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Abstract 

In any management process, decision making assumes a very important dimension. Complex systems are commonly 
fed with large amounts of data that are quickly made available to experts and industrial engineers who, in most cases, 
are not provided with adequate decision support tools. Therefore, the quality of their decisions heavily relies on their 
our quality and experience, making the complex systems management planning, particularly in maintenance planning, 
a very difficult and subjective process, by tendentially diverting analysts from the main decisional aspects. In order to 
overcome these difficulties and subjectivities, this paper purposes a set of methodological guidelines based on fuzzy 
set theory to be applied in the planning processes, leading to optimized and more realistic results. 
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1 Introduction 

1.1 Study context 
The role of maintenance in the long-term profitability of an organization has long been recognized and 
this has led researchers and practitioners alike to develop maintenance strategies that contribute to long-
term profitability (Ben-Daya and Duffuaa 1995). However, profitability and survival cannot be achieved 
without sustained product quality. In today’s global economy and fierce competition, quality has been 
recognized as the major edge for competitiveness and long-term profitability. The role of maintenance in 
this endeavor cannot be neglected. Generally, equipment which is not well maintained and regularly fails 
deals with unavailability, speed losses and/or lack of precision and, hence, tends to produce defects. The 
inevitable increase of production costs, which amounts to less profitability which endangers the survival of 
the organization, is a possible consequence too.  

Predictive and condition-based maintenance employ a closed-loop maintenance strategy in which 
information from equipment is obtained and utilized in making planned maintenance decisions. The 
maintenance decision is usually based on the use of a threshold which, when reached, means that 
maintenance is to be carried out. Such a strategy will ensure high product quality, especially if these 
thresholds are chosen so that equipment does not deteriorate to the extent to which defective, or near 
defective, products are generated. Although, this link of quality and maintenance management is 
frequently missed in the literature. 

Literature on maintenance models for complex technological systems is extensive and there is a great 
number of described contexts where each model is developed taking in account technical and financial 
constraints. However, those models rarely incorporate the uncertainty and/or fuzziness that are intrinsic to 
the reliability and cost parameters of such complex maintenance systems. In fact, taking these parameters 
as rigid or “crisp” values does not reflect correctly the reality. Therefore, the quality of decision making 
process is inevitably compromised. 

During the last decade, several models in maintenance planning have been incorporating uncertainty of 
their parameters by using fuzzy numbers (Yuniarto and Labib 2006; Hong 2006; Khanlari et al. 2008; Shen 
et al. 2009 and Sharma et al. 2009). Al-Najjar and Alsyouf (2003) and Lu and Sy (2009) developed models 
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that support decision making in choosing the most efficient maintenance technique. Nevertheless, most 
of the current literature on maintenance modeling simply omits the uncertainty that is inherent to real 
data and maintenance parameters, paying little attention at the time of decision making.  

The Fuzzy Set Theory has been extensively studied in the past 30 years. It was largely motivated by the 
need for a more expressive mathematical structure to deal with human factors and it has a major impact 
on industrial engineering, including on maintenance planning. In fact, this is an area where large amounts 
of data are quickly processed and where almost exists total dependence of historical references and of the 
quality and experience of experts and maintenance engineers. Therefore, the Fuzzy Set Theory has been 
playing a role of particular relevance with regard to delineating maintenance actions, providing critical 
support in specific areas (Chang et al. 2012; Baraldi et al. 2012 and Fernandez et al. 2007). 

Based on Fuzzy Set Theory, this work purposes some guidelines to take account in the maintenance 
planning process, from the data treatment phase to the instant of choosing of the best maintenance 
policy. 

1.2 Paper organization 
The paper is structured as follows: Section 2 introduces the basics of fuzzy sets that are relevant to apply 
in maintenance planning processes. Section 3 presents elementary notions of individual decision making 
in fuzzy environments. Section 4 makes an evaluation of fuzzy decision making, proposing an adapted 
compatibility measure. In Section 5 methodological guidelines are applied in a numerical example in the 
maintenance planning context. Finally, Section 6 synthetises the main conclusions and further work 
suggested by this work. 

2 Fundamentals of Fuzzy Set Theory 
This section shows the basis of Fuzzy Set Theory, succinctly providing some of the advantages of the use 
of this theory to model the uncertainty that is inherent to any maintenance planning process. 

