomarkers that could allow a more accurate evaluation of the clinical 

response to cancer immunotherapeutic approaches111 will certainly be useful in this 

regard. 

 

Chitosan and derivatives 

Chitosan-based vaccines have shown superb effectiveness in preclinical models and 

promising results in clinical trials. Nevertheless, further optimizations for these systems 

will be necessary for clinical approval.69, 112 Formulations of superoxide dismutase B1 in 

chitosan NPs s.c. administered to mice have been described to increase their 

immunogenicity towards cell-mediated immunity (TH1 cells, IgG2a) and to be effective 
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against Leishmania.113 Hydrophobic NPs (PLA or PLGA) coated with hydrophilic polymers 

(PEG or chitosan) and NPs made solely of hydrophilic polymers have proved suitable to 

deliver proteins across the nasal and intestinal mucosae,114 as exemplified by chitosan 

NPs loaded with TT, which elicited high and long-lasting IgG67, 114 and secretory 

immunoglobulin A (sIgA) response in i.n.-immunized mice.67 The association of 

recombinant HBsAg with the alginate-coated chitosan NPs, in i.n.-immunized mice, 

showed to be able to elicit a mucosal but not a systemic humoral immune response. 

However, antigen-specific systemic antibodies of TH1-associated isotypes were detected 

when NPs were used together with CpG.93 In other study, the recombinant HBsAg-loaded 

chitosan NPs induced anti-HBsAg IgG levels up to 9-fold the alum-adsorbed vaccine in 

i.m.-immunized mice.115 Colloidal polyelectrolyte complexes, free of chemical cross-linkers 

and surfactants, were obtained by chitosan and dextran sulfate macromolecular assembly 

and loaded with HIV-1 p24. In the murine model, upon s.c.-vaccination with these NPs, a 

strong, specific anti-p24 antibody production and cytokine release suggested that both 

arms of immunity have been stimulated, though the immune response could be TH2 

biased.116  

TMC NPs carrying monovalent influenza A subunit H3N2 have been described to 

significantly enhance systemic IgG and local sIgA immune responses, compared to 

soluble influenza vaccine, in mice (i.m. or i.n.).22 Urease, a target antigen used in 

vaccination against Helicobacter pylori infection, loaded into TMC NPs, have elicited 

specific IgG and sIgA when oral administrated, but only IgG in s.c.-immunized mice.49 

TMC NPs have induced humoral and mucosal immune responses against recombinant 

HBsAg in i.n.-immunized mice.117 Another study described that TMC based formulations 

containing either OVA or DT were able to elicit high titers of IgG specific for both antigens, 

in intradermally (i.d.)-immunized mice.17 TMC-OVA conjugate (OVA covalently linked to 

TMC) caused higher OVA-specific IgG levels than plain OVA or a physical mixture of TMC 

and OVA in i.m.-immunized mice, and slightly elevated levels when compared to those 

achieved with TMC/OVA NPs obtained by ionic complexation.88 Intraduodenal vaccination 

of mice with OVA-loaded chitosan and TMC NPs led to significantly higher antibody 

response than immunization with OVA alone. TMC NPs could induce anti-OVA antibodies 

after only a priming dose. TMC NPs but not chitosan or PLGA NPs had intrinsic adjuvant 

effect on DC.118 Among similar sized OVA-loaded PLGA, TMC and TMC-coated PLGA 

(PLGA/TMC) NPs, only mucoadhesive TMC was able to increase the nasal residence 

time of OVA compared to OVA alone. All nanosystems i.m. administered induced higher 

IgG titers than OVA alone, PLGA and TMC being superior to PLGA/TMC. Slow antigen 
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releasing PLGA and PLGA/TMC NPs did not induce detectable antibody titers whereas 

positively charged, fast antigen releasing TMC NPs led to high sIgA and serum antibody 

titers in i.n.-immunized mice. Therefore, particle charge and antigen release pattern of 

OVA-loaded NPs have to be adapted to the intended route of administration.119 

Additionally, covalently stabilized TMC-hyaluronic acid NPs loaded with OVA have shown 

adequate loading efficiency, particle integrity to a higher extent and enhanced 

adjuvanticity as evidenced by higher IgG titers compared with non-stabilized particles in 

i.n.- and i.d.-immunized mice.120 

 

γ-PGA 

The potential of using self-assembled γ-hPGA NPs in triggering murine immunity has 

been demonstrated for several protein antigens, such as HIV-1 p24,121 HIV-1 gp120,36, 52 

influenza hemagglutinin (HA),122, 123 and OVA.73, 74, 124 In macaques (i.n. and s.c.), HIV-1 

gp120 carrying γ-hPGA NPs have presented great potential for the induction of specific 

cellular and humoral immunity. However, the macaques intravenously (i.v.) challenged 

with simian and human immunodeficiency chimeric virus (SHIV)-KU-2, have presented an 

increased viral load when immunized with those NPs. Thus, the induced immune 

response has not been effective for protection, actually enhanced the infection in rhesus 

macaques.125 Furthermore, γ-hPGA NPs showed to be promising adjuvants and allergen-

delivery systems for allergen-specific immunotherapy; human monocyte-derived DC from 

allergic subjects stimulated in vitro with a mixture of γ-hPGA NPs and extract of grass 

pollen allergen Phleum pratense increased allergen-specific IL-10 production and 

proliferation of autologous CD4+ memory T-cells.20 More recently, OVA/benzalkonium 

chloride/γ-PGA complex s.c. administered to mice have been described to induced IgG1, 

IgG2b  TH2-type  IgG2a and IgG3  TH1-type  indicating the ability of this complex to 

induce humoral and cellular responses. This complex was able to inhibit the growth of 

OVA-expressing tumor cell line E.G7 and caused the complete tumor rejection.126 

 

PLA and PLGA  

PLA NPs coated with HIV-1 p24 have been described to induce enhanced cellular and 

humoral immune responses in mice, rabbits and macaques immunized by the s.c. 

route.127 Coadsorption of HIV-1 p24 and gp120 to these NPs preserved their antigenicity 

and immunogenicity.128 In other study where mice were also s.c.-immunized, OVA and 

poly(uridylic acid) (poly-U, a TLR7/8 agonist) coencapsulated in PLA NPs, increased the 

specific humoral immune response and the levels of IFN-γ secreting T-cells.90 
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PLGA NPs have been reported as effective vehicles for sustained and targeted antigen 

delivery to APC by efficiently trafficking through local lymphoid tissues.129, 130 Codelivery of 

hepatitis B core antigen (HBcAg) and monophosphoryl lipid A (MPL) in PLGA NPs 

promoted HBcAg-specific TH1 cellular immune response with IFN-γ production in a murine 

model s.c.-immunized.131 Encapsulated West Nile virus envelope protein antigen 

conferred host protection in a murine model of viral encephalitis.132 In other study, PLGA 

particulate delivery of OVA and 7-acyl lipid A to DC led to an increased antigen-specific 

CD8+ and CD4+ T-cell-mediated response.133 The expanded T-cells were capable of 

cytokine secretion and displayed an activation and memory surface phenotype.133 Oral 

administration to mice of OVA and MPL codelivered in PLGA NPs showed to induce both 

systemic and mucosal immune responses.134 LPS-modified PLGA NPs, in s.c.-immunized 

mice were able to effectively enter APC eliciting both humoral and cellular immunity 

against encapsulated OVA, without toxicity, therefore proving to be an effective vaccine 

vector through both TLR and inflammasome activation.132 DEC-205-targeted OVA-loaded 

PLGA NPs have demonstrated to induce DC to produce IL-10, with levels correlating with 

the amount of anti-DEC-205 monoclonal antibodies conjugated on the particle surface, 

both in vitro and in i.p.-immunized mice.135 This delivery system induced DC and T-cells to 

produce both pro-inflammatory (IL-12, IL-5, IFN-γ) and anti-inflammatory (IL-10) 

cytokines. The DEC-205-associated pathway elicited the DC production of IL-10 and T-

cell production of IL-10 and IL-5 without impeding IL-12-mediated DC priming of a TH1-

type response characterized by IFN-γ production, due to the PLGA component. 

Multivalent cross-linking of the DEC-205 receptors was required for the response, and 

was associated with the upregulation of the scavenger receptor CD36 on the DC.135  

 

PCL 

PCL NPs modified by different adjuvants (mucoadhesive polymers – alginate or 

glycolchitosan – and absorption enhancers – spermine, oleic acid), with Streptococcus 

equi equi (S. equi) surface proteins adsorbed or encapsulated, have shown to induce 

significantly higher specific systemic and mucosal immune responses to S. equi antigens 

in i.n.-immunized mice.92 The inclusion of cholera toxin B subunit (CTB) in the 

formulations further activated the pathways leading to TH1 and TH2 cells differentiation.92 

 

PMMA 

Vaccine formulations composed of HIV-1 Tat protein and anionic surfactant-free 

polymeric core-shell NPs and MPs with an inner core constituted by PMMA and a 
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hydrophilic outer shell composed of a hydrosoluble co-polymer (Eudragit L100-55) have 

demonstrated to induce robust and long-lasting cellular and humoral immune responses in 

mice after systemic and/or mucosal immunization.136 

 

DNA-based vaccines   

In DNA-based vaccines, the peptide/protein targets of immune response are encoded in 

DNA and produced within the body own cells, which can mimic actual infection more 

closely than injection of traditional nonreplicating vaccines.137 The DNA vector is made of 

a bacterial-derived plasmid equipped with eukaryotic or viral promoter/enhancer 

transcription elements and a gene encoding the antigen of interest followed by a transcript 

termination/polyadenylation sequence.138  

DNA-based vaccines accumulate desirable qualities, such as immunogenicity 

(expression of multiple antigens or epitopes in a single vector inducing antigen-specific 

humoral and cellular immune responses), safety (low cytotoxicity and reduced 

immunogenic reactions), versatility (vaccine targets can be simply, rapidly and 

economically changed by selecting the appropriate sequence of the plasmid DNA), easy 

to scale-up and manufacture (low cost and reproducible large-scale production and 

isolation), stability (long shelf-life) and mobility (ease of storage and transport, likely not to 

require a cold chain).33, 138, 139 The principal drawback rely on the challenging intracellular 

delivery of DNA in the appropriate cell-type, APC or a bystander cell, and the low levels of 

transfection that may consequently limit the immune response.33 The approach of 

coinoculating plasmids coding for different cytokines, costimulatory factors or other fusion 

constructs to enhance or modify the immune response generated by the vaccine plasmid 

has been used successfully.139 

Different polymers have been extensively studied as non-viral DNA carriers for vaccine 

delivery83 and some examples will be summarized below.  

 

Chitosan 

Chitosan NPs containing a cocktail of DNA encoding nine immunogenic antigens of 

respiratory syncytial virus (RSV) have demonstrated to elevate the production of IFN-γ in 

the lungs, and to induce high levels of IgG and sIgA and cytotoxic T-cells with antiviral 

action in a mice model.66 Plasmid DNA expressing different Mycobacterium tuberculosis 

epitopes loaded on chitosan NPs, when pulmonary administered in mice, showed to 

increase IFN-γ secretion from T-cells.18 Chitosan NPs loaded with DNA encoding VP1, a 

major structural protein of coxsackievirus B3 (CVB3) induced high levels of IgG and sIgA 
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and a strong cytotoxic T-cell response that effectively eliminated CVB3 viruses in i.n.-

immunized mice.65 The chitosan complexes with plasmid DNA encoding HBcAg in i.m.-

immunized mice displayed stronger immunogenicity than naked DNA vaccines, with a 

higher value of specific antibody, elevated IFN-γ secretion and increased specific cell 

lysis.81 Plasmid DNA encoding HBsAg loaded on chitosan NPs induced humoral, both 

systemic and mucosal, and cellular immune responses in i.n.-immunized mice.140 Low 

molecular weight chitosan, although having lower binding affinity to plasmid DNA 

encoding human cholesteryl ester transfer protein C-terminal fragment, mediated higher 

transfection efficiency, elicited significant systemic immune response, modulated plasma 

lipoprotein profile and attenuated the progression of atherosclerosis in i.n.-immunized 

rabbits.141 Oral delivery of chitosan-DNA vaccine encoding mite dust allergen from 

Dermatophagoides pteronyssinus generated high gene expression levels in mice, and 

preferentially activated a specific TH1 immune response, thus preventing subsequent 

sensitization towards TH2 cell-regulated specific IgE response.142 

 

γ-PGA 

DNA vaccination with PEI/γ-PGA NPs loaded with a plasmid encoding Plasmodium 

yoelii merozoite surface protein (MSP)-1 C-terminal, i.v. administered in mice, have been 

shown to generate an antigen-specific IgG response dominated by IgG1 and IgG2b and to 

induce weak TH1 (IFN-γ and IL-12p40) and strong TH2 (IL-4) cytokines responses.143 In 

other study, same complex when i.p. and i.v. administered caused complete protection 

against lethal challenge with significant increase in levels of immunoglobulins and TH1 and 

TH2 cytokines, but in s.c. vaccinated group, only half of mice were protected and marginal 

levels of specific antibody were measured.144 

 

PLA and PLGA 

A single dose of plasmid DNA encoding β-galactosidase encapsulated in PLA-PEG 

NPs, showed to induced in i.n.-immunized mice a significant systemic antibody response 

to the encoded protein.27 Multifunctional core-shell polymeric NPs – comprising 

hydrophobic PLGA core loaded with fluorescent quantum dots and a reporter gene 

electrostatically adsorbed onto the positively-charged glycol chitosan shell – could be 

delivered transdermally in a mouse model via gene gun bombardment. The loaded DNA 

was intracellularly released via a pH-mediated mechanism, directly into epidermal 

Langerhans cells, which then migrated and expressed the encoded gene products in the 

skin draining lymph nodes.145  
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The PLGA-PEI NPs combined with DNA encoding Mycobacterium tuberculosis latency 

antigen Rv1733c when applied to the lungs increased T-cell proliferation and IFN-γ 

production more potently than the same formulations given i.m. to mice. The strongest 

immunogenicity was obtained by pulmonary priming with NPs-adsorbed Rv1733c DNA 

followed by boosting with Rv1733c protein.19 

 

RNA-based vaccines 

Significant challenges continue with respect to delivery of RNA-based nanoparticles.146 

The RNA-based vaccines, in contrast to those of DNA, offer a simpler delivery directed to 

the cytoplasm, thus bypassing dependence on cellular transcription machinery and 

transport of nucleic acids to and from the nucleus, excluding any potential for integration 

into host chromosomes. Nevertheless, RNA is relatively labile and expensive to 

manufacture at a commercial scale.  

Efficient transfection of DC with mRNA expressing TAA, followed by vaccination with the 

RNA-pulsed DC, has shown promising results in murine models and lately in humans. In 

this context, prior identification and characterization of individual gene sequences 

encoding the TAA seems to be nonessential, as preparations of total mRNA isolated 

directly from tumors may also be used.147 

The mRNA-based vaccines in vivo may have to deal with potency issues related to 

limited transfected mRNA copies into each cell and deficient expressed protein antigen 

levels to stimulate the desirable immune response. A smart strategy to increase the 

intracellular levels of mRNA comprises the incorporation of replication elements derived 

from RNA viruses (alphaviruses, flaviviruses and picornaviruses), which together program 

the cytoplasmic self-amplification of RNA within transfected cells. In order to avoid the 

production of any detrimental infectious virus, essential virus genes such as those 

encoding the structural “coat” proteins are excluded, originating modified RNA vaccine 

vectors, termed “replicons”.147  

Biodegradable core-shell NPs – comprising a pH-responsive poly(β-amino ester) core, 

selected to promote endosome disruption, enveloped by a phospholipid bilayer shell to 

reduce the polycation core toxicity – were designed for in vivo mRNA delivery with 

possible usage in noninvasive delivery of mRNA-based vaccines. These NPs loaded with 

luciferase-encoding mRNA led to the expression of the reporter protein luciferase, 

statistically significant above naked mRNA treatment group, when i.n. administrated into 

mice.148 
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In conclusion, polymeric nanogels effectively perform as targeted carriers protecting 

vaccine antigens from degradation in vivo. Following internalization of the biomaterial 

vehicles by APC, the loaded antigens are released intracellularly entering MHC class II- 

and class I-dependent antigen presentation pathways and, therefore, can induce both 

CD4+ and CD8+ T-cell-mediated immunity. Moreover, the surface of the biomaterial 

vehicle can be conjugated with antibodies or other specific ligands to improve tissue, 

cellular or subcellular targeting specificity, steer specific immune response by improving 

the efficacy achieved at a much lower antigen dose, and/or reduce inflammatory side 

effects associated to some “danger signals”. Biomaterials themselves can function as 

synthetic adjuvants, which can also be conjugated with immunostimulants that activate 

APC and induce subsequent T-cell immunity. Advantages in the usage of polymeric 

nanogels as antigen-delivery systems comprise their simplicity of formulation, loading 

capacity, stability of the resulting dispersion, nontoxicity, economical, and easiness of 

manufacture and scale up. 

Despite currently less developed than DNA- or protein-based vaccines, major advances 

in peptide- and RNA-based vaccines can be expected in the near future. A 

comprehensive evaluation of all of the latest vaccination concepts, together with a better 

understanding of disease pathology, advances in biomaterials science and technology, 

and regulated systematic experiments will provide more proved safe, effective, and 

targeted delivery systems that really make preventive and therapeutic vaccines advancing 

to the next level, as a major goal in global public health.  
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Chapter 2 

 

Synthesis and characterization of self-assembled 

nanogels made of pullulan 

 

Self-assembled nanogels made of hydrophobized pullulan were obtained using a 

versatile, simple, reproducible and low-cost method. In a first reaction pullulan was 

modified with hydroxyethyl methacrylate or vinyl methacrylate, further modified in the 

second step with hydrophobic 1-hexadecanethiol, resulting as an amphiphilic material, 

which self-assembles in water via the hydrophobic interaction among alkyl chains. 

Structural features, size, shape, surface charge and stability of the nanogels were studied 

using hydrogen nuclear magnetic resonance, fluorescence spectroscopy, cryo-field 

emission scanning electron microscopy and dynamic light scattering. Above the critical 

aggregation concentration spherical polydisperse macromolecular micelles revealed long-

term colloidal stability in aqueous medium, with a nearly neutral negative surface charge 

and mean hydrodynamic diameter in the range 100–400 nm, depending on the polymer 

degree of substitution. Good size stability was observed when nanogels were exposed to 

potential destabilizing pH conditions. While the size stability of the nanogel made of 

pullulan with vinyl methacrylate and more hydrophobic chains grafted was affected by the 

ionic strength and urea, nanogel made of pullulan with hydroxyethyl methacrylate and 

fewer hydrophobic chains grafted remained stable. 

 

 

 

 

 

 

 

Adapted from: Materials 2011, 4, 601-620. 
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Introduction 

 

Pullulan is a water soluble, linear, neutral extracellular biodegradable 

homopolysaccharide of glucose produced by the fungus Aureobasidium pullulans 

(Pullularia pullulans).1-4 Pullulan consists of maltotriosyl units connected by α-D-1,6-

glycoside linkages.3, 5 Pullulan is extensively used in food, cosmetic and pharmaceutical 

industries because it is easily modifiable chemically, non-toxic, non-immunogenic, non-

mutagenic, and non-carcinogenic.5, 6 Furthermore, pullulan has good mechanical 

properties and attractive functional properties, such as adhesiveness, film formability, and 

enzymatically-mediated degradability.7 In the form of self-assembled nanogels, it has 

been shown to exhibit chaperon like activity, thus being a promising technique for protein 

refolding.8 It has been studied as a blood-plasma expander and substitute.9 Pullulan arose 

as a promising polymer for various biomedical applications,10 such as surface modification 

of polymeric materials to improve blood compatibility (bioinert surfaces),11, 12 for gene13, 14 

and drug delivery,5, 15-19 as a carrier for quantum dots for intracellular labeling to be used 

as a fluorescent probe for diagnostic bioimaging20 and tissue engineering.21 Self-

assembled biotinylated pullulan acetate nanoparticles loading Adriamycin were described 

as targeted anti-cancer drug delivery systems, internalized by human hepatoma cell line 

(HepG2). The drug loading and release rate were accessed with a dialysis method.18 

Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to 

tumor pH revealed pH-dependent cell interaction, internalization and cytotoxicity in in vitro 

studies using a breast tumor cell line (MCF-7). The drug loading profile was evaluated 

using a dialysis method.19 Non-toxicity, efficient internalization and transfection in vitro of 

hydrogel pullulan nanoparticles encapsulating pBUDLacZ plasmid showed this system to 

be an efficient gene delivery carrier.14 Pullulan potentially targets and accumulates in the 

liver because it is recognized by the asialoglycoprotein receptor expressed on the 

sinusoidal surface of the hepatocytes.22 The asialoglycoprotein receptor was reported to 

be involved in pullulan receptor-mediated endocytosis.23 

The production of hydrophobically modified pullulan nanogels, using an approach 

similar to the one presented in this work, was achieved by other authors using cholesteryl 

group-bearing pullulan. The resulting nanogels were monodisperse, with a diameter of 

20–30 nm and stable in water. Their size and density were controlled by the pullulan 

degree of substitution with cholesterol and the molecular weights of parent pullulan.24 This 

nanogel was utilized in molecular complexation with bovine serum albumin (BSA),25 

insulin,26 lipase,27 human epidermal growth factor receptor 2 (HER2),28-30 interleukin (IL)-



Synthesis and characterization of self-assembled nanogels made of pullulan 
 

 

                                                                                   - 37 -                                                 Ferreira, S.A. | 2012 

12,31, 32 among other therapeutic molecules, proving this system to be useful as a 

therapeutic delivery system. Self-assembled hydrogel nanoparticles of cholesterol-bearing 

pullulan spontaneously release insulin from the complex and thermal 

denaturation/aggregation were effectively suppressed upon complexation.26 Cholesteryl 

group-bearing pullulan complexed with the truncated HER2 protein, delivered a HER2 

oncoprotein containing an epitope peptide to the major histocompatibility complex class I 

pathway, and was able to induce CD8+ cytotoxic T lymphocytes against HER2+ tumors 

and caused complete rejection of tumors. The results suggested this hydrophobized 

polysaccharide may help soluble proteins to induce cellular immunity with potential benefit 

in cancer prevention and cancer therapy.30 The subcutaneous injection of cholesterol-

bearing pullulan complexed with recombinant murine IL-12 led to a prolonged elevation of 

IL-12 concentration in the serum. Repetitive administrations of the complex induced 

drastic growth retardation of reestablished subcutaneous fibrosarcoma, without causing 

toxicity.31 Raspberry-like assembly of nanogels encapsulated IL-12 efficiently (96%) and 

kept it stable in the presence of BSA (50 mg/mL) and showed high potential to maintain a 

high IL-12 level in plasma after subcutaneous injection in mice.32 Cationic derivative, 

ethylenediamine group functionalization of cholesteryl group-bearing pullulan, was 

developed as an effective intracellular protein delivery system.33 The same research 

group designed hybrid hydrogels with self-assembled nanogels as cross-linkers to 

achieve interaction with proteins and chaperone-like activity.32, 34, 35 

Nanogel formulations, described as potential drug and vaccine delivery systems, have 

the potential to modify the drug, gene, protein, peptide, oligosaccharide or immunogen 

profile and the ability to cross biological barriers, the biodistribution and pharmacokinetics, 

improving their efficacy and safety, as well as the patient compliance.36 

In the present work, hydrophobized pullulan was obtained with a two-step synthesis. 

The resultant self-assembled nanogels were characterized in terms of structure, size, 

shape, surface charge and stability by hydrogen nuclear magnetic resonance (1H NMR), 

fluorescence spectroscopy, cryo-field emission scanning electron microscopy (cryo-

FESEM) and dynamic light scattering (DLS).  
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Experimental 

 

Materials 

CDI-activated hydroxyethyl methacrylate (HEMA-CI) was produced as described 

elsewhere.37 Pullulan (Mw = 100,000 g/mol), vinyl methacrylate (VMA), dimethyl sulfoxide 

(DMSO), 4-(N,N-dimethylamino)pyridine (DMAP), triethylamine (TEA), 1-hexadecanethiol 

(C16), deuterium oxide (D2O), dimethyl sulfoxide-d6 (DMSO-d6), pyrene (Py), 9-

(diethylamino)-5H-benzo[α]phenoxazin-5-one (Nile red, NR) were purchased from Sigma-

Aldrich. Pyrene was purified by appropriate recrystallization from absolute ethanol. 

Phosphotungstic acid was purchased from Riedel-de Haën. Regenerated cellulose tubular 

membranes, with a 12,000−14,000 nominal molecular weight cut-off (MWCO), were 

obtained from Membrane Filtration Products. Water was purified with a Milli-Q system 

(Millipore) with resistivity equal to 18.2 MΩ.cm. Other organic and inorganic chemicals 

were purchased from Sigma-Aldrich and used without further purification. 

 

Synthesis of amphiphilic pullulan-C16 

Hydroxyethyl methacrylate-derivatized pullulan (pullulan-HEMA) was prepared as 

described by Van Dijk-Wolthuis et al.37 Briefly, pullulan was dissolved in dry DMSO in a 

nitrogen atmosphere with different calculated amounts of HEMA-CI, resulting in 0.20, 0.25 

and 0.4 molar ratios of HEMA-CI to glucose residues. The reaction catalyzed by DMAP (2 

mol equiv to HEMA-CI) was allowed to proceed and the mixture was stirred at room 

temperature for 4 days. The reaction was terminated with concentrated HCl (2% v/v), 

which neutralized DMAP and imidazole. The mixture was then dialyzed against frequently 

changed distilled water at 4 °C for 3 days. After being lyophilized, pullulan-HEMA resulted 

as a white fluffy product, which was stored at −20 °C.  

Vinyl methacrylated pullulan (pullulan-VMA) was synthesized by transesterification of 

pullulan with VMA, overall as described by Ferreira et al. 38 but without enzymes.39 Briefly, 

pullulan was dissolved in dry DMSO, with calculated amounts of VMA resulting in 0.25 

and 0.5 molar ratios of VMA to glucose residues. After stirring at 50 °C for 2 days, the 

resulting mixture was dialyzed for 3 days against frequently changed distilled water, at 

room temperature (~25 °C). Each sample of modified pullulan after being lyophilized 

resulted as a white fluffy product that was stored at room temperature.  

Finally, the amphiphilic molecules pullulan-HEMA-C16 (PHC16) and pullulan-VMA-C16 

(PVC16) were produced as described elsewhere.40 In brief, Pullulan-HEMA or Pullulan-

VMA reacted in dry DMSO (equivalent HEMA or VMA = 0.03 M) with C16. The reaction 
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was catalyzed by TEA in a 2 molar ratio of TEA to HEMA or VMA. After stirring for 3.5 

days at 50 °C, the resulting mixture was dialyzed, lyophilized and stored as described 

above. 

 

Characterization of pullulan-C16 nanogels 

 

 1H NMR spectroscopy  

Lyophilized reaction products were dispersed in D2O (5 mg/mL). The pullulan-C16 was 

also dispersed in DMSO-d6 and in 10% D2O in DMSO-d6 (5 mg/mL). Samples were stirred 

overnight at 50 °C to obtain a clear dispersion, which was transferred to 5 mm NMR 

tubes. One-dimensional 1H NMR measurements were performed in a Varian Unity Plus 

300 spectrometer operating at 299.94 MHz. One-dimensional 1H NMR spectra were 

recorded at 298 K with 256 scans, a spectral width of 5000 Hz, a relaxation delay of 1 s 

between scans, and an acquisition time of 2.8 s. 

 

 Fluorescence spectroscopy  

The cac of the pullulan-C16 was fluorometrically investigated using hydrophobic guest 

molecules, such as Py and NR. The fluorescence intensity change of these guest 

molecules was calculated as a function of the pullulan-C16 concentration. Briefly, 

lyophilized pullulan-C16 was dispersed in ultrapure water (1 mg/mL) with stirring for 3–5 

days at 50 °C. Consecutive dilutions of 1 mL of each sample were prepared in ultrapure 

water. In the case of Py, a volume of 5 μL of a 1.2×10−4 M Py stock solution in ethanol 

was added, giving a constant concentration of 6×10−7 M in 0.5 % ethanol/water for all Py 

fluorescence measurements. In case of NR, a volume of 5 μL of a 4×10−5 M NR stock 

solution in ethanol was then added, giving a constant concentration of 2×10−7 M in 0.5 % 

ethanol/water for all NR fluorescence measurements. The samples were stirred overnight. 

Fluorescence measurements were performed with a Spex Fluorolog 3 spectrofluorimeter, 

at room temperature. The slit width was set at 5 nm for excitation and 5 nm for emission. 

All spectra were corrected for the instrumental response of the system. The signal 

obtained for each sample was subtracted with the signal obtained with negative control, 

which corresponded to pullulan derivatives at exactly the same experimental conditions 

but without the guest NR or Py molecules. The cac was calculated using both the Py 

fluorescence intensity ratio of the third (384–385 nm) and first vibrational bands (372–374 

nm) (I3/I1) of the emission spectra (λex 339 nm) and the maximum emission intensity of NR 
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(λex 570 nm) in the pullulan-C16/water system as a function of pullulan-C16 concentration; 

in both cases, the cac was estimated as the interception of two trend lines. 

 

Cryo-FESEM 

Each colloidal dispersion of pullulan-C16 was prepared with stirring of the lyophilized 

pullulan-C16 in ultrapure water for 3–5 days at 50 °C (1 mg/mL) followed by filtration (pore 

size 0.45 μm), with insignificant material lost, as confirmed with the phenol-sulfuric acid 

method, using glucose as standard.41 The colloidal dispersions were concentrated by 

ultrafiltration (Amicon Ultra-4 Centrifugal Filter Units, MWCO, 1×105) and negatively 

stained with phosphotungstic acid (0.01% w/v). Samples were placed into brass rivets, 

plunged frozen into slush nitrogen at −200 °C and transferred to the cryo stage (Gatan, 

Alto 2500, UK) of an electronic microscope (SEM/EDS: FESEM JEOL JSM6301F/Oxford 

Inca Energy 350). Each sample was fractured on the cryo stage with a knife. Once in the 

microscope, sublimation of ice was carried out in the cryo chamber for 10 min at −95 °C, 

allowing the exposure of the nanogel particles. The samples were sputter coated with gold 

and palladium at −140 °C, using an accelerating voltage of 10 kV. The antipollutant of 

copper covers and protects the sample. The samples were observed at −140 °C at 15 kV. 

The solvent used in the preparation of the samples (water and phosphotungstic acid) was 

also observed as a negative control. 

 

DLS  

The size distribution and zeta potential measurements for each colloidal dispersion, 

prepared as described above for cryo-FESEM, were performed in a Malvern Zetasizer 

NANO ZS (Malvern Instruments Limited, UK) using a He-Ne laser wavelength of 633 nm, 

a detector angle of 173 ° and a refractive index of 1.33.  

Size. For each sample (1 mL), the polydispersity index (PdI) and z-average diameter, 

which corresponds to the mean hydrodynamic diameter, were evaluated in 10 repeated 

measurements performed periodically during six months of storage in a polystyrene cell at 

25 °C. The size distribution of each sample dispersed in ultrapure water (0.05–2 mg/mL), 

phosphate-buffered saline (PBS 1×, pH 7.4), phosphate-citrate buffer (pH 2.2–8.0), NaCl 

(0–0.6 M) or in urea (0–7 M) was executed at 37 °C in three independent experiments, 

three repeated measurements being performed in each one.  

Zeta Potential. Each sample dispersed in ultrapure water (0.05–2 mg/mL), PBS 1×, pH 

7.4 or in phosphate-citrate buffer (pH 2.2–8.0) was analyzed at 37 °C in a folded capillary 

cell. The zeta potential values reported were calculated using the Smoluchowski equation 
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with three independent experiments, three repeated measurements being performed in 

each one. 

 

 

Results and discussion 

 

Synthesis of pullulan-C16 

According to the literature and in the same way as other reported methacrylates, 

hydroxyethyl methacrylate (HEMA) and vinyl methacrylate (VMA) should be grafted on the 

6C of the glucose residues.42 Then, by the Michael addition mechanism, the thiol from 1-

hexadecanethiol (C16) acting as a nucleophile reacts with grafted methacrylate (Scheme 

1).  

 

 

Scheme 1. Synthesis of pullulan-C16. 

 

The success of the synthesis, purity, chemical structure and polymer degree of 

substitution of the reaction products were controlled using 1H NMR spectra in D2O (Figure 

1 and Table 1). Different independent batches of hydrophobized pullulan (pullulan-C16) 

with various degree of substitution with the methacrylated groups and hydrophobic alkyl 

chains (DSHEMA or DSVMA and DSC16, defined as the percentage of grafted HEMA or VMA 
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or C16 moieties relative to the glucose residues, respectively), were synthesized by 

varying the molar ratios of methacrylate groups to glucose residues and the molar ratios 

of C16 to methacrylated groups. The synthetic procedure adopted proves to be versatile, 

simple and reproducible (Table 1).  

 

 

 

Figure 1. 1H NMR spectra of (a) pullulan-HEMA and (e) pullulan-VMA in D2O. 1H NMR spectra of PHC16-5.6-

1.3 and PVC16-10-7 in (b, f) DMSO-d6, (c, g) 10% D2O in DMSO-d6 and (d, h) D2O, respectively. 
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Table 1. Characteristics of pullulan-C16 

tDSHEMA  

or tDSVMA
a
 

DSHEMA  

or DSVMA 
b
 

tDSC16 
c
 DSC16

d DSC16/DSHEMA  

or DSC16/DSVMA 
e Pullulan-C16 

f
 

Pullulan-HEMA-C16 

20 5.6 120 1.3 23.2 PHC16-5.6-1.3 

25 8 80 4.6 57.5 PHC16-8-4.6 

  200 4.3 53.8 PHC16-8-4.3 

40 10 80 1.2 12 PHC16-10-1.2 

  200 5.9 59 PHC16-10-5.9 

Pullulan-VMA-C16 

25 8.8 200 6 68.2 PVC16-8.8-6 

50 10 200 7 70 PVC16-10-7 

a
 Theoretical DSHEMA or DSVMA calculated as the molar ratio of HEMA or VMA to glucose residue (×100) in 

the reaction mixture. 
b
 Calculated from the 

1
H NMR spectra in D2O of pullulan-HEMA or pullulan-VMA in D2O 

with the equation (Ia)/(IH1)×100, in which Ia is the average integral of the protons of the unsaturated carbons 
of the acrylate groups (around 6 ppm)

37, 38
 and IH1 is the integral of the anomeric protons (4.86, 5.28 and 5.30 

ppm).
4, 43

 
c
 Theoretical DSC16 calculated as the molar ratio of C16 to methacrylated groups (×100) in the 

reaction mixture. 
d
 Calculated from the 

1
H NMR spectra of pullulan-C16 in D2O with the equation 

(7X)/(37Y)×100, in which X is the average integral corresponding to the protons from alkyl moieties (1.8–0.6 
ppm)

40
 and Y is the integral of all pullulan protons (3.3–4.0 ppm and 4.86, 5.28 and 5.30 ppm).

4, 43
 
e
 Obtained 

DSC16 relative to methacrylated groups
 
calculated using the following equation: DSC16/DSHEMA (×100) or 

DSC16/DSVMA (×100). 
f
 Pullulan-HEMA-SC16 synthesized: PHC16-DSHEMA-DSC16; or Pullulan-VMA-SC16 

synthesized: PVC16-DSVMA-DSC16. The table presents the values (%) obtained in each set of conditions. 

 

Self-assembly of pullulan-C16  

The self-assembly of amphiphilic pullulan-C16 in water was studied using 1H NMR and 

fluorescence spectroscopy. Analyzing the 1H NMR spectra of pullulan-C16 (Figure 1), it 

can be observed that while the mobility of the polysaccharide skeleton was maintained in 

environments of different polarity, the shape and width of the proton signals of the methyl 

(0.8 ppm) and methylene (1.1 ppm) groups of C16 depended on the polarity of the solvent 

used. In DMSO-d6, pullulan-C16 was soluble, and the C16 signals were sharp, as all 

hydrophobic chains were exposed to the solvent, having the same mobility (Figure 1b, f).40 

Increasing the percentage of D2O in DMSO-d6, the base of those signals broadened 

(Figure 1c, g). In pure D2O, a large broadening was obvious, which represents the 

superposition of peaks of chemically identical species, yet possessing various degrees of 

mobility (Figure 1d, h).44 These results give evidence that pullulan-C16 dispersed in water 

has part of the alkyl chains exposed to hydrophobic domains, while others might have 

been exposed to the hydrophilic solvent. Differences in the environment and/or mobility of 

the molecules thus explain the broad peak observed for the aliphatic protons. Therefore, 
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pullulan-C16 nanogels are obtained upon self-assembly in water through the association of 

the hydrophobic alkyl chains in hydrophobic domains. 

