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1. Introduction

Semiconductor quantum dots (QDs), often referred to as "artificial atoms", have discrete
energy levels that can be tuned by changing the QD size and shape. The existence
of zero-dimensional states in QDs has been proved by high spectrally and spatially
resolved photoluminescence (PL) studies Empedocles et al.|(1996); |Grundmann et al.| (1995).
Semiconductor QDs can be divided into two types, (1) epitaxially grown self-assembled
dots (SAQDs) and (2) nanocrystals (NCs) surrounded by a non-semiconductor medium.
Usually, SAQDs are obtained by using appropriate combinations of lattice mismatched
semiconductors, taking advantage of the Stranski-Krastanov growth mode where highly
strained 2D layers relax by forming 3D islands instead of generating misfit dislocations.
SAQDs are robust and already integrated into a matrix appropriate for device applications
Grundmann| (2002). However, the size, shape and size distributions of the 3D islands are
determined only by the strain related to the lattice mismatch of the specific heterojunction.
Also, the density and the possibility of obtaining different nanocrystals over a given substrate
have considerable limitations in this method.

Nanocrystal QDs have been produced by colloidal chemistry, melting, sputtering, ion
implantation and some other techniques. An attractive feature of NCs is the possibility to
control their electronic, optical and magnetic properties by varying their size, shape, surface
characteristics and crystal structure, which is most efficiently achieved by using colloidal
chemistry methods. These methods are known for the ability (i) to produce colloidal solutions
of a broad variety of high quality semiconductor NCs of required size, (ii) to limit the size
dispersion, and (iii) to control the NC surface |Rogach| (2008); Wang et al. (2005). Chemically
grown NCs are more efficient light emitters than their bulk counterpart and even organic dyes.
There are several reasons for this. First, quantum confinement of electronic states in QDs
determines the transition energies and enhances the radiative transitions between conduction
and valence bands. At the same time, it can be used to tune the luminescence wavelength and
intensity, i.e., both the color and the brightness of the emission can be controlled. A second
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Fig. 1. Schematics of bare core (a) and core/shell (b) free standing and embedded (c) NC
quantum dots.
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effect, also characteristic of semiconductor nanoparticles, is not related to quantum physics
but is purely geometrical. The spatial influence of defects acting as electronic traps is limited
to the size of the host nanoparticle, whereas in bulk, nonradiative recombination sites can
affect a much larger volume of material.

An obvious shortcoming of colloidal NCs, as compared to SAQDs, is that they are less stable
and are not suitable for direct incorporation into electronic devices. One has to embed them
into an appropriate matrix for device fabrication, especially for applications in the fields of
optoelectronics and integrated optics. A possible approach consists in the integration of
the colloidal chemistry methods with the epitaxial growth technology. The fabrication of
high quality epitaxial films with embedded pre-fabricated NCs is a huge challenge. The
successful integration of optically active colloidal NCs within an epitaxial structure has
been demonstrated by combining the colloidal and molecular beam epitaxy (MBE) methods
Woggon et al.| (2005). It has been shown that core/shell nanoparticles (CSNPs) are more
suitable for this purpose than bare core (e.g. CdSe) NCs. The luminescence properties and
stability of CSNPs are generally better than those of single material nanocrystal QDs Rogach
(2008). One of the earliest CSNP structures reported was CdSe/ZnS Dabbousi et al.| (1997);
Hines & Guyot-Sionnest|(1996), which is at the same time the most intensively studied system
to date. These particles show a very high photoluminescence (PL) quantum yield, which
can be attributed to the better isolation of the electron-hole pair inside the dot from the
surface recombination states. As well as NCs of a single semiconductor material, CSNPs are
traditionally covered with trioctylphosphine oxide (TOPO) in order to prevent them from
oxidation and to passivate dangling bonds at the semiconductor surface (See Fig. [).

The nature of the medium surrounding a QD influences the quantum confinement effect and,
consequently, the optical properties of these nanostructures. Already for colloidal NCs of a
single II-VI material, the nature of the surface capping layer is important for the energy of the
emitting states Jasieniak et al.|(2011). For instance, exchange of TOPO with pyridine resulted
in a a red shift of the order of 20-30 meV for CdSe NCs of 3.5-5.5 nm in diameter [Luo et al.
(2011). The transition energy and oscillator strength of the first excited state (253/,1S,) in
these NCs can be strongly modified by their surface ligands and associated surface atomic
arrangements Chen et al.| (2011).