2.1 Crisp sets and fuzzy sets 
Classical studies on reliability model the eventual occurrence of a specific event by means of the 
probability theory and treat failure rates, repair mean times or maintenance costs as crisp numbers. The 
mean value seems to be the most profitable information about an observed feature. It considers that 
there is a perfect knowledge about the interdependent relationships in the system and all parameters are 
constant values. However, such considerations are not reasonable to assume in real (complex) 
engineering systems. In fact, as the result of the variability inherent to many parameters the results of the 
models based on crisp values cannot be taken as representative of the entire spectrum of results. To 
overcome these limitations, the application of the fuzzy set theory proves to be an interesting approach 
to be applied in most cases where it is conceptually adequate. Fuzzy sets are adequate, for instance, to 
estimate the lifetime of a given equipment. Such information is, in many cases, provided by the 
manufacturer. In fact, in most cases, statements in plain language constitute the best mode to express the 
knowledge of a system (e.g. “the equipment reliability is high” or “the generator temperature is around 
5ºC”). However, this information is naturally very inaccurate. Therefore, a realistic estimate is always an 
approximation. Carvalho et al. (2010) developed a maintenance policy, where the uncertainty of some 
costs, probabilities and reliability parameters is not omitted by the model, being represented through 
fuzzy sets. 

On the other hand, a crisp set is defined in such a way as to dichotomize the individuals in some given 
universe of discourse X into two groups: members (those that certainly belong in the set) and 
nonmembers (those that certainly do not). A sharp, unambiguous distinction exists between the members 
and nonmembers of the set. However, many classifications concepts we commonly employ and express in 
natural language describe sets that do not exhibit this characteristic, as the examples above.   
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Contrasting with that definition, a fuzzy set can be defined mathematically by assigning to each possible 
individual in the universe of discourse a value representing its grade of membership in the fuzzy set. This 
grade corresponds to the degree to which that individual is similar or compatible with the concept 
represented by fuzzy set. Thus, individuals may belong in the fuzzy set to a greater or lesser degree as 
indicated by a larger or smaller membership grade. These membership grades are very often represented 
by real number values ranging in the closed interval between 0 and 1, where these extreme values 
represent, respectively, the total denial and affirmation of the membership in a given fuzzy set, as well as 
the falsity and truth of the associated proposition. 

The capability of fuzzy sets to express gradual transitions from membership to nonmembership and vice 
versa has a broad utility. It provides us not only with a meaningful and powerful representation of 
measurement uncertainties, but also with a meaningful representation of vague concepts expressed in 
natural language. 

The numerical assessment of fuzzy parameter/data and linguistic variables, such as some performance 
measures in maintenance engineering, is done by using adequate membership function which determines 
the degree of membership in each input fuzzy set. The design of a fuzzy model is not trivial and several 
approaches (Ross 1995; Klir and Yuan 1995) have been proposed to identify the shape of elementary 
performance measures.  

Basically, any function of the form 

A (x): X → [0, 1] 

describes a membership function associated with a fuzzy set A. However, its representation depends of 
the concept and also of the context in which it is used. The graphs of these functions can have different 
shapes and properties (e.g. continuity). In some cases, the semantic meaning captured by fuzzy sets does 
not appear very sensitive to variations in form and sometimes simple functions are more convenient 
(Pedrycz and Gomide 1998). However, this subject will not be discussed in this work and the most usual 
solution is to use triangular and/or trapezoidal membership functions. Functions illustrated in Figure 1 
have analytical advantages in terms of their manipulations in almost all types of industrial systems. 

 

 

 

 

 

 

 

Figure 1: Commonly used membership functions 

The membership functions illustrated in Figure 1 can be analytically represented by: 
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2.2 Fuzzy-to-crisp conversion 
There is a difference between modelling with fuzzy information and applying the fuzzy results to the real 
world around us. Despite the fact that the bulk of the information emerging every day is fuzzy, most of 
the actions or decisions implemented by humans or machines are crisp or binary (e.g., reduce to 2 MW 
the power of the wind turbine). There may be situations where the output of a fuzzy process needs to be 
a single scalar quantity as opposed to a fuzzy set. For example, in maintenance planning, it is extremely 
important to give the exact indication of at which instant the preventive maintenance must take place. 
Thus, it is important to have a means to convert a fuzzy quantity to a precise quantity. This process is 
called defuzzification. (Inversely, fuzzification is the conversion of a precise quantity to a fuzzy quantity).  

There are some popular methods in the literature for defuzzifying fuzzy output functions (membership 
functions).  

Ross (1995) states that have been published, at least, seven methods for the collapse of fuzzy results. A 
detailed application of those methods can be found in Klir and Yuan (1995). 