The critical aggregation concentration (cac) or critical micelle concentration (cmc) of 

pullulan-C16 was studied by fluorescence spectroscopy using hydrophobic dyes, Pyrene 

(Py)45, 46 and Nile red (NR),47 whose solubility and fluorescence are weak in water but high 

in hydrophobic environments.  

The intensity of Py increased with increasing concentrations of pullulan-C16, and a red 

shift occurred in the excitation spectra (Figure 2a, b). Above cac, in the emission spectra 

(Figure 2a, b), some bands in the 450 nm region associated to the presence of Py dimers 

are detected in pullulan-C16, suggesting high water penetration into the nanogel, which is 

in agreement with the 1H NMR measurements. The intensity ratio of the third and first 

vibrational bands, I3/I1, rapidly augmented above the cac, which was 0.06 mg/mL for 

PHC16-5.6-1.3 and for PVC16-10-7. This transition of intensity translated the transference 

of Py to a less polar and hydrophobic domain that was coincident to the onset of 

supramolecular formation of pullulan-C16 nanogels (Figure 2c). A lower I3/I1 ratio obtained 

for PHC16-5.6-1.3 indicates the location of Py in a more hydrophilic environment, while a 

higher I3/I1 ratio for PVC16-10-7 indicates the location of Py in a more hydrophobic 

environment (Figure 2c).45 This is confirmed by a better defined vibronic structure of Py 

emission in the case of PVC16-10-7. Surprisingly, the resulting cac is the same for both 

nanogels despite their different DSC16 relative to methacrylated groups (70% for PVC16-10-

7 and 23% for PHC16-5.6-1.3).  

The area-normalized fluorescence emission intensity of NR was constant, without any 

shift in the maximum emission wavelength, for lower concentrations of pullulan-C16 

because individual molecules exist as premicelles in aqueous environment (Figure 3; 

zone A). In contrast, for concentrations greater than the cac, fluorescence intensity 

increased and the maximum emission wavelength was blue-shifted due to the transfer of 

NR to the hydrophobic domains of the nanogels. The resultant cac was 0.04 mg/mL and 

0.01 mg/mL for PHC16-5.6-1.3 and PVC16-10-7, respectively (Figure 3). This variation is 

consistent with the C16 loading of the studied pullulan nanogels as higher hydrophobicity 

results in lower cac. The PVC16-10-7 hydrophobic domains are dissimilar to those present 

in a typical surfactant system and have two types of hydration levels (Figure 3b; zones B 

and C), while in PHC16-5.6-1.3 only a type of hydrophobic domains is observed (Figure 

3a; zone C). This observation shows a slight dependence of the formed hydrophobic 

domains on the type of linker used (HEMA or VMA).  
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Figure 2. Determination of the cac of pullulan-C16 using fluorescence excitation (λem 390 nm) and emission (λex 339 

nm) spectra of Py (6×10−7 M) in the pullulan-C16/water system as a function of the (a) PHC16-5.6-1.3 and (b) 

PVC16-10-7 concentration; (c) Intensity ratio I3/I1 as a function of the pullulan-C16 concentration. The cac 

obtained for both materials was 0.06 mg/mL. 
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Figure 3. Determination of the cac of pullulan-C16 using area normalized fluorescence emission (λex 570 nm) 

spectra of NR (2×10−7 M) in the pullulan-C16/water system as a function of (a) PHC16-5.6-1.3 and (b) PVC16-

10-7 concentration; (c) area normalized fluorescence emission intensity and position of maximum emission 

wavelength of NR in the pullulan-C16/water system as a function of pullulan-C16 concentration. The cac 

obtained for PHC16-5.6-1.3 was 0.04 mg/mL and for PVC16-10-7 was 0.01 mg/mL. 
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In the case of PHC16-5.6-1.3, the determined cac values are similar for both fluorescent 

probes. But that is not the case for PVC16-10-7. This is explainable by the fact that as Py 

molecules already start at a low hydrated pre-micellar environment they are unable to 

detect the micellar domains of type B, which have higher hydration levels than those 

domains of type C. For the last ones there is a sufficient variation of hydration level that 

can be detected by Py I3/I1 ratio resulting in a cac value above the real one. We thus 

conclude that NR is a more sensitive fluorescence probe as it was able to follow all the 

variations in hydration level that occurred in the self-aggregation process of PVC16-10-7. 

For PHC16-5.6-1.3 the absence of B type micellar domains and the higher hydration of the 

premicellar environment, also seen in NR emission in zone A, allowed compatible 

determinations of cac for both probes. 

As pullulan-C16 concentration augments above the cac, more hydrophobic domains are 

formed, solubilizing more Py and NR, which consequently increases the fluorescence 

detected, not occurring the typical second plateau (Figures 2c, 3c). The highest 

concentration of pullulan-C16 used was insufficient to enclose all of the hydrophobic dyes 

– this might be caused by the continued redistribution of Py and NR molecules to the less 

hydrated hydrophobic domains and by the formation of Py dimers in the hydrophobic 

domains with greater hydration level.  

 

Characterization of pullulan-C16 nanogels  

 

Size and shape 

The hydrophobic forces that sequester the hydrophobic chains in the core and the 

excluded volume repulsion between the chains mostly establish the micellar size.48 The 

pullulan-C16 nanogels appeared spherical in cryo-FESEM micrographs, with a large size 

distribution in the range of 100–700 nm for PHC16-5.6-1.3 and 200–300 nm for PVC16-10-7 

(Figure 4).  

 

Figure 4. Cryo-FESEM negatively stained micrographs (magnification 30,000×) of (a) PHC16-5.6-1.3 and (b) 

PVC16-10-7. 
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Storage 

The mean hydrodynamic diameter obtained using DLS for pullulan-C16 nanogels 

dispersed in ultrapure water oscillated between 162 nm and 335 nm for PHC16-5.6-1.3 

and between 115 nm and 369 nm for PVC16-10-7, over a six month storage period at 

room temperature (25 °C). Both materials exhibited fairly high polydispersity, with an 

average PdI of 0.59 ± 0.11 for PHC16-5.6-1.3 and 0.43 ± 0.23 for PVC16-10-7, which 

means that there may be macromolecular micelles with a distribution of sizes and shapes, 

as also revealed by the cryo-FESEM micrographs (Figure 5). 

  

 

Figure.5. Size of pullulan-C16 water dispersions (1 mg/mL) over a six month storage period at room 

temperature (25 °C). Size was measured periodically in DLS (mean ± S.D., n = 10).  

 

Effect of the concentration of pullulan-C16 

The mean hydrodynamic diameter tended to be much larger for lower concentrations of 

pullulan-C16, especially when closer to the cac. It appears that, for higher concentrations 

of the polymer, the remaining solvent is gradually released from the hydrophobic core, 

resulting in a decrease in size. In contrast, occasionally exposed hydrophobic domains 

within a less mobile shell formed by hydrophilic chains may originate secondary 

aggregation enlarging the resultant macromolecular micelles.48 The zeta potential values 

were always negative and close to zero, never lower than −20 mV. Once zeta potential 

approaches zero, electrostatic repulsion becomes small compared to the ever-present van 

der Waals attraction. In these conditions, eventually, instability may arise, causing 
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aggregation followed by sedimentation and phase separation. However, the pullulan-C16 

nanogels preserved their nanosize with the exception of PVC16-10-7 at 0.5 mg/mL that 

formed aggregates out of the nanoscale (Figure 6).  

 

 

Figure 6. Influence of concentration on the size and zeta potential of pullulan-C16 nanogels (0.05–2 mg/mL) 

measured at 37 °C in DLS (mean ± S.D., n = 3). 

 

Effect of urea 

Urea is known for its ability to break intramolecular hydrogen bonds and to destabilize 

hydrophobic domains.49, 50 Urea and its derivatives are very efficient as modifiers of the 

aqueous solution properties participating at the level of the micellar solvation layer 

because it enhances the polarity and the hydrophilic character of water. An increased 

accessibility from the aqueous phase at higher urea concentrations could result in a 

stronger solvation of the polar groups in micellar aggregates by urea-water mixture than 

water alone. Urea is related to the enhancement of the solubility of hydrocarbon tails 

favoring their solvation and to the weakening of the hydrophobic interactions responsible 

for the formation and maintenance of the micellar assembly in aqueous solution. The 

action of urea on micellization depends on the way in which solvation occurs in a specific 

micellar system.51 The results obtained show that urea did not affect the nanogel size of 

PHC16-5.6-1.3. In contrast, urea caused concentration dependent destabilization of PVC16-

10-7, affecting the self-assembly of this amphiphilic system in water, leading to the 

formation of larger aggregates out of the nanoscale (Figure 7). Destabilization of PVC16-

10-7, resulting in higher particle size, may be tentatively assigned to improved solvation of 

the hydrophobic domains. This possibility is supported by the fact that PVC16 has a higher 

substitution degree than PHC16 (DSC16 of 7 vs. 1.3). 
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Figure 7. Influence of urea (0–7 M) on the size of pullulan-C16 nanogels (1 mg/mL) measured at 37 °C in DLS 

(mean ± S.D., n = 3). 

 

Effect of ionic strength 

Colloidal stability might be compromised in the absence of an electrostatic barrier. The 

addition of enough quantity of salt neutralizes the surface charge of the micelles in 

dispersion and compresses the surface double layer, facilitating the colloidal aggregation. 

Without the repulsive forces that keep macromolecular micelles separate, coagulation 

might occur due to attractive van der Waals forces. Compared to salt-free pullulan-C16 

colloidal dispersion, while PHC16-5.6-1.3 denoted stability, PVC16-10-7 nanogel was larger 

as the ionic strength increased with increasing concentrations of NaCl (Figure 8). 

 

 

Figure 8. Influence of NaCl (0–0.6 M) on the size of pullulan-C16 nanogels (1 mg/mL) measured at 37 °C in 

DLS (mean ± S.D., n = 3). 

 

Effect of pH 

Size distributions and zeta potential of pullulan-C16 as a function of pH, using 

phosphate-citrate buffer (pH 2.2–8.0), were compared to values obtained in water and 
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PBS. The mean hydrodynamic diameter values obtained either for PHC16-5.6-1.3 or 

PVC16-10-7 were similar in the range of pH studied. The size stability, in the range of pH 

studied, demonstrates that the organization of hydrophobic alkyl chains, in hydrophobic 

domains with low water content, protect the amphiphilic molecules from the hydrolysis of 

the carbonate ester at alkaline pH and from the hydrolysis of the methacrylate ester at low 

pH.52 For both materials, small negative values of zeta potential were obtained indicating 

little repulsion between macromolecular micelles to prevent aggregation. However, even 

with zeta potential close to zero, particles denoted only slight instability in the nanoscale  

(Figure 9). The nearly neutral charge is valuable for in vivo use, since large positively 

charged materials cause non-specific cell sticking, while large negatively charged 

materials are efficiently taken up by scavenger endothelial cells or “professional 

pinocytes” found in the liver, which results in a rapid clearance from the blood.53 

 

 

Figure 9. Influence of pH on the size and zeta potential of pullulan-C16 nanogels measured at 37 °C in DLS 

(mean ± S.D., n = 3). 

 

Pullulan-based nanogels synthesized and characterized in this work have high water 

content, tunable size, interior network for possible incorporation of therapeutics, and large 

surface area for potential multivalent bioconjugation with cell-targeting ligands such as 

protein, peptides and antibodies. With these characteristics, described nanogels might be 

useful as polymeric carriers for therapeutic targeted delivery. 

In our laboratory several nanogels are being developed, using different 

polysaccharides: dextrin, mannan, hyaluronic acid, glycolchitosan. The use of different 

polysaccharides allows the production of nanogels bearing different surface properties, 

namely size, charge and bioactivity. Among the applications envisaged for these 
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materials, 1) the delivery of therapeutic proteins and of poorly water soluble 

pharmaceuticals, 2) vaccination, and 3) delivery of nucleic acid therapeutics are being 

developed. The comprehensive characterization of several nanogels provides a platform 

for the development of more sophisticated materials, with ability to perform as delivery 

systems. Recent results in our laboratory demonstrate the potential of dextrin nanogels for 

the delivery of cytokines, namely IL-10;54 the association of the nanogels with injectable 

hydrogels is also a promising field of application of the self-assembled nanogels, allowing 

the incorporation of hydrophobic molecules in the highly hydrated environment of 

hydrogels. Ongoing work addresses the study of biodistribution and drainage of nanogels 

to the lymphatic nodes. Preliminary results using radioactively labeled nanogels and 

immunohistochemical analysis of the lymphatic nodes confirm the ability of the nanogels 

to reach the nodes, internalized in phagocytic cells. The use of mannan opens interesting 

possibilities concerning the use of the nanogels for vaccination purposes, acting as a 

delivery system and as an adjuvant. Self-assembled nanogels are thus very promising 

materials that bring together the essential requisites of biocompatibility and performance. 

 

 

Conclusions  

 

Hydrophobized pullulan nanogels were designed with a versatile, simple, reproducible 

and low-cost method. Above the cac, upon self-assembly in water, spherical polydisperse 

macromolecular micelles revealed long-term size stability in aqueous medium, with a 

nearly neutral negative surface charge and mean hydrodynamic diameter in the range 

162–335 nm for PHC16-5.6-1.3 and 115–369 nm for PVC16-10-7. Size and zeta potential 

stability of pullulan-C16 nanogels was maintained when exposed to potential destabilizing 

conditions of pH. While the size stability of the nanogel made of VMA with C16 grafted, 

PVC16-10-7, was affected by the ionic strength and urea, nanogel made of pullulan with 

HEMA and fewer C16 grafted, PHC16-5.6-1.3, remained more stable.  

Pullulan-based nanogels have tunable size, high water content, interior network for 

possible incorporation of therapeutics, and large surface area for potential multivalent 

bioconjugation with cell-targeting ligands. With these characteristics, described nanogels 

might be useful as polymeric carriers for therapeutic targeted delivery. Further work is 

required to study molecular complexation, functionality and biocompatibility of these novel 

promising nanogels as drug and vaccine delivery systems.  
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Chapter 3  

 

Self-assembled nanogel made of mannan: synthesis and 

characterization 

  

Amphiphilic mannan (mannan-C16) was synthesized by the Michael addition of 

hydrophobic 1-hexadecanethiol (C16) to hydroxyethyl methacrylated mannan (mannan-

HEMA). Mannan-C16 formed nanosized aggregates in water by self-assembly via the 

hydrophobic interaction among C16 molecules as confirmed by hydrogen nuclear magnetic 

resonance (1H NMR), fluorescence spectroscopy, cryo-field emission scanning electron 

microscopy (cryo-FESEM) and dynamic light scattering (DLS). The mannan-C16 critical 

aggregation concentration (cac), calculated by fluorescence spectroscopy with Nile red 

and pyrene, ranged between 0.04 and 0.02 mg/mL depending on the polymer degree of 

substitution of C16 relative to methacrylated groups. Cryo-FESEM micrographs revealed 

that mannan-C16 formed irregular spherical macromolecular micelles, in this work 

designated as nanogels, with diameters ranging between 100 and 500 nm. The influence 

of the polymer degree of substitution, DSHEMA and DSC16, on the nanogel size and zeta 

potential was studied by DLS at different pH values and ionic strength and as a function of 

mannan-C16 and urea concentrations. Under all tested conditions, the nanogel was 

negatively charged with a zeta potential close to zero. Mannan-C16 with higher DSHEMA 

and DSC16 values formed larger nanogels and were also less stable over a six months 

storage period and at concentrations close to cac. When exposed to solutions of different 

pH and to aggressive conditions of ionic strength and urea concentration, the size of 

mannan-C16 varied to some extent but was always in the nanoscale range. 

 

 

 

 

 

Adapted from: Langmuir 2010, 26, 11413-11420. 
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Introduction 

 

The self-assembly phenomenon has been defined as the autonomous, spontaneous, 

and reversible organization of molecular units into structurally stable and well-defined 

aggregates in which defects are energetically rejected. This process is cost-effective, 

versatile, and facile.1-3 Self-assembly occurs toward the system’s thermodynamic minima 

and through a balance of attractive and repulsive interactions, which are generally weak 

and noncovalent, such as electrostatic, van der Waals, and Coulomb interactions, 

hydrophobic forces, and hydrogen bonds.4 

Above critical aggregation concentration (cac), amphiphilic polymers can self-assemble 

in water because hydration forces, namely, intra- and/or intermolecular hydrophilic and 

hydrophobic interactions.5 In other words, the nanostructure builds itself. 

Recently, different hydrophobically modified polymers have been designed as new 

solutions for multifunctional pharmaceutical nanocarriers. A variety of molecules can be 

encapsulated within the particle core, entrapped in the polymer matrix, chemically 

attached, and/or physically adsorbed at the surface of the macromolecular micelles, also 

designated by some authors as nanogels. In this work, we adopt this terminology, with the 

term nanogel referring to the hydrogel-like – highly porous and hydrated – nanosized 

material. Through combining several useful properties in one nanogel, the possibility to 

enhance the efficacy of many therapeutic and diagnostic protocols arose.6   

Various macromolecular polysaccharides have been reported as molecular carriers, 

including chitosan,7 dextran,8 dextrin,9 mannan,10, 11 pullulan,10, 12, 13 hyaluronic acid,14 

either in their native forms or as carrier conjugates.15 Among them, we selected mannan, 

from Saccharomyces cerevisiae, which consists of an α-1,6-linked mannose backbone 

with a high percentage of α-1,2- and α-1,3-side chains of different composition.16 Mannan 

is a biodegradable, biocompatible polymer and has been described as a promising 

targeted delivery system.10, 17-19 Mannan potentially targets antigen-presenting cells (APC) 

because dendritic cells and macrophages express on their surface mannose receptor, 

which recognizes carbohydrates present on the cell walls of infectious agents. The 

mannose receptor is part of the multilectin receptor proteins and provides a link between 

innate and adaptive immunity.19-22  

In this study, we aimed to develop new amphiphilic conjugates by the Michael addition 

of hydrophobic 1-hexadecanethiol (C16) to hydroxyethyl methacrylated mannan (mannan-

HEMA), also produced in this work.  We studied the self-assembly of mannan-C16 in an 

aqueous environment by 1H NMR and fluorescence spectroscopy with hydrophobic 
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fluorescent probes Nile red and pyrene. Relevant features such as the chemical structure, 

size, surface charge, and morphology of mannan-C16 nanogel were characterized using 

1H NMR spectroscopy, cryo-field emission scanning electron microscopy (cryo-FESEM) 

and dynamic light scattering (DLS). 

 

 

Experimental 

 

Materials  

CDI-activated hydroxyethyl methacrylate (HEMA-CI) was produced as described by van 

Dijk-Wolthuis et al.23 Mannan (from S. cerevisiae), dimethyl sulfoxide (DMSO), 4-(N,N-

dimethylamino)pyridine (DMAP), triethylamine (TEA), 1-hexadecanethiol, deuterium oxide 

(D2O), dimethyl sulfoxide-d6 (DMSO-d6), pyrene (Py), and 9-(diethylamino)-5H-

benzo[α]phenoxazin-5-one (Nile red, NR) were purchased from Sigma-Aldrich. Pyrene 

was purified by appropriate recrystallization from absolute ethanol. Phosphotungstic acid 

was purchased from Riedel-de Haën. Regenerated cellulose tubular membranes, with a 

12,000-14,000 nominal molecular weight cut-off (MWCO), were obtained from Membrane 

Filtration Products. Water was purified with a Milli-Q system (Millipore). Other organic and 

inorganic chemicals were purchased from Sigma-Aldrich and used without further 

purification. 

 

Synthesis of amphiphilic mannan-C16 

 HEMA-derivatized mannan (mannan-HEMA) was prepared as described by van Dijk-

Wolthuis et al.23 Briefly, mannan was dissolved in dry DMSO in a nitrogen atmosphere to 

a concentration of 3−5% w/v with different calculated amounts of HEMA-CI resulting in 

0.25 and 0.4 molar ratios of HEMA-CI to mannose residues. The reaction catalyzed by 

DMAP (2 mol equiv to HEMA-CI) was allowed to proceed and the mixture was stirred at 

room temperature for 4 days. The reaction was terminated with concentrated HCl (2% 

v/v), which neutralized DMAP and imidazole. The mixture was then dialyzed against 

frequently changed distilled water at 4 °C for 3 days. After being lyophilized, mannan-

HEMA resulted as a pallid-yellow, fluffy product that was stored at −20 °C. Finally, 

amphiphilic molecule mannan-HEMA-SC16 (mannan-C16) was produced as described 

elsewhere.9 Briefly, mannan-HEMA and C16 at 1, 1.2 and 2 molar ratios of C16 to HEMA-CI 

were mixed in DMSO (equivalent HEMA = 0.03 M). The reaction mixture catalyzed by 

TEA (2 mol equiv with respect to HEMA) was stirred for 3.5 days at 50 °C. The resulting 
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mixture was dialyzed for 3 days against frequently changed distilled water at room 

temperature. After being lyophilized, mannan-C16 resulted as a pallid-yellow, fluffy product 

that was stored at −20 °C.  

 

1H NMR spectroscopy 

 Lyophilized reaction products were dispersed in D2O (5 mg/mL). Mannan-C16 was also 

dispersed in DMSO-d6 and in 10% D2O-DMSO-d6 (5 mg/mL). Samples were stirred 

overnight at 50 °C to obtain a clear dispersion, which was transferred to 5 mm NMR 

tubes. One-dimensional 1H NMR measurements were performed with a Varian Unity Plus 

300 spectrometer operating at 299.94 MHz. One-dimensional 1H NMR spectra were 

recorded at 298 K with 256 scans, a spectral width of 5000 Hz, a relaxation delay of 1 s 

between scans, and an acquisition time of 2.8 s. 

 

Fluorescence spectroscopy 

The cac of mannan-C16 was fluorometrically investigated using hydrophobic guest 

molecules such as NR and Py, whose maximum solubility values in water are 1×10-6 M 

and 5×10-7 M, respectively. The fluorescence intensity change of these guest molecules 

was calculated as a function of the mannan-C16 concentration. Lyophilized mannan-C16 

was dispersed in ultrapure water (1 mg/mL) with stirring for 3 days at 50 °C. Consecutive 

dilutions of 1 mL of each sample were prepared in ultrapure water where NR and Py were 

injected. A volume of 5 μL of a 4×10-5 M NR stock solution in ethanol was added, giving a 

constant concentration of 2×10-7 M in 0.5 % ethanol/water for all NR fluorescence 

measurements. A volume of 5 μL of a 1.2×10-4 M Py stock solution in ethanol was added, 

giving a constant concentration of 6×10-7 M in 0.5% ethanol/water for all Py fluorescence 

measurements. Samples were stirred overnight before fluorescence measurements, 

which were performed with a Spex Fluorolog 3 spectrofluorimeter at room temperature. 

The slit width was set at 5 nm for excitation and 5 nm for emission. All spectra were 

corrected for the instrumental response of the system. The cac was calculated using both 

the maximum emission intensity of NR (λex 570 nm) and the Py fluorescence intensity ratio 

of the third (384–385 nm) and first vibrational bands (372–374 nm) (I3/I1) of the emission 

spectra (λex 339 nm) in the mannan-C16/water system as a function of mannan-C16 

concentration; in both cases, the cac was estimated as the interception of two trend lines. 
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Sample preparation 

Lyophilized mannan-C16 was dispersed in ultrapure water (1 mg/mL) with stirring for 3 

days at 50 °C. The resulting milky colloidal dispersion was filtered through the membrane 

filter (pore size 0.45 μm). Material lost during filtration was residual, as verified using the 

phenol-sulfuric acid method.24 

 

Cryo-FESEM 

The mannan-C16 nanogel concentrated by ultrafiltration (Amicon Ultra-4 Centrifugal 

Filter Units, MWCO, 1×105) was negatively stained with phosphotungstic acid (0.01% 

w/v). Samples were placed into brass rivets and plunged frozen into slush nitrogen at 

−200 °C and then stored in liquid nitrogen and transferred to the cryo stage (Gatan, Alto 

2500, UK) of electronic microscope (SEM/EDS: FESEM JEOL JSM6301F/Oxford Inca 

Energy 350). Each sample was fractured on the cryo stage with a knife. In microscope, 

the sublimation of any unwanted surface ice was carried out in the cryo chamber for 10 

min at −95 °C. At −140 °C samples were sputter coated with gold and palladium using an 

accelerating voltage of 10 kV. The antipollutant of copper covers and protects the sample. 

The samples were observed at −140 °C at 15 kV. The solvent used in the preparation of 

the samples (water and phosphotungstic acid) was also observed as a negative control. 

 

DLS  

The size distribution and zeta potential measurements were performed in a Malvern 

Zetasizer NANO ZS (Malvern Instruments Limited, UK). For each sample (1 mL), the size 

was measured periodically during six months of storage in a polystyrene cell at 25 °C 

using a He-Ne laser with a 633 nm wavelength, a detector angle of 173°, and a refractive 

index of 1.33. The values reported correspond to the polydispersity index (PdI) and z-

average diameter, that is, the mean hydrodynamic diameter, and represent the mean ± 

S.D. obtained after 10 repeated measurements. The zeta potential and size of each 

sample dispersed in phosphate buffered saline (PBS 1×, pH 7.4) and in phosphate-citrate 

buffer (pH 2.2–8.0) were analyzed at 37 °C in a folded capillary cell. The zeta potential 

values were calculated using the Smoluchowski equation. The size distribution of each 

sample dispersed in dilutions of NaCl (0–0.6 M) and of urea (0–7 M) was evaluated at 37 

°C. The values reported for the mean hydrodynamic diameter and zeta potential represent 

the mean ± S.D. obtained with three independent experiments, with three repeated 

measurements being performed in each one. 
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Results and discussion 

 

Synthesis of mannan-C16  

Amphiphilic mannan-C16 was synthesized in a two step reaction. In the first step, 

methacrylated mannan was obtained by coupling HEMA-CI to mannan. A majority of 

HEMA groups, according to several authors, are likely coupled to the 6C of the mannose 

residues of the grafts.16, 25 In the second step, the thiol acting as a nucleophile reacted 

with grafted methacrylate by a Michael addition mechanism, as shown in Scheme 1. 

 

 

Scheme 1. Synthesis of mannan-C16. 

 

 

1H NMR measurements  

The purity, chemical structure, and polymer degree of substitution (DS) of the reaction 

products were controlled using 1H NMR spectra in D2O, as shown in Figure 1. The 

characteristic peaks of the protons of the unsaturated carbons of the acrylate groups of 

methacrylated mannan appeared in the range of 6.18 and 5.77 ppm.23 The successful 

formation of mannan-C16 was confirmed by the peaks appearing between 1.8 and 0.6 

ppm, which correspond to the grafted alkyl moiety.9 In both spectra, the anomeric protons 

of mannan can be identified because their resonances lie in the range 4.9–5.5 ppm 

whereas the remaining protons of mannan appear in the range 3.5–4.5 ppm.26 Mannan-

C16 was washed with n-hexane, and the 1H NMR analysis was repeated. Because no 

differences were observed, it was possible to conclude that the alkyl chain was covalently 

bound to the methacrylate group (data not shown). 

The degree of substitution of methacrylate groups (DSHEMA, defined as the number of 

methacrylate groups per 100 mannose residues), was calculated from the 1H NMR 

spectra of mannan-HEMA in D2O with the equation (Ia)/(IH1)×100, in which Ia is the 

average integral of the protons of the unsaturated carbons of the acrylate groups (around 
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6 ppm) and IH1 is the integral of the anomeric proton (4.9–5.5 ppm).23 The degree of 

substitution with the hydrophobic alkyl chains (DSC16, defined as the number of alkyl 

chains per 100 mannose residues) was calculated from the 1H NMR spectra of mannan-

C16 in D2O as (7X)/(37Y)×100, in which X is the average integral corresponding to the 

protons from alkyl moieties (1.8–0.6 ppm) and Y is the integral of all mannan protons 

(3.5–5.5 ppm).9  

By varying the molar ratio of HEMA-CI to mannose residues and the molar ratio of C16 

to HEMA-CI, different independent batches of mannan-C16 with different DSHEMA and 

DSC16 were obtained, indicating this method to be versatile, simple, and reproducible, as 

shown in Table 1.  

The self-assembly of amphiphilic mannan-C16 in water was studied using 1H NMR 

spectroscopy. The shape and width of the proton signals of C16 (1.8–0.6 ppm) depend on 

the polarity of the solvent used to record the 1H NMR spectra, as shown in Figure 1. 

Therefore, the association of the hydrophobic alkyl chains forming nanogels can be 

detected by 1H NMR. The signals provided by the methyl (0.8 ppm) and methylene (1.1 

ppm) groups were sharp in DMSO-d6 but tended to be gradually broadened at the base 

with an increase in the D2O content in DMSO-d6. A large amount of broadening was clear 

in pure D2O, which is characteristic of the superposition of peaks representing a collection 

of chemically identical species yet possessing various degrees of mobility.27 This result 

suggests that, when dispersed in water, part of the alkyl chains were exposed to 

hydrophobic microdomains (low mobility) but others might have been exposed to the 

hydrophilic solvent (high mobility). In DMSO-d6, all hydrophobic chains were exposed to 

the solvent, having the same mobility, because the material is well dissolved.9 In contrast, 

the mobility of the polysaccharide skeleton of mannan-C16 was kept in environments of 

different polarity. These data suggested that the mannan-C16 nanogel is obtained upon 

self-aggregation in water through the alkyl hydrophobic chains – partial water exclusion 

due to the hydrophobic interaction – and also owing to the relatively mobile shell of the 

hydrated polysaccharide skeleton on the outer surface of the nanogel. 
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Figure 1. 1H NMR spectrum of mannan-HEMA (5 mg/mL) in (a) D2O and 1H NMR spectra of mannan-C16 (5 

mg/mL) in (b) DMSO-d6, (c) 10% D2O in DMSO-d6 and (d) D2O, using MHC16-6.5-1.5 as an example. 

 

Table 1. Characteristics of mannan-C16 

theoretical 
DSHEMA

a
  

(%) 

real 
DSHEMA

b 

(%) 

theoretical 
DSC16 

c 
(%) 

real 
DSC16
d

 (%)
 

obtained DSC16  

relative to 
methacrylated 
groups

e 
(%)

 

efficiency 
f 
(%)

 Mannan-C16 
g
 

25 5 100 0.6 12 12 MHC16-5-0.6 

25 5 120 1.2 24 20 MHC16-5-1.2 

25 5 200 4.1 82 41 MHC16-5-4.1 

40 6.5 120 1.5 23 19 MHC16-6.5-1.5 

40 6.5 200 2.5 38 19 MHC16-6.5-2.5 

a
 Calculated as the molar ratio of HEMA-CI to mannose residue (×100) in the reaction mixture. 

b
 Calculated 

by 
1
H NMR of mannan-HEMA in D2O. 

c
 Calculated as the molar ratio of C16 to HEMA (×100) in the reaction 

mixture. 
d
 Calculated by 

1
H NMR of mannan-C16 in D2O. 

e
 Calculated using the following equation: real 

DSC16/real DSHEMA (×100). 
f 

Calculated as the ratio of the obtained to the theoretical DSC16 (×100). 
g
 

mannan-HEMA-SC16 synthesized: MHC16-DSHEMA-DSC16.
 

 

Critical aggregation concentration of mannan-C16  

The self-assembly of mannan-C16 in aqueous solutions was also studied by 

fluorescence spectroscopy. The cac of mannan-C16 with different DS values was studied 

using hydrophobic dyes, NR28 and Py,29, 30 which are poorly soluble and weakly 

fluorescent in water. In contrast, their solubility and fluorescence dramatically increase in 

a hydrophobic medium.  



Self-assembled nanogel made of mannan: synthesis and characterization 
 

 

                                                                                   - 65 -                                                 Ferreira, S.A. | 2012 

The fluorescence measurements in Figures 2 and 4 showed that for lower 

concentrations of mannan-C16, amphiphilic molecules exist in aqueous solutions as 

individual molecules (premicelle aqueous environment, zone A); the fluorescence intensity 

of NR remained constant, without any shift in the maximum emission wavelength. For 

higher concentrations, above the cac, an increase of intensity associated with a strong 

blue shift was observed, which is attributed to NR being close to (or inside) mannan-C16 

hydrophobic domains. These hydrophobic domains are of two types with different 

hydration levels (zones B and C). However, the hydrophobic domains do not correspond 

to a typical surfactant system.  

 

Figure 2. Area-normalized fluorescence excitation (λem 650 nm) and emission (λex 570 nm) spectra of NR 

(2×10-7 M) in the mannan-C16/water system as a function of mannan-C16 concentration obtained for MHC16-5-

0.6, as an example. 
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In the case of Py fluorescence, the spectra obtained in this study were typical of Py 

photophysical behavior. A red shift was observed in the excitation spectra, and intensity 

increased with increasing concentration of mannan-C16, as shown in Figure 3. The I3/I1 

oscillated with a linear trend below cac value but a small I3/I1 increase above this value 

was observed, as shown in Figure 4. This transition of intensity reflected the transference 

of Py to a less polar micellar domain, which was coincident with the onset of the 

supramolecular formation of mannan-C16. However, some bands in the 450 nm region still 

appear above cac. This indicates the presence of Py dimers and can be explained by the 

high water penetration into the nanogel and is consistent with the 1H NMR measurements. 

 

 

Figure 3. Fluorescence excitation (λem 390 nm) and emission (λex 339 nm) spectra of Py (6×10-7 M) in the 

mannan-C16/water system as a function of mannan-C16 concentration obtained for MHC16-5-0.6, as an 

example.  
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The increase in the mannan-C16 concentration corresponds to an increased number of 

hydrophobic domains, allowing the solubility of more NR and Py; consequently, the 

fluorescence that is detected continues to increase. A second plateau is not achieved, as 

shown in Figure 4, either because the highest concentration of mannan-C16 used was not 

enough to enclose all of the hydrophobic dyes and saturation was not attained or because 

the NR or Py molecules, although enclosed in the hydrophobic domains, are sensitive to 

differences in the hydration level or different degrees of exposure to water and are still 

redistributing to hydrophobic domains with lower hydration levels as the mannan-C16 

concentration increases above the cac. The effect is less defined in the case of Py, 

because of the formation of Py dimers in hydrophobic domains with greater hydration 

levels.  

 

 

Figure 4. Maximum emission intensity of NR (circles; λex 570 nm) and Py fluorescence intensity ratio I3/I1 

(squares; λex 339 nm) in the mannan-C16/water system as a function of mannan-C16 concentration obtained for 

MHC16-5-0.6, as an example. 

 

The cac values obtained by fluorescence measurements with both dyes (Table 2) were 

consistent and exhibit a dependence on the obtained DSC16 relative to methacrylated 

groups, confirming that C16 governs the propensity of these molecules to self-assemble in 

water. The cac was 0.04 mg/mL for lower DSC16 relative to methacrylated group values 

(12% for MHC16-5-0.6, 24% for MHC16-5-1.2 and 38% for MHC16-6.5-2.5).  In contrast, for 

MHC16-5-4.1 with DSC16 relative to acrylate groups of 82%, the cac decreased to 0.02 

mg/mL.  
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Table 2. The cac (mg/mL) calculated for mannan-C16 by fluorescence spectroscopy using NR and Py 

 NR cac  Py cac  

MHC16-5-0.6 0.04 0.04 

MHC16-5-1.2 0.04 0.04 

MHC16-6.5-2.5 0.04 0.04 

MHC16-5-4.1 0.02 0.02 

 

Size and shape of mannan-C16 nanogel 

 Cryo-FESEM is the most valuable technique in the visualization of the colloidal 

systems. Indeed, using this technique, the samples may be observed to be close to their 

natural state.31 The mannan-C16 nanogel was heterogeneous in terms of both size and 

shape, as shown in Figure 5. The majority of macromolecular micelles observed may be 

described as imperfect spheres, with diameters ranging between 100 and 500 nm for 

MHC16-5-1.2 and between 200 and 500 nm for MHC16-6.5-2.5.   

 

 

Figure 5. Cryo-FESEM negatively stained micrographs of mannan-C16 nanogel: (a) MHC16-5-1.2 

(magnification 15,000×) and (b) MHC16-6.5-2.5 (magnification 30,000×). 