Introducing a shell also changes the energy spectrum of a colloidal QD. For CdSe/ZnS CSNPs,
a red shift of the PL peak position and/or the absorption edge has been observed with
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increasing the thickness of the ZnS shell Baranov et al.[(2003); Dabbousi et al.| (1997); Talapin
et al.| (2001). The value of the red shift usually saturates for the shell thicknesses (d;) above 3
monolayers (MLs)Baranov et al.|(2003); Talapin et al.| (2001), which may be an indication of the
typical length scale of core wavefunction’s penetration into the shell. Quite interesting results
indirectly confirming this idea have been obtained for ternary core/shell/shell structures with
the outer shell of CdSe. For a thin (1-2 ML) ZnS inner shell, there is a red shift of the PL
peak observed for increasing thickness of the outer shell (dss), while for d; =3 ML the peak
position is practically independent of dss Gaponik et al.| (2010). It means that the tail of the
wavefunction inside the barrier (the first shell) is smaller than 3ML. Finally, when NCs are
embedded into an epitaxial semiconductor matrix, a blue shift of the PL peak is observed,
compared to the emission spectrum of the same NCs in organic solvent Rashad et al|(2010);
Woggon et al.| (2005). This effect is not straightforward to explain, because, in a simple view,
the replacement of TOPO by a semiconductor matrix with a band structure similar to that
of the QD materials should result in lower barriers at the interface and, consequently, in a
weaker confinement and a red shift of the exciton transition. Therefore, some further effects
have to be included into consideration, such as interface imperfection, surface charge or strain
introduced by the matrix.

The purpose of this chapter is to provide a general yet simple theoretical description of
the effects of surrounding media (shells and matrix) and interface characteristics on the
exciton ground state in nanocrystal QDs that would be able to explain the above mentioned
experimental results and could be applied to more sophisticated semiconductor structures
based on NCs of an approximately spherical shape. Our approach is based on the effective
mass approximation (EMA). Its advantages and shortcomings for calculations of the electronic
properties of nanostructures are well known. On one hand, it reveals the underlying physics
and clearly shows the effect of the material parameters on the observable properties, this
is why it has been used by so many research groups since the beginning of the studies of
nanocrystal QDs in the 80-s [Brus| (1984); Efros et al.| (1996); Fomin et al|(1998); Miranda et al.
(2006); Norris & Bawendi (1996); [Pellegrini et al.| (2005); Rolo et al.| (2008); Vasilevskii et al.
(1998). On the other hand, EMA is believed to overestimate the electron and hole confinement
energies|Jasieniak et al.| (2011). Also, the scaling laws of these energies with the QD radius (R),
obtained by fitting experimental Yu et al.| (2003) and numerically calculated Delerue & Lannoo
(2004) data, differ from the EMA predictions (R=2in the strong confinement regime). Indeed,
the EMA fails in the limit of very small clusters containing a hundred of atoms which should
not even be called nanocrystals because their properties have more similarity with molecules
than with crystals. Compared to the first version of the EMA theory for QDs Brus| (1984),
several improvements have been made, such as the consideration of finite barriers Norris
& Bawendi| (1996); Pellegrini et al|(2005) and the complex structure of the valence band of
the underlying material |[Efros et al.| (1996). As a result, it has been possible to assign several
size-dependent transitions in measured optical spectra of CdSe|Norris & Bawendi (1996) and
CdTe|Vasilevskii et al.| (1998) QDs. Further improvement of the analytical description of QDs
can be achieved by considering generalized boundary conditions allowing a discontinuity of
the envelope functions at the interfaces, found to provide a better agreement with the results
of ab initio numerical calculations |Flory et al.| (2008).

We apply the EMA approach to arbitrary centrosymmetric potentials, such as finite interface
barriers due to band discontinuities or electric charges that can eventually accumulate at the
NC/matrix interface. The EMA equations for electrons and holes (taking into account the
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complex valence band structure) will be formulated in terms of transfer matrices, allowing for
the incorporation of generalized boundary conditions at all interfaces. The resulting matrix
equations are solved numerically providing a rather simple and efficient tool for modeling
different experimental situations and designing new complex QD-based nanostructures and
optoelectronic devices with embedded nanoparticles as active optical components. The
developed open-source software is available at http://sourceforge.net/projects/emaqdot.
Finally, we present some calculated results concerning free-standing and embedded QDs and
check them against experimental trends reported in the literature.

2. Exciton transition energy calculation
2.1 Basic equations

In the strong confinement regime (R < dey, dex is the exciton Bohr radius, and R is the core
radius), the calculation of the lowest (153,,1S,) transition energy requires the electron ground
state energy, E., the hole ground state energy, Ej,, and the Coulomb interaction correction, E,

Et = Eg + Ee + Ej, + Ec

where Eg is the band gap energy of the core material. E.(Ej) is defined with respect to the
bottom (top) of the conduction (valence) band.