Next, in a summary way, we present three of those methods: 

i. Centroid method, also called center of area and center of gravity, is the most prevalent and physically 
appealing of all the desfuzzification methods. It is given by the algebraic expression: 
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ii. Max-membership principal, also known as the height method, is limited to peaked output functions. 
This method is given by the algebraic expression: 

   zz AA  *               (2) 

iii. Mean-max membership, also called middle-of-maxima, is closely related to the first method, except 
that the locations of the maximum membership can be non-unique (i.e., the maximum membership 
can be a plateau rather than a single point). This method is given by the expression: 

2
* ba
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where a and b are as defined Figure 2 (c). 
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Figure 2: Examples of desfuzzification: (a) max-membership principal; (b) centroid method; and (c) Mean-max 
membership 

3 Fuzzy Maintenance Decision making 
Making decisions is undoubtedly one of the most fundamental activities of human beings. Usually, 
applications of fuzzy sets in decision making have consisted of fuzzifications of the classical theories of 
decision making. While decision making under conditions of risk have been modelled by probabilistic 
decision theories and game theories, fuzzy decision theories attempt to deal with vagueness and 
nonspecificity inherent in human formulation of preferences, constraints and goals. That is, when 
probabilities of the outcomes in a maintenance model are not known, or may not even be relevant, and 
outcomes for each action are characterized only approximately, the decisions are made under uncertainty. 
This is the prime domain for fuzzy decision making and decision making under uncertainty is perhaps the 
most important category of decision making problems. 

Many simple decision processes are based on a single objective, such as minimization cost, maximizing 
profit, minimizing run time, and so forth. Often, however, decisions must be made in an environment 
where more than one objective function governs constraints on the problem and the relative value of 
each of these objectives is different. 

In the first paper on fuzzy decision making (Bellman and Zadeh 1970) it is proposed a fuzzy model for 
decision making in which relevant goals and constraints are expressed in terms of fuzzy sets and a 
decision is determined by an appropriate aggregation of these fuzzy sets. A decision situation in this 
model is characterized by the following components: 

 a set A of possible actions; 

 a set of goals Gi (in), each of which is expressed in terms of a fuzzy set defined on A; 

 a set of constrains Cj (jm), each of which is expressed in terms of a fuzzy set defined on A. 

 

It is common that the fuzzy sets expressing goals and constraints in this formulation are not defined 
directly in the same universe of discourse, but indirectly, through other sets that characterize relevant 
states of nature. This is a more general case and it has particular interest in real applications. In 
maintenance planning, an example of a possible goal is the maintenance cost minimization and a 
constraint may dictate that the availability must be above of a certain value.  

Suppose that the goals and the constraints are defined as fuzzy sets Gi’ and Cj’ defined on sets Y and A, 
respectively, where in and jm. Assume that these fuzzy sets represent goals and constraints 
expressed by de decision maker. Let f be a mapping from A to Y, with a representing an input (cause) and 
y (y=f(a)) representing an output (effect).Then, given a fuzzy set Gi’ in Y, it is readily find a fuzzy set Gi in A 
which induces Gi’ in Y. Specifically, the membership function of Gi is given, for each in, by the equality: 
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where f: A→Y. In this way, the case where the goals and the constraints are defined as fuzzy sets in 
different spaces can be reduced to the case where they are defined in the same space. 

Generalizing the concept above, if the fuzzy sets expressing goals and constraints are not both defined 
directly on the set of actions A, but they are defined on the sets Yi and Xj, respectively, then, we describe 
the meanings of actions in set A in terms of sets Yi and Xj, respectively, by the following functions: 

gi: A→Yi 

cj: A→Xj 

and express the membership of the goals Gi (in) and the constraints Cj (jm) by the composition of gi 
with Gi’ and the compositions of cj with Cj’, for each aA; that is: 

    aga iGG ii '       (4) 

    aca jCC jj '       (5) 

 

Given a decision situation characterized by fuzzy sets A, Gi (in) and Cj (jm), a fuzzy decision, D, is 
conceived as a fuzzy set on A that simultaneously satisfies the given goals Gi and constraints Cj. That is,  
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for all aA, provided that the standard operator of fuzzy intersection is employed. 

Intuitively, a fuzzy decision is basically a choice or a set of choices draw from the available alternatives and 
it can be interpreted as the fuzzy set of alternatives resulting from the intersection of the goals and 
constraints.  

Once a fuzzy decision has been determined, it may be necessary to choose the “best” single crisp 
alternative from this fuzzy set. By max-membership principal (Eq. (2)), this may be accomplished in a 
straightforward manner by choosing an alternative a*A that attaints the maximum membership grade in 
D (Figure 3). Sometimes, it is preferable to determine a* by a more appropriate defuzzification method, 
such as the centroid method expressed by Eq. (1) above. 