 

Size and surface charge of mannan-C16 nanogel  

The size and surface charge of mannan-C16 nanogel with different DSHEMA and DSC16 

were evaluated during storage and also in various environments as a function of pH and 

mannan-C16, NaCl and urea concentrations by studying the variation of the mean 



Self-assembled nanogel made of mannan: synthesis and characterization 
 

 

                                                                                   - 69 -                                                 Ferreira, S.A. | 2012 

hydrodynamic diameter and zeta potential obtained using DLS. The size and surface 

charge of the self-assembled particulate species play important roles in determining the 

stability in solution, the susceptibility to aggregate disassembly, coagulation and 

precipitation, and protein and cellular surface binding in vivo. Zeta potential values higher 

than 30 mV and lower than -30 mV are typical of colloids stabilized by electrostatic forces. 

 

Storage  

The size distribution of mannan-C16 nanogel with different DS values in ultrapure water 

was evaluated using DLS, over a storage period of six months, at room temperature (25 

°C). The results are shown in Figure 6. Throughout the storage period, MHC16-5-1.2 kept 

the mean hydrodynamic diameter stable, in the range of 108–234 nm; the MHC16-6.5-2.5 

size oscillated in the range of 218–429 nm. Both samples exhibited fairly high 

polydispersity, with an average PdI of 0.63. This result was consistent with the cryo-

FESEM micrographs.  

 

 

Figure 6. Size of mannan-C16 nanogel water dispersions (1 mg/mL) measured periodically in DLS (mean ± 

S.D., n = 10) over a storage period of six months at room temperature (25 °C).  

 

Effect of the concentration of mannan-C16  

The micellar size is mainly determined by the hydrophobic forces that sequester the 

hydrophobic chains in the core and by the excluded volume repulsion between the chains 

that limits their size. The mean hydrodynamic diameter tended to be much larger for lower 

concentrations of mannan-C16, and the material showed more instability. At 0.05 mg/mL, 

close to the cac, loose aggregates were formed that contained a significant quantity of 

solvent inside. For higher concentrations, the equilibrium favored nanogel formation. 
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Micelles adopt their low-energy-state configuration while the remaining solvent is 

gradually released from the hydrophobic core, resulting in a decrease in nanogel size.32 

These results are in agreement with the two types of hydrophobic environments with 

different hydration levels observed with NR and Py fluorescence. Amphiphilic mannan-C16 

resulted in mannan being randomly substituted with hydrophobic alkyl chains. In randomly 

modified polymers, hydrophobic and hydrophilic parts are entangled together, which 

permits interaction between the core and the aqueous media. Exposed hydrophobic cores 

within a less mobile shell formed by hydrophilic chains may result in the secondary 

aggregation of polymeric micelles, which might explain the presence of large 

macromolecular micelles for lower concentrations of mannan-C16.
32 

The zeta potential of mannan-C16 nanogel was apparently unaffected by the variation in 

concentration of mannan-C16 ranging between −8 mV and −26 mV, as shown in Figure 7. 

Thus, because the electrostatic forces are apparently not strong enough, the stability of 

the nanogel might be due to the hydration forces. 

 

 

Figure 7. Influence of concentration on the size and zeta potential of mannan-C16 nanogel water dispersions 

(0.05–2 mg/mL) at 37 °C. The results shown were calculated by DLS (mean ± S.D., n = 3). 

 

Effect of pH  

The size distributions and zeta potential of mannan-C16 studied as a function of pH, 

using phosphate-citrate buffer (pH 2.2–8.0) were compared to values obtained in water 

and PBS (Figure 8). The mean hydrodynamic diameter values obtained for MHC16-5-1.2 

were larger in strong acidic solutions than in neutral, basic, and PBS solutions. The 

smallest size was observed at pH 6, although it was slightly larger than in water. The 

mean hydrodynamic diameter values for MHC16-6.5-2.5 were smaller in pH 4 and 5 and 

PBS solutions; in other pH solutions, the nanogel presented a size as obtained in water 

yet with higher instability. For both materials, in all solutions, zeta potential values were 

found to be negative but still close to zero in the region of −2 mV to −13 mV. This is a 
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relative small value indicating little repulsion between macromolecular micelles to prevent 

aggregation. However, even with the zeta potential close to zero in some environments, 

the nanogel is shown to be stable in nanoscale. The nearly neutral charge is valuable for 

in vivo use because large positive or negative charges may be rapidly cleared from the 

blood. Positively charged polymers and nanogels cause nonspecific cell sticking, while 

negatively charged polymers and nanogels are efficiently taken up by scavenger 

endothelial cells, or “professional pinocytes” found in liver.33 

 

 

Figure 8. Influence of pH on size and zeta potential of mannan-C16 nanogel dispersions (1 mg/mL) at 37 ºC in 

water, PBS (pH 7.4) and phosphate-citrate buffer (pH 2.2–8.0). The results shown were calculated in DLS 

(mean ± S.D., n = 3).  

 

Effect of ionic strength  

Salts are known to have the ability to destabilize colloidal systems by removing the 

electrostatic barrier that prevents micelle aggregation. When added in enough quantity to 

a stable dispersion, salts may neutralize the surface charge of the macromolecular 

micelles, which removes the repulsive forces that keep micelles separate and allows for 

coagulation due to van der Waals forces. Compared to that in salt-free solution, the mean 

hydrodynamic diameter for MHC16-5-1.2 decreased when the NaCl concentration was 0.3 

and 0.6 M. A slight instability was observed for MHC16-6.5-2.5 because the mean 

hydrodynamic diameter decreased when the NaCl concentration was between 0.1 and 0.3 

M but leveled off when a higher concentration of NaCl (0.6 M) was applied, as shown in 

Figure 9. No flocculation was observed. The results obtained showed that NaCl, at tested 

concentrations, was not able to destabilize the size of mannan-C16 colloidal system. 
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Figure 9. Influence of NaCl on the size of mannan-C16 nanogel dispersions (1 mg/mL) at 37 °C in NaCl 

solution (0–0.6 M). The results shown were calculated in DLS (mean ± S.D., n = 3). 

 

Although the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory effectively explains 

the long-range interaction forces observed in a large number of systems, when two 

surfaces or micelles are a few nanometers apart, the interactions between two solid 

surfaces in a liquid medium fail to be accounted for and can be much stronger. The other 

additional non-DLVO forces, such as the solvation force, hydrophobic force, or steric 

force, can be monotonically repulsive, monotonically attractive, or even oscillatory. The 

solvation forces referred to as hydration forces, when the solvent is water, depend both on 

the chemical and physical properties of the surfaces (e.g., wettability, crystal structure, 

surface morphology, and rigidity) and on the properties of the intervenient medium.34 The 

physical mechanisms underlying the hydration force might be the anomalous polarization 

of water near the interfaces, which completely alters its dielectric response. Instead, the 

repulsive forces might be due to the entropic (osmotic) repulsion of thermally excited 

molecular groups that protrude from the surfaces, which explains many experimental 

observations in neutral systems.34 The observed stability of the nanogel (no aggregation 

or flocculation is observed) with increasing in ionic strength thus suggests that non-DLVO 

forces are relevant to the colloidal behavior of this nanogel. Besides hydration forces, 

steric effects, which play a role whenever a reduction in the degree of freedom of the 

molecules in interacting colloids contributes to the stabilization of those colloids, may also 

be relevant in the present case. 

 

Effect of urea  

Urea has been described as being able to break intramolecular hydrogen bonds and to 

destabilize hydrophobic domains.35, 36 The mean hydrodynamic diameter obtained for 

MHC16-5-1.2 in water (176 nm) was similar to that obtained in urea 5 M, larger than that in 

1 M and 3 M urea, and smaller than that in 7 M urea (214 nm). A stronger variability was 

observed for MHC16-6.5-2.5 because the mean hydrodynamic diameter was smaller than 
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in water (325 nm) for urea at concentrations between 1 and 5 M and significantly larger for 

urea at 7 M (519 nm), as shown in Figure 10. Although this changeability in the 

experimental results, urea did not significantly affect the self-assembly of the studied 

amphiphilic system in water and consequently nanogel formation. 

 

 

Figure 10. Influence of urea on size of mannan-C16 nanogel dispersions (1 mg/mL) at 37 °C in urea solution 

(0–7 M). The results shown were calculated in DLS (mean ± S.D., n = 3). 

 

The nanogels have been developed as a key strategy to deliver conventional drugs, 

recombinant proteins, vaccines, and nucleotides transforming their kinetics, body 

distribution, and bioavailability. Nanoformulations will require controllable features, such 

as dimension (diameter < 200 nm), nearly neutral surface charge, stability for prolonged 

circulation in blood, nontoxicity to cells, proper degradability (to modulate the release of 

encapsulated biomolecules and to enable the removal of an empty device after drug 

release from the body), bioconjugation to targeted cells, high-loading efficiency, and 

controllable release of encapsulated therapeutics, reducing undesired side effects.37-40  

The low cac values of mannan-C16 indicate the thermodynamic stability of self-

aggregates under dilute conditions. The cac might be further reduced by increasing the 

hydrophobicity, augmenting DSC16. Because polymeric micelles suffer dilution upon 

intravenous administration (usually about a 25-fold dilution for a bolus injection or a much 

higher dilution at infusion), this low cac is advantageous as to maintain the micellar 

structure that facilitates prolonged circulation in the bloodstream.41, 42 All polymers are 

characterized by a concentration window suitable for each delivery application because 

bellow cac the micelles may be destroyed early, releasing the encapsulated therapeutic 

molecule before attaining its target, and because above a critical value micelle 

aggregation and precipitation might occur.42, 43 

Supramolecular self-assembled mannan-C16 might be useful in designing polymeric 

multifunctional nanocarriers (e.g., nanotheranostics, i.e., complementation of diagnostic 

tools with therapeutic modalities) because it bears functional groups for modification 
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purposes, has adjustable chemical and mechanical properties, undergoes size alteration 

in a controlled manner depending on the DS of the amphiphile, and has a high water 

content.  

Those nanogels have interior network for the possible incorporation of hydrophobic 

therapeutics, physically protecting them, by hydrophilic polymer chains, from degradation 

in vivo. The nanoencapsulation and controllable release of therapeutics will simplify their 

delivery or enhance their efficacy because therapeutics become more stable, or active, 

and are more efficiently delivered to targeted cells.  

The mannan-C16 nanogel has a large surface area and functional groups for potential 

multivalent bioconjugation. The conjugation with cell-targeting ligands recognizing specific 

cellular receptors, in attempting to mimic endogenous immunoglobulins, is an approach 

for efficient systemic active targeted delivery to specific cells of encapsulated biological 

agents and drugs. As a polymer of mannose, mannan-C16 potentially targets the mannose 

receptor and possibly will activate professional APC. Cell-surface-bound receptors 

represent suitable attractive entry sites for delivery into cells by the receptor-mediated 

endocytosis of specific drugs, genes, or antigens conjugated with macromolecules or 

supramolecular structures.19 Mannan-C16 originates imperfect spheres, and spherical 

particles are subject to more efficient phagocytosis than ellipsoid or disk-shaped ones, 

being captured by macrophages.38 Therefore, this novel nanogel has the potential to 

serve as a universal protein-based vaccine adjuvant and carrier capable of inducing 

strong immune responses. 

Further work is required to continue characterizing mannan-C16 nanogel and its potential 

as a multifunctional nanocarrier for biomedical applications. 

 

 

Conclusions 

 

The synthesis method used for amphiphilic mannan-C16 was showed to be versatile, 

simple, and reproducible. Above the cac, mannan-C16 formed nanosized aggregates 

under aqueous conditions by the association of the hydrophobic alkyl chains. The cac, 

determined by fluorescence spectroscopy with NR and Py, was consistent and dependent 

on the obtained DSC16 relative to methacrylated groups, ranging between 0.02 and 0.04 

mg/mL. Cryo-FESEM revealed heterogeneous mannan-C16 macromolecular micelles to 

be similar to imperfect spheres with different diameters ranging from 100 nm to 500 nm. 

Mannan-C16 with higher DSHEMA and DSC16 values presented larger values of the mean 
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hydrodynamic diameter, in which oscillations denoted some instability during six months 

of storage at room temperature (25 °C). The mean hydrodynamic diameter tended to be 

much larger as the concentration decreased to close to the cac. For both materials, the 

size distribution varied on the nanoscale at different pH values. The effects of salt and 

urea were stronger for the highest concentrations tested and more marked for mannan-

C16 with higher DSHEMA and DSC16 but without avoiding nanogel formation and size 

stability. The mannan-C16 nanogel under tested conditions was always negatively charged 

with a zeta potential close to zero. 

Further work is required to clarify and optimize the characteristics of these 

multifunctional nanogels made of mannan as a water-soluble delivery system for drugs or 

peptides and proteins acting, for example, like antigens or antibodies, as new strategies to 

target certain disease sites and thus increase the therapeutic benefit while minimizing side 

effects. 
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Chapter 4 

 

Supramolecular assembled nanogel made of mannan 

 

The supramolecular assembly of amphiphilic mannan, synthesized by the Michael 

addition of hydrophobic 1-hexadecanethiol to vinyl methacrylated mannan, originates in 

aqueous medium the formation of a nanogel, stabilized by hydrophobic interactions 

among alkyl chains. The critical aggregation concentration, calculated by fluorescence 

spectroscopy ranged between 0.002 and 0.01 mg/mL, depending on the polymer degree 

of substitution. The cryo-field emission scanning electron microscopy showed spherical 

macromolecular micelles with diameters between 100 and 500 nm. The dynamic light 

scattering analysis revealed a polydisperse colloidal system, with mean hydrodynamic 

diameter between 50 and 140 nm, depending on the polymer degree of substitution. The 

nanogel is negatively charged, stable over a six months storage period, and stable at pH 

3–8, salt or urea solutions. Bovine serum albumin and curcumin were spontaneously 

incorporated in the nanogel, being stabilized by the hydrophobic domains, opening the 

possibility for future applications as potential delivery systems for therapeutic molecules. 

In vitro assays were carried out to characterize the cytocompatibility of the nanogel. A 

toxic effect of mannan-C16 was observed, specific to mouse macrophage-like cell line 

J774, not affecting mouse embryo fibroblast cell line 3T3 viability. 

 

 

 

 

 

 

 

 

 

Adapted from: J Colloid Interface Sci 2011, 361, 97-108.  
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Introduction 

 

Amphiphilic polymers, over critical micellar concentration (cmc) or critical aggregation 

concentration (cac), are capable of self-assembling in water mainly through intra- and/or 

intermolecular hydrophobic interactions.1, 2 The resulting nanometer-sized polymeric 

hydrogels, i.e.  nanogels – also called macromolecular micelles – have simultaneously 

characteristics of nanoparticles and hydrogels, being highly porous and hydrated. They 

are able to entrap biomolecules and drugs within the polymer matrix and also easily 

respond to external stimulus.3-5 These skills triggered a great interest regarding its 

biomedical applicability, namely as potential delivery systems.6-8 

Mannan was selected, among other biodegradable and biocompatible polymers, 

because it is recognized by mannose receptors expressed in the surface of antigen-

presenting cells (APC).9-12 Mannose receptor has been described to be involved in 

mannose receptor-mediated phagocytosis and also was referred to take part in host 

defense, providing a linkage between innate and adaptive immunity.12-15 Therefore, a 

nanogel made of mannan might not only be a promising vehicle for many pharmaceutical 

applications, such as the treatment of macrophage associated pathologies16 but also a 

helpful adjuvant, suitable to induce a protective and long-lasting immune response to 

protein-based vaccines.10, 17 

Yeast mannan, extracted from Saccharomyces cerevisiae, is a highly branched 

polysaccharide with α-(1→2)- and α-(1→3)-linked mono-, di-, and trimannopyranose side 

chains with phosphodiester-linked side chains (2.6 phosphorus in 100 mannopyranose 

units) attached to the backbone of α-(1→6)-linked mannopyranoses.18  

In the present work, new amphiphilic mannan conjugates were designed. The properties 

of the resulting nanogel were characterized – structure, size, shape, surface charge, 

stability and the ability to entrap bovine serum albumin (BSA) and curcumin – by using 

hydrogen nuclear magnetic resonance (1H NMR), fluorescence and ultraviolet-visible (UV-

VIS) spectroscopy, cryo-field emission scanning electron microscopy (cryo-FESEM) and 

dynamic light scattering (DLS). Nanogel cytocompatibility was also tested with MTT cell 

proliferation assay using two cell lines, mouse embryo fibroblasts 3T3 and mouse 

macrophage-like J774. Confocal laser scanning microscopy (CLSM) studies were 

performed using the nanogel labeled with a fluorochrome probe.    
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Experimental  

 

Materials 

Organic and inorganic reagents of laboratory grade were purchased from Sigma and 

used without any further purification, unless otherwise stated. All cell culture products 

were of cell culture grade and purchased from Sigma, saving reported exceptions.  

 

Synthesis of amphiphilic mannan 

Methacrylated mannan (mannan-VMA) was synthesized by transesterification of 

mannan (from S. cerevisiae), with vinyl methacrylate (VMA), as described by Ferreira et 

al. (2002)19 but without enzymes.20 Briefly, mannan was dissolved in dry dimethyl 

sulfoxide (DMSO) at a concentration of 1.5% w/v, with different calculated amounts of 

VMA resulting in 2.5, 3 and 4.5 molar ratios of VMA to mannose residues.  After stirring at 

50 ºC for 2 days, the resulting mixture was dialyzed in regenerated cellulose tubular 

membranes (Membrane Filtration Products; molecular weight cut-off (MWCO), 12,000–

14,000) for 3 days against frequently changed distilled water, at room temperature (~ 25 

ºC). Each sample of modified mannan after being lyophilized resulted as a pallid-yellow 

and fluffy product. Finally, the amphiphilic molecules mannan-VMA-SC16 (mannan-C16) 

were produced as described elsewhere.21 In brief, mannan-VMA and C16 at 1.2, 2 and 3 

molar ratios of 1-hexadecanethiol (C16) to VMA were mixed in dry DMSO (equivalent VMA 

= 0.03 M). The reaction was catalyzed by triethylamine (TEA) in a 2 molar ratio of TEA to 

VMA. After stirring for 3.5 days at 50 ºC, the resulting mixture was dialyzed and lyophilized 

as described above.  

 

Characterization of mannan-C16 nanogel  

 

1H NMR spectroscopy 

Lyophilized reaction products were dispersed in deuterium oxide (D2O), in DMSO-d6 and 

in 10% D2O in DMSO-d6 (5 mg/mL), stirring overnight at 50 ºC. 1D 1H NMR 

measurements were performed with a Varian Unity Plus 300 spectrometer as previously 

described.22  
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Fluorescence spectroscopy  

The cac of mannan-C16 was fluorometrically investigated using hydrophobic guest 

molecules such as 9-(diethylamino)-5H-benzo[α]phenoxazin-5-one (Nile red, NR) and 

pyrene (Py). Py was purified by appropriate recrystallization from absolute ethanol. The 

fluorescence intensity change of these guest molecules was calculated as a function of 

the mannan-C16 concentration using Spex Fluorolog 3 spectrofluorimeter as previously 

described.22 The cac was calculated using both the maximum emission intensity of NR 

(λex 570 nm) and the Py fluorescence intensity ratio of the third (384–385 nm) and first 

vibrational bands (372–374 nm) (I3/I1) of the emission spectra (λex 339 nm) in the mannan-

C16/water system as a function of mannan-C16 concentration; in both cases, the cac was 

estimated as the interception of two trend lines. 

 

Preparation of mannan-C16 colloidal dispersion  

Each colloidal dispersion of mannan-C16 was prepared stirring the lyophilized mannan-

C16 in ultrapure water (purified with a Milli-Q system, Millipore) for 3–5 days at 50 °C 

followed by filtration (pore size 0.45 μm), with insignificant material lost, as confirmed with 

the phenol-sulfuric acid method, using mannose as standard.23 The viscosity of the 

resultant nanogel colloidal dispersion is similar to that of the solvent. 

 

Cryo-FESEM  

The mannan-C16 nanogel concentrated by ultrafiltration (Amicon Ultra-4 Centrifugal 

Filter Units, MWCO, 1×105) was negatively stained with phosphotungstic acid (Riedel-de 

Haën; 0.01% w/v). Samples were studied using an electronic microscope (SEM/EDS: 

FESEM JEOL JSM6301F/Oxford Inca Energy 350) as previously described.22 

 

DLS 

The size distribution and zeta potential measurements were performed in a Malvern 

Zetasizer NANO ZS (Malvern Instruments Limited, U.K.) as previously described.22  

 

Complexation of mannan-C16 nanogel with a hydrophobic drug 

Curcumin is rather water insoluble and forms yellow aggregates of curcumin powder 

(negative control) but soluble in absolute ethanol (AppliChem) forming a bright yellow 

solution (positive control). A volume of 10 µL of a 1 mg/mL curcumin stock solution in 

absolute ethanol was added to 1 mL of each sample – water, ethanol and mannan-C16 

colloidal dispersions (1 mg/mL; prepared as describe above) – giving a constant curcumin 
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concentration of 0.01 mg/mL and a final concentration of ethanol equal to 1%. After 24 h 

of incubation at 25 ºC, the resultant samples were centrifuged at 13,000 rpm (SIGMA 113 

centrifuge), for 10 min, to remove the insoluble curcumin, and the UV-Vis absorption 

spectra of each clear supernatant were recorded on a JASCO V560. Mannan-C16 nanogel 

complexation with curcumin allowed it to be soluble originating a yellowish dispersion with 

maximum absorbance at 428 nm.  

 

Complexation of mannan-C16 nanogel with a water-soluble protein 

The mannan-C16 nanogel was also evaluated as potential host for BSA, as a model 

protein readily soluble in water, using an ultrafiltration method (Amicon® Ultra-4 

Centrifugal Filter Units; MWCO, 1×105). The study was done comparing the results 

obtained with a BSA water solution (1 mg/mL), mannan water solution (1 mg/mL), 

mannan-C16 colloidal dispersion (1 mg/mL), prepared as described above, alone or mixed 

with BSA (1 mg/mL) in water after 24 h of incubation at 25 ºC. For all samples 

fractionated, both in concentrate and in filtrate, the concentration of polysaccharide was 

determined by the phenol-sulfuric acid method, using mannose as standard,23 while that 

of BSA concentration was determined with Pierce® bicinchoninic acid (BCA) Protein assay 

method.  

 

Cytocompatibility of mannan-C16 nanogel 

 

Cell culture 

Mouse embryo fibroblast cell line 3T3 (ATCC CCL-164) was grown in Dulbecco’s 

modified Eagle’s media (DMEM; 4.5 g/L glucose) supplemented with 10% newborn calf 

serum (Invitrogen, UK), 100 IU/mL penicillin and 0.1 mg/mL streptomycin at 37 °C in a 

95% humidified air containing 5% CO2. At confluence, 3T3 fibroblasts were harvested with 

0.05% (w/v) trypsin-EDTA, adjusted to the required concentration of viable cells – 

determined by using the trypan blue exclusion assay, indicative of plasma membrane 

integrity – and were subcultivated in the same medium.  

The mouse macrophage-like cell line J774 (ATCC TIB-67) was maintained as an 

adherent culture at 37 °C in a 95% humidified air containing 5% CO2 in DMEM (4.5 g/L 

glucose) supplemented with 10% heat-inactivated fetal bovine serum (Invitrogen, UK),  2 

mM L-glutamine, 1 mM sodium pyruvate, 100 IU/mL penicillin and 0.1 mg/mL 

streptomycin. At confluence, macrophages were detached mechanically, adjusted to the 
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required concentration of viable cells using the trypan blue exclusion assay as above and 

subcultivated in the same medium.  

 

Cytotoxicity test 

The cytotoxicity of mannan-C16 nanogel was evaluated in vitro using the 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay,24 a 

colorimetric assay that measures the reduction of a tetrazolium component (MTT) into an 

insoluble formazan product at the mitochondria of viable cells, by the succinate-

tetrazolium reductase. 3T3 fibroblasts (2×104 cells/well) and J774 macrophages (5×104 

cells/well) were plated into 24-well tissue culture plates (Orange) and incubated 5 h at 37 

°C in a 95% humidified air containing 5% CO2. Sterile stock colloidal dispersions of 

mannan-C16 with different DSC16, MVC16-25-11 or MVC16-25-22, were prepared in PBS, as 

described above, followed by filtration (pore size 0.22 μm). Serial dilutions were prepared 

in sterile PBS and final sample concentration was adjusted diluting five times with culture 

medium. Then nanogel, at different concentrations, was incubated with cells, for 24 or 48 

h. MTT was added to the culture medium to a final concentration of 0.5 mg/mL. After 3 h 

of incubation at 37 ºC, the culture medium was carefully removed and the formazan 

crystals were solubilized with DMSO, and the UV absorbance was measured at 570 and 

690 nm in an automated ELISA plate reader. For each sample, the background optical 

density (690 nm) was subtracted. Cell proliferation and viability was also followed by 

regular light microscope (LEICA) observations. The results expressed in viability (%) were 

compared to a control prepared with the same cell culture medium without the addition of 

nanogel, which viability was normalized to 100%. The results shown are from one 

experiment, representative of three independent experiments performed in triplicate. 

 

Mannan-C16 labeled with SAMSA fluorescein  

Synthesis of mannan-C16 labeled with 5-((2-(and-3)-S-(acetylmercapto)succinoyl)amino) 

fluorescein (SAMSA fluorescein; Molecular Probes, Invitrogen) was based on the reaction 

between the thiol group of SAMSA fluorescein with the grafted methacrylate not 

substituted with C16 of mannan-C16. The reaction was performed after optimizing the 

instructions from the manufacturer. Briefly, SAMSA fluorescein (4 mg) was dissolved in 

400 μL of 0.1 M NaOH and incubated at room temperature for 15 min in order to remove 

acetyl protecting group. Finally the reaction product was neutralized with concentrated 

HCl, buffered with 0.5 M sodium phosphate, pH 7 and stirred for 10 min. Resulting 

activated SAMSA fluorescein was conjugated with 2.5 mL of mannan-C16 (MVC16-31-20) 
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colloidal dispersion in 0.1 M sodium phosphate buffer, pH 7 (3 mg/mL) prepared as 

describe above. The conjugation occurred after stirring in the presence of TEA (2 

equimolar of VMA) for 48 h at 50 ºC. The unreacted dye was separated from the labeled 

mannan-C16 applying 2.5 mL of reaction medium (after filtration using a membrane with 

pore size 0.45 μm) on a Sephadex® G-25 gel filtration column (Amersham Biosciences) 

equilibrated with PBS. Labeled nanogel was eluted with PBS and sterilized by filtration 

(pore size 0.22 µm) before use. To remove any eventual residual unconjugated 

fluorescein, labeled mannan-C16 was repeatedly washed by ultrafiltration (Amicon® Ultra-4 

Centrifugal Filter Units, MWCO, 5×103) with sterile pyrogen-free PBS until no fluorescence 

was detected in the filtrate. The degree of labeling in the concentrate was determined 

from the absorbance of the labeled mannan-C16 at 495 nm. Labeling did not affect the 

properties of the nanogel, as estimated by DLS. 

 

Confocal studies 

For the CLSM 1×106 J774 cells were plated in Fluorodish (WPI, UK) in 1 mL of culture 

medium and incubated overnight at 37 °C in a 95% humidified air containing 5% CO2. Live 

cells nuclei were labeled in blue fluorescent with 4'-6-Diamidino-2-phenylindole (DAPI; 

0.05 mg/mL) for 3 min at room temperature in culture medium. After washing, cells were 

incubated for 20 min with 20 μM FM® 4-64 (Molecular Probes, Invitrogen) in culture 

medium. Membranes are intensely red-fluorescent labeled when FM® 4-64 inserts into the 

outer leaflet of the surface membrane. FM® 4-64 is frequently used in endocytosis and 

exocytosis studies in eukaryotic cells because it is water-soluble, nontoxic to cells and 

virtually nonfluorescent in aqueous media. Propidium iodide (PI; 1 µg/mL) was added to 

the medium to evaluate the viability of the cells. PI is membrane impermeant commonly 

used for identifying dead cells by emitting its characteristic red fluorescence in the nuclear 

region. PI binds to nucleic acids by intercalating between the bases with little or no 

sequence preference and with a stoichiometry of one dye per 4–5 base pairs of DNA. The 

plate was then placed on the stage of the confocal microscope (OLYMPUS FluoView 

CLSM - FV1000) at 37 °C and 5% CO2. A representative area of the plate was selected at 

random and zero-time point picture was obtained. Mannan-C16 nanogel labeled with 

SAMSA fluorescein colloidal dispersion was then added into the medium on top of the 

region containing the selected area. Z-series and time-series in the three filter sequential 

scanning mode and differential interference contrast (DIC) images were obtained at three 

lasers 405 nm, 488 nm and 559 nm. All confocal images were obtained under identical 

scan settings and were analyzed with software OLYMPUS Fluoview1000 (FV viewer 



Chapter 4 
 

 

Ferreira, S.A. | 2012                                                       - 86 - 

v.2.0). The results shown are from one experiment, representative of three independent 

experiments. 

 

Statistical analysis 

Statistical significance of the cell proliferation assay results obtained with each 

concentration of nanogels in comparison with the control at same incubation period was 

determined by one-way analysis of variance (ANOVA) with Dunnett's post-test using 

GraphPad Prism version 4.00 for Windows (GraphPad Software, California, USA).  

 

 

Results and discussion 

 

Synthesis of amphiphilic mannan-C16  

According to the literature and similarly to other reported methacrylates, VMA mainly 

couples to the 6C of the mannose residues of the mannan side chains.18, 25 Then by the 

Michael addition mechanism, the thiol acting as a nucleophile reacts with grafted 

methacrylate (Scheme 1). 

 

Scheme 1. Synthesis of mannan-C16. 

 

The success of the synthesis, purity, chemical structure and polymer degree of 

substitution of the reaction products were controlled using 1H NMR spectra in D2O (Figure 

1). The mannan degree of substitution with methacrylate groups (DSVMA, defined as the 

percentage of grafted VMA relative to the mannose residues), was calculated from the 1H 
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NMR spectra of mannan-VMA in D2O, using the equation (Ia)/(IH1)×100, in which Ia is the 

average integral of the protons of the unsaturated carbons of the acrylate groups 

(detected around 6 ppm) and IH1 is the integral of the anomeric proton (4.9–5.5 ppm).26, 27 

The degree of substitution with the hydrophobic alkyl chains (DSC16, defined as the 

percentage of grafted C16 moieties relative to the mannose residues), was calculated from 

the 1H-NMR spectra of mannan-C16, in D2O as (7X)/(37Y)×100, in which X is the average 

integral corresponding to the protons from the alkyl moieties (1.8–0.6 ppm) and Y is the 

integral of all mannan protons (3.5–5.5 ppm).21, 27 After washing mannan-C16 with n-

hexane, similar 1H NMR spectra were obtained providing evidence that alkyl chains were 

covalently bound to the methacrylate groups (data not shown). 

Different independent batches of mannan-C16 with different DSVMA and DSC16 were 

produced, by varying the molar ratio of VMA to mannose residues and the molar ratio of 

C16 to VMA, proving the versatility, simplicity and reproducibility of the method, as shown 

in Table 1. In this work, all the batches of mannan-C16 were named as MVC16-DSVMA-

DSC16. 

 

 

Figure 1. The 1H NMR spectra of mannan-VMA (5 mg/mL) in (a) D2O and of mannan-C16 (5 mg/mL) in (b) 

DMSO-d6, (c) 10% D2O in DMSO-d6, and (d) D2O for MVC16-29-15 as an example. 
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Table 1. Characteristics of mannan-C16 

tDSVMA
a
  DSVMA 

b 
 tDSC16 

c 
 DSC16

d
 
 

DSC16 /DSVMA 
e  

250 20–26 120   5–12 25–46 

 200   8–15 40–58 

300 11–25 55–96 

300 20–29 120   8–15 40–52 

200 11–18 55–62 

300 16–28 80–97 

450 25–31 120 11–20 44–65 

200 15–26 60–84 

300 22–30 88–97 

a
 Theoretical DSVMA calculated as the molar ratio of VMA to mannose residue (×100) in the reaction 

mixture. 
b
 calculated by 

1
H NMR of mannan-VMA. 

c
 theoretical DSC16 calculated as the molar ratio of C16 to 

VMA (×100) in the reaction mixture. 
d
 calculated by 

1
H NMR of mannan-C16. 

e
 obtained DSC16 relative to 

methacrylated groups
 
calculated using the following equation: real DSC16/real DSVMA (×100). The table 

presents the range of values (%) obtained for different batches using each set of conditions. 

 

Supramolecular assembly of mannan-C16 

 The supramolecular assembly of amphiphilic mannan-C16 in water was studied using 

1H NMR and fluorescence spectroscopy.  

Analyzing the 1H NMR spectra of mannan-C16 (Figure 1), it can be observed that, while 

the mobility of the polysaccharide skeleton was maintained in environments of different 

polarity, the shape and width of the proton signals of the methyl (0.8 ppm) and methylene 

(1.1 ppm) groups of C16 depended on the polarity of the solvent used. In DMSO, mannan-

C16 was soluble, and the C16 signals were sharp, as all hydrophobic chains were exposed 

to the solvent, having the same mobility.21 The same signals tended to be gradually 

broadened at the base with an increase in the D2O content in DMSO-d6. A large 

broadening was clear in pure D2O, which is characteristic of the superposition of peaks 

representing a collection of chemically identical species, yet possessing various degrees 

of mobility.28 These results tip-off that mannan-C16 dispersed in water has part of the alkyl 

chains exposed to hydrophobic domains, while others might have been exposed to the 

hydrophilic solvent. Differences in the microenvironment and/or mobility of the molecules 

thus explain the broaden peak observed for the aliphatic protons. Therefore mannan-C16 

nanogel is obtained upon supramolecular assembly in water as result of the association of 

the hydrophobic alkyl chains in hydrophobic domains. 



Supramolecular assembled nanogel made of mannan 
 

 

 

                                                                                   - 89 -                                                 Ferreira, S.A. | 2012 

The cac of mannan-C16 with different DS was studied by fluorescence spectroscopy 

using hydrophobic dyes, NR29 and Py.30, 31 Although weakly soluble and fluorescent in 

water their solubility and fluorescence boost in hydrophobic environments. 

For lower concentrations of amphiphilic mannan-C16, individual molecules exist as 

premicelles in aqueous environment and the fluorescence intensity of NR remained 

constant, without any shift in the maximum emission wavelength (Figure 2; zone A).  

Exceeding cac, fluorescence intensity augmented with a simultaneous blue-shift of the 

maximum emission wavelength, which was caused by the proximity of NR to the 

hydrophobic domains of the nanogel. The mannan-C16 hydrophobic domains are 

dissimilar of those present in a typical surfactant system and have two types of hydration 

levels (Figure 2; zones B and C).  

The intensity of Py increased for greater concentrations of mannan-C16 and a red shift 

occurred in the excitation spectra (Figure 3a). The intensity ratio I3/I1 rapidly augmented 

above the cac (Figure 3b). This transition of intensity decode the transference of Py to a 

less polar and hydrophobic domains, which is coincident with the onset of supramolecular 

assembly of mannan-C16 nanogel. Above cac some bands in the 450 nm region 

associated to the presence of Py dimers occurred, suggesting themselves the high water 

penetration into the nanogel, which is in agreement with the 1H NMR measurements.  

As mannan-C16 concentration augments above the cac, more hydrophobic domains are 

formed, solubilizing more NR and Py, which consequently increases the fluorescence 

detected. The typically observed second plateau was not attained (Figures 2b and 3b) and 

two hypotheses might be pointed out to explain this result: the highest concentration of 

mannan-C16 used was not enough to enclose all of the hydrophobic dyes available; or the 

NR or Py molecules, although enclosed in the hydrophobic domains continued to 

redistribute to those with lower hydration levels, Py forming dimers in the hydrophobic 

domains with greater hydration level.  

The resultant cac values of fluorescence spectroscopy measurements using both dyes, 

NR and Py, showed dependency on the obtained DSC16 relative to methacrylated groups 

(DSC16/DSVMA), which confirms that C16 governs the self-assembly of mannan-C16 in water. 

The cac was 0.002 mg/mL for DSC16/DSVMA values close to 80% (80% for MVC16-20-16 

and 88% for MVC16-25-22) but increased to 0.01 mg/mL for lower DSC16/DSVMA (40% for 

MVC16-20-8, 46% for MVC16-26-12 and 62% for MVC16-29-18). 