For the spherically symmetric electron state 15,, the envelope wavefunction can be written as
Y, = ¢(r)/V4mr and the effective Schrifjdinger equation for {(r) reads [Efros et al.| (1996);
Norris & Bawendi| (1996); Vasilevskii et al.| (1998):

2m,

v (r) + 2 [Ee — Ve (r)] g(r) =0, 1)

where m, is the electron effective mass and V,(r) is the potential acting on the electron. In
order to obtain the electron ground state energy, we have to solve Eq. together with the
boundary conditions (0) = ¢(c0) = 0 and a matching condition at each interface of the
heterostructure (see below).

Owing to the complex valence band structure of the involved semiconductor materials, the
hole ground state is determined by the Luttinger Hamiltonian |Luttinger| (1956). In the
centrosymmetric case, the radial part of the wavefunction is determined by two functions,
Ro(r) and R(r), which satisfy the following system of differential equations |Gelmont &
Diakonov|(1972):

(1+ﬁ)(%+%)%+(1—ﬁ)<%+%) (%+§)R2+4%(Eh—vh(r))laozo )
(Fﬁ)(%—%)%ﬂuﬁ)(%—%) (%4‘%) 2+4%(Eh—vh(r))1{2:0 ®3)

where V},(7) is the potential acting on the hole,
p= 11— 2y _ my
Y12y myy

and
mo mo

=, myy, =
71 +27 T =2y

mip



Exciton States in Free-Standing and Embedded Semiconductor Nanocrystals 5

are the light and heavy holes masses, respectively. Here, my is the free electron mass and 1
and y=(2v, + 373) /5 are the Luttinger parameters. They are constant within each material.

Finally, the Coulomb interaction energy is given by

e2C
E,=-— 4
= @

where € is the static dielectric constant of the QD material ! and

c— /0-00 £ [R3() + R3(1)] {%/Ot ¢2(s)ds+/t'°° @ds}dt,

assuming that ¢, Ry and R; are normalized according to:
/ P2 (H)dt =1,
0
/0 [R%(t) + R%(t)] 2t = 1.

2.2 Boundary conditions

The differential equations presented above hold only inside each (e.g. core) material. At
an interface between two materials, the following continuity conditions for the electron
wavefunction should be applied:

Y, and R continuous. (5)
me dr

However, as it has been mentioned in the Introduction, the wavefunction () is just an
envelope function and not necessarily must be continuous [Flory et al.| (2008); Laikhtman
(1992). This issue has been widely discussed in the literature in relation to semiconductor
heterostructures (see references in Laikhtman|(1992)). Instead of @), more general boundary
conditions have been proposed, providing a better agreement with ab initio calculations
for a number of III-V and II-VI compound heterostructures. A simplified version of such
generalized boundary conditions that guarantees the continuity of the probability flux reads

Rodina et al.| (2002):
(me)*Y¥, and ;% continuous. (6)
(me)t1 dr
where « is a phenomenological parameter. We shall also use these conditions (5) for interfaces
between a semiconductor and TOPO. For &« = 0 the wavefunction is continuous while for

a # 0 it is not because of the difference in effective masses i, at the interface.

At an ideal interface of two semiconductor materials of the same symmetry, the following
continuity conditions for the hole envelope functions take place:

Rg, Ry continuous;

1 d
Z (Rn+R i : 7
o dr( 0 + Ry) continuous; (7)

1 d

—— — (Rp — Rp) continuous.
— 7y (Ro—R2)

! For simplicity, we neglect the difference in the dielectric constant between different materials.
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Although, in principle, these conditions should also be replaced by generalized ones, similar
to Egs. (6) [Laikhtman| (1992), we preferred to keep (7) in order to avoid additional free
parameters.

2.3 Solution via transfer matrices

Since the equations are one-dimensional and the boundary conditions are linear, a transfer
matrix formalism can be applied. This approach, borrowed from the optics of multilayer
media Born & Wolf| (1989), offers a convenient framework for linear problems and is
straightforward to implement in a computerIf the potentials V,(r) and V}(r) are constant
inside each material, Eqs. (I]-[B) can be solved explicitly. Considering one such material, two
linearly independent solutions of (1) are cos(k.r) and sin(k.r) if

is real. If it is imaginary, k. = iK., then the solutions are exp(=%«,r). For holes, if

2m
ky = 7% (En — Vi)

is real, the linearly independent solutions of Egs. for the 2-vector ( ﬁo ) are
2

(jo(kh7)> ( jo(kyr) ) <]/0(kh")) < yo(kr) > ®)
jlknr) )" \ =j2(kir) )" \y2(knr) )7 \ —y2(kir) )

where k; = \/Bkh, and j,, yy are the spherical Bessel functions of the first and second kind,
respectively.

If kj, = ix;, with x;, real, the solutions are:

( io (1ep7) ) (io(KtV)) ( ko(Kpr) ) (ko(w)) )
—ia(rkyr) )" \i2(igr) )7\ —ka(ir) )7 \ k2(117) )7

where x; = \/EK;,, and i,(z), ky(z) are the modified spherical Bessel functions of the first
and third kind, respectively |Abramowitz & Stegun| (1970). Collecting the above solutions
and combining them by using the boundary and matching conditions, one can obtain some
transcendental equations for E. and Ej. These transcendental equations are conveniently
expressed in terms of transfer matrices, as shown below. For general centrosymmetric
potentials, V. (r) and V},(r), the solutions of Egs. inside each material cannot be found
analytically. The differential equations must be discretized using an appropriate numerical
scheme. Then, our general approach still remains valid.

Let us suppose that V,(r), V;,(r) = const in the following regions of the heterostructure:
0 < r < Aq (core) and r > Ay (matrix far from the NC interface). Then the solutions in
these regions are given by some particular combination of the above expressions (8) or ().
We consider a 2-vector, composed of the electron wavefunction and its derivative, z.(r) =

( P(r) ) , which can be written explicitly for r = A; and r = Ay. These two vectors are

'(r)
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connected by a transfer matrix, T,, that characterizes the region r € [A1, Ay]. Itis constructed
by multiplying the elementary transfer matrices describing the layers A; < r < Ajyq,
(i = 2,3,.., N — 1), and their interfaces. The details are given in Appendix I for a constant
potential profile and in Appendix II for an arbitrary potential. Note that the case of infinite
potential barrier at Ay requires a special analysis and is considered in Appendix III. Explicitly,
we have forr = A;:

ze(A1) = c1vq

where
_ sin(k. A1)
Vi= (ke cos(ke A1) (Ee > Ve),
or
_ [ sinh(x.A1)
vi= <Kg cosh(x, A1) (Ee < Ve).
Forr = Ay,
ZE(AN) = (V) (Eg < Vg),

v — exp(—k.AN)
27\ ~keexp(—k.An) )

Connecting the points A1 and Ay, we get
CoVpy — (C1V3 = 0, (10)
vz = T(Ay, AN) - V1.
The energy E, is obtained from the equation,

det ([—v3 v2]) =0. (11)

Ro
Ry
connected by a 4 x 4 transfer matrix T}, (see Appendix I). For r = Ay, we have:

Similarly, the corresponding 4-vectors for holes composed of ( > and their derivatives, are

2, (A1) = c1vi + 0oy,

where jo(kn A1) jo(ki A1)
= |y | 2= | iy | @

knj (kn A1) —kij5 (k1 A1)

. io (1, A1) io(r1 A1)
(e B o L

— iy (kp A1) Kyis (kA1)

Forr = Ay,

A 2, (AN) = c3v3 +cqvy

here ko(knAN) ko(k1AN)
o= adan |7 A | B<W

—Kpky (K AN) K1ks (k1 AN)
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Connecting the points r = A; and r = Ay, we have
c3V3 4+ c4vy — €1V — Vg =0, (12)

vs =Ty(A;,An) - v1, Ve =T (A1, AN) - V2.
The energy Ej, is determined by the equation

det([—V5 —Vg V3 V4]) =0. (13)

2.4 Too low barrier for holes

For embedded QDs, it is quite possible that the potential barriers provided by the
semiconductor matrix are not sufficiently high (because of the small valence band-offset
for II-VI semiconductors) to confine the carriers if the core radius is very small. Then one
cannot consider the Coulomb interaction as a perturbation anymore and the confinement of
the exciton as a whole should be considered. However, it can happen that the conduction
band barrier is still quite high and the electrons still are in the strong confinement regime
(i. e, R < a,, a, is the electron Bohr radius for the core material). Then the Coulomb
interaction with the hole is still a small perturbation for the electron. Its ground state energy
E, and the wavefunction ¥,(r) can be found as before. The above condition has profound
physical consequences. The strongly localized electron shall keep the hole in the vicinity of
the dot (otherwise it would be free to move into the matrix). This case can be called as "weak
localization of the hole". We shall extend our formalism in order to include this case.

The Schrifjdinger equation for the electron-hole pair (exciton) is written as
[Te + Ve(re) + Ty + Vir(xp) + Vi (xe, 14)] Yo = EexWex

where Wy = ¥,(re)¥y (1) (¥, is a 2-vector), T, (T},) represents the electron (hole) kinetic
energy operator and V,, is the electron-hole Coulomb interaction term. Multiplying by ¥}
and integrating over the electron coordinates, r,, yields:

(Th + Vi (tn) + Vege ()] ¥ = E¥y (14)

with
Veff = <‘Fe ‘Veh| Te> .