The low cac values of mannan-C16 point out the thermodynamic stability of nanogel in 

diluted environments, such as when diluted upon intravenous administration (usually 

about 25-fold dilution at bolus injection or a much higher dilution at infusion) being able to 
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maintain its structure that facilitates prolonged circulation in the bloodstream until attaining 

its target.32, 33 

 

Figure 2. Determination of the cac of mannan-C16 using NR fluorescence: area normalized fluorescence (a) 

excitation (λem 650 nm) and (b) emission (λex 570 nm) spectra of NR (2×10-7 M) in the mannan-C16/water 

system as a function of mannan-C16 concentration; (c) area-normalized fluorescence emission intensity 

(closed circle) and position of maximum emission wavelength (open circle) of NR in the mannan-C16/water 

system as a function of mannan-C16 concentration (λex 570 nm), using MVC16-20-8 as an example.  
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Figure 3. Determination of the cac of mannan-C16 using Py fluorescence: (a) excitation (λem 390 nm) and (b) 

emission (λex 339 nm) spectra of Py (6×10-7 M) in the mannan-C16/water system as a function of mannan-C16 

concentration; (c) fluorescence intensity ratio I3/I1 as a function of the mannan-C16 concentration (λex 339 nm), 

using MVC16-20-8 as an example. 
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Characterization of mannan-C16 nanogel 

 

Size and shape  

The mannan-C16 nanogel appeared spherical in cryo-FESEM micrographs, with a fairly 

large size distribution, in the range of 100–400 nm for MVC16-20-8, 100–500 nm for 

MVC16-20-11 and 200–500 nm for MVC16-20-16 (Figure 4). These results open the 

possibility for mannan-C16 nanogel being used to address APC, since spherical-shaped is 

subject to more efficient phagocytosis than ellipsoid or disc-shaped ones, being captured 

by macrophages;34 furthermore, the uptake of materials into an ample variety of cells 

seems to be size dependent, generally considered more effective for materials in the 

range of 50–200 nm.35 

 

 

Figure 4. The cryo-FESEM negatively stained micrographs of mannan-C16 (scale bar = 1µm): (a, b) MVC16-

20-8, (c, d) MVC16-20-11, (e) MVC16-20-16 and (f) solvent.  

 

Size stability during storage 

The mean hydrodynamic diameter obtained using DLS for mannan-C16 colloidal 

dispersion in ultrapure water was distinct for materials with different DS, in the range of 

50–140 nm, but almost constant for each material over a storage period of six months, at 

room temperature (~ 25 ºC). Materials with DSVMA of 20% are larger than those with DSVMA 
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above 25%. All samples exhibited fairly high polydispersity, with an average PdI between 

0.4 and 0.7, which means that there may be macromolecular micelles with a distribution of 

sizes and shapes rather than macromolecular micelles of a single size and shape, as also 

revealed by the cryo-FESEM micrographs. No aggregation followed by sedimentation was 

observed during storage and changes in nanogel size were minimal. These results 

evidence the stability of nanogel produced (Figures 5, 6).  

 

 

Figure 5. The size of mannan-C16 water dispersions (1 mg/mL) over a six months storage period, at room 

temperature (25 °C), measured periodically by DLS (mean ± S.D., n = 10). 
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Figure 6. The size distribution by intensity, z-average and PdI of the mannan-C16 water dispersions (1 mg/mL) 

measured by DLS (mean ± S.D., n = 10) after a six months storage period, at room temperature (25 ºC).  

 

Size and surface charge in different environments 

The properties of the dispersion medium, such as concentration, pH, temperature, ionic 

strength, urea and solvent can control the size, surface charge and shape of colloidal 

dispersions, being decisive in their propensity either to be stable or to aggregate and 

precipitate. The micellar size is mainly determined by the hydrophobic forces that 

sequester the hydrophobic chains in the core and by the excluded volume repulsion 

between the chains that limits their size. The amphiphilic material obtained consists of 

mannan randomly substituted with hydrophobic alkyl chains. In randomly modified 

polymers, hydrophobic and hydrophilic parts are entangled together, which permits 

interaction between the core and the aqueous media. Exposed hydrophobic domains 

within a less mobile shell formed by hydrophilic chains, may result in secondary 

aggregation of polymeric micelles.36 Using DLS, mean hydrodynamic diameter and zeta 

potential of mannan-C16 colloidal dispersions with different DS in different environments 

were studied (Figure 7). 

Varying the concentration of mannan-C16 in a range 0.05–2 mg/mL, mean 

hydrodynamic diameter revealed to be smaller for higher concentrations. It appears that, 

for higher concentration of the polymer, the remaining solvent is gradually released from 

the hydrophobic domains, resulting in a decrease in micellar size.36 These results are in 

agreement with the two types of hydrophobic environments with different hydration levels 

observed with NR and Py fluorescence. In the same range of concentrations, no major 

differences were observed in terms of surface charge, since zeta potential values were 
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always negative and close to zero. Once zeta potential approaches zero, electrostatic 

repulsion becomes small compared to the ever-present van der Waals attraction. In these 

conditions, eventually, instability may arise, leading to aggregation followed by 

sedimentation and phase separation. In the current case, the macromolecular micelles 

conserved their nanosize, only MVC16-20-16 batch at 0.05 mg/mL reaching a size larger 

than 1000 nm (Figure 7a). As, according to the zeta potential, the electrostatic repulsions 

should not be very high, the stability of the nanogel must be related to the hydration 

forces, and to the steric effects, which play a role whenever a reduction in the degree of 

freedom of the molecules in interacting colloids contributing to the stabilization of those 

colloids.  

Colloidal stability might be compromised when the electrostatic barrier is removed, for 

instance by changing the pH or by the addition of enough quantity of salt to neutralize the 

surface charge of the macromolecular micelles in dispersion. Without the repulsive forces 

that keep colloidal macromolecular micelles separate, coagulation might occur due to 

attractive van der Waals forces. In presence of different concentrations on NaCl (0–0.6 M) 

mannan-C16 colloidal dispersions were stable, although a trend towards increased size 

may be noticed, as the ionic strength increased (Figure 7b). Moreover, macromolecular 

micelles equilibrated at different pH values showed minimal changes in their size and zeta 

potential (Figure 7c). In all cases, the zeta potential values were always negative and 

close to zero, never lower than −20 mV, the lowest value was obtained in ultrapure water. 

However those small values translate little repulsion, macromolecular micelles showed to 

be stable in nanoscale. The nearly neutral charge is precious for in vivo use, as large 

positive or negative charges may be rapidly cleared from the blood. Positively charged 

materials cause non-specific cell sticking, while those negatively charged are efficiently 

taken up by scavenger endothelial cells or “professional pinocytes” found in liver.37  

The size stability of nanogels was also evaluated in presence of different concentrations 

of urea (0–7 M), which is known for its ability to break intramolecular hydrogen bonds and 

to destabilize hydrophobic domains.38, 39 Experimental results suggest that urea neither 

affected the self-assembly of the studied amphiphilic system in water nor avoided nanogel 

formation (Figure 7d).  

This nanogel is an upgrade version of mannan-C16 described in Ferreira et al. 2010.22 

Its synthesis is much easier, cheaper and less time consuming since VMA but not CDI-

activated hydroxyethyl methacrylate (HEMA-CI) is commercially available to produce 

methacrylated mannan. Resultant self-assembled nanogel cac is smaller and the 
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spherical macromolecular micelles size is smaller, less polydisperse, more stable and for 

consequence more adequate for biological applications.  

 

 

Figure 7. The size and zeta potential of mannan-C16 colloidal dispersions (a) (0.05–2 mg/mL) in water; (b) (1 

mg/mL) in solutions of NaCl (0–0.6 M); (c) (1 mg/mL) in water, PBS, and phosphate-citrate buffer (pH 3–8.0); 

and (d) (1 mg/mL) in solutions of urea (0–7 M). Mean diameter and zeta potential were calculated by DLS at 

37 ºC (mean ± S.D. n = 10). 
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Mannan-C16 nanogel as a host 

Curcumin, a lipid soluble drug with wide spectrum of biological and pharmacological 

activities, exhibits solvent and medium sensitive absorption and fluorescence properties. 

Curcumin is poorly soluble in water at acidic and physiological pH, rapidly hydrolyzes in 

alkaline media40 and is vulnerable to photochemical degradation in organic solvents.41-44 

Curcumin is soluble in ethanol (positive control) and exhibits a high absorbance at 428 

nm. In water (negative control), curcumin forms insoluble aggregates and precipitates 

resulting in a very low absorbance detected in supernatant. As a hydrophobic molecule, 

one possible way to improve its aqueous solubility and stability is through the formation of 

inclusion complexes, in order to be encapsulated or entrapped as a guest within the 

internal cavity of a water-soluble host. Above cac the amphiphilic polymer self-assembles 

in water, originating nanostructures containing hydrophobic domains. The physical 

entrapment of hydrophobic curcumin in the nanogels was performed following the 

nanogels formation. After 24 h of incubation of the curcumin with the mannan-C16 

nanogel, at room temperature (~25 °C), high stability of the colloidal dispersion was 

observed, no aggregation was detected by visual inspection. The addition of curcumin to 

aqueous dispersion of mannan-C16 nanogels results in a bright yellow solution after 

incubation. The unentrapped curcumin precipitates after centrifugation, only the entrapped 

curcumin being quantified. The UV-Vis spectra reveal an intense absorption at 428 nm, 

confirming the curcumin dissolution, and suggesting the physical entrapment of the 

curcumin, presumably into the hydrophobic domains within the mannan-C16 nanogel. 

Curcumin is less soluble in mannan-C16 nanogels than in absolute ethanol as evidenced 

by UV-Vis absorption value at 428 nm (Figure 8).  

 All batches tested with different DSVMA and DSC16 were able to entrap reasonable 

amount of curcumin. The more substituted polymer forms more densely packed 

hydrophobic domains, such that the colloidal stability of nanogel is increased. 

Consequently the solubility of the curcumin among the hydrophobic domains tends to 

increase. Although stability of the nanosystem and consequently the drug load and 

release capacity is affected by the hydrophobic interactions among hydrophobic alkyl 

chains, several environmental conditions might eventually disturb the equilibrium of the 

nanosystem.   
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Figure 8. The mannan-C16 nanogel as potential host for curcumin. UV-Vis spectra of curcumin (0.1 mg/mL) 

incubated 24 h at 25 ºC in water (negative control), ethanol (positive control) and mannan-C16 colloidal 

dispersions in water.  

 

The interior of the nanogel is not fully hydrophobic. In the interior of the nanogel – as 

proposed by several authors,3, 5 including ourselves – there are multiple hydrophobic 

domains. The proteins are not expected to get fully buried in these hydrophobic domains. 

Instead, they are likely to position by these domains establishing interactions through 

more hydrophobic parts. These interactions are responsible for the stabilization of proteins 

when encapsulated in these nanogels (as demonstrated by circular dichroism using as 

case study the dextrin nanogel and interleukin (IL)-10).45 In the same work, the 

encapsulation of IL-10 was demonstrated using ELISA method. After mixing IL-10 with the 

nanogel, the ELISA no longer detects the IL-10, presumably because it is encapsulated. 

The same is expected to occur in the present case of the mannan nanogel and BSA. The 

complexation between BSA and the mannan-C16 nanogel, in water, was studied by an 

ultra-filtration method. Ultra-filtration of BSA and mannan through the 1×105 Da cut-off 

membrane demonstrated that both macromolecules freely cross the membrane, as 

expected. In turn, mannan-C16 nanogel (1 mg/mL) accumulated in the concentrate (data 

not shown). After incubation 24 h at 25 ºC of BSA (1 mg/mL) with mannan-C16 nanogel (1 

mg/mL) the majority of BSA, similar to 80% of initial amount calculated by Pierce BCA 

Protein assay method was found in the concentrate, where there were also 75% of the 

initial amount of the mannan-C16 nanogel, calculated by phenol-sulfuric acid method. 

Therefore a complex is formed in water between nanogel and the protein, resulting as a 

clear dispersion without any aggregation observed during the period of the assay (24 h). 

The stabilization of BSA by complexation could be due to the formation of multiple 

noncovalent interactions, namely hydrophobic and H-bonding between BSA and the 
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nanogel. Thus amphiphilic property of mannan-C16 nanogel plays an important role in the 

complexation of soluble proteins that have both hydrophobic and hydrophilic patches on 

their surface. 

The self-assembled mannan-C16 nanogel is therefore a suitable host for hydrophobic 

and for macromolecular water-soluble guests. These results open the possibility for new 

studies of mannan-C16 nanogel as a vehicle for multiple molecules acting like a perfect 

mix to modulate efficient and safe therapeutic responses. 

 

Cytocompatibility of mannan-C16 nanogel 

MTT cell proliferation assay offers a quantitative and convenient method for evaluating 

a cell population's response to external factors, whether it may be an increase in cell 

growth, no effect, or a decrease in growth due to necrosis or apoptosis.  

Cytotoxicity of mannan-C16 nanogel with different DSC16, MVC16-25-11 and MVC16-25-22 

was evaluated on two mouse cell lines, J774 macrophages as a model for professional 

phagocytes and 3T3 fibroblasts as a non-phagocytic and recommended reference cell line 

(Figure 9). For each cell type a linear relationship between viable cell number and 

absorbance is established, enabling accurate, straightforward quantification of changes in 

proliferation. The results of the MTT assay clearly show that nanogels were cytotoxic for 

macrophages in contrast to what was observed for fibroblasts. Fibroblasts proliferated 

normally and had the typical flattened and spread fibroblast morphology. Neither cell 

death nor growth disorders – statistically significant – were noticed at any concentration of 

nanogel used. In contrast, dose dependent nanogel toxicity to J774 macrophages was 

observed, death cells being clearly noticed by optical microscopy. After 24 and 48 h of 

incubation, MVC16-25-11 seems to be more toxic than MVC16-25-22. Thus, nanogels 

significantly affected the morphology, viability and proliferation of J774 macrophages, the 

toxic effect being dose and time dependent and more intense in the batch with lower 

percentage of grafted hydrophobic alkyl chains. 
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Figure 9. Effect of mannan-C16 nanogel on cell viability and cell growth. Images of mouse embryo fibroblast 

3T3 and mouse macrophage-like J774 growth, after 48 h of incubation, in absence (control) or presence of 

mannan-C16 nanogel obtained by optical microscopy (scale bar = 100 µm). MTT cell proliferation assay 

results, using both cell lines (mean ± S.D.), after 24 and 48 h of incubation with nanogel at different 

concentrations (0.045–0.72 mg/mL). No statistical significant differences were obtained with fibroblast 3T3 

viability. Statistical significant differences (p < 0.01) were obtained with all J774 viability results in all tested 

conditions.  
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According to the literature, some nanosystems including polymer-based nanoparticles 

also revealed cytotoxicity specific to this mouse phagocytic cell line, which seems to be 

quite sensitive to the presence of nanoparticles.16, 46-48 The amphiphilic 

carboxymethylpullulan solutions reduced the number of viable J774.A1 cells in a time and 

dose-dependent manner but did not affect MCF-7 (human breast adenocarcinoma cell 

line) cell growth at all concentrations tested.47 The poly(ε-caprolactone) nanoparticles 

specifically inhibited J774 cell proliferation by 80% after 24 h of incubation but no 

cytotoxicity on THP-1 cells (human acute monocytic leukemia cell line), MCF-7 and HeLa 

cells (human epithelial carcinoma cell line) has been reported.46 Indeed, mannan-C16 

interact with primary phagocytic cell culture of mouse bone-morrow derived macrophages 

(BMDM) showing almost no toxicity.49 Dextrin nanoparticles – recently developed in our 

laboratory – are not toxic to BMDM.50 So, depending on the cells used, the effect of the 

nanogel on the proliferation rate and the cell morphology is different: the cytotoxicity of a 

nanomaterial is cell-specific. Different cell types present different uptake, intracellular 

localization, processing and removal of the nanomaterials.51 The toxicity of the 

nanomaterial can be related not only to cell necrosis or apoptosis but also to effects on 

cell signaling, membrane perturbations, influence on the cellular electron transfer 

cascades, production of cytokines, chemokines and reactive oxygen species, transcytosis 

and inter-cellular transport or gene regulation.48, 51  

With the purpose of better understanding the toxicity of the mannan-C16 nanogel to J774 

macrophages CLSM studies were performed. Mannan-C16 nanogel labeled with SAMSA 

fluorescein was used. The size and surface charge of the nanogel were not affected by 

the labeling with SAMSA Fluorescein. Furthermore, the effective covalent binding of 

fluorescein to the nanogel was confirmed by analysis of the UV-Vis spectra (a sharp 

single peak with maximum absorbance of 0.45 ± 0.05 at 495 nm was detected). Several 

studies reported that the cytotoxicity of nanomaterials to macrophages cytotoxicity is 

related to their phagocytic properties.46, 52 Indeed, Z-series and time-series confocal 

images with phagocytic J774 macrophages revealed toxicity of mannan-C16 nanogel at 

various concentrations (0.1–0.6 mg/mL). For all tested concentrations, the viable cells 

were the ones that did not internalize the nanogel. Nanogel caused the cell death at the 

tested concentrations to similar extent. Images obtained with nanogel at 0.6 mg/mL are 

shown in Figure 10, as an example. Nanogel was observed inside dead cell (detected on 

the green channel on Figure 10) distributed uniformly in the cytoplasm. Cell death 

increased over time due to their higher internalization activity. All confocal conditions and 

parameters, such as lasers intensity, temperature, CO2 and fluoroprobes at similar time of 
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incubation were tested with same number of z-series and time-series and ensured the cell 

viability.  

 

 

Figure 10. Time-series confocal images of mouse macrophage-like J774 cells incubated with mannan-C16 

nanogel. Cells were initially labeled with DAPI (blue fluorescence), FM 4-64 (red fluorescence). PI was used 

to screen the viability of the cells. The nanogel at 0.6 mg/mL (green fluorescence) effect was followed by a 

series of time scans at a certain Z-stack. DIC images (in grey) illustrate the cell morphology changes (scale 

bar = 20 µm). 

 

These results suggest that it was the internalization of the nanogel that caused 

cytotoxicity since the non-phagocytic cell line was not affected and internalization was 

confirmed with J774. The mannose receptor binds ligands at the cell surface and these 

receptor-ligand complexes are internalized via the endocytic pathway. The adenosine 

triphosphate (ATP)-dependent acidification of the endosome vesicle results in receptor-

ligand dissociation with the released receptor recycling back to the cell surface.53 If 

somehow this dissociation does not occur and the cell continues to internalize the nanogel 

it probably would induce cell death. In contrast to cell line J774, bone marrow-derived 

cells seem to be less sensitive to this nanogel, upon confirmation of nanogel 

internalization; these results indicate that the primary culture is able to efficiently process 

the nanogel.49 The high nanogel toxicity observed with the macrophage cell line indicates 
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that the cell line J774 is not suitable for studies with mannan-C16 nanogel and primary 

cultures of macrophages that do not exhibit cytotoxicity should be used instead.   

 

Conclusions 

 

The supramolecular assembled amphiphilic mannan-C16 nanogel was designed with a 

versatile, easy, reproducible and low-cost method. Above the cac, spherical polydisperse 

macromolecular micelles revealed long-term stability in aqueous environment, with mean 

hydrodynamic diameter ranging between 50 and 140 nm and nearly neutral negative 

surface charge. Colloidal stability was maintained when nanogel was exposed to potential 

destabilizing conditions of pH, ionic strength or in presence of urea. The mannan-C16 

nanogel was able to entrap BSA and a hydrophobic drug, curcumin, thus having potential 

to perform as a carrier of different kinds of pharmaceuticals. The nanogel is non-toxic to 

mouse embryo fibroblast 3T3. This study also confirms that, as suggested in the literature, 

mouse macrophage-like J774 are highly sensitive to the presence of mannan-C16 

nanogel, and internalization studies should be performed with other phagocytic cell, like 

the bone marrow-derived cells. 
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Chapter 5 

 

Self-assembled mannan nanogel: cytocompatibility and 

cell localization   

 

Amphiphilic mannan, produced by the Michael addition of hydrophobic 1-

hexadecanethiol to vinyl methacrylated mannan, self-assembles in aqueous medium 

through hydrophobic interactions among alkyl chains. Resultant nanogel is stable, 

spherical, polydisperse, with 50–140 nm mean hydrodynamic diameter depending on the 

polymer degree of substitution, and nearly neutral negative surface charge. No cytotoxicity 

of mannan nanogel is detected up to about 0.4 mg/mL in mouse embryo fibroblast cell line 

3T3 and mouse bone marrow-derived macrophages (BMDM) using cell proliferation, 

lactate dehydrogenase and Live/Dead assays. Comet assay, under the tested conditions, 

reveals no DNA damage in fibroblasts but possible in BMDM. BMDM internalize the 

mannan nanogel, which is observed in vesicles in the cytoplasm by confocal laser 

scanning microscopy. Confocal colocalization image analysis denotes that the entrance 

and exit of nanogel and FM 4-64 might occur by the same processes – endocytosis and 

exocytosis – in BMDM. Physicochemical characteristics, in vitro cytocompatibility and 

uptake of self-assembled mannan nanogel by mouse BMDM are great signals of the 

potential applicability of this nanosystem for macrophages targeted delivery of vaccines or 

drugs, acting as potential nanomedicines, always with the key goal of preventing and/or 

treating diseases. 

 

 

 

 

 

 

Adapted from: J Biomed Nanotechnol 2012 (accepted)  
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Introduction  

 

The performance of nanogels as carriers intended to deliver biologically active agents to 

specific targets are mainly regulated by their physicochemical properties. These 

properties include hydrophilicity, surface charge, size, shape, composition, concentration, 

and presence of various ligands, which ultimately govern their interaction with proteins,  

perturbation of the cell membranes, cell activation, cellular uptake, intracellular localization 

and removal of nanomaterials by cells, cell necrosis or apoptosis,  gene regulation, effects 

on cell signaling, influence on the cellular electron transfer cascades, production of 

cytokines, chemokines and reactive oxygen species.1-3 

Amphiphilic mannan, self-assembled in nanometer-sized supramolecular hydrogels – 

i.e.  hydrogel nanoparticles or nanogels – were developed in previous work,4 aiming the 

drug targeted delivery to mannose receptors expressed in the surface of antigen-

presenting cells (APC).5-8 Similarly, mannan-coated gelatin nanoparticles targeted 

didanosine, an anti-HIV drug, to macrophages both in vitro and in vivo.9 Moreover, 

mannosylated chitosan nanoparticle-based murine interleukin(IL)-12 gene therapy 

suppressed cancer growth and angiogenesis, and significantly induced cell cycle arrest 

and apoptosis in BALB/c mice bearing CT-26 carcinoma cells.10 Mannose receptor 

participates in mannose receptor-mediated endocytosis contributing to the host defense, 

providing a linkage between innate and adaptive immunity.8, 11-13 Plasmid DNA encoding 

β-galactosidase, used as a model antigen, coated on the surface of mannan coated-

nanoparticles resulted in a significant enhancement in both antigen-specific 

immunoglobulin (Ig)G titers and splenocyte proliferation over “naked” plasmid DNA alone 

upon topical application in mice.14 Cholesterol-bearing mannan (CHM) complexed with 

human epidermal growth factor receptor 2 (HER2) oncoprotein, encoded by the 

HER2/neu/c-erbB2 oncogene, containing the 147 N-terminal amino acids were able to 

induce CD8+ cytotoxic T-cells against HER2+ tumors and to strongly enhance the 

production of IgG antibodies against HER2 in mice immunized subcutaneously. Mice 

immunized with CHM-HER2 before or early after tumor challenge successfully rejected 

HER2-transfected tumors.6, 15  

The particles of the mannan nanogel are stable, spherical, polydisperse, with mean 

hydrodynamic diameter or z-average ranging between 50 and 140 nm depending on the 

polymer degree of substitution, and with nearly neutral negative surface charge or zeta 

potential, as previously studied.4 Mannan nanogel spontaneously incorporated bovine 

serum albumin and curcumin indicating its potential as delivery systems for therapeutic 
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molecules.4 In the present work, the essential focus was to assess nanomaterial 

cytocompatibility and to analyze the internalization by macrophages. The mannan nanogel 

cytocompatibility was tested in mouse embryo fibroblast cell line 3T3 and mouse bone 

marrow-derived macrophages (BMDM), using the CellTiter 96® AQueous one-solution cell 

proliferation assay, lactate dehydrogenase (LDH) cytotoxicity detection kitPLUS and 

Live/Dead® viability/cytotoxicity kit for mammalian cells. Genotoxicity was evaluated with 

comet assay. Uptake of mannan nanogel labeled with a fluorochrome probe by the BMDM 

was studied by confocal laser scanning microscopy (CLSM).    

 

 

Experimental 

 

Materials 

Mannan-VMA-SC16 (VMA: vinyl methacrylate, SC16: hydrophobic alkyl chain) was 

synthesized as described previously.4 According to the polymer degree of substitution 

(DS), defined as the percentage of grafted acrylate groups (DSVMA) or alkyl chains (DSC16) 

relative to the mannose residues, samples of mannan-C16 nanogel were named as 

MVC16-DSVMA-DSC16. Three batches were studied: MVC16-25-11, MVC16-25-22 and 

MVC16-31-20. Organic and inorganic reagents of laboratory grade were purchased from 

Sigma and used without any further purification. All cell culture products were of cell 

culture grade and purchased from Sigma, saving reported exceptions.  

 

Preparation of self-assembled mannan nanogel  

Each sterile stock colloidal dispersion of mannan-C16 was prepared stirring the 

lyophilized mannan-C16 in phosphate buffered saline, pH 7.4 (PBS), for 3–5 days at 50 °C, 

followed by sterilized filtration (Orange; pore size 0.22 μm). The nanogel formation was 

confirmed by dynamic light scattering (DLS). The size distribution and zeta potential 

measurements were performed in a Malvern Zetasizer NANO ZS (Malvern Instruments 

Limited, UK) as previously described.4  Serial dilutions were prepared in sterile apyrogenic 

PBS and final sample concentration was adjusted diluting five times with culture medium. 
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Cell culture 

 

Fibroblast cell line 3T3 

Mouse embryo fibroblast cell line 3T3 (ATCC CCL-164) was grown in Dulbecco’s 

modified Eagle’s media (DMEM; 4.5 g/L glucose) supplemented with 10% newborn calf 

serum (Invitrogen, UK), 100 IU/mL penicillin and 0.1 mg/mL streptomycin at 37 °C in a 

95% humidified air containing 5% CO2. At confluence, fibroblasts were harvested with 

0.05% (w/v) trypsin-EDTA, adjusted to the required concentration of viable cells – 

determined using the trypan blue exclusion assay, indicative of plasma membrane 

integrity – and were subcultivated in the same medium. Fibroblasts were plated at 4×103 

cells/200 µL/well for cell proliferation assay, 1×104 cells/200 µL/well for LDH assay or 

4×105 cells/200 µL/well for comet assay in 96-well plates (Sarstedt, Canada) and 1×105 

cells/2 mL/well for Live/Dead assay in 6-well plates (Sarstedt, Canada). Then fibroblasts 

were incubated 5 h at 37 °C in a 95% humidified air containing 5% CO2. 

 

Mouse BMDM 

Female BALB/c mice (6–8 weeks old) were purchased from Charles River (Barcelona, 

Spain). Animals were kept at the animal facilities of the Institute Abel Salazar during the 

experiments. Hiding and nesting materials were provided as enrichment. Procedures 

involving mice were performed according to the European Convention for the Protection of 

Vertebrate Animals used for Experimental and Other Scientific Purposes (ETS 123) and 

86/609/EEC Directive and Portuguese rules (DL 129/92). In order to obtain mouse BMDM, 

femurs and tibias were collected under aseptic conditions and flushed with Hanks’ 

balanced salt solution. The resulting cell suspension was centrifuged at 500 g and 

resuspended in RPMI 1640 medium supplemented with 10 mM HEPES, 10% heat-

inactivated fetal bovine serum (FBS), 60 IU/mL penicillin, 60 µg/mL streptomycin, 0.5 mM 

β-mercaptoethanol (complete RPMI [cRPMI]), and 10% L929 cell conditioned medium 

(LCCM). To remove fibroblasts or differentiated macrophages, cells were cultured, on cell 

culture dishes (Sarstedt, Canada), overnight at 37 ºC in a 95% humidified air containing 

5% CO2. Then, nonadherent cells were collected with warm cRPMI, centrifuged at 500 g, 

resuspended in cRPMI and distributed 2×104 cells/200 µL/well in 96-well plates for cell 

proliferation and LDH assays, 1×105 cells/1 mL/well in 24-well plates (Sarstedt, Canada) 

for comet assay, 2×105 cells/2 mL/well in 6-well plates for Live/Dead assay, and 5×105 

cells/1 mL/well in 24-well plates or 1×106 cells/2 mL/fluorodish (WPI, UK) for confocal 

studies. Cells were then incubated at 37 °C in a 95% humidified air containing 5% CO2. 
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Four days after seeding, 10% of LCCM was added, and the medium was renewed on the 

seventh day. After 10 days in culture, cells were completely differentiated into 

macrophages. This method allows for the differentiation of a homogenous primary culture 

of macrophages that retain the morphological, physiological and surface markers 

characteristics of these phagocytic cells.16-18 

 

Effect of mannan nanogel on cell viability and cell proliferation 

 

Cell proliferation assay  

The cell viability was determined by CellTiter 96® AQueous one-solution non-radioactive 

cell proliferation assay (Promega, USA) composed by 3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and an electron coupling 

reagent (phenazine methosulfate; PMS). Nanogel at different concentrations was 

incubated with mouse fibroblast 3T3 cells and mouse BMDM, for 24 or 48 h at 37 °C, in a 

95% humidified air containing 5% CO2. Then, each well was washed with 100 µL of fresh 

cell culture medium and MTS (20 µL) was added. After 1 h of incubation in same 

conditions, MTS is bioreduced by dehydrogenase enzymes found in metabolically active 

cells into a formazan product that is soluble in culture medium. The UV absorbance of the 

formazan was measured at 490 nm in an automated ELISA plate reader, which is directly 

proportional to the number of living cells in culture. The results were compared to a control 

prepared with the same cell culture medium without the addition of nanogel. The results 

are expressed as cell proliferation index (CPI) after normalizing the viability of untreated 

cells to 100%.  

 

LDH assay 

The cytotoxicity/cytolysis of mannan nanogel to mouse fibroblast 3T3 cells and mouse 

BMDM, after 3 and 20 h of incubation at 37 °C, in a 95% humidified air containing 5% CO2 

was evaluated using LDH Cytotoxicity Detection KitPLUS (Roche, Germany), following the 

manufacturer instructions. Preliminary assays were carried out to determine the optimal 

cell concentration and confirm that nanogel did not interfere with the assay, using culture 

medium with 1% of serum and without sodium pyruvate. The results are expressed in 

absorbance values, after subtracting the background control to the average of the 

triplicate samples and controls absorbance values, measured at 490 nm in an automated 

ELISA, using as reference the absorbance obtained at 620 nm.  
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Live/Dead assay 

The Live/Dead® viability/cytotoxicity kit for mammalian cells (Invitrogen, UK) was used to 

determine mouse fibroblast 3T3 cells and mouse BMDM viability in presence of nanogel 

incubated with cells at different concentrations, for 24 h at 37 °C, in a 95% humidified air 

containing 5% CO2. At the end, 100 μL of a solution with 2 μM calcein acetoxymethylester 

and 4 μM ethidium homodimer-1 in sterile PBS was added to each well. After incubation 

for 30–45 min in the same conditions as above, cells were visualized in a fluorescence 

microscope Olympus BX-61 Fluorescence Microscope (Olympus, Germany) coupled with 

a DP70 digital camera (Melville, NY) using objective 10×. Images were analyzed with Cell-

P software (Olympus, Germany).   

 

Comet assay  

Nanogel at different concentrations was incubated with mouse fibroblast 3T3 cells and 

mouse BMDM, for 24 or 48 h at 37 °C, in a 95% humidified air containing 5% CO2. After 

the period of incubation, fibroblasts were harvested with 0.05% (w/v) trypsin-EDTA and 

macrophages were mechanically harvested, and washed three times with ice cold PBS, 

pH 7.4. Cell viability, determined by trypan blue exclusion, was higher than 80% in all 

cases. The alkaline version of the comet assay was performed as described by Singh et 

al.19 with minor modifications. Briefly, cells collected by centrifugation (7500 g for 3 min) 

and suspended in 120 µL of 0.6% low melting point agarose in PBS were dropped onto a 

frosted slide precoated with a layer of 1% normal melting point agarose. Slides were 

placed on ice for 4 min and allowed to solidify. Coverslips were then removed and slides 

were immersed in freshly prepared lysing solution (2.5 M NaCl, 100 mM Na2EDTA, 10 mM 

TrisBase, 10 M NaOH, pH 10) for 1 h at 4 ºC, in the dark. After lysis, slides were washed 

with ice water and placed on a horizontal electrophoresis tank in an ice bath. The tank 

was filled with freshly made alkaline electrophoresis solution (1 mM Na2EDTA, 300 mM 

NaOH, pH 13) to cover the slides that were left for 20 min in the dark to allow DNA 

unwinding and alkali-labile site expression. Electrophoresis was carried out for 20 min at 

30 V and 300 mA (1 V/cm). The slides were then washed for 10 min with 1 mL of 

neutralizing solution (0.4 M TrisBase, pH 7.5). After neutralization, gels were dried 

overnight in the dark. Then in the dark the gels were rehydrated with ice cold water and 

stained with ethidium bromide solution (20 µg/mL) for 20 min. After staining the slides 

were washed twice with ice cold bidistilled water for 20 min and dried. Before observation 

with the fluorescence microscope the dried slide was rehydrated and covered with a 

coverslip. Two slides were prepared for each treatment with nanogel and a “blind” scorer 
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examined 100 randomly selected cells per replicate using a magnification of 400×. Image 

capture by an on-line CCD camera and analysis were performed with Comet Assay IV 

software (Perceptive Instruments).  

 

Uptake of mannan nanogel by the BMDM 

 

Mannan nanogel labeled with SAMSA fluorescein 

Synthesis of mannan-C16 labeled with 5-((2-(and-3)-S-(acetylmercapto)succinoyl)amino) 

fluorescein (SAMSA fluorescein; Molecular Probes, Invitrogen) was based on the reaction 

between the thiol group of SAMSA fluorescein with the grafted methacrylate not 

substituted with C16 of MVC16-31-20,  as previously described.4 Labeling did not affect the 

properties of the nanogel, as estimated by DLS.  

 

Confocal studies 

In order to evaluate the phagocytic activity, mouse BMDM (5×105 cells/well) were 

seeded on coverslips (Sarstedt, Canada) and stimulated with and without 

lipopolysaccharide (LPS from E. coli; 100 ng/mL) and interferon-γ (IFN-γ; 1 ng/mL; R&D 

systems). Then, the macrophages were incubated with or without mannan nanogel 

labeled with SAMSA fluorescein (0.1 mg/mL; λem 519 nm) for 6 h. The coverslips were 

washed twice with PBS and cells were fixed with methanol absolute (−20 ºC) for 10 min. 

Following PBS washing (twice), nuclei were stained with 4'-6-diamidino-2-phenylindole 

(DAPI; λem 461 nm) using vectashield mounting medium (Vector Laboratories) as an anti-

fading. Z-series of cells with 284.90 nm Z spacing between image planes, with 5× optical 

zoom and 512×512 pixel size were obtained using confocal laser scanning microscope 

Leica SP2 AOBS SE (Leica Microsystems, Germany), an inverted microscope Leica 

DMIRE2 equipped with objective HC PL APO Lbl. Blue 63× with a numerical aperture of 

1.40 Oil LEICA, and confocal software LCS 2.61 (Leica Microsystems, Germany). 

The internalization of nanogel by BMDM plated in fluorodish (WPI, UK) was followed by 

the CLSM. Live cells nuclei’ were labeled with DAPI (0.05 mg/mL) for 3 min at room 

temperature in cRPMI. After washing, cells were incubated for 20 min with 20 μM FM 4-

64® (Molecular Probes, Invitrogen, λem 618 nm) in cRPMI. Membranes are intensely red-

fluorescent labeled when FM 4-64 inserts into the outer leaflet of the surface membrane. 