Using the well-known expansion,
1
1 B }72}"’:0 (%) Py(cos8) ifr, > 1y

= 1
|Te — 1] %Z?O:O <:—;> Py(cosB) ifr, <1y

’

where P; are Legendre polynomials and ¥, (r.) = () /v47r,, we have:

T

82
Vesr(rn) = ——

2
b Al bl B!
o [ e = S [ g reare 15)

For large 7y, the probability to find the electron there is small and V() behaves as —e2/ery,.
On the other hand, for small rj, we have V(1)) = Vg (0) + O(r2), where

e2c? . e [ 2(r)
Vef(0) = = 5k [[ = Ci(2KeR) +In(2keR)] — /R 04,
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I is the Euler-Mascheroni constant, C;(x) is the cos-integral function, and k., ¢1 are the electron
parameters inside the core (see above). Figure [2| shows the shape of the effective potential

Veff(rh).
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Fig. 2. Effective potential for holes (Eq. |15) produced by localized electron in 1S, state.

This potential has to be added to V, in Eqs. () and (3). Because of the non-explicit expression
for Voff We have to solve numerically. However, this does not rise any difficulty
because this potential is also centrosymmetric (Appendix II). The asymptotic solutions for
bothr;, — 0and r;, — oo are required. Near the origin, the potential Veff(rh) is almost constant
and the above mentioned solutions, vy and v;, can be used (by putting Vg (r,) = Voge(0)). In
the same way, for large r;, the dominating terms of the asymptotic solutions behave as v3, v4
(replacing Vg (ry,) by 0).

Applying the continuity conditions similar to (7) and using the numerical transfer matrices
described in Appendix II, the solutions of Eq. near r;, = 0 are connected with the
asymptotic ones at r;, = Ay, and the energy Ej, is obtained.

3. Results and discussion

We applied the formalism described in the previous section to a set of "samples" that mimic
free standing and embedded bare core and core/shell NCs. The parameters used in the
calculations are listed in Table 1. The results are summarized below.

Bare core NCs

Concerning the size-dependent lowest transition energy in bare core NCs covered by TOPO
Fig. |3 shows the results of our calculations in comparison with the experimental data of
Murray et al.| (1993); [Yu et al.| (2003) and those calculated assuming infinitely high barriers.
A good agreement with the experiment is observed only for the calculations performed with
finite barriers [Pellegrini et al|(2005). We would like to point out that the complex valence
band structure was neglected in the previous work considering finite barriers |Pellegrini et al.
(2005) and, consequently, an unrealistically small effective mass (0.3m) for heavy holes was
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| Parameter|CdSe| ZnS| ZnSe| TOPO|

me(mg) 10.119]0.22] 0.16 [ 1
my(mo) | 0.820.61]0.495] 1
my(mg) 10.262]0.23]0.177] 1
Eg(eV) [1.75[3.78] 27| 5
VBO@EV) | 0 [0.99]022] 1.63

Table 1. Parameters used in calculations for CdSe, ZnS, and ZnSe. Notation: VBO, Eg, m,,
myy, and myy, refer to the valence band offset, band gap, and effective masses of electrons,
heavy holes and light holes, respectively. These values were taken from Li et al.| (2009);
Pellegrini et al.|(2005); Schulz & Czycholl| (2005); |Springer Materials The Landolt-Bornstein
Database| (2011).

used. In the present work, we used the correct model for the valence band with realistic 1,
and my,;, and introduced an extra parameter acgs,,ropo = —0.08 to characterize the electron
envelope function matching at the CdSe/TOPO interface. Barrier’s heights used by |Pellegrini
et al|(2005) (1.63 eV) were obtained by subtracting semiconductor’s E¢ from the known energy
(5 eV) of a certain electronic transition in TOPO and dividing the result equally between the
CB and VB offsets, yielding the above rather low values. Most of the authors used much
higher values for these barriers [Dabbousi et al.|(1997);|Rashad et al.| (2010) in order to obtain
the correct trends for core-shell structures (see below) but then it is not possible to correctly
reproduce the E¢(R) dependence for bare core particles. Using the discontinuous envelope
function can help to remedy this difficulty.

T T T T T
. ® Murray etal. 1993
o  Yuetal 2003
36 | Finite Barriers: a =0 ]
% Finite Barriers: a = - 0.08
—~ 3.2} o - - - - Infinite Barriers
>
L
5 2.8+
()
c
w 244
2.0
n 1 n 1 n 1 n 1 n 1
0 1 2 3 4 5

QD Radius (nm)

Fig. 3. Comparison between experimental and theoretical results for CdSe/TOPO NCs.
Experimental values were taken from Refs. Murray et al.[(1993);|Yu et al.| (2003). The lowest
transition energy was calculated using finite barriers and either continuous (x = 0) or
discontinuous (« # 0) boundary conditions for the electron wavefunction at the interface.
For comparison, the results obtained assuming infinitely high barriers for both electron and
hole are also presented.
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Shell thickness effect in CdSe/ZnS CSNCs

As it has been said in the Introduction, the absorption and PL emission peaks in the spectra
of CdSe/ZnS core/shell NCs are redshifted with respect to the bare core CdSe NCs of
the same radius. The shift grows when the shell thickness is increased up to d;=3 ML
and then saturates. This effect has been observed by several groups |Baranov et al.| (2003);
Dabbousi et al.| (1997); Soni| (2010). We focus on the absorption peak position because the
emission peak is usually Stokes-shifted with respect to the former mostly because of the
size distribution effects (larger dots emit stronger than the smaller ones in an ensemble of
NCs |[Efros et al| (1996)). In our calculations of the lowest transition energy, the electron
wavefunction at the CdSe/ZnS interface was considered continuous (¢ = 0), while the
ZnS/TOPO interface was characterized by an appropriate (non-zero) value of the electron
wavefunction discontinuity parameter, az,s,ropo- Fig. E]shows a good agreement between
the calculated and experimental results, obtained without using an unrealistically large
heights of the ZnS/TOPO barriers (like 10 eV for holes in Ref. |[Dabbousi et al. (1997)).
For comparison, the case az,s5,7op0 = 0 is also presented, which lead to a blue shift in
the transition energy when the shell thickness is increased, in direct contradiction with the
experiments.

140 - i

Q
1
o

Energy Shift (meV)

Il Il Il Il Il Il Il
00 02 04 06 08 10 12 14 16

Shell Thickness (nm)

Fig. 4. Absorption peak shift in CdSe/ZnS CSNC, obtained experimentally by Dabboussi et
al. (points) and calculated using present model with az,,s /7opo = —0.36 and a5, 70p0 = 0.
The transition energy for the core/shell NCs is measured with respect to the CdSe bare core
QD. The core size in both cases is R = 2.0 nm.

The effect of surface charge

As it has been pointed out in the Introduction, the utilization of colloidal NCs as active
optical material in optoelectronic devices requires their incorporation into a high quality solid
matrix. This process comprises the casting of the colloidal particles onto a substrate with the
subsequent overgrowth of the matrix. For such embedded structures, it is relevant to consider
the possibility of static charge accumulation at the nanoparticle/matrix interface [Baccarani
et al.| (1978). Because of the incoherent incorporation of the nanoparticles into the crystalline
matrix, the interface can create electronic trap states. Therefore the surface should be charged
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with a density 0p and a compensating space charge should be distributed in the matrix in the
vicinity of the particle. The volume density of the latter can be assumed of the form,

r—r
) = —poexp [~ (r > ro), 6
where 1y = R + ds is the radius of the particle, I is a characteristic length (of the order of 1-2
nm), and py is obtained from the charge neutrality condition:
o0
po = o7
I [1 +21/rg+2(1/70) ]

Since epitaxial ZnSe normally is intrinsically n-type doped, we assume oy < 0.

The electrostatic potential, ¢(r), is found by solving the Poisson equation with the charge
density p(r) = 0pd(r — r9) + pm (7). The additional potential energy is:

21 1 —
Ao g% exp [-512] (r > o)

Al (7’ < 7‘0)

Uc(r) = —eg(r) = { , (17)

where A = (I/rg) (21/r9+1) [l +2l/rg+2 (l/ro)z} ! is a dimensionless constant and the
energy Uy = —4mroope/ €. Then the confinement potentials for electron and hole are obtained
by considering U.(r) and the conduction and valence band offsets between the different
materials forming each structure. The resulting band diagrams for two heterostructures (for
the case of 0y < 0) are shown in Figure 5| a, b. Notice that, according to (I7), if | < rq then
the electron confinement decreases while the hole wavefunction becomes stronger localized
owing to the surface charge effect. For large I the surface charge effect on the confinement can
be neglected.

The results obtained for CdSe and CdSe/ZnS nanoparticles embedded in ZnSe are presented
in Figs. B}, and p}d. It can be seen that the surface charge effect on the hole energy is stronger
for the bare core QD than for the CSNP. This is because in the latter, because of the presence
of the ZnS shell, the hole penetrates less into the matrix (see Fig. E] a, b) and hence a weaker
interaccion with the charged interface is expected 2 As a result, the surface charge effects on
the electron and the hole nearly compensate each other in a bare core NC, while in a core/shell
QD there is a significant net red shift of the exciton transition owing to the presence of the
surface charge.