FM 4-64 is frequently used in endocytosis and exocytosis studies in eukaryotic cells 

because it is water-soluble, nontoxic to cells and virtually nonfluorescent in aqueous 

media.  Propidium iodide (PI, 1 µg/mL) was added to the medium to evaluate the viability 
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of the cells. The plate was then placed on the stage of the confocal laser scanning 

microscope (OLYMPUS FluoViewTM - FV1000) at 37 °C and 5% CO2. A representative 

area of the fluorodish was selected at random and control picture was obtained. Labeled 

nanogel was then added into the medium (0.1 mg/mL). Five z-series with 0.98 µm Z 

spacing between image planes and time-series with 15 min interval were obtained using 3 

lasers (405 nm, 488 nm and 559 nm) in the three narrow bandwidth emission filter, 

sequential acquisition and Kalman filter mode, 40× objective with a numerical aperture of 

0.9, 2× optical zoom, and 640×640 pixel size with four detectors. To follow the exocytosis 

of the nanogel, the incubating medium was carefully removed from the fluorodish, washed 

three times with PBS and then filled with fresh medium with PI. Another series of time 

scans were obtained as described before. All confocal images were obtained under 

identical scan settings. Control specimens were prepared with each fluorochrome 

separately and in the absence of staining for excitation cross-talk and emission bleed-

through analysis, and autofluorescence characterization, respectively. In time lapses, 

threshold-based analysis (annotation) measurements were performed with software 

Olympus FluoView1000 (FV viewer v.2.0), after removing unspecific events generated by 

noise and background, using a two-dimensional scatterplot of intensity ranges of red 

channel versus green channel, where thresholds were defined using the controls results. 

Colocalization coefficient in total pixels area (CT, correspondent to the ratio between 

colocalized pixels and total number of pixels) was calculated in two-color – red and green 

corresponding to FM 4-64 and labeled nanogel – two-dimensional microscopic images. 

Reported values of CT for each time correspond to mean obtained using “regions of 

interest” (ROIs) corresponding to cytoplasm of 45 cells.  

 

Statistical analysis  

Statistical significance of the cytotoxicity and genotoxicity results was determined by 

one-way analysis of variance (ANOVA) with Dunnett's post-test using GraphPad Prism 

version 4.00 for Windows (GraphPad Software, CA, USA). Statistical significant 

differences within results obtained with each concentration of nanogels in comparison with 

the control at same incubation period were labeled with a single asterisk (p < 0.05) and 

with two asterisks (p < 0.01). 
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Results and discussion 

 

Cytocompatibility of mannan nanogel   

Self-assembled amphiphilic mannan nanogel, with different DSC16 – MVC16-25-11 and 

MVC16-25-22 – and different DSVMA – MVC16-25-22 and MVC16-31-20, corresponding to 

different nanogel size (Table 1), were selected to study the cytocompatibility of the 

nanogel using cell proliferation, LDH and Live/Dead assays.  

 

Table 1. Size and zeta potential measurements obtained in DLS for mannan nanogel at 1 mg/mL in PBS 

 MVC16-25-11 MVC16-25-22 MVC16-31-20 

Z-average (nm)    50.7 ± 0.9     56.4 ± 1.5 109.0 ± 2.9 

Polydispersity Index (PdI)  0.589 ± 0.010   0.431 ± 0.010 0.431 ± 0.056 

Zeta potential (mV) −8.49 ± 1.71 −10.49 ± 3.76 −7.29 ± 0.37 

                    (mean ± S.D., n = 10) 

 

Cell proliferation assay using MTS is a colorimetric, easy, fast and safe assay that 

measures the mitochondrial metabolic activity.20, 21 MTS assay (Figure 1) showed that, 

after 24 h of incubation, the viability of mouse embryo fibroblast 3T3 was not significantly 

affected by any of the concentrations of the three batches of mannan nanogel used. After 

48 h of incubation, the toxicity of the nanogel was dose dependent and significant for the 

higher concentrations of each batch. Fibroblasts proliferated normally. The viability of 

mouse BMDM after 24 h of incubation was overall not affected by the nanogel, being 

significantly reduced only for MVC16-25-11 at 0.05 mg/mL, where the CPI was close to 

75%. After 48 h of incubation, the viability in the majority of treatments was similar to the 

control, with the CPI close to 100%, except for MVC16-31-20 at 0.4 mg/mL, where it was 

close to 75%. Fibroblasts and macrophages had the typical flattened and spread 

morphology and no cell death was noticed at any concentration of nanogel used.  
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Figure 1. Effect of mannan nanogel, at the indicated concentrations, in mouse embryo fibroblast 3T3 cells and 

BMDM, assessed with the MTS assay. Results correspond to the mean ± S.D. of the cell proliferation index 

(CPI, * p < 0.05 and ** p < 0.01), obtained for the different groups at 24 and 48 h of incubation with mannan 

nanogel at the indicated concentrations. The results shown are from one experiment, representative of three 

independent experiments performed in triplicate. 

 

LDH assay is a non-radioactive, precise, fast and simple colorimetric assay suitable for 

high-throughput quantification of cell death and lysis, based on measurement of LDH 

activity released from the cytosol of cells with damaged plasma membranes. LDH assay 

(Figure 2) was used to evaluate the cytotoxicity of mannan nanogel in smaller periods of 

incubation. All treatments originated values of absorbance similar to low control, which 

determines the LDH activity released from the untreated healthy cells and corresponds to 

the spontaneous LDH release. Results were significantly (p < 0.01) lower than the high 

control, which determines the maximum releasable LDH activity in the cells and 

corresponds to the maximum LDH release. 
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Figure 2. Cytotoxic effect of mannan nanogel, at the indicated concentrations, in mouse embryo fibroblast 3T3 

cells and BMDM, assessed with the LDH assay. Results represent the mean ± S.D. of the obtained 

absorbance measurements at 3 and 20 h of incubation of the different nanogel samples, low control (Low C) 

and high control (High C), as indicated. Statistical significant differences (p < 0.01) within results were 

obtained with all tested concentrations of different nanogel samples in comparison with the High C, at same 

incubation period, for both fibroblasts and macrophages. The results shown are from one experiment, 

representative of two independent experiments. 

 

The nontoxicity of mannan nanogel to mouse embryo fibroblast 3T3 cells and mouse 

BMDM, after 24 h of incubation, was further confirmed by Live/Dead assay (Figure 3).  

 



Chapter 5 
 

 

Ferreira, S.A. | 2012                                                       - 118 - 

 

Figure 3. Fluorescence images of mouse embryo fibroblast 3T3 cells (left) and BMDM (right) stained using a 

Live/Dead® viability/cytotoxicity kit at 24 h of incubation in absence (control) or presence of mannan nanogel. 

Live cells are stained in green and dead cells are stained in red (scale bar = 200 µm).  
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The Live/Dead assay is a two-color fluorescence cell viability assay, that measures 

intracellular esterase activity and plasma membrane integrity, based on the simultaneous 

determination of live (green fluorescence) and dead cells (red fluorescence) with two 

probes, which are calcein, a polyanionic dye retained within living cells, and an ethidium 

homodimer-1 dye that enters the cells through damaged membranes, binding to nucleic 

acids, but is excluded by the intact plasma membrane of living cells. Only morphological 

changes were detected in life mouse BMDM for MVC16-25-22 at 0.7 mg/mL and MVC16-

31-20 at 0.4 mg/mL, where the number of dead cells was slightly bigger when compared 

with the control. 

The alkaline comet assay (or single cell gel electrophoresis assay) is a useful technique 

for the evaluation of DNA damage at the single cell level and is a sensitive biological 

indicator in the evaluation of the genotoxicity in cell lines or primary cells.22-25 The comet 

assay is based on the ability of negatively charged loops/fragments of DNA to be drawn 

through an agarose gel under the force of an electric field. The extent of DNA migration is 

dependent on the DNA damage within cells.25, 26 The advantages of using the comet 

assay, comparatively to other genotoxicity tests, include its high sensitivity for detecting 

low levels of both single and double stranded breaks in damaged DNA, the requirement 

for small numbers of eukaryotic cells per sample, flexibility, low cost, and ease and rapid 

of application.25-27  

Comet assay has been described as a reproducible assay to evaluate nanoparticles 

genotoxicity.28-33 Upon fluorescent staining, a “comet”-like structure is visualized with a 

circular head and a tail extending toward the anode due to the overall negative charge of 

DNA damaged. The genotoxicity caused by mannan nanogel at 0.1 and 0.4 mg/mL was 

evaluated in comparison to control (untreated cells) after 24 and 48 h of incubation, 

attending the tail intensity (%), which is expected to be proportional to the level of single 

strand breaks, crosslinks and alkalilabile sites (Table 2). The nanogel does not induce 

DNA damage in mouse embryo fibroblast 3T3 cells under the concentrations tested, as 

the negative control and samples with nanogel presented similar results. A statistically 

significant (p < 0.01) induction of DNA damage was observed in mouse BMDM after 24 h 

of exposure to 0.4 mg/mL and after 48 h of exposure to 0.1 mg/mL of mannan nanogel as 

compared to the respective control cells. 

 

 

 

 



Chapter 5 
 

 

Ferreira, S.A. | 2012                                                       - 120 - 

Table 2. DNA damage in mouse embryo fibroblast 3T3 cells and BMDM caused by mannan nanogel at 0.1 

and 0.4 mg/mL in comparison with control (untreated cells) after 24 and 48 h of incubation, expressed in tail 

DNA intensity (%). The results shown are from one representative experiment preformed in duplicate 

 Tail DNA Intensity (%) 

  MVC16-31-20 

 control 0.1 mg/mL 0.4 mg/mL 

3T3 

24 h 3.03 ± 3.86 2.04 ± 2.34 2.51 ± 2.82 

48 h 2.37 ± 4.36 5.05 ± 4.48 4.83 ± 5.49 

BMDM 

24 h 9.76 ± 9.84 13.77 ± 11.63 26.48 ± 19.45** 

48 h 7.39 ± 12.80 16.00 ± 13.07** 8.78 ± 9.23 

                                  (mean ± S.D., ** p < 0.01) 

 

 

Uptake of mannan nanogel by the BMDM 

The full viability of cells was ensured for the experimental concentration of 0.1 mg/mL 

used throughout confocal studies. Z-series confocal images of fixed phagocytic BMDM 

revealed that mannan nanogel is internalized in presence of LPS/IFN-γ. Upon 

internalization mannan nanogel labeled with SAMSA fluorescein (in green) is apparently 

present in vesicles, as could be inferred from the non-even distribution over the 

cytoplasm, and concentration of the fluorescence in internalized structures (Figure 4). 

Similar internalization results were obtained in the absence of LPS/IFN-γ (data not 

shown).  

 

 

Figure 4. Confocal images of mouse BMDM incubated 6 h (a) without and (b) with mannan nanogel labeled 

with SAMSA fluorescein at 0.1 mg/mL (green fluorescence). Nuclei of fixed cells are stained with DAPI (blue 

fluorescence). Images correspond to a central Z-stack of a representative experiment preformed in duplicate. 
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In live cells studies, cell viability was guaranteed at all confocal conditions and 

parameters, such as lasers intensity, temperature, CO2, fluoroprobes concentration, time 

of incubation, number z-series and time-series. In the absence of nanogel (control) cells 

labeled with DAPI, FM 4-64 and PI showed residual cell death randomly distributed in all 

fluorodish over time analysis (data not shown).  

The visual-based evaluation of the extent of colocalization is prone to error and bias, as 

the “amount of yellow” resultant from the superposition of one fluorescence image, 

pseudo-colored “green”, on image two, colored “red” depends on the brightness of the 

merged images, the monitor settings, as well as the viewer’s perception. Qualitative 

colocalization based on an image-overlay method was not possible due to the lower 

resultant green signal from the labeled nanogel when compared with the red signal 

intensity of FM 4-64. Therefore the colocalization was quantified in cytoplasm by image 

analysis. Colocalization can be explained as an existence of the signal generated by two 

or more different fluorochromes at the same three-dimensional volume, voxel, when 

examining multichannel fluorescence microscopy images of a sample region. The 

colocalization of two or more markers within cellular structures gives information about 

structural and functional characteristics of the molecular populations34 but not necessarily 

means molecular interaction or functional relationship. Colocalization coefficient in total 

pixels area (CT) obtained by threshold-based analysis (annotation) increased over time 

when cells were incubated with nanogel and FM 4-64 in culture medium showing the 

entrance of labeled nanogel and of FM 4-64 to the cytoplasm of the viable cells. When 

nanogel and FM 4-64 were removed and cells were incubated in fresh medium, CT 

reduced over time of incubation denoting the exit of both FM 4-64 and labeled nanogel 

from the cells. One hour was not enough for cells to release all previously internalized 

nanogel and FM 4-64 (Figure 5 and Table 3). According to the CT values the entrance and 

exit of nanogel and FM 4-64 in BMDM are associated. As FM 4-64 is a marker of 

endocytosis and exocytosis in eukaryotic cells, it is plausible that mannan nanogel 

entrance and exit in BMDM occurs by the same processes. More studies are necessary to 

better understand the macrophage uptake mechanism of mannan nanogel. 
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Figure 5. Confocal microscopy analysis of entrance and exit of mannan nanogel using live mouse BMDM. 

Confocal images at a certain Z-stack (scale bar = 10 µm) of a representative experiment of three independent 

experiments: (a) control cells labeled with DAPI (blue fluorescence) and FM 4-64 (red fluorescence); (b) cells 

after 3 h of incubation with the nanogel at 0.1 mg/mL (green fluorescence) and FM 4-64 present in culture 

medium; (c) cells after 1 h of incubation in fresh culture medium. PI was used to screen the viability of the 

cells.  

 

Table 3. Colocalization coefficient CT calculated by confocal image analysis throughout the entrance and exit 

of mannan nanogel and FM 4-64 in cytoplasm of mouse BMDM  

Entrance Exit 

time (h) CT time (h) CT 

Control 0.00 0 0.50 

0.5 0.19 0.25 0.46 

0.75 0.39 0.5 0.42 

1 0.34 0.75 0.43 

1.25 0.28 1 0.43 

1.5 0.38   

1.75 0.40   

2 0.43   

2.25 0.46   

2.5 0.41   

2.75 0.45   

3 0.51   
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Conclusions 

 

The mannan nanogel is biocompatible to mouse embryo fibroblast 3T3 cells and mouse 

BMDM. Essentially, no cytotoxic effect was observed with mannan nanogel up to about 

0.4 mg/mL in in vitro experiments using MTS, LDH, Live/Dead assays, and no significant 

differences were caused by differences in the DS of batches. Cell survival rate only 

dropped significantly at higher tested concentration after 48 h of incubation. Comet assay, 

under tested conditions, revealed no DNA damage in mouse embryo fibroblast 3T3 cells 

but possible DNA damage in mouse BMDM. Upon internalization by mouse BMDM 

mannan nanogel is localized in vesicles, as judged by the non-even distribution over the 

cytoplasm, and concentration of the fluorescence in internalized structures. Exit of 

nanogel from the mouse BMDM was observed when cells were incubated in fresh 

medium. Confocal colocalization image analysis denotes that the entrance and exit of 

nanogel and FM 4-64 might occur by the same processes – endocytosis and exocytosis – 

in BMDM. 



Chapter 5 
 

 

Ferreira, S.A. | 2012                                                       - 124 - 

References 

 

1. Ahsan, F.; Rivas, I. P.; Khan, M. A.; Torres Suárez, A. I. Targeting to macrophages: role of physicochemical 
properties of particulate carriers - liposomes and microspheres - on the phagocytosis by macrophages. J 
Control Release 2002, 79, 29-40. 

2. Park, M. V.; Lankveld, D. P.; van Loveren, H.; de Jong, W. H. The status of in vitro toxicity studies in the risk 
assessment of nanomaterials. Nanomedicine (Lond) 2009, 4, 669-685. 

3. Jones, C. F.; Grainger, D. W. In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 2009, 61, 

438-456. 

4. Ferreira, S. A.; Pereira, P.; Sampaio, P.; Coutinho, P. J. G.; Gama, F. M. Supramolecular assembled 
nanogel made of mannan. J Colloid Interface Sci 2011, 361, 97-108. 

5. Apostolopoulos, V.; Pietersz, G. A.; Loveland, B. E.; Sandrin, M. S.; McKenzie, I. F. Oxidative/reductive 
conjugation of mannan to antigen selects for T1 or T2 immune responses. Proc Natl Acad Sci USA 1995, 92, 

10128-10132. 

6. Gu, X. G.; Schmitt, M.; Hiasa, A.; Nagata, Y.; Ikeda, H.; Sasaki, Y.; Akiyoshi, K.; Sunamoto, J.; Nakamura, 
H.; Kuribayashi, K., et al. A novel hydrophobized polysaccharide/oncoprotein complex vaccine induces in vitro 
and in vivo cellular and humoral immune responses against HER2-expressing murine sarcomas. Cancer Res 
1998, 58, 3385-3390. 

7. Sihorkar, V.; Vyas, S. P. Potential of polysaccharide anchored liposomes in drug delivery, targeting and 
immunization. J Pharm Pharm Sci 2001, 4, 138-158. 

8. Gupta, A.; Gupta, R. K.; Gupta, G. S. Targeting cells for drug and gene delivery: Emerging applications of 
mannans and mannan binding lectins. J Sci Ind Res 2009, 68, 465-483. 

9. Kaur, A.; Jain, S.; Tiwary, A. K. Mannan-coated gelatin nanoparticles for sustained and targeted delivery of 
didanosine: in vitro and in vivo evaluation. Acta Pharm 2008, 58, 61-74. 

10. Kim, T. H.; Jin, H.; Kim, H. W.; Cho, M.-H.; Cho, C. S. Mannosylated chitosan nanoparticle-based cytokine 
gene therapy suppressed cancer growth in BALB/c mice bearing CT-26 carcinoma cells. Mol Cancer Ther 
2006, 5, 1723-1732. 

11. Avrameas, A.; McIlroy, D.; Hosmalin, A.; Autran, B.; Debre, P.; Monsigny, M.; Roche, A. C.; Midoux, P. 
Expression of a mannose/fucose membrane lectin on human dendritic cells. Eur J Immunol 1996, 26, 394-

400. 

12. Fukasawa, M.; Shimizu, Y.; Shikata, K.; Nakata, M.; Sakakibara, R.; Yamamoto, N.; Hatanaka, M.; 
Mizuochi, T. Liposome oligomannose-coated with neoglycolipid, a new candidate for a safe adjuvant for 
induction of CD8+ cytotoxic T lymphocytes. FEBS Lett 1998, 441, 353-356. 

13. Apostolopoulos, V.; McKenzie, I. F. Role of the mannose receptor in the immune response. Curr Mol Med 
2001, 1, 469-474. 

14. Cui, Z.; Mumper, R. J. Topical immunization using nanoengineered genetic vaccines. J Control Release 
2002, 81, 173-184. 

15. Shiku, H.; Wang, L.; Ikuta, Y.; Okugawa, T.; Schmitt, M.; Gu, X.; Akiyoshi, K.; Sunamoto, J.; Nakamura, H. 
Development of a cancer vaccine: peptides, proteins, and DNA. Cancer Chemother Pharmacol 2000, 46 

Suppl, S77-82. 

16. Tushinski, R. J.; Oliver, I. T.; Guilbert, L. J.; Tynan, P. W.; Warner, J. R.; Stanley, E. R. Survival of 
mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively 
destroy. Cell 1982, 28, 71-81. 

17. Warren, M. K.; Vogel, S. N. Bone marrow-derived macrophages: development and regulation of 
differentiation markers by colony-stimulating factor and interferons. J Immunol 1985, 134, 982-989. 

18. Zhang, X.; Goncalves, R.; Mosser, D. M. The isolation and characterization of murine macrophages. Curr 
Protoc Immunol 2008, Chapter 14, Unit 14.11. 

19. Singh, N. P.; McCoy, M. T.; Tice, R. R.; Schneider, E. L. A simple technique for quantitation of low levels 
of DNA damage in individual cells. Exp Cell Res 1988, 175, 184-191. 

20. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and 
cytotoxicity assays. J Immunol Methods 1983, 65, 55-63. 



Self-assembled mannan nanogel: cytocompatibility and cell localization   
 

 

 

                                                                                   - 125 -                                                 Ferreira, S.A. | 2012 

21. Barltrop, J. A.; Owen, T. C.; Cory, A. H.; Cory, J. G. 5-(3-carboxymethoxyphenyl)-2-(4,5-dimethylthiazolyl)-
3-(4-sulfophenyl)tetrazolium, inner salt (MTS) and related analogs of 3-(4,5-dimethylthiazolyl)-2,5-
diphenyltetrazolium bromide (MTT) reducing to purple water-soluble formazans As cell-viability indicators. 
Bioorg Medicinal Chem Lett 1991, 1, 611-614. 

22. Anderson, D.; Plewa, M. J. The international comet assay workshop. Mutagenesis 1998, 13, 67-73. 

23. Anderson, D.; Yu, T.-W.; McGregor, D. B. Comet assay responses as indicators of carcinogen exposure. 
Mutagenesis 1998, 13, 539-555. 

24. Collins, A. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol 
Biotechnol 2004, 26, 249-261. 

25. Tice, R. R.; Agurell, E.; Anderson, D.; Burlinson, B.; Hartmann, A.; Kobayashi, H.; Miyamae, Y.; Rojas, E.; 
Ryu, J. C.; Sasaki, Y. F. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology 
testing. Environ Mol Mutagen 2000, 35, 206-221. 

26. Collins, A. R.; Oscoz, A. A.; Brunborg, G.; Gaivão, I.; Giovannelli, L.; Kruszewski, M.; Smith, C. C.; Stetina, 
R. The comet assay: topical issues. Mutagenesis 2008, 23, 143-151. 

27. Collins, A. R.; Dobson, V. L.; Duinská, M.; Kennedy, G.; Stetina, R. The comet assay: what can it really tell 
us? Mutat Res 1997, 375, 183-193. 

28. Dandekar, P. P.; Jain, R.; Patil, S.; Dhumal, R.; Tiwari, D.; Sharma, S.; Vanage, G.; Patravale, V. 
Curcumin-loaded hydrogel nanoparticles: Application in anti-malarial therapy and toxicological evaluation. J 
Pharm Sci 2010, 99, 4992-5010. 

29. Vevers, W.; Jha, A. Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells 
in vitro. Ecotoxicology 2008, 17, 410-420. 

30. Barnes, C. A.; Elsaesser, A.; Arkusz, J.; Smok, A.; Palus, J.; Lesniak, A.; Salvati, A.; Hanrahan, J. P.; 
Jong, W. H. d.; Dziubałtowska, E., et al. Reproducible comet assay of amorphous silica nanoparticles detects 
no genotoxicity. Nano Lett 2008, 8, 3069-3074. 

31. Barillet, S.; Jugan, M. L.; Laye, M.; Leconte, Y.; Herlin-Boime, N.; Reynaud, C.; Carrière, M. In vitro 
evaluation of SiC nanoparticles impact on A549 pulmonary cells: Cyto-, genotoxicity and oxidative stress. 
Toxicol Lett 2010, 198, 324-330. 

32. Sathya, T. N.; Vardhini, N. V.; Balakrishnamurthy, P. Revolution of ‘nano’ in in-vitro genetic toxicology. J 
Cell Tissue Res 2010, 10, 2389-2396. 

33. Ng, C. T.; Li, J. J.; Bay, B. H.; Yung, L. Y. Current studies into the genotoxic effects of nanomaterials. J 
Nucleic Acids 2010, 2010,  

34. Zinchuk, V.; Zinchuk, O.; Okada, T. Quantitative colocalization analysis of multicolor confocal 
immunofluorescence microscopy images: pushing pixels to explore biological phenomena. Acta Histochem 
Cytochem 2007, 40, 101-111. 

 



 

 



 

 

 

 

 

Chapter 6  

 

Unraveling the uptake mechanism of mannan nanogel in 

bone marrow-derived macrophages  

 

Characterizing the cellular entry of nanomedicines has become central to the field of 

drug and vaccine delivery because, depending on the route of uptake and intracellular 

trafficking, their cellular fate and the resultant responses might be different. A self-

assembled mannan nanogel has been developed as a vaccination platform for antigen 

and adjuvant delivery. Mannan nanogel uptake profile by mouse bone marrow-derived 

macrophages is found to be time-, concentration- and energy-dependent, involving 

mannose receptor-mediated phagocytosis and clathrin-mediated endocytosis. The 

nanogel is also visualized in the cytosol suggesting endolysosomal escape. These results 

indicate that mannan nanogel is a promising versatile carrier for intracellular delivery of 

vaccines or therapeutic agents. 
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Introduction 

 

Nanoparticles (NPs) are suitable systems for intracellular delivery of vaccines or 

therapeutic agents, such as proteins or genes. Nanosystems physicochemical properties, 

such as size, shape, chemical composition and functionality, hydrophilicity/hydrophobicity, 

surface chemistry and charge,1-8 by affecting protein adsorption on the colloids, influence 

mechanisms involved in nanomaterial-cell interactions, endocytosis, intracellular 

trafficking and, therefore, resultant cellular responses.7, 9-11 Minor variations in NPs size 

and surface charge, or the usage of different cell lines, modified their uptake process as 

exemplified by NPs made of chitosan with high surface charge and large particle size, 

which were phagocytozed more efficiently by murine macrophages.12 In another example, 

the uptake rate, the mechanism of internalization and the concentration of internalized 

hydrogel NPs by RAW 264.7 murine macrophage cells was shown to be correlated with 

the NPs mechanical properties.13 Therefore, full characterization of the relationship 

between NPs features and their internalization mechanisms is necessary for controlled 

delivery.  

The cell uptake of nanomaterials can occur by phagocytosis and/or pinocytosis and 

their intracellular fate may vary with the cell type and/or cell phenotype and growing 

conditions.5, 6, 8, 14 Phagocytosis is a dynamin-dependent actin-based mechanism 

characteristic of specialized professional phagocytes, such as macrophages, neutrophils, 

monocytes and dendritic cells. Particles to be phagocytozed may bind the phagocyte 

surface through specific receptors, such as Fc, complement, mannose and scavenger 

receptors. The resultant phagosome and its contents undergo maturation through a series 

of fusion and fission events, which lead to the transfer of the cargo to the late 

phagosomes and ultimately lysosomes to form a phagolysosome.8, 11 In contrast, 

pinocytosis exists in almost all cell types, though each cell will have a distinct profile of 

endocytic uptake routes, such as macropinocytosis, clathrin-mediated endocytosis, 

caveolae-mediated endocytosis, or clathrin/caveolae independent endocytosis. In these 

endocytic routes, vesicles differ in their coat composition and size as well as in the fate of 

the internalized material.15 In clathrin-mediated endocytosis ligand-bound receptors are 

internalized into clathrin-coated vesicles and their final scission from the plasma 

membrane involves the GTPase dynamin. Once invaginated the clathrin coat is shed and 

the vesicle then fuses with an early or sorting endosome. The cell cytoskeleton in many 

cases then defines spatial regulation and movement of the endocytic vesicle towards the 

interior of the cells. Receptor-ligand complexes are separated by low pH, generated by 
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vacuolar proton ATPases. The fate of the ligand and receptor is then varied as some are 

transferred to trans-Golgi network, trafficked together to late endosomes and lysosomes 

for degradation, or the ligand and receptor are recycled in early and recycling 

endosomes.8, 16, 17 Caveolae consist of plasma membrane microdomains enriched in 

caveolins, cavins, cholesterol and sphingolipids.18, 19 The uptake kinetics of caveolae-

mediated endocytosis occurs at a much slower rate than that of clathrin-mediated 

endocytosis.20, 21 There is data to suggest that caveolae vesicles can translocate to the 

endoplasmic reticulum or to the Golgi complex,18, 22 enter the endosomal pathway19 or in 

some cases, bypass lysosomes.8 Caveolae-mediated endocytosis is the most prominent 

transendothelial pathway.8  

NPs may be internalized by multiple or single pathways. Cellular uptake profile of 

hydrophobically modified glycol chitosan NPs in human epithelial carcinoma (HeLa) cells 

is time- and dose-dependent, with several distinct uptake pathways involved, such as 

macropinocytosis, clathrin- and caveolae-mediated endocytosis.23 On the other hand, the 

uptake of poly(-D,L-lactide-co-glycolide) (PLGA) NPs in human arterial smooth muscle 

cells (HASMCs) is an energy dependent process, mediated by clathrin- but not by 

caveolae-mediated endocytosis.24 In another example, the uptake of non- and chitosan-

modified PLGA nanospheres by human lung adenocarcinoma (A549) cells is a time-, 

temperature-, concentration-dependent and saturable event mediated by clathrin-

mediated endocytosis.25 

We recently showed that the self-assembled amphiphilic mannan – mannan nanogel – 

has long-term stability, spherical shape, polydisperse size distribution, near neutral 

surface charge and mean hydrodynamic diameter of 50–140 nm.26 Mannan nanogel is 

being developed in our laboratory as a vaccination platform. Therefore, in this work, the 

phagocytic cell internalization kinetics and uptake mechanism(s) of fluorescein-labeled 

mannan nanogel were evaluated by flow cytometric (FACS) analysis and confocal laser 

scanning microscopy (CLSM) using several endocytic inhibitors. Intracellular trafficking 

pathway(s) were also studied by CLSM. 

 

 

Experimental 

 

Materials  

Mannan-VMA-SC16 (VMA: vinyl methacrylate, SC16: hydrophobic alkyl chain) was 

synthesized as described previously26 with 31 acrylate groups (DSVMA 31%) and 20 alkyl 
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chains (DSC16 20%) per 100 mannose residues. Resultant amphiphilic mannan is named 

MVC16-31-20. Organic and inorganic reagents of laboratory grade were purchased from 

Sigma (St Louis, Missouri, USA) and used without any further purification. All cell culture 

products were purchased from Sigma, unless otherwise specified. 

 

Preparation of self-assembled SAMSA fluorescein-labeled mannan 

nanogel 

Mannan nanogel covalently labeled with 5-((2-(and-3)-S-(acetylmercapto)succinoyl) 

amino)fluorescein (SAMSA fluorescein; Molecular Probes, Invitrogen, Carlsbad, 

California, USA) resulted from the reaction between the thiol group of SAMSA fluorescein 

with the grafted methacrylate not substituted with SC16 of MVC16-31-20, as previously 

described.26 To remove any residual unconjugated fluorescein, obtained sterile stock 

colloidal dispersion of labeled MVC16-31-20 (2 mg/mL) was repeatedly washed by 

ultrafiltration (Amicon® Ultra-4 Centrifugal Filter Units, molecular weight cut-off, 5×103; 

Millipore, Billerica, Massachusetts, USA) with sterile pyrogen-free phosphate buffered 

saline (PBS) until no fluorescence was detected in the filtrate. The degree of labeling was 

determined from the absorbance of the labeled nanogel at 495 nm recorded in V560 

spectrophotometer (JASCO, UK) and the nanogel formation was confirmed by dynamic 

light scattering (DLS; Malvern Zetasizer NANO ZS - Malvern Instruments Limited, UK), as 

was previously described.26 Fluorescence emission spectra were recorded in a Spex 

Fluorolog 3 spectrofluorimeter (Horiba Jobin Yvon IBH Ltd). 

 

Cell culture  

Female BALB/c mice (6–8 weeks old) were purchased from Charles River (Barcelona, 

Spain). Animals were kept at the animal facilities of the Institute Abel Salazar during the 

experiments. Hiding and nesting materials were provided as enrichment. Procedures 

involving mice were performed according to the European Convention for the Protection of 

Vertebrate Animals used for Experimental and Other Scientific Purposes (ETS 123) and 

86/609/EEC Directive and Portuguese rules (DL 129/92). In order to obtain bone marrow-

derived macrophages (BMDM), femurs and tibias were collected under aseptic conditions 

and flushed with Hanks’ balanced salt solution. The resulting cell suspension was 

centrifuged at 500 g and resuspended in RPMI 1640 medium supplemented with 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES; 10 mM), 10% heat-inactivated 

fetal bovine serum (FBS), penicillin (60 IU/mL), streptomycin (60 µg/mL), β-

mercaptoethanol (0.5 mM) (complete RPMI [cRPMI]), and 10% L929 cell conditioned 
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medium (LCCM). To remove fibroblasts or differentiated macrophages, cells were 

cultured, on cell culture dishes (Sarstedt, Canada), overnight at 37 ºC in a 5% CO2 

atmosphere. Then, nonadherent cells were collected with warm cRPMI, centrifuged at 500 

g, resuspended in cRPMI at a density of 5×105 cells/mL and distributed 1×106 

cells/fluorodish (WPI, UK) or 5×105 cells/well in 24-well plates (Sarstedt). Cells were 

incubated at 37 °C in a 95% humidified atmosphere containing 5% CO2. Four days after 

seeding, 10% of LCCM was added, and the medium was renewed on the seventh day. 

After ten days in culture, cells were completely differentiated into macrophages. This 

method allows for the differentiation of a homogenous primary culture of macrophages 

that retain the morphological, physiological and surface markers characteristics of these 

phagocytic cells.27-29 

 

Kinetics of mannan nanogel internalization by BMDM 

The BMDM seeded in 24-well plates (Sarstedt) were incubated at 37 °C in a 95% 

humidified atmosphere containing 5% CO2 for 0, 0.5, 1, 2, 6 and 16 h, with SAMSA 

fluorescein-labeled nanogel in cRPMI (0.01, 0.05 and 0.1 mg/mL) or only with cRPMI 

(negative control). Then, cells were washed twice with PBS and detached mechanically in 

400 µL of PBS with 10 mM of sodium azide and 1% of bovine serum albumin (FACS 

buffer). The cell suspension of each well was divided in two aliquots and transferred into 

polystyrene tubes for FACS analysis in a FACScan flow cytometer (Becton Dickinson, 

San Jose, California, USA) using the CellQuest software (Becton Dickinson) before and 

after adding 1 µL of propidium iodide (PI; 500 ng/mL) or 40 µL of trypan blue (2.5 mg/mL) 

to different aliquots. Data were collected for 20,000 live cells per sample. Before FACS 

analysis samples were kept at 4 ºC and protected from light. Dead cells were excluded 

from the analysis by PI incorporation. 

 

Mechanism of mannan nanogel uptake by BMDM  

 

Inhibitors 

Uptake mechanism and intracellular fate of the labeled mannan nanogel in BMDM was 

studied by using inhibitors at the following concentrations and pre-incubation periods for 

internalization pathway analysis: sodium azide (NaN3; 0.1% w/v) and 6-deoxyglucose (50 

mM) for 30 min;7, 24 cytochalasin D (20 μM) for 1 h;6, 30 mannan (200 μg/mL) for 30 min;31 

monodansylcadaverine (300 µM) for 1 h;32 sucrose (450 mM) for 1 h;24, 25 filipin (1 μg/mL) 
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for 30 min;7, 24, 25 brefeldin A (5 μM) for 1 h;24 and nocodazole (33 μM) for 1 h.6, 9 Control 

cells were incubated in the corresponding volume of drug diluent. 

 

FACS analysis  

To study the effect of the different inhibitors on the nanogel uptake, BMDM seeded in 

24-well plates were pre-incubated with each inhibitor in cRPMI, at the conditions 

described above, at 37 °C in a 95% humidified atmosphere containing 5% CO2. Cells 

were coincubated with each inhibitor, at the same concentration used for pre-incubation, 

together with SAMSA fluorescein-labeled nanogel (0.1 mg/mL) in cRPMI, for 1 h at 37˚C. 

BMDM were incubated with cRPMI (negative control), with labeled nanogel in cRPMI 

(positive control), or with the inhibitor in cRPMI. Then, cells were washed twice with PBS 

and mechanically detached in 600 µL PBS. The cell suspension of each well was divided 

in two aliquots that were transferred into polystyrene tubes for FACS analysis. Cells of 

one aliquot were washed in FACS buffer and immediately FACS analyzed. Cell 

autofluorescence was determined by the negative control. Dead cells were excluded by PI 

incorporation. A cell viability of 85% was arbitrarily chosen as the minimum allowable for 

use in uptake assays. Data were collected for 20,000 cells per sample. Cells of the other 

aliquot were fixed with 2% formaldehyde for 25 min at room temperature, protected from 

light. Then, cells were sequentially washed with PBS and with FACS buffer and analyzed. 

Cell autofluorescence was determined by using the negative control and data from 50,000 

cells were collected per sample. Fluorescence of cells incubated with the inhibitors was 

compared to the positive control and the extent of inhibition was calculated as follows: 

inhibitory effect (%) = 100 – mean fluorescence intensity (MFI) inhibitor sample/MFI of 

positive control × 100. 