Free-standing versus embedded NCs

A blue shift in the PL emission when CdSe/ZnS CSNCs were embedded into a ZnSe
crystalline matrix was observed in the work |Larramendji| (n.d.). Two samples studied in that
work contained nanocrystals with different core size, 2R = 2.5 and 3.0 nm, and ds = 0.5 nm of
ZnSe shell (2 MLs). A shift of the emission peak, of 68 and 33 meV, respectively, was observed
(Fig. [6). We attempted to reproduce this effect in our calculations. Here we used a = 0 for all
(CdSe/ZnS, ZnS/TOPO, and ZnS/ZnSe) interfaces.

2 For r < R the hole does not interact with the charges outside by virtue of the Gauss law.
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Fig. 5. Band energy diagrams for CdSe/ZnSe (a) and CdSe/ZnS/ZnSe (b) structures, with
(full lines) and without (dashed lines) charge at the NC/matrix interface. Notice that the
valence and conduction bands are shifted by a constant value (equal to Al) inside the
particle. Also shown are the electron and hole probability densities for the case with surface
charge. In panels c) and d) the electron (blue), the hole (red), and the transition (black)
energy shifts (with respect to the case of 0y = 0) are presented versus the surface charge
parameter Up.

The results of our calculations are presented in Fig. [f| Essentially, the blue shift is obtained
in a natural way, despite the higher barrier for TOPO-covered free-standing NCs. In order
to qualitatively understand this result, we focus on Fig. 7, particularly on the electron
wavefunctions shown in Fig. [/|d, which exemplifies the situation. For the free-standing
NC, the higher barrier results in a smaller penetration length. This would favor larger
energies. However, the larger difference in the effective masses on the left and on the right
of the interface implies an abrupt change in the slope of the wavefunction. For the given
set of parameters, the second effect (i.e. the change in the derivative of ¥, at the interface)
dominates. Despite the longer tail of the electron wavefunction in the case of the embedded
QD, the maximum of the probability density is located at a lower distance from the center and
a blue shift is obtained (except for the smallest radii).

Let us point out that the situation depicted in the right panels of Fig. [/] corresponds to
weak localization of the hole owing to its the Coulomb interaction with the strongly localized
electron. Passing from strong to weak localization should affect the overlap integral between
the electron and hole wavefunctions that determines the transition oscillator strength. In
the ultimate limit of small core radius, the electron becomes delocalized and, consequently,
the hole too. Then the overlap integral should decrease drastically. It could explain why
the luminescence of the bare core NCs is weaker than that of the core shell NCs when they
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Fig. 6. Calculated transition energy shift versus core radius for CdSe/ZnS CSNPs embedded
in ZnSe matrix (d; = 0.5nm, 0y = 0). In the inset are displayed the PL bands measured for
two samples of colloidal CdSe/ZnS NCs with different core size (2.5 and 3.0 nm), dispersed
in toluene solution (green lines) and after embedding into epitaxial ZnSe layer (blue lines)
[courtesy of Prof. U. Woggon and Dr. O. Schi£jps].
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Fig. 7. Potential profiles and probability densities [electron (blue), (rR0)2 (red solid) and
(rR2)2 (red dashed)] for CdSe/ZnS/TOPO nanoparticle (left panels) and CdSe/ZnS/ZnSe
heterostructure (right panels). In the latter, the electron density of panel c) is also shown for
comparison (black dotted line). In both cases R = 1.5 nm, ds = 0.5nm, 0y = 0, and « = 0.

are embedded into the matrix |Larramendi (n.d.). The threshold (in terms of the core size)
between the different confinement regimes depends on several factors, such as the band
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offsets. These can be affected by the electric charge that can accumulate at the interface
between the embedded QDs and the matrix. For instance, a positive surface charge would
increase the electron barrier and decrease the one for the hole. The charge would also modify
the potential profile seen by the confined electrons and holes, similar to the effect known for
polycrystalline silicon Baccarani et al.|(1978). It could bring about the hole confinement in the
vicinity of the CdSe/ZnS interface, similar to what happens to 2D electrons in AlGaAs/GaAs
heterostructures.