 

Confocal Studies 

For CLSM, BMDM plated in 24-well plates were mechanically detached in cRPMI and 

seeded (5×105 cells/well) on coverslips (Sarstedt). To study the effect of different 

inhibitors on the intracellular distribution of the labeled nanogel, cells were first pretreated 

with inhibitors as described above, together with Texas Red® transferrin (100 μg/mL; 

Molecular Probes, Invitrogen) or LysoTracker® Red DND-99 (2.5 µM; Molecular Probes, 

Invitrogen) – λem 612 nm – in cRPMI for 1 h. Texas Red transferrin labels early and 

recycling endosomes and LysoTracker, a live-cell acid sensitive probe, colorless at 

physiological pH, labels late endosomes and lysosomes. The early endocytic vesicles 

have physiological pH, early endosomes pH 5.9–6 and late endosomes and lysosomes 
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pH 4.5–5.5.33 Then the labeled nanogel was added (0.1 mg/mL) and cells were incubated 

for another hour at 37 °C in a 95% humidified atmosphere containing 5% CO2. At that 

point, cells were washed twice with PBS, fixed with 2% formaldehyde for 25 min at room 

temperature, permeabilized with 0.1% Triton-100 in PBS for 5 min and incubated 

overnight at 4 ºC with 1:100 Alexa Fluor® 488 labeled anti-fluorescein/Oregon Green 

rabbit polyclonal IgG antibody (Molecular Probes, Invitrogen; λem 520 nm). This labeled 

anti-fluorescein antibody was used to amplify the detectable signal of the SAMSA 

fluorescein-labeled nanogel above the detector noise level. Cell nuclei were finally labeled 

with 4'-6-diamidino-2-phenylindole (DAPI; 120 ng/mL; λem 461 nm) for 5 min at room 

temperature. Each of the last four steps was followed by three washes with PBS. Results 

were compared with a positive control prepared as described before but without using any 

inhibitor. Control samples were prepared by using the same experimental conditions with 

each fluorophore separately for excitation cross-talk and bleed-through analysis or in the 

absence of staining to determine autofluorescence. Samples were observed with a 

confocal laser scanning microscope (Olympus BX61/FluoViewTM - FV1000). Five Z-series 

with 0.75 µm Z spacing were obtained for each treatment by using the following 

microscope settings: 3 lasers (405 nm, 488 nm and 559 nm) in the three narrow 

bandwidth emission filter, sequential acquisition and Kalman filter mode, 60× oil objective 

with numerical aperture of 1.42, 2× optical zoom, and 800×800 pixel size with four 

detectors. Detector gains were set to be constant between samples to facilitate sample 

comparison.  

 

Confocal image analysis 

The experimental design, image acquisition (as detailed above), qualitative and 

quantitative evaluation were performed following guidelines previously described for 

colocalization purposes.34-40  Fluorescence intensity measurements, qualitative evaluation 

of overlapping pixels by dye-overlay and threshold-overlap, and quantitative threshold-

based analysis – annotation and statistics – were obtained with Olympus FluoView1000 

(FV viewer v.2.0) software after removing unspecific events generated by noise and 

background. The annotation analysis provides the number of total (T), green (G), red (R), 

and colocalized (C) pixels and colocalization coefficients, such as colocalization 

coefficient in green (CG, corresponding to the ratio between C and G), colocalization 

coefficient in red (CR, corresponding to the ratio between C and R), colocalization 

coefficient in total pixels (CT, corresponding to the ratio between C and T). The statistical 

analysis of the software provides the Pearson’s correlation coefficient rp,41, 42 the overlap 
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coefficient r,42 and colocalization coefficients M1 (or Mgreen) and M2 (or Mred).
36, 42 To 

calculate the relative extent of spatial overlap of SAMSA fluorescein-labeled nanogel and 

Texas Red transferrin or LysoTracker, the correlation, overlap and colocalization 

coefficients were tested because there is not a single colocalization coefficient that fully 

describes a particular situation. Pearson’s correlation coefficient rp41, 42 uses the 

information of all pixels and calculates the degree of correlation between the intensity grey 

values of the pixels in a dual-color image and only indirectly reflect probe colocalization. 

The rp values range from 1 for two images whose fluorescence intensities are perfectly, 

linearly related, to -1 for two images whose fluorescence intensities are perfectly, but 

inversely related to one another. Low (close to zero) and negative values of rp for 

fluorescent images can be difficult to interpret and might not necessarily mean random 

localization. Even if two probes colocalize on the same cellular structures, there may be 

no reason that they should colocalize in fixed proportion to one another. Unlike rp, the 

overlap coefficient r is almost independent of signal proportionality; instead it is primarily 

sensitive to colocalization.42 Overlap coefficient r provides useful information only when 

the number of objects (pixels) in the red and green components are equal.42 If not, 

colocalization coefficients M1 and M2 should be used.42 They are proportional to the 

amount of fluorescence of the colocalizing objects in each component image, relative to 

the total fluorescence in that component;42 instead of the overlapping pixel area alone, M1 

and M2 weigh the area with the colocalized pixel intensity being in some way a hybrid 

between a pixel-based and an object-based measurement.36 The degree of colocalization 

is defined as the ratio of the integral of the intensity distribution of colocalizing pixels and 

the total intensity in the component image studied.36 

Colocalization measurements were obtained using a two-dimensional scatterplot of 

intensity ranges of red channel versus green channel where thresholds were defined 

using the controls results. The colocalization with SAMSA fluorescein-labeled nanogel 

was evaluated in “regions of interest” (ROIs) corresponding to early and recycling 

endosomes (labeled with Texas Red transferrin) or late endosomes and lysosomes 

(labeled with LysoTracker) with area greater than 12 pixels2 randomly selected in 10 cells 

per experimental condition. The fluorescence intensity measurements were performed in 

two color three-dimensional microscopic images using ROIs corresponding to cytoplasm 

of 20 cells per experimental condition. The reported values represent the mean ± standard 

deviation (S.D.) of inhibitory effect (%) = 100 - MFI for the inhibitor sample/MFI of positive 

control × 100.  
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Statistical analysis 

Statistical significance of the mean values of inhibitory effects (%) caused by different 

inhibitors, as evaluated by FACS analysis and CLSM image analysis was determined by 

Student’s two-tailed unpaired t-test (at the 95% confidence interval) using GraphPad 

Prism version 4.00 for Windows (GraphPad Software, San Diego, California, USA). 

Statistical significant differences were labeled with a single asterisk (p < 0.05), two 

asterisks (p < 0.01), and three asterisks (p < 0.001). 

 

 

Results and discussion 

 

Physical properties of SAMSA fluorescein-labeled mannan nanogel 

We initially determined if labeling with the SAMSA fluorescein had any effects on the 

physical properties of the nanogel. Using DLS colloidal dispersion of labeled nanogel in 

PBS (2 mg/mL) showed z-average equal to 168.0 ± 3.2 nm with polydispersity index (PdI) 

of 0.270 ± 0.008 and zeta potential of -11.8 ± 1.4 mV. These characteristics were similar 

to those observed for colloidal dispersion of non-labeled nanogel in PBS (2 mg/mL): z-

average equal to 154.1 ± 5.6 nm with PdI of 0.229 ± 0.007 and zeta potential of -10.9 ± 

1.4 mV. The colloidal dispersion of labeled nanogel in cRPMI (0.1 mg/mL) showed z-

average equal to 163.8 ± 2.8 nm with PdI of 0.576 ± 0.084 and zeta potential of -11.5 ± 

2.1 mV. The labeled nanogel formation was not affected by the presence of inhibitors as 

confirmed by DLS (Figure 1a).  

The UV-Vis spectrum of labeled nanogel was defined with a sharp single peak with 

maximum absorbance at 495 nm of 0.9 ± 0.05 when at 2 mg/mL in PBS and of 0.03 ± 

0.05 when at 0.1 mg/mL in cRPMI, characteristic of covalently linked fluorescein 

(according to the manufacturer). As previously reported,26 size, zeta potential and UV-Vis 

spectrum of the colloidal dispersion in PBS was stable, if stored at 4 ºC in the dark. 

SAMSA fluorescein-labeled nanogel fluorescence emission spectrum in cRPMI was not 

affected by any of the inhibitors at the concentration used in uptake inhibition analysis 

(Figure 1b). 
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Figure 1. Physical properties of SAMSA fluorescein-labeled mannan nanogel: (a) the size and zeta potential 

calculated by DLS at 37 °C (mean ± S.D., n = 5) and (b) the fluorescence emission spectra of SAMSA 

fluorescein-labeled mannan nanogel in cRPMI (0.1 mg/mL) in absence (positive control) or in presence of 

different inhibitors at the concentration used in in vitro uptake inhibition analysis. The negative control (cRPMI 

only) emission spectrum was subtracted from the spectrum obtained in each condition. 

 

Kinetics of mannan nanogel internalization by BMDM 

In order to discriminate between internalized and surface-adherent SAMSA fluorescein-

labeled mannan nanogel, samples were analyzed by FACS before and after the addition 

of trypan blue. Trypan blue is a vital dye incapable of penetrating intact cell membranes 

which is known to quench extracellular and surface-bound fluorescein fluorescence.7, 14, 43 

The MFI of BMDM incubated with labeled nanogel was not significantly different before 

and upon trypan blue addition (Table 1), indicating that the detected fluorescence was due 

to nanogel internalized by macrophages.  

Mannan nanogel uptake by BMDM was found to be time- and concentration-dependent 

(Figure 2). After an initial linear stage during the first 4 h of incubation, a trend towards 

saturation in the internalization process was observed; this is typical of endocytosis of 

many probes 7, 13, 24, 25, 44 but gives no information on the fate of the nanogel.  
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Table 1. FACS analysis of mouse BMDM internalization of SAMSA fluorescein-labeled mannan nanogel at 

three different concentrations, before and after trypan blue addition. Results represent the MFI ± S.D. of 

duplicate samples of one experiment, representative of two independent experiments 

Time (h) 0.01 mg/mL 0.05 mg/mL 0.1 mg/mL 

0 15.63 ± 1.17 15.52 ± 1.07 15.53 ± 1.17 

0.5 31.01 ± 1.03 85.40 ± 6.60 131.92 ± 14.04 

1 43.98 ± 1.61 134.14 ± 23.99 212.74 ± 3.86 

2 82.33 ± 14.18 319.69 ± 55.45 507.15 ± 22.89 

6 158.35 ± 1.53 609.42 ± 73.72 1418.32 ± 161.15 

16 298.79 ± 0.20 945.29 ± 53.38 1905.9 ± 220.4 

 after trypan blue addition 

0 14.76 ± 1.16 14.76 ± 1.01 14.65 ± 1.01 

0.5 26.42 ± 1.09 79.86 ± 8.02 132.85 ± 13.93 

1 38.08 ± 1.92 130.78 ± 22.87 210.32 ± 3.23 

2 77.18 ± 11.32 307.7 ± 34.92 449.99 ± 31.06 

6 158.90 ± 1.33 667.5 ± 82.32 1412.41 ± 157.32 

16 284.24 ± 0.60 1101.06 ± 134.15 1755.96 ± 243.92 

 

 

Figure 2. FACS analysis of mouse BMDM internalization of SAMSA fluorescein-labeled mannan nanogel at 

three different concentrations. Each point represents the MFI ± S.D. of duplicate samples of one experiment, 

representative of two independent experiments. 

 

Uptake mechanism and intracellular fate of the mannan nanogel in BMDM 

Eight inhibitory conditions were selected to examine the pathways of cellular uptake and 

intracellular trafficking of the mannan nanogel by using FACS and CSLM analysis.  

In energy depletion conditions, due to a metabolic inhibitors mixture of NaN3 and 6-

deoxyglucose,7 a 54 ± 5% reduction in the uptake of mannan nanogel detected by FACS 
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analysis (Figure 3) suggests an active process of internalization. NaN3 prevents the 

production of ATP by interfering with the glycolytic and oxidative metabolic pathways;13 in 

the inhibitory conditions used in the assay, the mannan nanogel internalization was not 

fully blocked, as it has been observed in other cases reported in the literature.13, 45, 46 A 

possible explanation for the partial blockade could lie on the presence of exogenous ATP 

and glucose in the culture medium.12, 47 The inhibitory effect of energy depletion conditions 

was confirmed by using CLSM, as a reduction of nanogel internalization was also 

observed (Figures 4 and 5). A lower inhibitory effect was nevertheless observed in the 

assay carried out in the presence of Texas Red transferrin (Figure 4).  

Cytochalasin D, a drug that disrupts F-actin filaments via actin depolymerization,6 

inhibited nanogel uptake by 43 ± 13%, as assessed by FACS analysis (Figure 3). F-actin 

has been shown to be involved in phagocytosis, macropinocytosis, and clathrin- and 

caveolae- mediated endocytosis.48 A similar inhibitory effect of cytochalasin D was 

confirmed by confocal microscopy (Figures 4 and 5).  

The mannose receptor (MR) is a cell surface receptor primarily expressed on antigen-

presenting cells (APC), namely, macrophages and dendritic cells. MR-mediated 

phagocytosis49 is an important pathway in antigen uptake for presentation in the context of 

major histocompatibility complex (MHC) class II molecules50, 51 and MHC class I 

molecules,52, 53 playing a key role in host defense and providing a link between innate and 

adaptive immunity.54 As MR is a key molecule in antigen recognition, this receptor is a 

privileged target for vaccine and drug delivery to macrophages.52, 55 Mannan nanogel 

endocytosis was significantly inhibited by competition with soluble mannan (inhibitory 

effect: 52 ± 1%, Figure 3). A similar effect was observed for soluble mannan inhibition by 

using confocal microscopy analysis (Figures 4 and 5). These results indicate that nanogel 

made of mannan targets the MR and that this receptor is involved in uptake of the 

nanogel. 

The effect of clathrin-mediated endocytosis inhibition on nanogel uptake was tested by 

using monodansylcadaverin, which blocks the formation of clathrin-coated pits.56 Inhibition 

of energy-dependent clathrin-mediated endocytosis was further tested via sucrose-

induced hypertonicity, which prevents the assembly of clathrin-coated pits.24, 25, 57 The 

uptake of the mannan nanogel in monodansylcadaverine-treated and sucrose-treated 

cells was markedly reduced, with an inhibitory effect of 75 ± 2% and 85 ± 2%, 

respectively, as determined by FACS analysis (Figure 3). A marked inhibition, however to 

a lesser extent, was also observed by using confocal microscopy (Figures 4 and 5). 

Transferrin is generally accepted as a ligand exclusively internalized via the clathrin-
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coated-pit pathway9 and monodansylcadaverin and sucrose treatment similarly reduced, 

as expected, the uptake of the Texas Red conjugated probe by 70–80% (Figure 4). 

Altogether, these results indicate that clathrin-mediated endocytosis is also an 

internalization mechanism of mannan nanogel. 

To examine clathrin-independent endocytosis, which includes caveolae-mediated 

endocytosis, cells were incubated with filipin, a cholesterol-binding drug that perturbs 

cholesterol function.24, 58, 59 Filipin did not reduce the uptake of nanogel, as could be 

detected by FACS analysis (inhibitory effect: 8 ± 3%, Figure 3). A slight inhibitory effect of 

filipin in mannan nanogel uptake was however detected by CLSM (Figures 4 and 5). 

Although we cannot exclude that mannan nanogel uptake could also occur by caveolae-

mediated endocytosis, this pathway would be a minor route of uptake for this nanogel.  

Brefeldin A interferes with intracellular vesicular transport inducing tubulation of Golgi 

complex, endosomes and lysosomes.60 Brefeldin A reduced the mannan nanogel uptake 

and intracellular trafficking in mouse BMDM. The inhibitory effect measured by FACS 

analysis corresponded to 43% (Figure 3), while it was less marked when evaluated by 

confocal image analysis (Figures 4 and 5).   

Nocodazole inhibits endosome-lysosome trafficking by interfering with the microtubule 

network causing depolymerization of microtubules.6, 61, 62 Nocadozole reduced the uptake 

of nanogel by 31 ± 3%, as measured by FACS analysis (Figure 3). A similar effect was 

observed by using CLSM (Figures 4 and 5) indicating that a dynamic microtubule network, 

which is important for vesicular transport, is necessary for mannan nanogel uptake. 

 

 

Figure 3. Uptake mechanism inhibition analysis of mannan nanogel by mouse BMDM. Results represent the 

mean of % inhibitory effect ± S.D. obtained by FACS analysis in a representative experiment performed in 

triplicate (* p < 0.05, **p < 0.01 and ***p < 0.001).  
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Figure 4. Confocal microscopy uptake and intracellular trafficking inhibition analysis of mannan nanogel in 

mouse BMDM. (a) Confocal images of a representative cell at a certain Z-stack (scale bar = 5 µm). Blue 

indicates DAPI-stained nuclei. (b) Fluorescence intensity measurements of Texas Red transferrin and SAMSA 

fluorescein-labeled nanogel present in the cytoplasm (mean of % inhibitory effect ± S. D.; n = 20; * p < 0.05, 

**p < 0.01 and ***p < 0.001) obtained by image analysis. Results are from one experiment representative of 

two independent experiments.    
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Figure 5. Confocal microscopy uptake and intracellular trafficking inhibition analysis of mannan nanogel by 

mouse BMDM. (a) Confocal images of a representative cell at a certain Z-stack (scale bar = 5 µm). Blue 

indicates DAPI-stained nuclei. (b) Fluorescence intensity measurements of LysoTracker and SAMSA 

fluorescein-labeled nanogel present in the cytoplasm (mean of % inhibitory effect ± S. D.; n = 20; * p < 0.05, 

**p < 0.01 and ***p < 0.001) obtained by image analysis. Results are from one experiment representative of 

two independent experiments.    



Chapter 6 
 

 

Ferreira, S.A. | 2012                                                       - 142 - 

The visual-based evaluation of colocalization is prone to error and bias, as the “amount 

of yellow” resulting from the superposition of one fluorescence image, pseudo-colored 

“green”, on image two, colored “red”, depends on the brightness of the merged images, 

the monitor settings, as well as the viewer’s perception. Therefore the fluorescence 

intensity was quantified by image analysis in ROIs corresponding to the cytoplasm, where 

the acquired intensity better reflects the concentration of fluoroprobes (Figures 4 and 5). 

Moreover, the colocalization was quantified by image analysis in ROIs corresponding to 

endosomes or lysosomes with area superior to 12 pixels2 randomly selected in 10 cells 

per experimental condition. This design is very important because the inclusion of 

irrelevant pixels not corresponding to the cellular structures in study may lead to 

significant mistakes in the colocalization coefficients calculated.40 

The inhibitory effect was evaluated by confocal image analysis in terms of fluorescence 

intensity of Texas Red transferrin and LysoTracker. The fluorescence intensity of Texas 

Red transferrin was drastically reduced in the presence of cytochalasin D, mannan, 

monodansylcadaverine, and sucrose and consequently early and recycling endosomes 

were impossible to isolate for colocalization evaluation (Figure 4). For the other used 

inhibitors and for the positive control, the degree of colocalization is shown in Table 2. The 

colocalization coefficients CG, CR, CT, M1 and M2 were the most suitable choices in this 

study, because the number of objects (pixels) in the red and green components was 

different. When the number of pixels carrying an intensity above the threshold t is very 

different, overlap coefficient r does not provide useful information, and colocalization 

coefficients M1 and M2 are a proper choice because they are not dependent on the 

intensity of the signals.42 Also, rp values obtained were close to zero, which might not 

necessarily mean random localization and are difficult to interpret. LysoTracker 

fluorescence was drastically reduced in the presence of cytochalasin D. Although the 

fluorescence observed in monodansylcadaverine-treated cells was not that affected, late 

endosomes and lysosomes were impossible to isolate for colocalization evaluation in both 

inhibitory conditions (Figure 5). The colocalization coefficients CG, CR, CT, M1 and M2 

indicated colocalization between green and red dyes in the positive control and in cells 

treated with each of the tested inhibitors, with the exception of sucrose (Table 2). 

Colocalization assays with endosomal and lysosomal markers (red fluorescence) 

allowed the identification of the intracellular pathways followed by the labeled nanogel 

(green fluorescence) after internalization. Nanogel was found in the early and recycling 

endosomes, in the late endosomes and lysosomes, and in the cytosol but was not 

observed in the nucleus. We hypothesize that nanogel in early endosomes, may be either 
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recycled to the surface or transported to the late endosomes, from which it may escape 

into the cytosol or end up in lysosomes. As scattered cytosolic green fluorescence could 

be observed; this might indicate endolysosomal escape. The high degree of colocalization 

of the labeled nanogel with the fluorescent endosome and lysosome markers, Texas Red 

transferrin and LysoTracker, confirms the expected transport of these particles in vesicles 

of the endolysosomal pathway. 

 

Table 2. Colocalization coefficients calculated by confocal image analysis, after mouse BMDM internalization 

of SAMSA fluorescein-labeled mannan nanogel (green), within early and recycling endosomes, labeled with 

Texas Red transferrin, or within late endosomes and lysosomes, labeled with LysoTracker Red (mean ± S. 

D., n = 10) 

 CG
a
 CR

b
 CT

c
 M1 or Mgreen 

d
 M2 or Mred

e
 

 early and recycling endosomes 

positive control 0.83 ± 0.10 0.47 ± 0.14 0.40 ± 0.10 0.79 ± 0.10 0.46 ± 0.20 

sodium azide + 
6-deoxyglucose 

0.63 ± 0.18 0.77 ± 0.10 0.47 ± 0.01 0.53 ± 0.28 0.46 ± 0.34 

filipin 0.55 ± 0.13 0.83 ± 0.21 0.56 ± 0.21 0.51 ± 0.17 0.58 ± 0.24 

brefeldin A 0.54 ± 0.17 0.54 ± 0.04 0.30 ± 0.09 0.68 ± 0.23 0.60 ± 0.22 

nocodazole 0.82 ± 0.10 0.68 ± 0.14 0.54 ± 0.15 0.74 ± 0.16 0.68 ± 0.14 

 late endosomes and lysosomes 

positive control 0.84 ± 0.13 0.65 ± 0.30 0.50 ± 0.25 0.78 ± 0.12 0.58 ± 0.29 

sodium azide + 
6-deoxyglucose 

0.80 ± 0.02 0.69 ± 0.22 0.47 ± 0.16 0.74 ± 0.20 0.63 ± 0.24 

mannan 0.86 ± 0.14 0.49 ± 0.18 0.44 ± 0.21 0.75 ± 0.21 0.41 ± 0.22 

sucrose 0.63 ± 0.12 0.38 ± 0.19 0.11 ± 0.05 0.10 ± 0.12 0.04 ± 0.08 

filipin 0.88 ± 0.11 0.51 ± 0.26 0.51 ± 0.20 0.77 ± 0.20 0.38 ± 0.20 

brefeldin A 0.65 ± 0.16 0.82 ± 0.12 0.47 ± 0.19 0.70 ± 0.08 0.77 ± 0.13 

nocodazole 0.95 ± 0.03 0.75 ± 0.16 0.75 ± 0.13 0.86 ± 0.22 0.66 ± 0.27 

a
 colocalization coefficient in green pixels, corresponding to the ratio between the number of colocalized and 

green pixels, obtained by confocal image analysis (annotation). 
b
 colocalization coefficient in red pixels, 

corresponding to the ratio between the number of colocalized and red pixels, obtained by confocal image 
analysis (annotation). 

c
 colocalization coefficient in total pixels, corresponding to the ratio between the 

number of colocalized and total pixels, obtained by confocal image analysis (annotation). 
d
 colocalization 

coefficient M1 or Mgreen, calculated as described previously,
42 

obtained by confocal image analysis (statistics). 
e
 colocalization coefficient M2 or Mred, calculated as described previously,

42
 obtained by confocal image 

analysis (statistics). 

 

Our study was performed using cell culture medium supplemented with heat-inactivated 

FBS. In this medium, the protein adsorption pattern on the nanogel might be different than 

the one encountered in a more physiological situation where, for example, the 
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complement system could be activated and promote foreign particle recognition by 

phagocytic cells. 

Taken together, the results obtained in the inhibition study reported here, suggest that 

the internalization of the used mannan nanogel is mediated by multiple cellular uptake 

mechanisms. This has significant implications for drug and vaccine delivery, as 

intracellular trafficking is largely dependent on initial pathway of cell entry. It might be 

expected that part of nanogel uptaken by macrophages will be trafficked to the lysosomes 

by MR-mediated phagocytosis and clathrin-mediated endocytosis while part of the 

nanogel may end up in the cell cytosol. As one of the envisaged applications of this 

nanomaterial concern its usage as antigen-delivery system, the cytosolic and 

endolysosomal location, might allow delivered antigens to be presented on both MHC 

class I and class II molecules. 

 

 

Conclusions 

 

Cellular uptake profile of mannan nanogel is saturable and time-, concentration- and 

energy-dependent. In vitro experiments with endocytic inhibitors suggested that distinct 

uptake pathways, such as MR-mediated phagocytosis and clathrin-mediated endocytosis 

are involved in internalization. Mannan nanogel was also visualized in the cytosol, which 

suggests a fraction of the uptaken material was able to escape from the endolysosomal 

compartments. We have previously reported that this mannan nanogel possesses tunable 

physicochemical properties and low toxicity. Altogether, this makes mannan nanogel a 

promising macromolecular carrier to be used as a vaccination platform.  

 



Unraveling the uptake mechanism of mannan nanogel in bone marrow-derived macrophages  
 

 

 

                                                                                   - 145 -                                                 Ferreira, S.A. | 2012 

References 

 

1. Chellat, F.; Merhi, Y.; Moreau, A.; Yahia, L. H. Therapeutic potential of nanoparticulate systems for 
macrophage targeting. Biomaterials 2005, 26, 7260-7275. 

2. Chavanpatil, M. D.; Khdair, A.; Panyam, J. Nanoparticles for cellular drug delivery: mechanisms and factors 
influencing delivery. J Nanosci Nanotechnol 2006, 6, 2651-2663. 

3. Dausend, J.; Musyanovych, A.; Dass, M.; Walther, P.; Schrezenmeier, H.; Landfester, K.; Mailander, V. 
Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromol Biosci 2008, 8, 

1135-1143. 

4. Jiang, W.; KimBetty, Y. S.; Rutka, J. T.; ChanWarren, C. W. Nanoparticle-mediated cellular response is 
size-dependent. Nat Nanotechnol 2008, 3, 145-150. 

5. Mailander, V.; Landfester, K. Interaction of nanoparticles with cells. Biomacromolecules 2009, 10, 2379-

2400. 

6. Zhang, L. W.; Monteiro-Riviere, N. A. Mechanism of quantum dot nanoparticle cellular uptake. Toxicol Sci 
2009, 110, 138-155. 

7. Missirlis, D.; Hubbell, J. A. In vitro uptake of amphiphilic, hydrogel nanoparticles by J774A.1 cells. J Biomed 
Mater Res, Part A 2009, 93A, 1557-1565. 

8. Sahay, G.; Alakhova, D. Y.; Kabanov, A. V. Endocytosis of nanomedicines. J Control Release 2010, 145, 

182-195. 

9. Rejman, J.; Oberle, V.; Zuhorn, I. S.; Hoekstra, D. Size-dependent internalization of particles via the 
pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 2004, 377, 159-169. 

10. Tabata, Y.; Ikada, Y. Effect of the size and surface charge of polymer microspheres on their phagocytosis 
by macrophage. Biomaterials 1988, 9, 356-362. 

11. Hillaireau, H.; Couvreur, P. Nanocarriers' entry into the cell: relevance to drug delivery. Cell Mol Life Sci 
2009, 66, 2873-2896. 

12. He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of particle size and surface charge on cellular uptake and 
biodistribution of polymeric nanoparticles. Biomaterials 2010, 31, 3657-3666. 

13. Banquy, X.; Suarez, F.; Argaw, A.; Rabanel, J.-M.; Grutter, P.; Bouchard, J.-F.; Hildgen, P.; Giasson, S. 
Effect of mechanical properties of hydrogel nanoparticles on macrophage cell uptake. Soft Matter 2009, 5, 

3984-3991. 

14. Douglas, K. L.; Piccirillo, C. A.; Tabrizian, M. Cell line-dependent internalization pathways and intracellular 
trafficking determine transfection efficiency of nanoparticle vectors. Eur J Pharm Biopharm 2008, 68, 676-687. 

15. Kumari, S.; Mg, S.; Mayor, S. Endocytosis unplugged: multiple ways to enter the cell. Cell Res 2010, 20, 

256-275. 

16. Takei, K.; Haucke, V. Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol 
2001, 11, 385-391. 

17. Rappoport, J. Z. Focusing on clathrin-mediated endocytosis. Biochem J 2008, 412, 415-423. 

18. Parton, R. G.; Simons, K. The multiple faces of caveolae. Nat Rev Mol Cell Biol 2007, 8, 185-194. 

19. Hayer, A.; Stoeber, M.; Ritz, D.; Engel, S.; Meyer, H. H.; Helenius, A. Caveolin-1 is ubiquitinated and 
targeted to intralumenal vesicles in endolysosomes for degradation. J Cell Biol 2010, 191, 615-629. 

20. Rejman, J.; Bragonzi, A.; Conese, M. Role of clathrin- and caveolae-mediated endocytosis in gene 
transfer mediated by lipo- and polyplexes. Mol Ther 2005, 12, 468-474. 

21. Gabrielson, N. P.; Pack, D. W. Efficient polyethylenimine-mediated gene delivery proceeds via a caveolar 
pathway in HeLa cells. J Control Release 2009, 136, 54-61. 

22. Pelkmans, L.; Helenius, A. Endocytosis via caveolae. Traffic 2002, 3, 311-320. 

23. Nam, H. Y.; Kwon, S. M.; Chung, H.; Lee, S.-Y.; Kwon, S.-H.; Jeon, H.; Kim, Y.; Park, J. H.; Kim, J.; Her, 
S., et al. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan 
nanoparticles. J Control Release 2009, 135, 259-267. 



Chapter 6 
 

 

Ferreira, S.A. | 2012                                                       - 146 - 

24. Panyam, J.; Zhou, W. Z.; Prabha, S.; Sahoo, S. K.; Labhasetwar, V. Rapid endo-lysosomal escape of 
poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 2002, 16, 1217-

1226. 

25. Tahara, K.; Sakai, T.; Yamamoto, H.; Takeuchi, H.; Hirashima, N.; Kawashima, Y. Improved cellular 
uptake of chitosan-modified PLGA nanospheres by A549 cells. Int J Pharm 2009, 382, 198-204. 

26. Ferreira, S. A.; Pereira, P.; Sampaio, P.; Coutinho, P. J. G.; Gama, F. M. Supramolecular assembled 
nanogel made of mannan. J Colloid Interface Sci 2011, 361, 97-108. 

27. Tushinski, R. J.; Oliver, I. T.; Guilbert, L. J.; Tynan, P. W.; Warner, J. R.; Stanley, E. R. Survival of 
mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively 
destroy. Cell 1982, 28, 71-81. 

28. Warren, M. K.; Vogel, S. N. Bone marrow-derived macrophages: development and regulation of 
differentiation markers by colony-stimulating factor and interferons. J Immunol 1985, 134, 982-989. 

29. Zhang, X.; Goncalves, R.; Mosser, D. M. The isolation and characterization of murine macrophages. Curr 
Protoc Immunol 2008, Chapter 14, Unit 14.11. 

30. Chiu, Y. L.; Ho, Y. C.; Chen, Y. M.; Peng, S. F.; Ke, C. J.; Chen, K. J.; Mi, F. L.; Sung, H. W. The 
characteristics, cellular uptake and intracellular trafficking of nanoparticles made of hydrophobically-modified 
chitosan. J Control Release 2010, 146, 152-159. 

31. Hiltbold, E. M.; Vlad, A. M.; Ciborowski, P.; Watkins, S. C.; Finn, O. J. The mechanism of 
unresponsiveness to circulating tumor antigen MUC1 Is a block in intracellular sorting and processing by 
dendritic cells. J Immunol 2000, 165, 3730-3741. 

32. Kapur, N.; Thakral, D.; Durgapal, H.; Panda, S. K. Hepatitis E virus enters liver cells through receptor-
dependent clathrin-mediated endocytosis. J Viral Hepatitis 2011, no-no. 

33. Mukherjee, S.; Ghosh, R. N.; Maxfield, F. R. Endocytosis. Physiol Rev 1997, 77, 759-803. 

34. Costes, S. V.; Daelemans, D.; Cho, E. H.; Dobbin, Z.; Pavlakis, G.; Lockett, S. Automatic and quantitative 
measurement of protein-protein colocalization in live cells. Biophys J 2004, 86, 3993-4003. 

35. Bolte, S.; Cordelieres, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J 
Microsc 2006, 224, 213-232. 

36. Oheim, M.; Li, D., Quantitative colocalisation imaging: concepts, measurements, and pitfalls. In Imaging 
Cellular and Molecular Biological Functions, Shorte, S. L.; Frischknecht, F., Eds. Springer Berlin Heidelberg, 
2007; pp 117-155. 

37. Zinchuk, V.; Zinchuk, O.; Okada, T. Quantitative colocalization analysis of multicolor confocal 
immunofluorescence microscopy images: pushing pixels to explore biological phenomena. Acta Histochem 
Cytochem 2007, 40, 101-111. 

38. Scriven, D. R. L.; Lynch, R. M.; Moore, E. D. W. Image acquisition for colocalization using optical 
microscopy. Am J Physiol - Cell Physiol 2008, 294, C1119-C1122. 

39. Zinchuk, V.; Zinchuk, O. Quantitative colocalization analysis of confocal fluorescence microscopy images. 
Curr Protoc Cell Biol 2008, Ch. 4, Unit 4.19. 

40. Dunn, K. W.; Kamocka, M. M.; McDonald, J. H. A practical guide to evaluating colocalization in biological 
microscopy. Am J Physiol - Cell Physiol 2011, 300, C723-742. 

41. Manders, E. M.; Stap, J.; Brakenhoff, G. J.; van Driel, R.; Aten, J. A. Dynamics of three-dimensional 
replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. J Cell 
Sci 1992, 103, 857-862. 

42. Manders, E. M.; Verbeek, F. J.; Aten, J. A. Measurement of co-localization of objects in dual-colour 
confocal images. J Microsc 1993, 169, 375–382. 

43. Huang, M.; Khor, E.; Lim, L.-Y. Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of 
molecular weight and degree of deacetylation. Pharm Res 2004, 21, 344-353. 

44. Lunov, O.; Zablotskii, V.; Syrovets, T.; Rocker, C.; Tron, K.; Nienhaus, G. U.; Simmet, T. Modeling 
receptor-mediated endocytosis of polymer-functionalized iron oxide nanoparticles by human macrophages. 
Biomaterials 2010, 32, 547-555. 

45. Kakizawa, Y.; Furukawa, S.; Kataoka, K. Block copolymer-coated calcium phosphate nanoparticles 
sensing intracellular environment for oligodeoxynucleotide and siRNA delivery. J Control Release 2004, 97, 

345-356. 



Unraveling the uptake mechanism of mannan nanogel in bone marrow-derived macrophages  
 

 

 

                                                                                   - 147 -                                                 Ferreira, S.A. | 2012 

46. Liu, Y.; Sun, J.; Cao, W.; Yang, J.; Lian, H.; Li, X.; Sun, Y.; Wang, Y.; Wang, S.; He, Z. Dual targeting 
folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int J Pharm 2011, 421, 160-169. 

47. Gratton, S. E. A.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; DeSimone, J. M. 
The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci 2008, 105, 11613-11618. 

48. Engqvist-Goldstein, A. E.; Drubin, D. G. Actin assembly and endocytosis: from yeast to mammals. Annu 
Rev Cell Dev Biol 2003, 19, 287-332. 

49. Ezekowitz, R. A.; Sastry, K.; Bailly, P.; Warner, A. Molecular characterization of the human macrophage 
mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of 
yeasts in Cos-1 cells. J Exp Med 1990, 172, 1785-1794. 

50. Engering, A. J.; Cella, M.; Fluitsma, D.; Brockhaus, M.; Hoefsmit, E. C. M.; Lanzavecchia, A.; Pieters, J. 
The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic 
cells. Eur J Immunol 1997, 27, 2417-2425. 

51. Tan, M. C. A. A.; Mommaas, A. M.; Drijfhout, J. W.; Jordens, R.; Onderwater, J. J. M.; Verwoerd, D.; 
Mulder, A. A.; van der Heiden, A. N.; Scheidegger, D.; Oomen, L. C. J. M., et al. Mannose receptor-mediated 
uptake of antigens strongly enhances HLA class II-restricted antigen presentation by cultured dendritic cells. 
Eur J Immunol 1997, 27, 2426-2435. 

52. Apostolopoulos, V.; Barnes, N.; Pietersz, G. A.; McKenzie, I. F. C. Ex vivo targeting of the macrophage 
mannose receptor generates anti-tumor CTL responses. Vaccine 2000, 18, 3174-3184. 

53. Apostolopoulos, V.; Pietersz, G. A.; Gordon, S.; Martinez-Pomares, L.; McKenzie, I. F. C. Aldehyde-
mannan antigen complexes target the MHC class I antigen-presentation pathway. Eur J Immunol 2000, 30, 

1714-1723. 

54. Apostolopoulos, V.; McKenzie, I. F. Role of the mannose receptor in the immune response. Curr Mol Med 
2001, 1, 469-474. 

55. Avrameas, A.; McIlroy, D.; Hosmalin, A.; Autran, B.; Debre, P.; Monsigny, M.; Roche, A. C.; Midoux, P. 
Expression of a mannose/fucose membrane lectin on human dendritic cells. Eur J Immunol 1996, 26, 394-

400. 

56. Goldberg, D. S.; Ghandehari, H.; Swaan, P. W. Cellular entry of G3.5 poly (amido amine) dendrimers by 
clathrin- and dynamin-dependent endocytosis promotes tight junctional opening in intestinal epithelia. Pharm 
Res 2010, 27, 1547-1557. 

57. Heuser, J. E.; Anderson, R. G. Hypertonic media inhibit receptor-mediated endocytosis by blocking 
clathrin-coated pit formation. J Cell Biol 1989, 108, 389-400. 

58. Schnitzer, J. E.; Oh, P.; Pinney, E.; Allard, J. Filipin-sensitive caveolae-mediated transport in endothelium: 
reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol 
1994, 127, 1217-1232. 

59. Sandvig, K.; Torgersen, M. L.; Raa, H. A.; van Deurs, B. Clathrin-independent endocytosis: from 
nonexisting to an extreme degree of complexity. Histochem Cell Biol 2008, 129, 267-276. 

60. Wagner, M.; Rajasekaran, A. K.; Hanzel, D. K.; Mayor, S.; Rodriguez-Boulan, E. Brefeldin A causes 
structural and functional alterations of the trans-Golgi network of MDCK cells. J Cell Sci 1994, 107 (Pt 4), 933-

943. 

61. Peterson, J. R.; Mitchison, T. J. Small molecules, big impact: a history of chemical inhibitors and the 
cytoskeleton. Chem Biol 2002, 9, 1275-1285. 

62. Watson, P.; Jones, A. T.; Stephens, D. J. Intracellular trafficking pathways and drug delivery: fluorescence 
imaging of living and fixed cells. Adv Drug Delivery Rev 2005, 57, 43-61. 

 
 



 

 



 

 

 

 

 

Chapter 7 

 

Biocompatibility of mannan nanogel – safe interaction 

with plasma proteins  

 

Self-assembled mannan nanogels are designed to provide a therapeutic or vaccine 

delivery platform based on the bioactive properties of mannan to target mannose receptor 

expressed on the surface of antigen-presenting cells, combined with the performance of 

nanogels as carriers of biologically active agents. 

Proteins in the corona around mannan nanogel formed in human plasma were identified 

by mass spectrometry after size exclusion chromatography or centrifugation followed by 

sodium dodecyl sulphate polyacrylamide gel electrophoresis. Structural changes and time 

dependent binding of human apolipoprotein A-I (apoA-I) and human serum albumin (HSA) 

to mannan nanogel were studied using intrinsic tryptophan fluorescence and circular 

dichroism spectroscopy. The mannan nanogel effect on blood coagulation and fibrillation 

of Alzheimer’s disease-associated amyloid β peptide and haemodialysis-associated 

amyloidosis β2 microglobulin was evaluated using thrombin generation assay or thioflavin 

T fluorescence assay, respectively.  

The protein corona around mannan nanogel is formed through a slow process, is quite 

specific comprising apolipoproteins B-100, A-I and E and HSA, evolves over time and the 

equilibrium is reached after hours to days. Structural changes and time dependent binding 

of apoA-I and HSA to mannan nanogel are minor. The mannan nanogel does not affect 

blood coagulation and retards the fibril formation.  

Mannan nanogel has a high biosafety and biocompatibility, which is mandatory for 

nanomaterials to be used in biomedical applications. Our research provides a molecular 

approach to evaluate the safety aspects of nanomaterials, which is of general concern in 

society and science.  

 

 

Adapted from: Biochim Biophys Acta 2012 (accepted)  
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Introduction 

 

Nanometer-sized polymeric hydrogels, i.e., nanogels combine favorable and 

exceptional properties, such as flexible size in the nanometer range, tunable chemical and 

physical structures, large surface areas for multivalent conjugation, high water content, 

and biocompatibility.1, 2 Nanogels represent a promising class of delivery devices for 

biologically active agents because of their loading capacity, their stability, as well as their 

responsiveness to environmental factors.1 

A self-assembled mannan nanogel has been designed and characterized in our group 

as a potential multifunctional nanosized device for biomedical applications.3 The mannan 

nanogel is spherical and polydisperse with a mean hydrodynamic diameter between 50–

140 nm and has a slightly negative surface charge.3  

Mannose receptor, expressed in the surface of antigen-presenting cells,4-7 was 

previously shown to take part in host defense, providing a linkage between innate and 

adaptive immunity.7-10 The choice of mannan as the main component of the nanogel aims 

to take advantage of the association of the bioactive properties of mannan with the 

performance of nanogels as carriers of biologically active agents. The mannan nanogel is 

thus suggested as a possible tool for vaccine formulations, acting as an adjuvant suitable 

to induce a protective and long-lasting immune response, or as a targeted therapeutic 

delivery system to be used for the treatment of macrophage associated pathologies.   

Nanoparticles, including nanogels, will interact with proteins in a biological environment 

creating an outer layer around the particle known as the protein corona.11, 12 The proteins 

are the most studied substances in the corona but it can include other biomolecules, for 

example lipids.13 The composition and surface chemistry of a specific nanoparticle will 

dictate the extent and specificity of protein binding.12 Surface charge, hydrophobicity, 

particle size, morphology, shape and surface curvature of nanoparticles affect what 

proteins bind to the nanoparticle.11, 12, 14-20 The composition of the protein corona on a 

given nanoparticle, at a given time, will depend on the protein concentrations in the 

physiological fluid and the on- and off-rates for each protein.14 Thus the protein corona, 

the biological identity of the nanoparticle, will change with time20-24 and with environmental 

changes;24, 25 for example, when nanoparticles travel from blood to inside cells.25 The 

protein corona will be important for the biocompatibility and biosafety. Proteins on the 

nanoparticle surface can interact with blood proteins and cell receptors, and consequently 

affect uptake and intracellular fate,24, 26-32 biodistribution of the nanomaterials throughout 

the body, toxicity and/or efficacy.14, 15, 33-35  
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When proteins bind to nanoparticles a structural change in the protein often occurs.16, 36 

It has been proposed that these structural changes, in addition to the protein composition 

in the corona, may lead to changed biological functions and consequently be important for 

evaluating the biosafety of nanoparticles.14, 30, 36 Recent reports describe how changes in 

the corona can mediate the biological impact of the nanoparticles. Fibrinogen bound to 

poly(acrylic acid)-coated gold nanoparticles undergo a structural change that can facilitate 

interaction and activation of MAC-1 receptor pathway on macrophage-like cells and 

subsequent inflammation response.37 Enzyme activity can be enhanced and stabilized 

over time when bound to nanoparticles.38 The opposite is also true as trypsin immobilized 

on silica and polystyrene nanospheres,39 or lysozyme and α-chymotrypsin40 bound to gold 

nanoparticles experienced a large structural change and the enzymes lost their activity. 

On most studied spherical particles, apolipoproteins are identified in the corona formed in 

human blood plasma.11 They suffered a structural change after binding to polystyrene 

particles.41 Apolipoproteins are central in the fat metabolism and uptake of apolipoprotein 

binding polystyrene particles through a feeding web could cause severe metabolic and 

behavioral disturbances in fish.42 

Proteins important for the initiation and regulation in the coagulation cascade have been 

identified in the corona from polystyrene,20 citrate-capped gold,24 and silica 

nanoparticles.25 Recent results in our laboratory have shown that amine-modified 

polystyrene nanoparticles inhibited coagulation by specific interactions with two 

coagulation factors and that in opposite carboxyl-modified polystyrene nanoparticles 

activated the coagulation.43 It is highly relevant to test particle destined to circulate in the 

body for its effect on the coagulation cascade because disorders of coagulation can lead 

to an increased risk of bleeding (hemorrhage) or obstructive clotting (thrombosis). The 

fluorometric thrombin generation assay is proposed as a good method to evaluate the 

procoagulant activity of nanomaterials in human plasma and has been used to study the 

procoagulation effects caused by several nanoparticles.44 

Protein aggregation can lead to major disturbances of cellular processes and is 

associated with several diseases. Proteins may under certain conditions and as a function 

of time give up their natively folded state and form amyloid fibrils.45, 46 Human amyloid 

diseases involve self-assembly of soluble proteins into large insoluble fibrils through 

nucleation-dependent assembly, often via the formation of oligomeric structures that 

possess toxic properties.47, 48 The fibrillation of amyloid proteins and peptides as 

Alzheimer’s disease-associated amyloid β peptide (Aβ(M1-40)) found in brain lesions and 

haemodialysis-associated amyloidosis β2 microglobulin (β2m), are well studied. 
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Nanomaterials,46 such as nanogel formed by self-aggregation of cholesterol-bearing 

pullulan with molecular chaperone-like activity,49 and N-isopropylacrylamide:N-tert-

butylacrylacrylamide (NIPAM:BAM) nanoparticles,50 have been linked to Aβ fibrillation 

retardation. In contrast, NIPAM:BAM nanoparticles caused acceleration of β2m 

fibrillation.51 Also, at constant Aβ(M1-40) concentration, the fibrillation process was 

accelerated by amine-modified polystyrene nanoparticles at low concentration, while at 

high nanoparticle concentration, the fibrillation process was retarded.52  

In the present work, the protein corona around mannan nanogel in human plasma was 

characterized to evaluate its biosafety and biocompatibility from a molecular perspective. 

Proteins in the corona were identified by mass spectrometry after gel filtration using size 

exclusion chromatography (SEC) or centrifugation followed by sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE). Time dependence and structural 

changes of human apolipoprotein A-I (apoA-I) and human serum albumin (HSA) binding 

to mannan nanogel were studied using intrinsic tryptophan fluorescence and circular 

dichroism (CD) spectroscopy. The mannan nanogel effect on blood coagulation was 

evaluated by fluorometric thrombin generation assay. The role of mannan nanogel in 

protein fibrillation was evaluated by continuous thioflavin T (ThT) fluorescence assay 

using both Aβ(M1-40) and β2m. 

 

 

Experimental 

 

Materials  

Mannan-VMA-SC16 (VMA: vinyl methacrylate, SC16: hydrophobic alkyl chain) was 

synthesized as described previously3 with 31 acrylate groups (DSVMA 31%) and 20 alkyl 

chains (DSC16 20%) per 100 mannose residues. Resultant amphiphilic mannan is named 

as MVC16-31-20. With DSC16/DSVMA equal to 65%, it has critical aggregation concentration 

(cac) or critical micelle concentration (cmc) equal to 0.01 mg/mL.3 Human donors plasma 

from lipidemic patients was obtained from the local hospital blood bank and preserved in 

aliquots at −80 °C. Before each experiment aliquots were defrosted and centrifuged for 2 

min at 14927 g (Biofuge 13, Heraeus) and immediately used after rejecting the top lipid 

layer. ApoA-I was purified from human plasma as previously described.53 HSA (Sigma, 

A3782, fatty acid free, 99% pure) was purified from dimer and contaminating proteins 

using gel filtration on a 200 × 3.4 cm Sephadex G50 column in 50 mM ammonium acetate 
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buffer, pH 6.5. Fractions containing HSA monomer were pooled, lyophilized and desalted 

by gel filtration on a G25 Sephadex superfine column in Millipore water. ApoA-I and HSA 

stock solutions (10 mg/mL) were dialyzed for 5 days against frequently changed 

phosphate buffered saline, pH 7.5 (PBS) at 4 ºC using twice boiled in distilled water 

regenerated cellulose tubular membranes, with 6,000–8,000 nominal molecular weight 

cut-off (Membrane Filtration Products). Phospholipids were obtained from Avanti Polar 

Lipids, Inc. (Alabaster, AL, USA). Recombinant tissue factor was obtained from Dade 

Innovin (Marburg, Germany). The thrombin fluorogenic substrate I-1140 (Z-Gly-Gly-Arg-7-

amino-4-methylcoumarin∙HCl) was purchased from Bachem (Bubendorf, Switzerland). 

Aβ(M1-40) was expressed in E. coli and purified as previously described.54 β2m was 

expressed in E. coli and purified as previously described.51 Organic and inorganic 

reagents of laboratory grade were purchased from Sigma-Aldrich and used without any 

further purification, unless otherwise stated. Water was purified with a Milli-Q system 

(Millipore Corporation). The NIPAM coated gold particles was a kind gift from Colloidal 

Chemistry Group from Vigo University, Spain. 

 

Mannan nanogel preparation  

Colloidal dispersions of amphiphilic mannan were prepared stirring the lyophilized 

MVC16-31-20 in PBS, for 3–5 days at 50 °C, followed by filtration (Orange; pore size 0.22 

μm). The nanogel formation was confirmed by dynamic light scattering (DLS; Malvern 

Zetasizer NANO ZS – Malvern Instruments Limited, UK) as previously described.3 The 

colloidal dispersion of nanogel (2 mg/mL) showed z-average equal to 154.1 ± 5.625 nm 

and polydispersity index (PdI) of 0.229 ± 0.007.  

 

Gel filtration of mannan nanogel and plasma proteins  

Plasma (250 µL) was incubated with mannan nanogel (800 µL at 2 mg/mL) or with PBS 

(800 µL; control) stirring for 24 h at 37 °C. Samples were separated by SEC on a 100 × 1 

cm Sephacryl 1000 column. The absorbance of all fractions was recorded at 280 nm in 

UV-1800 spectrophotometer (SHIMADZU UV). All fractions resultant of SEC separation of 

nanogel alone had similar absorbance to that obtained with the PBS at 280 nm. Individual 

fractions from 22 to 37 pooled from four different experiments were precipitated with 

trichloroacetic acid 10% and froze at −20 °C. Samples were centrifuged 15 min at 14927 g 

(Heraeus Kendro Biofuge 13) and the pellet was washed with ice cold acetone. Pellets 

were resuspended in 5 µL of PBS and proteins were desorbed from the nanogel by 

adding 10 µL of sodium dodecyl sulfate (SDS) loading buffer and incubated for 5 min at 95 
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°C. Samples were separated by SDS-PAGE, with resolving gel 15% and stacking gel 4%. 

As a control human plasma used in this study was also directly separated by SDS-PAGE, 

with resolving gel 12% and stacking gel 4%. Each gel run included one lane of a 

molecular weight ladder standard, PageRuler Prestained Protein Ladder (Fermentas). 

Gels were coomassie stained.  

 

Identification of corona proteins using centrifugation and mass 

spectrometry  

Colloidal dispersions of mannan nanogel in PBS (100 µL; 0, 0.1, 0.25, 0.5, 0.75, 1 or 2 

mg/mL) were incubated stirring with plasma or PBS (100 µL) for 1 and 24 hours at 37 °C. 

Colloidal dispersions of mannan nanogel in PBS (100 µL; 2 mg/mL) were incubated 

stirring with increasing amount of plasma (50 µL, 100 µL, 200 µL, 400 µL or 800 µL; in a 

fixed final volume), for 1 and 24 h at 37 °C. Samples were centrifuged 15 min at 19873 g 

(Heraeus Kendro Biofuge 15) and the pellet was washed twice with 500 µL PBS changing 

the vial after each washing step. Samples were separated by SDS-PAGE and coomassie 

blue stained as described above. Each experiment was performed twice. Gels were 

preserved in 1% acetic acid in water at 4 °C for mass spectrometry. Bands were excised 

from the gel, reduced, alkylated, and digested with trypsin (Sequencing Grade Promega, 

Madison, Wisconsin), and the resulting peptide mixtures were analyzed by MALDI-TOF 

mass spectrometry using a 4700 Proteomics Analyzer (Applied Biosystems, 

Massachusets, USA) mass spectrometer in positive reflector mode. Both MS and tandem 

MS (MS/MS) spectra were analyzed by Matrix science Mascot software to identify tryptic 

peptide sequences. 

 

Circular dichroism spectroscopy  

ApoA-I or HSA were incubated stirring at 37 °C in the absence and in the presence of 

the mannan nanogel at various concentrations in PBS. CD measurements were carried 

out using a JASCO J-815 spectropolarimeter (JASCO, Easton, Maryland, USA) with a 

Peltier type thermostated cell holder. Far-UV CD spectra (190–260 nm) were recorded at 

37 °C in continuous mode with a scan rate of 50 nm/min and a digital integration time of 8 

s using 0.1 cm quartz cuvettes with a Teflon stopper. Three spectra were accumulated 

and averaged for each sample. The average spectra for a blank (colloidal dispersion of 

mannan nanogel or buffer) were subtracted from the spectrum of each protein sample. 

The conformation of protein in the absence and in the presence of the nanogel was 

estimated from CD spectra. This experiment was performed at least twice. 
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Intrinsic tryptophan fluorescence  

ApoA-I or HSA were incubated stirring at 37 °C in the absence and the presence of the 

mannan nanogel at various concentrations in PBS. Fluorescence measurements were 

performed on a luminescence spectrometer LS 50B (PerkinElmer) with a cuvette holder 

thermostated at 37 °C. Fluorescence emission spectra (310–460 nm) were recorded at an 

excitation wavelength of 290 nm with a scan rate of 100 nm/min. Three spectra were 

accumulated and averaged for each sample. Reported average spectra are those after 

the subtraction of the spectrum for a blank (colloidal dispersion of mannan nanogel or 

buffer) from the spectrum of each protein sample. Also fluorescence emission spectra of a 

colloidal dispersion of mannan nanogel (0.6 mg/mL) with ApoA-I or HSA (0.1 mg/mL) 

were recorded over time at 37 °C. These experiments were performed at least twice. 

 

Isothermal titration calorimetry 

Isothermal titration calorimetry (ITC) experiments were performed using a VP-ITC 

MicroCalorimeter (Microcal, Northhampton, Massachusets, USA). HSA was titrated at 37 

°C from a 5 mg/mL (75.76 μM) or 10 mg/mL (151.52 μM) stock solutions, in the syringe, 

into the nanogel colloidal dispersion at 2 mg/mL (2.31 μM), in the reaction cell (1.4 mL). 

The molar concentration of nanogel is calculated by assuming a density close to 1 g/mL 

when nanoparticles are swollen and spherical. Before the measurements were performed, 

the nanogel colloidal dispersion and HSA solution were dialyzed against the same solvent 

– 10 mM (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)/NaOH buffer, pH 

7.5 with 150 mM NaCl – in order to have the same pH in both samples. Different 

combinations of HSA concentration and injection sizes were tested in separate 

experiments. To exclude background, HSA was injected in buffer and nanogel was 

injected in buffer as control experiments. The nanogel formation was confirmed by DLS. A 

colloidal dispersion of nanogel (2 mg/mL) in 10 mM HEPES/NaOH buffer, pH 7.5 with 150 

mM NaCl showed z-average equal to 145.1 ± 2.057 nm and PdI of 0.207 ± 0.011. 

 

Thrombin generation assay  

The amount of thrombin formed in plasma/mannan nanogel samples were monitored 

using the thrombin generation assay as previously described55 with the following 

modifications. Natural phospholipids, 20-20-60 phosphatidylserine-

phosphatidylethanolamine-phosphatidylcholine (PS-PE-PC), were mixed and prepared. 

Citrate platelet poor plasma (40 µL) was preincubated with 40 µL of HEPES buffered 

saline (HBS, 10 mM HEPES, 150 mM NaCl, pH 7.4) or mannan nanogel (final 
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concentration of 1 mg/mL) at 37 °C for 15 min. Fluorogenic substrate (Z-Gly-Gly-Arg-7-

amino-4-methylcoumarin∙HCl; 20 µL) was added to samples and coagulation was initiated 

with 20 µL of phospholipids/tissue factor/CaCl2 mixture in a final volume of 120 µL. All 

reagents were diluted in HBSBSA (HBS buffer supplemented with 5 mg/mL of bovine 

serum albumin (BSA)) and final concentrations were approximately 1.17 pM tissue factor, 

4.2 µM phospholipids, 300 µM fluorogenic substrate and 16 mM CaCl2. Fluorescence 

measurements over time were taken in black flat bottom 96-well plates (Nalge Nunc 

International, Rochester, New York, USA) in a plate Tecan infinite 200 fluorometer 

equipped with a 360 nm excitation/460 nm emission filter set (Mölndal, Sweden) and 

Magellan software (Gröedig, Austria). 

 

Thioflavin T fluorescence assay  

Peptide Aβ(M1-40) samples in 20 mM sodium phosphate buffer pH 7.4, 200 μM 

ethylenediaminetetraacetic acid (EDTA), 0.02% NaN3 or protein β2m samples in 20 mM 

sodium phosphate buffer pH 2.5, 50 mM NaCl, 0.02% NaN3, were pipetted into wells of a 

96-well half-area plate of black polystyrene with a clear bottom and polyethylene glycol 

coating (Corning 3881), 50 µL per well, which contained either 50 µL of respective buffer 

or 50 µL of mannan nanogel in respective buffer, resulting in final 10 μM Aβ(M1-40) or 40 

μM β2m concentrations and final nanogel concentrations between 0.001 mg/mL and 0.9 

mg/mL. The nanogel size was not affected in the buffers used as confirmed by DLS. All 

samples were supplemented with 20 µM ThT. Plate was sealed with a plastic film 

(Corning 3095). Fibrillation of Aβ(M1-40) and of β2m at 37 °C was monitored by the 

temporal development of ThT binding in the absence and in the presence of mannan 

nanogel at 0.001–0.9 mg/mL. The experiment was initiated by placing the 96-well plate at 

37 °C and shaking at 100 rpm in a plate reader (Fluostar Omega, BMGLabtech, 

Offenburg, Germany). The ThT fluorescence was measured through the bottom of the 

plate every 6 min (with excitation filter 440 nm and emission filter 480 nm) with continuous 

shaking at 100 rpm between reads. The ThT fluorescence was followed for two different 

96-well plates (one plate with 8 samples for Aβ(M1-40) and β2m in pentaplicate; and 

another plate with 8 samples for Aβ(M1-40) and β2m in hexaplicate) yielding in total 11 

kinetic traces per sample. Controls ran with only nanogel with ThT showed that the 

nanogel did not interfere with the assay. The dye selectively binds to amyloid fibrils with 

an accompanying increase in fluorescence intensity.56, 57 Interaction of amyloid fibrils and 

protofibrils with ThT causes a red shift in its excitation spectrum,58 and ThT fluorescence 

is therefore a measure of fibrillogenesis. The kinetics aggregation data have a sigmoidal 
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appearance and exhibits characteristics of a typical nucleation-dependent polymerization 

and growth process. The time course of fibrillogenesis includes a lag phase during which 

the concentration of ThT-positive aggregates is too low to be detected followed by a rapid 

exponential growth (elongation) of fibrils.59, 60 

 

 

Results and discussion 

 

Apolipoprotein corona around mannan nanogel 

Samples of mannan nanogel incubated with human plasma for 24 h at 37 °C were 

separated by SEC. Two distinct peaks are seen in the elution profile (Figure 1a upper 

panel). The major peak that elutes at fraction 71 is also found in SEC of plasma only and 

corresponds to the elution of unbound proteins. A minor peak elutes at around fraction 26. 

This peak is not seen in experiments with plasma only and likely corresponds to mannan 

nanogel associated with plasma proteins. In order to characterize the proteins associated 

with the nanogel, individual fractions 22 to 37 from four different experiments were pooled, 

precipitated with trichloroacetic acid and the proteins visualized by coomassie blue after 

separation by SDS-PAGE (Figure 1a middle panel). Several proteins are found in the 

precipitated fractions. In control experiments without mannan nanogel no proteins are 

found in fractions 22 to 37 (Figure 1a lower panel), which strongly indicates that these 

proteins are associated and co-elute with the nanogel. The protein profile of human 

plasma is shown in Figure 1d, and clearly it is different from the profile of plasma proteins 

associated with mannan nanogel. One protein with a molecular weight around 68 kDa is 

seen in all fractions when nanogel is added. This is likely to be HSA, which is the most 

prominent protein in plasma (about 35 mg/mL). The high concentration of HSA means that 

even if it binds to the nanogel with low affinity it is likely to co-elute and continuously 

detach from the nanogel over the elution time.  

Another common way to separate particles with bound proteins from unbound proteins 

is by centrifugation. The mannan nanogel was mixed with human plasma and incubated 1 

h at 37 °C. The mixture was centrifuged, the pellets washed and bound proteins dissolved 

in buffer with SDS and separated by SDS-PAGE (Figure 1b). Several proteins are co-

pelleted with the nanogel indicating that they are bound to the nanogel in plasma. Longer 

time of incubation, higher nanoparticle concentrations, or higher concentration of plasma 

produced larger pellets during centrifugation experiments. No pelleted proteins were seen 

in experiments without nanogel (data not shown). Nanogel in buffer will not pellet at the 
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same centrifugation speed showing that the density and/or aggregation properties of the 

mannan nanogel are changed after plasma proteins have bound. To identify the bound 

proteins, the five major protein bands were cut out from a similar SDS-PAGE, the proteins 

digested with trypsin and the peptides subjected to mass spectrometry. The five major 

proteins after 1 h of incubation are identified as apolipoproteins B-100, A-I and E, and 

HSA (Figure 1b). One major protein band with an apparent molecular weight of 55 kDa is 

unidentified. This is a comparably simple protein corona. Most studied nanoparticles have 

a much more complex protein corona with a wide variety of proteins. One particle, the 

NIPAM:BAM copolymer, has a protein corona with mainly apolipoproteins, but without B-

100.11, 12 It would be interesting to compare the influence on the biocompatibility of the 

corona for these two materials with other nanoparticles. 

A comparison of the bound proteins isolated by SEC and centrifugation, after incubation 

for 1 or 24 h, show several similarities but also differences. The five major proteins are 

present in all conditions but the ratios between the proteins are different. In the 

centrifugation experiments, apolipoproteins B-100 and A-I are the dominating proteins but 

after 24 h the ratio between HSA and apolipoproteins is larger than after 1 h of incubation 

(Figure 1b, c). This change in ratios is more pronounced in SEC in which mannan nanogel 

also was incubated for 24 h in plasma before separation. In SEC experiments there is an 

extra major protein band around 50 kDa. This protein band also appears in centrifugation 

after 24 h of incubation but in much smaller amounts. These differences in the corona 

between 1 and 24 h indicate that the corona is formed through a slow process and that 

equilibrium is reached only after a long time. A time dependent corona has been observed 

for sodium citrate stabilized gold nanoparticles.22, 24 It was also shown that cell uptake of 

particles was different depending on the time particles were incubated in media before 

adding to the cells.61 Consequently, time may be an important factor for how mannan 

nanogel interacts with the surrounding fluids and tissues after administration into the body. 
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Figure 1. Protein corona around mannan nanogel. (a) Colloidal dispersion of mannan nanogel in PBS 

incubated with human plasma for 24 h at 37 °C or pure plasma as control were separated by size exclusion 
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chromatography: average absorbance at 280 nm of collected fractions of loaded human plasma in the 

absence (open circles) or in the presence (closed circles) of nanogel (upper panel); coomassie stained gels of 

plasma proteins associated with the nanogel (middle panel) and control with only plasma (lower panel), within 

individual fractions 22 to 37 pooled from four different experiments, precipitated with trichloroacetic acid. 

Coomassie stained gels of plasma proteins co-pelleted with mannan nanogel after (b) 1 h and (c) 24 h of 

incubation stirring at 37 °C of constant amount of mannan nanogel and increasing amount of plasma from left 

to right, in a fixed final volume. (d) Protein profile of the human plasma used in this study. Coomassie stained 

gel of proteins in 0.5 μL (middle lane) or 1 μL (right lane) of plasma. 

 

Structural consequences of apoA-I and HSA binding to mannan nanogel 

Protein binding to nanoparticles is often accompanied by a structural change in the 

proteins.16, 37, 41, 62 Two proteins in the corona around mannan nanogel, apoA-I and HSA, 

were chosen for further analysis of the protein structure after binding to the nanogel. CD 

spectroscopy was used to follow changes in the secondary structure of the proteins. The 

CD spectrum of apoA-I has two minima at 222 and 208 nm, which are characteristic of the 

α-helical structure (Figure 2a). After adding mannan nanogel to apoA-I the negative signal 

at 222 and 208 nm is stronger, indicating an increase or stabilization of the α-helical 

structure. Also HSA has α-helical structure, but for HSA there are no significant changes 

in the structure after adding nanogel (Figure 2b).  

Intrinsic tryptophan fluorescence spectroscopy is used to follow changes in the tertiary 

structure of the proteins. The fluorescence spectra of apoA-I and HSA have maxima at 

340 and 344 nm, respectively (Figure 2d, e) indicating a folded protein structure in which 

the tryptophan side chain is buried in a hydrophobic internal environment. Adding mannan 

nanogel to the apoA-I causes a decreased intensity, indicating that the signal is quenched 

by nanogel or that the tryptophan side chain is buried in the interface between the protein 

and nanogel after protein binding. Adding mannan nanogel to HSA induces, in addition to 

the decrease in intensity, a blue shift in the wavelength maximum, indicating that the 

environment around the tryptophan side chains is more hydrophobic after binding to the 

nanogel. 

ApoA-I is the main protein in high-density lipoprotein (HDL) particle and central in the 

lipid metabolism. A structural change in the protein altering the function of apoA-I could 

thereby influence the lipid metabolism in a potential harmful way. An increase of helical 

structure in apoA-I is also seen when it binds to phospholipids in HDL.63-65 The structural 

change seen in both cases may be caused by stabilization of the protein structure 

normally occurring when apoA-I binds to a spherical surface. 
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Figure 2. Far-UV CD (a and b) and tryptophan fluorescence emission (λex 290 nm) (d and e) spectra of protein 

in the absence (black dashed line) or in the presence of a colloidal dispersion of mannan nanogel in PBS at 

0.5 mg/mL (grey solid line) and at 1 mg/mL (black solid line) after subtraction of respective blank (c and f) 

recorded at 37 °C after 1 h of incubation stirring at 37 °C; (a and d) with apoA-I at 0.1 mg/mL or (b and e) with 

HSA 0.2 mg/mL. 
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Time dependent binding between apoA-I and mannan nanogel 

The centrifugation experiments in human plasma showed that ratios between proteins in 

the corona change over time. In general this is expected as predicted by the Vroman 

effect; proteins present at high concentration in plasma will bind first but will be replaced 

over time by proteins with lower concentrations but higher affinity. However, for mannan 

nanogel also the total amount of proteins in the corona appeared to be lower after 24 h 

compared to after 1 h. A plausible scenario is that the proteins and/or the mannan 

nanogel structures are changed slowly over time whereby the time to reach equilibrium 

will be many hours. One such scenario could be that the proteins with time enter the 

nanogels and interact with the hydrophobic domains inside the nanogels. To test if the 

proteins’ structural change is time dependent, the intrinsic tryptophan fluorescence was 

measured after 1 and 24 h. A clear difference in intensity is seen for apoA-I, but not for 

HSA after 1 and 24 h of incubation with nanogel (Figure 3). To further characterize the 

time dependency, the intensity from the proteins in the presence of nanogel at 0.6 mg/mL 

was obtained at different time points (Figure 4a). The intensity from HSA is constant while 

the intensity from apoA-I decreases over time. The most prominent change takes place 

within 1 h, but the intensity continues to decrease for several hours indicating that the 

process of apoA-I binding to the nanogel is slow. The affinity of the binding is compared 

by measuring the intensity at 345 nm after 1 h (open circles) and 24 h (closed circles) for 

apoA-I (black circles) and HSA (grey circles) in increasing concentrations of mannan 

nanogel (Figure 4b). The intensity decreases with increasing concentrations of nanogel for 

both apoA-I and HSA. No differences are seen between the titration curves for HSA after 

1 and 24 h and at high concentrations of nanogel the intensity is constant indicating that 

all proteins are bound to the nanogel. In contrast there is a striking difference between 

titration curves after 1 and 24 h of incubation of nanogel and apoA-I. The intensity 

decreases more at nanogel concentrations over 0.3 mg/mL after 24 h of incubation than 

after 1 h, indicating that more proteins are bound to the nanogel or that a different 

structural change has occurred after 24 h of incubation. As the estimated amount of apoA-

I on the particle is lower after 24 h than after 1 h of incubation (Figure 1b) the explanation 

that apoA-I undergoes a slow structural change, which may involve interactions with 

hydrophobic domains inside the mannan nanogel, is more plausible. The stability in size 

of nanogel over time was tested by measuring the mean hydrodynamic diameter of the 

mannan nanogel in the presence and in the absence of HSA (Figure 5). No significant 

changes were observed indicating that the nanogel is stable over the time frame of the 
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measurement. The time dependent structural changes that were seen in the corona 

proteins emphasize the importance of studying the biocompatibility over time. 

 

 

 

Figure 3. Tryptophan fluorescence emission (λex 290 nm) spectra of apoA-I (0.1 mg/mL; a and b) and HSA 

(0.1 mg/mL; c and d) titrations after (a and c) 1 h and (b and d) 24 h of incubation stirring at 37 °C. Protein 

only (black dash line) and protein incubated with mannan nanogel colloidal dispersion in PBS in a range of 

concentrations (0.011.25 mg/mL; grey gradient from lower to higher concentrations).  

 

Attempts were made to estimate the affinity from the titration experiments. The 

dissociation constant (KD) of HSA-nanogel complex is estimated to be in μM range (not 

shown). A similar value of KD, 6 μM, was obtained by isothermal titration calorimetry 

(Figure 6), indicating that HSA binds with low affinity to the mannan nanogel. The apoA-I 

data could not be fitted using Langmuir equation. Low affinity of albumin binding has been 

observed for other nanoparticles NIPAM:BAM copolymer, 0.83 μM,66 20 nm gold, 2.5 

µM,62 and polystyrene, 1.2 µM.41 The low affinity, compared to for example the higher 

affinity, 1 nM, of apoA-I to NIPAM:BAM copolymer,21 explains why only small amount of 

HSA is found on the particles although the plasma concentration is high. 
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Figure 4. Time dependent binding (a) of apoA-I (black) and HSA (grey) at 0.1 mg/mL to mannan nanogel at 

0.6 mg/mL in PBS at 37 ºC. Normalized tryptophan emission intensity (λex 290 nm) at 345 nm as function of 

time. (b) Fluorescence titration of apoA-I (black) and HSA (grey) solutions at 0.1 mg/mL in the presence of 

colloidal dispersions of mannan nanogel at various concentrations in PBS after stirring 1 h (open circles) and 

24 h (closed circles) at 37 °C; normalized fluorescence intensity at 345 nm as function of mannan nanogel 

concentration.  
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Figure 5. Non-influence of HSA (0.2 mg/mL) and concentration of mannan nanogel (0.05–1 mg/mL) on the z-

average or mean hydrodynamic diameter of mannan nanogel colloidal dispersions in PBS after incubation 

stirring 1 h (bright grey) or 24 h (dark grey) at 37 °C. The results shown (mean ± S.D., n = 5) were calculated 

by DLS. The PdI of all samples ranged from 0.22 and 0.47. 

 

Figure 6. Isothermal titration calorimetry data at 37 °C from titration of HSA stock (5 mg/mL) into a colloidal 

dispersion of mannan nanogel (2 mg/mL). Each injection was 1 µL with a total of 45 injections. Raw data 

(upper panel) and integrated data (lower panel) of a representative experiment of four independent 

experiments. The black line shows the fitted curve assuming a simple 1:1 binding model with one kind of sites 

after adjusting the baseline, deleting the bad data, and subtracting the reference (injection of protein in buffer). 

The parameter values obtained were for heat change, ΔH = −25 ± 2 kcal/mol and for dissociation constant, KD 

= 5.9 ± 4.6 µM (mean ± S.D., n = 4). 
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Mannan nanogel does not affect blood coagulation 

The effect on blood coagulation by mannan nanogel was tested by the thrombin 

generation assay. No inhibition or stimulation of the thrombin generation is seen when 

mannan nanogel is added to the system (Figure 7). In another study, using the same 

assay, amine-modified polystyrene nanoparticles (0.5 mg/mL) inhibited the thrombin 

generation whereas  220 nm carboxyl-modified polystyrene nanoparticles (0.5 mg/mL) 

promoted the thrombin generation.43 Several other nanoparticles can act as procoagulants 

in the same assay, for example carbon black, silicon dioxide, silicon carbide, titanium 

carbide and copper oxide nanoparticles.44 As shown above the protein corona around 

mannan nanogel is, in contrast to most other nanoparticles studied, simple and consists 

mainly of apolipoproteins. For NIPAM:BAM copolymer nanoparticles, however, a similar 

protein corona of apolipoproteins was described.11, 12 An increase of the more hydrophilic 

NIPAM part lead to decreased amount of proteins bound but that did not change the 

identity of the proteins.11, 12 To compare two different polymer particles with similar protein 

corona, NIPAM coated gold nanoparticles were tested by the thrombin generation assay 

(Figure 8). No stimulation of the coagulation was seen. Maybe a simple corona of 

apolipoproteins is less prone to stimulate the coagulation and is a sign of biocompatibility 

from a coagulation perspective. 