4. Conclusions

In summary, we have developed a transfer matrix approach to theoretically describe the
effects of surrounding media and interface charge on the exciton ground state in nanocrystal
QDs. It permits to explain a number of experimentally observed effects, including (i) the
size-dependent lowest transition energy, (ii) the influence of shell thickness on the absorption
and emission spectra of core/shell nanoparticles and (iii) the blue shift of the emission peak
when NCs are embedded into an epitaxial matrix. For this, the utilization of generalized
boundary conditions at nanoparticle/organic-ligand interfaces is required. We also showed
that the Coulomb interaction between the electron and the hole can be important for the
confinement of the latter. This is essential for the interpretation of the experimental results
concerning colloidal CdSe NCs embedded in a semiconductor (e.g. ZnSe) host matrix because
of the small valence band-offset between II-VI semiconductors. Note that, since the colloidal
NCs are buried with random crystalline orientations and, consequently, are non-coherent
to the host epitaxial matrix, the influence of the strain that could result from the lattice
mismatch between the NCs and the matrix is not expected and therefore was not taken
into account in our model. However, it could be incorporated using the standard theory
of strained bulk semiconductors Bir & Pikus| (1974). The same applies to the effects of
the electron-hole exchange interaction and crystal field produced by hexagonal structure,
which can be considered as perturbations and lead to the splitting of the 153,,1S, octet
Efros et al[(1996), and the dielectric polarization effect owing the difference of the dielectric
constant value between the NC material and TOPO, leading to a correction to the electron-hole
Coulomb interaction Brus| (1984). Thus, our approach provides a user-friendly tool to study
different combinations of NC and surrounding materials and potential interesting physical
effects, such as the crossover between strong and weak localization regimes for the QD hole.
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6. Appendix

Appendix |. Transfer matrix for a constant potential

Electrons
Let
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where cis a 2-component constant vector, and

cos (ke sin(k,r
M(r) = {fke si(n(ZZr) ke co(s(ke)r)} (Ee > Ve)

or

A | eplrer)  exp(—rer)
M(r) = |:Ke exp(Ket) —tke eXp(—Ker)] (E. < Vo).

The key idea is to obtain z(r;) given z(rq):
z(r2) = T(r1,72) - z(r1)

where T(rq,1;) is the transfer matrix. If 71, r, are in the same material, the transfer matrix is
T(r1,72) = M(r2) - M~1(r). Equivalently,

cos (keAr) L sin (keAr)
T(r1,72) = ke E. > V.
(r1,72) {fke sin (keAr) cos (keAr) (Ee > Ve)
or )
_ | cosh(keAr) & sinh (x.Ar)
Tlrr2) = l:Ke sinh (x,Ar) cosh (k.Ar) (e < Ve).

At the interface X we have
z(rt) =Ty - z(r7),

Bt 0
T =1 ptop ot |
r e
and B, = mJ /m; .
Holes
In this case
Ro
R
2(r) = | &2 [ =m0 ¢,
0
Ry

where c is a 4-component constant vector and

jogilihr; jq(’gll:)) E’;ﬂ% }/o(’(Cllcr))
’) = J2\Kp? —J2\kr nt —YaKyr
M) = | % ) ki) kasher) kv () (Ex > Vi)
knja (knr) —kyjs (kir) knyy (k) —kiys (ki)

. iq(’(ﬁﬂ)) IOEW; k}(;(’(w)) ioEKﬂ;
o —Ix (KT 1\ K1v — K2 (KpT 2(K17
MO =1 i) ®ib(ar) k) (kur) k(i) (Bn < Vi)-
—Kpiy(Ky") Kﬂ'z(Klr) LA RSLACT!

The transfer matrix is T(r1,72) = M(r2) - M~ 1(ry).

At the interface (X) we have:
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10 0 0

01 0 0

00 3B +Bn) 3(Bi—Bu |
00 5B —Bn) 7(Bi+ Bn)

Ty =

+ +
my, ih

m
and f; = m;’ﬁh = mf’;h

Appendix ll. Numerical transfer matrix

The solution of the first-order ordinary differential equation,s
Llz(t)] =0
z(t)) =a

where [ is a linear operator, a = (ay,4y,...,4,), and z : ® — R", can be expressed in terms of
the solution of the auxiliary problems:

Llui ()] = 0

u;(t)) = E;

where E; € R" is the i-th canonical vector, and i = 1,2, ..., n. Since

n
a = Z Eiai,
i=1
we have
n
z = Z u;a;,
i=1

in particular,
n

z(ty) = ) u(t2)a;.

i=1
Taking into account that z;(t;) = a;, and denoting Tj; = (u;)

z(ty) =T - z(h).

Hence the transfer matrix T is given by the solutions u; putted as column vectors.

j/

Appendix lll. Infinite potential barrier in Ay
For electron, the condition is now ¢(Ay) = 0, hence the equation
Vg[l] =0 (18)

instead of determinates the electron energy E.. The constant c; can be obtained from
normalization.

For holes, we have now Ro(AN) = R2(An) = 0, hence the equation

{ZEE} z:%” ' (2) B (8) (19)
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replaces (12) and Ej, is given by
vs[1] Ué[”D
det =0. 20
(|l )
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