 

 

Figure 7. The effect on thrombin generation by mannan nanogel. Plasma was incubated in the absence (solid 

line) or in the presence (dashed line) of a colloidal dispersion of mannan nanogel at 1 mg/mL, and tested for 

thrombin generation using the thrombin generation assay. The first derivative, fluorescence units/min, is 

shown (mean, n = 3).  
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Figure 8. The effect on thrombin generation by NIPAM coated gold particles. Plasma was incubated in the 

absence (black line) or in the presence of NIPAM coated gold particles at 1.2×10-10 M (dark grey line) and at 

2.4×10-11 M (bright grey line), and tested for thrombin generation using the thrombin generation assay. The 

first derivative, fluorescence units/min, is shown (mean, n = 3). The mean hydrodynamic diameter of the 

particles is 478 nm as measured by DLS. 

 

Mannan nanogel retards Aβ(M1-40) and β2m fibrillation 

The formation of amyloid aggregates was studied in the absence and in the presence of 

mannan nanogel using a continuous ThT binding assay. A significant increase in ThT 

fluorescence was observed over time, suggesting amyloid fibrils are formed both with and 

without nanogel present. However, the presence of mannan nanogel leads to a slight 

retardation of both Aβ(M1-40) and β2m fibrillation at nanogel concentrations in the range 

0.03–0.9 mg/mL where the aggregation is delayed by at most a factor of two-three (Figure 

9). An important result is that under no conditions do we see any acceleration of 

aggregation as has been observed for other nanoparticles.49,50 Thus it appears that the 

nanogel acts to reduce the rate of nucleation, but the elongation rate is essentially 

unaffected by the presence of the nanogel. At constant Aβ(M1-40) and β2m 

concentration, the time required to reach half of the maximum fluorescence intensity (t1/2), 

increases with the increase in mannan nanogel concentration suggesting that the 

formation of fibrils is delayed by interaction of Aβ(M1-40) and β2m with the nanogel. 

Moreover, the inhibitory effect is clearly concentration dependent. Addition of nanogel at a 

concentration 0.03 mg/mL is needed in order to see a significant effect. This is the first 

concentration tested above the cac or cmc equal to 0.01 mg/mL, which corresponds to the 

self-assembly of the amphiphilic monomers of MVC16-31-20 and to the formation of the 

mannan nanogel.  
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Figure 9. Fibrillation of Aβ(M1-40) (a and b) and of β2m (c and d) at 37 °C monitored by the temporal 

development of ThT binding. (a) ThT fluorescence intensity as function of time for 10 μM Aβ(M1-40), in 20 mM 

sodium phosphate buffer pH 7.4, 200 μM EDTA, 0.02% NaN3 or (c) 40 μM β2m, in 20 mM sodium phosphate 

buffer pH 2.5, 50 mM NaCl, 0.02% NaN3, in the absence (dash line) or in the presence (solid line) of mannan 

nanogel at 0.03 mg/mL, as an example. Each sample contained 20 μM ThT. Five replicates of a 

representative experiment are shown. Half-time of fibrillation (t1/2) as function of the log of mannan nanogel 

concentration (0–0.9 mg/mL) for (b) Aβ(M1-40) and (d) β2m. Error bars indicate the S.D. of the mean of 11 

replicates, 5 and 6 of two independent experiments.  

 

So far studies indicate that it is the composition of nanoparticles and their surface 

characteristics that determine their impact on fibrillogenesis.45 The mannan nanogel acts 

as artificial chaperones to inhibit the formation of Aβ(M1-40) and β2m fibrils. 

Hydrophobicity and hydrogen bonding between Aβ(M1-40) or β2m and mannan nanogel, 

through their hydrophobic domains and polar groups of polymer backbone, respectively, 

may play a role in binding and/or preventing the nucleation and elongation of the fibrils. 

The present study was performed using pure Aβ(M1-40) or β2m without competition from 

other proteins for binding to the nanoparticle surface, which are conditions dissimilar to 

those in vivo in terms of salts, metabolites and biological membranes and unlike any 

realistic clinical situation. Still, systematic investigation in vitro of the aggregation process 
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shows evidence of a retardation effect of mannan nanogel in fibrillation, an extraordinary 

hint of its biosafety and promising biomedical applicability.  

 

 

Conclusions 

 

The corona around nanogel is quite specific and simple, and contains a small number of 

proteins including apolipoproteins B-100, A-I and E, and HSA. The protein corona evolves 

over time, is formed through a slow process and the equilibrium is reached only after ca. 

24 h. Interaction with the mannan nanogel leads to an increased or unchanged α-helical 

structure for apoA-I and HSA, respectively. After binding of HSA to the nanogel, the 

environment around the tryptophan side chains is more hydrophobic. Moreover, blood 

coagulation is unperturbed and Aβ(M1-40) and β2m fibrillation is retarded by mannan 

nanogel suggesting biosafety, which is mandatory for nanomaterials to be used in 

biomedical applications.  
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Chapter 8  

 

Adjuvant effect of mannan nanogel on the immune 

response to ovalbumin in mice 

 

The ovalbumin (OVA)-mannan nanogel formulation was characterized 

physicochemically (size, zeta potential, and loading efficiency) and its immunogenicity 

was assessed by determining the serum OVA-specific antibody titres in intradermally 

immunized mice and ex vivo splenic proliferative response to OVA or mitogenic stimuli. 

OVA-mannan nanogel formulation had a mean hydrodynamic diameter around 240 nm 

and a near neutral surface charge, similar to mannan nanogel itself. The OVA loading 

efficiency was around 25% after 24 h of incubation at 25 °C. Intradermal vaccination using 

the OVA-mannan nanogel formulation elicited a humoral immune response in which OVA-

specific immunoglobulin (Ig)G1 was produced, but not IgG2a, indicating a T helper 2-type 

bias. In addition, the OVA-specific IgA was not detected and low OVA-specific IgG3 titer 

was detected in the serum.  
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Introduction 

 

Discovery of novel efficacious and safe adjuvants, vehicles or immunopotentiators, 

capable of boosting cellular plus humoral immunity, is a primary goal in vaccine design. 

Adjuvant activity to B cells provided by T helper (TH) cells can be evaluated by 

measuring total immunoglobulin (Ig)G levels in a secondary immune response. TH cells 

can be divided into different subsets of effector cells. In particular, the TH1 subset is 

associated to cell-mediated immune responses while the TH2 subset induces essentially a  

humoral-type immune responses.1 TH1 cells secrete cytokines, such as interleukin (IL)-2, 

tumor necrosis factor β (TNF-β) and interferon (IFN)-γ, and preferentially stimulate the 

production of IgG2a. They provide help for cytotoxic T-cells production. The TH1 response 

is required for protective immunity against intracellular pathogens and tumors. In turn, the 

TH2 subset characteristically produces IL-4, besides IL-5 and IL-10, and stimulates the 

production of IgG1. 

Alum (aluminum salts) are extensively used in vaccines but they are not suitable for all 

antigens, have variable or poor antigen adsorption, and are difficult to lyophilize. Alum-

based vaccines have been described to induce only weak T-cell mediated immune 

responses, poor maturation of antigen-presenting cells (APC), to cause sporadic 

occurrence of granulomas, hypersensitivity reactions, or neurotoxicity and to be 

inappropriate for needle-free delivery routes. Alum are TH2-biased adjuvants that can 

effectively enhance IgG1 antibody responses in mice, but they fail to induce TH1 type 

immune responses.2, 3
 Alum adjuvanticity has been attributed to the intracellular NOD-like 

receptor family, pyrin domain containing 3 (NLRP3) inflammasome complex activation 

leading to the processing of several proinflammatory cytokines including IL-1β.4, 5 Other 

studies suggest an indirect inflammasome activation via an alum induced release of the 

danger signal uric acid6 or enzymes from lysosomes of damaged cells.7 Nevertheless 

results on the requirement of NLRP3 activity for alum adjuvanticity are still contradictory.5, 

6, 8  

Encapsulation of the antigen into polymeric particulate carrier systems has currently 

been explored widely, to develop potential novel vaccines in order to enhance the delivery 

or immunogenicity of an antigen, as a promising alternative to alum. While soluble antigen 

is poorly presented on major histocompatibility complex (MHC) class I, it has been 

demonstrated that antigen encapsulated in polymeric particles can be effectively cross-

presented yielding an effective CD8+ T-cell response.9 Nanoparticles with specific 

physicochemical characteristics can be designed and conjugated with 
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immunopotentiators, providing control on the immunogenicity of the vaccine10, 11 on the 

strength and quality of the immune response. This also is influenced by the administration 

route,12, 13 and amount of antigen and delivery system used.12, 14  

In this work, a mannan nanogel, previously developed and comprehensively 

characterized, was investigated as potential vaccine delivery/adjuvant system. Ovalbumin 

(OVA) has been commonly used as a model antigen to study the potential of polymeric 

nanogels to be used in subunit vaccines.10-17 Our strategy consisted in placing the 

particulate immunogen intradermally, close to the more efficient APC: the specialized 

population of dendritic cells (DC) of the epidermis (Langerhans cells). These cells capture 

the antigen in situ, and migrate to T-dependent lymphoid organs, wherein they present the 

antigen and sensitize antigen-specific T-cells eliciting humoral and cellular immune 

responses. The nanogel-based immunogenic preparation was physicochemically 

characterized in terms of size, surface charge and loading efficiency. Furthermore, the 

extent and type of immune response elicited after intradermal administration of the OVA-

nanogel formulation in mice was evaluated assessing the serum OVA-specific antibody 

titres, the ex vivo splenic proliferative response to OVA or mitogenic stimuli and the 

production of cytokines from splenocytes. 

 

 

Experimental 

 

Mannan nanogel 

Mannan-VMA-SC16 (VMA: vinyl methacrylate, SC16: hydrophobic alkyl chain) was 

synthesized, as described previously,18 with 31 acrylate groups (DSVMA 31%) and 20 alkyl 

chains (DSC16 20%) per 100 mannose residues. Resultant amphiphilic mannan is named 

MVC16-31-20. Each sterile stock colloidal dispersion of mannan-C16 was prepared stirring 

the lyophilized mannan-C16 in sterile apyrogenic phosphate buffered saline, pH 7.4 (PBS), 

for 3–5 days at 50 °C, followed by sterilized filtration (Minisart® Syringe Filters, Sartorius 

stedim biotech, Germany; pore size 0.22 μm). The nanogel formation was confirmed by 

dynamic light scattering (DLS). The size distribution and zeta potential measurements 

were performed in a Malvern Zetasizer NANO ZS (Malvern Instruments Limited, UK) as 

previously described.4   
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Complement activation 

To determine if mannan nanogel activated the complement cascade, the protocol 

described by the Nanotechnology Characterization Laboratory for qualitative 

determination of total complement activation by Western blot analysis19 was performed 

with slight modifications. Briefly, equal volumes (50 μL) of human plasma from healthy 

donors, veronal buffer and sample – mannan nanogel colloidal dispersion in PBS (1 

mg/mL), cobra venom factor (Quidel Corporation, California, USA) as positive control, or 

PBS as negative control − were mixed together and incubated 1 h at 37 °C. Proteins were 

resolved using 10% sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE), and then transferred to a Immun-Blot PVDF membrane using the Trans-Blot® SD 

semidry transfer equipment (Bio-Rad, California, USA). The membranes were incubated 

90 min with a mouse monoclonal antibody against human C3 (Abcam, Cambridge, UK) 

diluted 1:1000 followed by washes and incubation with secondary polyclonal antibodies 

goat anti-mouse IgG conjugated with alkaline phosphatase (Dako, Glostrup, Denmark) 

diluted 1:2000. The membrane was finally revealed with 5-bromo-4-chloro-3-indolyl 

phosphate (BCIP; Sigma, St Louis, Missouri, USA). The C3 degradation was evaluated by 

densitometry using image analysis software (NIH Image J software). 

 

Antigen 

OVA (Grade III, Mw 45 KDa; Sigma) solutions in PBS were depleted of contaminating 

endotoxin using a polymixin B column (Pierce, Illinois, USA), and tested by the limulus 

amebocyte lysate test (E-toxateTM; Sigma). All OVA preparations used in this study tested 

endotoxin free. 

 

Preparation and characterization of OVA-mannan nanogel formulation 

The OVA (0.2 mg/mL) incorporation in mannan nanogel colloidal dispersion (4 mg/mL) 

in PBS, after 24 h of incubation at 25 °C was evaluated using an ultrafiltration method – 5 

min at 10,000 g to collect the filtrate and 2 min at 1,000 g to collect the retentate – using 

Heraeus® PicoTM & FrescoTM 17 microcentrifuge (Thermo Scientific) and Microcon 

Centrifugal Filter devices with molecular weight cut-off, 1×105 (Millipore). The retentate 

was subjected to 3 washes in PBS. Initial sample and all collected filtrate and retentate 

samples had a fixed final volume adjusted with PBS. Empty nanogel colloidal dispersion 

(4 mg/mL) and OVA solution (0.2 mg/mL) in PBS were used as controls and subjected to 

the same procedure. The association of OVA with nanogel was evaluated by analyzing 

initial sample, filtrate and retentate fractions by SDS-PAGE and protein assays. Each 
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sample (10 µL) was diluted with PBS (10 µL) and proteins were desorbed from the 

nanogel by adding SDS loading buffer (4 µL) followed by 6–10 min boiling. Samples were 

resolved using 12% SDS-PAGE. Each gel run included one lane of a molecular weight 

protein ladder standard (PageRuler Prestained Protein Ladder; Fermentas). Gels were 

silver-stained. For all samples in study, the OVA concentration was determined with 

bicinchoninic acid (BCA) protein assay kit (Pierce, Illinois, USA) and Bio-Rad protein 

assay (Bio-Rad, California, USA) following manufacturer instructions. Each sample was 

assessed in duplicate in two independent experiments; the results were expressed as the 

amount of protein (μg) per milligram of mannan nanogel. Besides, the loading efficiency 

was defined as the percentage of OVA loaded relating to the initial amount of protein. The 

absorbance obtained for colloidal dispersion of mannan nanogel fractionated samples, 

was subtracted from that obtained for each OVA-mannan nanogel fractionated samples.  

 

Mice  

Male BALB/c mice (15 weeks old) were purchased from Charles River (Barcelona, 

Spain). Animals were kept at the animal facilities of the Institute Abel Salazar during the 

experiments. Hiding and nesting materials were provided as enrichment. Procedures 

involving mice were performed according to the European Convention for the Protection of 

Vertebrate Animals used for Experimental and Other Scientific Purposes (ETS 123) and 

86/609/EEC Directive and Portuguese rules (DL 129/92).  

 

Immunization  

Mice were trice immunized intradermally with 20 μg of OVA formulated with one of the 

following delivery vehicles (100 μL): PBS; control adjuvant 1:1 PBS/alum suspension 

(Aluminium hydroxide Gel; Brenntag, Frederikssund, Denmark, a kind gift of Dr Erik 

Lindblad, Biosector, Frederikssund, Denmark); and mannan nanogel (400 µg) colloidal 

dispersions in PBS: the OVA was either mixed immediately before injection (OVA-mannan 

nanogel-M) or allowed to incorporate in the nanogel for 24 h at 25 °C (OVA-mannan 

nanogel-I). As control, mannan nanogel (400 µg/100 μL) colloidal dispersion in PBS was 

also injected, completing the five groups in study. All formulations injected were evaluated 

by silver-stained SDS-PAGE gels prepared as described above. The mannan nanogel 

and OVA-mannan nanogel size distribution and zeta potential were studied in DLS.   

The first boost was given 16 days after priming and the second one in the following 26 

days. Blood samples were collected 12−15 days post immunization. After incubation 

overnight at 4 °C till clot formation, samples were centrifuged for 15 min at 10,000 g at 4 



Chapter 8 
 

 

Ferreira, S.A. | 2012                                                       - 180 - 

°C (Heraeus® PicoTM & FrescoTM 17 microcentrifuge, Thermo Scientific) and collected sera 

were stored at −20 °C until used in antibody assessment by quantitative enzyme-linked 

immunosorbent assay (ELISA).  

 

Titration of OVA-specific antibody in serum 

OVA-specific IgM, IgG, IgG1, IgG2a, IgG3 and IgA in serum were detected by ELISA. In 

brief, microtiter flat-botton 96-well plate (MaxiSorpTM, Nunc, Denmark) were coated 

overnight at 4 °C with 5 μg/mL OVA solution in PBS (50 μL/well). After washing with 

0.05% Tween 20 in Tris-buffered saline (10 mM Tris base, 150 mM NaCl), pH 8.0 (TST 

buffer), the block solution – TST buffer with 2% bovine serum albumin (BSA, Sigma) – 

incubated for 1 h at room temperature (200 μL/well). After discarding the block solution, 

serial dilutions of the serum samples in TST with 1% BSA were then plated (50 μL/well) 

and incubated for 1 h at room temperature. After washing with TST buffer, the secondary 

antibody goat anti-mouse IgG, IgG1, IgG2a, IgG3 and IgA conjugated to alkaline 

phosphatase human adsorbed (SouthernBiotech, Alabama, USA) diluted 1:500 was 

incubated 1 h at room temperature (50 μL/well). After washing with TST buffer, the bound 

antibodies were detected by development at room temperature, protected from light, using 

a substrate solution (50 μL/well) of 4-nitrophenylphosphate disodium salt hexahydrate (5 

mg/tablet, Sigma) dispersed in 5 mL of alkaline phosphatase buffer (50 mM Na2CO3, 1 

mM MgCl2), pH 9.8. The reaction was stopped by the addition of 0.1 M 

ethylenediaminetetraacetic acid (EDTA), pH 8.0 (50 μL/well). The absorbance was 

measured at 405 and at 570 nm as reference with an ELISA spectrophotometer (Original 

Multiskan Ex; Thermo Electron Corporation). The ELISA antibody titres were expressed 

as the reciprocal of the highest dilution giving an absorbance of 0.1 above that of the 

control (no serum added).15, 20, 21
 

 

Splenocytes assays 

Mice were sacrificed 26 days after third immunization. The spleens were excised 

aseptically and lymphocytes isolated. Briefly, single cell suspensions were prepared by 

teasing the tissue between two glass slides and cells were centrifuged for 10 min at 240 g 

at 4 °C (Sigma 3-16k Refrigerated Centrifuge). Erythrocytes present were lysed using an 

ACK lysis buffer (155 mM NH4Cl, 10 mM KHCO3, and 0.1 mM EDTA) for 5 min. After 

centrifugation, the pelleted cells were washed twice with Hank´s balanced salt solution 

(HBSS; Sigma) and resuspended in complete medium (cRPMI) – RPMI 1640 medium 

(Sigma) supplemented with 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES; 
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10 mM; Sigma), 10% heat-inactivated fetal bovine serum (FBS; Sigma), penicillin (60 

IU/mL), streptomycin (60 µg/mL; Sigma), β-mercaptoethanol (0.5 mM; Sigma). Each cell 

suspension was normalized after accurate calculation of cells per microliter in the sample 

using a same volume of known concentration of flow cytometry cell counting beads 

(microparticles based on polystyrene monodisperse, 10 µm; Fluka) by flow cytometric 

analysis (fluorescence-activated cell sorting [FACS]) in a flow cytometer (Beckman 

Coulter) with supplied software (EXPO 32 ADC V1.2). Spleen cell suspension was plated 

(2x105 cell/200 μL/well) into 96-well round-bottomed culture plates (Nunc, Denmark). 

Splenocytes were cultured for 72 h at 37 °C in a 95% humidified air containing 5% CO2 in 

the absence of stimuli (cRPMI only), or stimulated with a) OVA (25 μg/mL), b) the 

unspecific mitogen concanavalin A (con A; 5 μg/mL; Sigma) that can activate T-cells, or c) 

hamster anti-mouse CD3 (0.5 μg/mL; BD PharmingenTM), that can activate either 

unprimed (naive) or primed (memory/preactivated) T-cells, in the presence of Fc receptor-

bearing accessory cells. All the tests were carried out in duplicates.  

 

Determination of cell concentration 

The cell suspension in each well was homogenized and the cell concentration assessed 

using flow cytometry cell counting beads, as described above. The results are expressed 

as stimulation index (SI) calculated as follows: SI = the cell concentration for stimulated 

cultures divided by the cell concentration for nonstimulated cultures. 

   

Analysis of cytokines in splenocyte culture supernatants 

The plates were centrifuged 7 min at 1200 g (Alc 4236 centrifuge) and the culture 

supernatants were collected and stored at −80 °C for the estimation of cytokines. The TH1 

(IFN-γ) and TH2 (IL-4) cytokines were measured with mouse IFN-γ DuoSet® ELISA 

Development System (R&D Systems) and mouse IL-4 ELISA Ready-SET-Go!® 

(eBioscience), respectively, according to the manufacturer’s instructions. 

 

Colorimetric assay for splenocyte proliferation 

Splenocytes were resuspended in fresh cRPMI (200 μL/well), subsequently added with 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; Sigma) solution in PBS 

(final concentration: 0.5 mg/mL) and then incubated for 3 h at 37 °C in a 95% humidified 

air containing 5% CO2. The plates were centrifuged 7 min at 1200 g (Alc 4236 centrifuge); 

the untransformed MTT was carefully removed and the formazan crystals solubilized with 

dimethyl sulfoxide. Finally, the UV absorbance was measured at 570 nm after 15 min in 



Chapter 8 
 

 

Ferreira, S.A. | 2012                                                       - 182 - 

ELISA spectrophotometer (Original Multiskan Ex; Thermo Electron Corporation). The 

results shown are from one experiment performed in duplicate. The results are expressed 

as SI calculated as follows: SI = the absorbance value for stimulated cultures divided by 

the absorbance value for nonstimulated cultures. 

 

Statistical analysis 

The results were expressed as mean ± standard deviation (S.D.) for each group (n = 3, 

OVA in 1:1 PBS/alum; n = 4, in other groups) and statistical analysis was carried out using 

one-way analysis of variance (ANOVA) with Bonferroni’s multiple comparison post-test 

using GraphPad Prism version 4.00 for Windows (GraphPad Software, California, USA).  

 

 

Results and discussion 

 

OVA-mannan nanogel formulation  

Mannan from Saccharomyces cerevisiae, used to produce self-assembled mannan 

nanogel, is a mannose-rich glycan able to bind mannose-binding lectin, also known as 

mannan-binding protein, leading to complement activation via the lectin pathway.22, 23 

Complement activation can promote inflammation, macrophage phagocytosis, 

anaphylaxis, B-cell activation, and T-cell response, as well as enhance antigen 

presentation to B-cells by follicular DC.24 As uncontrolled complement activation can 

induce many inflammatory and life threatening disorders,25, 26 the mannan nanogel degree 

of complement activation was examined in an in vitro assay in human plasma aliquots 

pretreated with mannan nanogel.  Mannan nanogel did not induce complement activation, 

as compared to control (Figure 1). 
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Figure 1. Analysis of complement system activation by Western blot. The upper band of ~115 KDa 

corresponds to C3 (α chain) and the lower band ~43 KDa corresponds to C3-cleavage product(s) (C3c, 

iC3b[C3α’] for mannan nanogel (nanogel), PBS as negative control (C-) and cobra venom factor as positive 

control (C+). C3 degradation was evaluated by densitometry using image analysis software (NIH Image J 

software), after normalizing the percentage of the lower band of the positive control as the maximum 

degradation that can be achieved (100%): 41 ± 8% for negative control and 33 ± 7% for mannan nanogel.  

 

Considering the mannan ability to target mannose receptor expressed on the surface of 

APC,27, 28 and the ability of nanogels to carry biologically active agents,29 we conceived the 

mannan nanogel as vaccine delivery/adjuvant system, which is tested in the current work. 

Following loading of nanogel with OVA, preparations were subjected to ultracentrifugation, 

to determine how efficiently the OVA was associated with the nanogel. Initial and 

fractionated samples were evaluated by SDS-PAGE (Figure 2) and by the Bio-Rad and 

BCA protein assays. As previously studied by phenol-sulfuric acid method, using 

mannose as standard, 75% of the initial amount of the mannan nanogel is collected in the 

retentate.4 Free protein was in the filtrate. In contrast, when the OVA-nanogel 

preparations were employed, part of OVA was associated with the nanogels in the 

retentate – 16.6 ± 7.2 or 16.7 ± 0.5 μg OVA/mg mannan nanogel – with a loading 

efficiency of 24.9 ± 6.1% or 23.3 ± 3.1% as assessed by BCA or Bio-Rad protein assay, 

respectively. 
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Figure 2. Characterization of OVA-mannan nanogel formulation with silver-stained SDS-PAGE gels: (a) OVA 

(0.2 mg/mL) integrity in formulation, examined comparing the freshly prepared (x) with the incubated 24 h at 

25 °C (y); (b) ultrafiltration of OVA-mannan nanogel formulation obtained by incorporation (24 h at 25 °C) of 

OVA (0.2 mg/mL) in mannan nanogel colloidal dispersion (4 mg/mL) in comparison with OVA solution (0.2 

mg/mL) and empty nanogel colloidal dispersion (4 mg/mL) in PBS  initial sample (i), first filtrate (f), and 

retentate (r) obtained after washing (filtrates 1w and 2w); (c) OVA-mannan nanogel samples used to 

immunize mice intradermally obtained by mixture (M) or incorporation (I) in comparison with OVA (O) and 

nanogel (N) in PBS. 

 

The size distribution and zeta potential of mannan nanogel and OVA-mannan nanogel 

formulation was evaluated by DLS (Table 1). OVA-mannan nanogel formulation had a 

mean hydrodynamic diameter around 240 nm and a near neutral surface charge, similar 

to those obtained for mannan nanogel. These samples and OVA formulated in PBS were 

analyzed by SDS-PAGE (Figure 2c). 

 

Table 1. Size and zeta potential measurements obtained in DLS at 37 ºC for mannan nanogel colloidal 

dispersion in PBS (4 mg/mL) and for OVA (0.2 mg/mL) formulated with mannan nanogel colloidal dispersion 

in PBS (4 mg/mL), immediately after mixture (OVA-mannan nanogel-M) or after 24 h of incorporation at 25 °C 

(OVA-mannan nanogel-I) 

 mannan nanogel OVA-mannan nanogel-M OVA-mannan nanogel-I 

Z-average (nm) 240.9 ± 6.7 239.6 ± 9.0 234.3 ± 8.5 

Polydispersity Index (PdI) 0.618 ± 0.099 0.565 ± 0.101 0.702 ± 0.022 

Zeta potential (mV) -9.69 ± 2.00 -11.10 ± 1.09 -10.90 ± 1.43 

 (mean ± S.D., n = 10) 
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Immune response induced by immunization using OVA-mannan nanogel 

formulation 

 

Specific antibody response in serum 

The effect of mannan nanogel on the induction of humoral immune response in OVA-

immunized mice was evaluated by ELISA. The production of antibodies of different 

isotypes is associated with different types of TH cells. IgG3 was not detected 12 days after 

first boost and IgA was not detected 15 days after second boost (data not shown). IgG2a, 

associated with TH1-type immune response, was not detected in any immunized group 

after priming, first and second boost (data not shown), denoting little evidence of 

activation of the cellular arm of the immune system. The serum OVA-specific IgM, IgG, 

IgG1 and IgG3 antibody levels in the OVA-immunized mice are shown in Figure 3. After 

priming, OVA-specific IgM was equally detected in all groups. Similarly to alum, mannan 

nanogel adjuvant formulated with OVA enhanced OVA-specific IgG1 subclass associated 

with TH2-type immune response but significant differences were only detected when using 

OVA-mannan nanogel-I after third immunization, as compared with OVA in PBS 

immunized group. However, there were no observed significant differences between the 

total serum IgG1 levels in mice groups immunized with OVA-mannan nanogel-M or OVA-

mannan nanogel-I. OVA in 1:1 PBS/alum suspension produced significantly higher OVA-

specific IgG1 titres, as compared with OVA in PBS immunized group. After third 

immunization significant differences in OVA-specific levels of IgG3 were also detected 

when using alum. From the above findings, we can draw that mannan nanogel can 

enhance serum antibody production in mice immunized with OVA.  

 



Chapter 8 
 

 

Ferreira, S.A. | 2012                                                       - 186 - 

 

Figure 3. Effect of mannan nanogel on serum OVA-specific antibody titres. Groups of male BALB/c mice were 

trice immunized intradermally on days 1, 16 and 42 with 20 μg OVA formulated with one of the following 

delivery vehicles (100 μL): mannan nanogel (400 µg) colloidal dispersion in PBS, immediately mixed before 

injection (OVA-mannan nanogel-M) or obtained after 24 h of incubation at 25 °C (OVA-mannan nanogel-I); 

PBS; control adjuvant 1:1 PBS/alum suspension. As control, mannan nanogel (400 µg) colloidal dispersion in 

PBS was also injected, completing the five groups in study. The titres are presented as mean ± S.D. (n = 3, 

OVA in 1:1 PBS/alum; n = 4, in other groups) for (a) IgM, IgG (13 days after priming), (b) IgG1 (13 days after 

priming, 12 day after first boost, and 15 days after second boost) and (c) IgG3 (15 days after second boost). 

Statistical significant differences with regard to the OVA in PBS group were designated as *p < 0.05 and ***p 

< 0.001 and those with OVA in 1:1 PBS/alum group were designated as ap < 0.05, aap < 0.01 and aaaP < 0.001; 

not detected (n.d.). 
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Splenocyte proliferation and cytokine secretion 

Stimulation index (SI) assessed by flow cytometry using cell counting beads (Figure 4a)  

and MTT method (Figure 4b) in isolated and re-stimulated splenocytes from mice 

previously immunized indicate slight differences in proliferative response to OVA.  

 

 

Figure 4. Effect of mannan nanogel on OVA, concanavalin A (con A) and anti-CD3 stimulated splenocyte 

proliferation. Groups of male BALB/c mice were trice immunized intradermally on days 1, 16 and 42 with 20 

μg OVA formulated with one of the following delivery vehicles (100 μL): mannan nanogel (400 µg) colloidal 

dispersion in PBS after 24 h of incubation at 25 °C (OVA-mannan nanogel-I); PBS; and control adjuvant 1:1 

PBS/alum suspension. As control, mannan nanogel (400 μg) colloidal dispersion in PBS was also injected, 

completing the four groups in study. Splenocytes were prepared 26 days after the last immunization, and 

cultured with OVA (25 μg/mL), Con A (5 μg/mL), anti-CD3 (0.5 μg/mL), or cRPMI, for 72 h. Splenocyte 

proliferation was measured (a) by flow cytometry using cell counting beads and (b) by the MTT method. The 

stimulation index (SI) is presented as mean ± S.D. (n = 3, OVA in 1:1 PBS/alum; n = 4, in other groups). For 

each treatment, statistical significant differences with OVA in PBS group were designated as *p < 0.05 and **p 

< 0.01 and those with OVA in 1:1 PBS/alum group designated as aap < 0.01. 
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Similar levels of IFN-γ were detected in all groups in ex vivo splenic response to OVA, 

con A and anti-CD3 stimulation (Figure 5). When the mice were challenged with antigen 

(OVA) the development of the TH2-type response could have resulted in a lower 

production of INF- γ than in control group challenged with mannan nanogel as shown by 

the results obtained in unstimulated cultures. All unstimulated and OVA- or Con A-

stimulated cultures secreted undetectable levels of IL-4 (< 8 pg/mL), except OVA-

stimulated culture in OVA in 1:1 PBS/alum group (33 ± 8 pg/mL). Only anti-CD3 

stimulated detectable levels IL-4, ranging around 112 ± 28 pg/mL in all groups (data not 

shown).  

 

 

Figure 5.  IFN-γ profile of mice immunized with OVA formulated with proposed adjuvant mannan nanogel. 

Groups of male BALB/c mice were trice immunized intradermally on days 1, 16 and 42 with 20 μg OVA 

formulated with one of the following delivery vehicles (100 μL): mannan nanogel (400 μg) colloidal dispersion 

in PBS after 24 h of incubation at 25 °C (OVA-mannan nanogel-I); PBS; and control adjuvant 1:1 PBS/alum 

suspension. As control, mannan nanogel (400 μg) colloidal dispersion in PBS was also injected, completing 

the four groups in study. Splenocytes were prepared 26 days after the last immunization, and stimulated in 

vitro with OVA (25 μg/mL), Con A (5 μg/mL), or anti-CD3 (0.5 μg/mL) for 72 h. The production of IFN-γ was 

measured in the culture supernatants by ELISA according to manufacturer instructions. The values are 

presented as mean ± S.D. (n = 3, OVA in 1:1 PBS/alum; n = 4, in other groups). For each treatment, 

significant differences with OVA in PBS group were designated as ***p < 0.001; those with OVA in 1:1 

PBS/alum group were designated as aaap < 0.001; and those with OVA-mannan nanogel-I group were 

designated as iip < 0.01 . 

 

 



Adjuvant effect of mannan nanogel on the immune response to ovalbumin in mice 
 

 

 

                                                                                   - 189 -                                                 Ferreira, S.A. | 2012 

Conclusions 

 

Based on findings presented herein, preliminary results indicate that mannan nanogel 

has potential immunological adjuvant activity on the specific immune response to OVA, 

predominantly humoral, in intradermally immunized mice. Antibody subtyping indicates a 

TH2 bias.  
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Self-assembled mannan and pullulan nanogels were successfully produced using a 

versatile, simple, reproducible and low-cost method. Spherical polydisperse nanogels 

reveal long-term colloidal stability in aqueous medium up to six months, with a nearly 

neutral negative surface charge and mean hydrodynamic diameter in the nanoscale 

range, depending on the polymer degree of substitution.  

Mannan nanogel reveals no cytotoxicity up to about 0.4 mg/mL in mouse embryo 

fibroblast cell line 3T3 and mouse bone marrow-derived macrophages (BMDM), and no 

DNA damage in fibroblasts, although possibly in BMDM, under the tested conditions.  

A time-, concentration- and energy-dependent uptake profile of the mannan nanogel 

involving mannose receptor-mediated phagocytosis and clathrin-mediated endocytosis 

and possibly some endolysosomal escape, is observed in BMDM.  

The protein corona formed in human plasma around mannan nanogel consists of a very 

specific set of proteins, apolipoproteins B-100, A-I and E and human serum albumin, 

slowly formed following a dynamic protein exchange process.  

The mannan nanogel does not affect blood coagulation, does not induce complement 

activation and retards the fibril formation of both Alzheimer’s disease-associated amyloid 

β peptide and haemodialysis-associated amyloidosis β2 microglobulin.  

Mannan nanogel has potential immunological adjuvant activity on the specific immune 

response to ovalbumin, predominantly humoral, in intradermally immunized mice. 

Ovalbumin-specific antibody subtyping indicates a T helper 2-type bias.  

Following this opening encouraging study, further tests need to be performed in order to 

clarify the potential applicability of mannan nanogel as an effective vaccine 

delivery/adjuvant system, with ability to elicit both cellular and humoral specific immune 

responses codelivering different antigens possibly covalently linked, optimized combining 

immunopotentiators, and testing different number of and interval between administrations 

in adequate murine models, or adapting the amount of antigen and nanogel administered. 

Moreover, the mechanism of mannan nanogel adjuvant effect – still not clearly elucidate – 

requires to be studied in detail.  

Mannan nanogel spontaneously incorporates proteins and hydrophobic drugs, 

suggesting its potential as targeted delivery system of therapeutic molecules to 

macrophages. The development of this strategy requires the performance of 

biodistribution assays. Further, the ability of the mannan nanogel to cross biological 

barriers requires also additional studies on the endocytosis and intracellular transport of 

the labeled nanogel loading the therapeutic molecules, combining the use of different 
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inhibitors, mutated proteins, small interfering RNA and colocalization experiments with 

specific markers that identify cellular structures. 

 

Mannan nanogel has promising properties for macrophages targeted delivery of 

vaccines or drugs suggested by its distinct physicochemical characteristics, loading ability 

of biological agents, cytocompatibility and macrophage uptake profile, biosafety and 

biocompatibility at molecular level, and adjuvant activity.  

 

 



 

 

 

 

 

 

 

 

 

 


	Página 1
	Página 2
	Página 3
	Página 4
	Binder1 tese SF imprimir.pdf
	tese SF - imprimir - a 1-37
	tese SF - imprimir - a 39-41
	tese SF - imprimir - a 43-90
	tese SF - imprimir - a 93-114
	tese SF - imprimir - a 117-234.pdf