 

 

 

 

 

 

Figure 3:  Illustration of a fuzzy decision 

Note that in the fuzzy decision definition expressed by Eq. (6) it is assumed that all of the goals and 
constraints that enter into D are of equal importance. However, there are some situations in which some 
of the goals and perhaps some of the constraints are of greater importance than others. Therefore, the 
fuzzy decision expressed by Eq. (6) can be extended to accommodate the relative importance of the 
various goals and constraints by using weighting coefficients and an alternative fuzzy set intersection or 
an averaging operator may be used to reflect a situation in which some degree of positive compensation 
exists among the goals and the constraints. In this case, the fuzzy decision D can be determined by a 
convex combination of the n weighted goals and m constraints of the following form: 
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for all aA, where ui and vj are non-negative weights attached to each fuzzy goal Gi (in) and to each 
fuzzy constraint Cj (jm), respectively, such that: 

1
1 1

 
 

n

i

m

j
ji vu       (8) 

Then, the values ui and vj can be chosen in such a way as to reflect the relative importance of G1, G2, …, Gn 
and C1, C2, …, Cm. They, obviously, reflect the decision maker opinion, experience and beliefs. Suppose, for 
instance, that the decision maker is more interested in minimizing the cost than in guarantying that the 
availability is above of a certain value. Then, ui and vj in the Equation (7) can be, for example, 0.6 and 0.4, 
respectively. 

A direct extension of formula (6) may be used as well: 
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where the weights ui and vj possess the property specified by Eq. (8). 

 

Doing this, we want to evaluate how well each alternative, or choice, satisfies each goal and each 
constraint, and we wish to combine the weighted objectives and constraints into an overall decision 
function in some plausible way.   

 

The concept of a decision as a fuzzy set in the space of alternatives may appear at first to be somewhat 
artificial, but it is quite natural, since a fuzzy decision may be viewed as an instruction whose fuzziness is a 
consequence of the imprecision of the given goals and constraints (Bellman and Zadeh 1970). 

4 Analyzing Fuzzy Maintenance Decision making 
To take an appropriate decision it is of interest to evaluate to what extent the goal is satisfied by the 
constraint and vice versa. In order to do this, let us consider an environment with a goal and a constraint 
with high uncertainty in which both the goal and the constraint are fuzzy sets. This scenario requires a 
comparative analysis between the goal G and the constraint C. The compliance of these two memberships 
functions can be calculated as a fuzzy measure of compatibility, as it is illustrated in Figure 4. 

 

 

 

 

 

 

 

 

Figure 4:  Compatibility of the fuzzy goal and the fuzzy constraint 

There are several candidate measures to quantify the compatibility of two fuzzy numbers (El-Baroudy and 
Simonovic, 2003). For example, El-Baroudy and Simonovic (2006) propose three of such fuzzy measures 
for system performance evaluation: i) combined reliability-vulnerability measure; ii) robustness measure; 
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and iii) resiliency measure. These measures provide a tool to assess system performance through the 
introduction of a wide variety of uncertain conditions.  

Nunes and Sousa (2009) use the concept of compliance as the overlapping area between two 
memberships functions (i.e. a fraction of the total area of the performance measure). They refer that 
compliance is better than other compatibility measure, such as possibility and necessity measures. In our 
scenario, compliance comes as: 

 

Compliance = 
Overlapping area of membership functions of goal and constraint 

(10) 
Total area of membership function of goal 

 

Therefore, the compliance provides a consistent ranking (between 0 and 1) to assess the degree to which 
a constraint complies with the goal. 

5 Numerical Experiments and Discussion 
This section pretends to give a simple example of the application of the decision models proposed before. 

Consider any function (continuous and where the minimum exists) modeling maintenance costs. Once it is 
not the objective of this work to propose a maintenance cost model (and consequently the mapping 
functions presented in Eqs. (4) and (5)), we will assume, in this numerical application, that the fuzzy sets 
expressing goals and constraints are directly defined on the set of actions A. To do this, we succinctly 
present a previous work on maintenance planning. 

Therefore, Carvalho et al. 2010 developed a fuzzy-probabilistic model considering that inspections and 
preventive maintenances are performed at periodic time intervals and the system is fully replaced, less 
frequently, when a fixed number of preventive maintenances have been completed. They showed that the 
minimum maintenance cost, G, of equipment is given by a triangular fuzzy number (analogous to Figure 1 
(c)), with membership function given by the following set of equations: 

 

 

 

 

 

Suppose, now, that budgetary constraints impose that the costs must be lower. This represents an 
additional constraint(s), but the information about that (or them) is vague and imprecise. It is imperative 
to know what the term “lower” means. Suppose that, according to managers´ perceptions and historical 
data, it is possible to define lower as a fuzzy number, C, similar to that presented in Figure 1 (b), whose 
membership function is given by: 

 

 

 

 

Thus, supposing that both the goal and the constraint have equal importance, the comparison between 
the goal G and constraint C is made, using the standard operator of fuzzy set intersection expressed in Eq. 
(6), in Figure 5 and the membership of the fuzzy decision D is defined as: 
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Figure 5:  Membership functions of G and C 

Using equation (10), the compliance index is determined (from Figure 5) by: 

Compliance = 
Area 

=
29.5518 

= 0.2824  
Area 104.645 

 

The compliance index above indicates that only 28% of the goal is satisfied by the constraint. This index, 
although being considered low, denotes that the best decision should be between these limits (419.67 
and 530). Therefore, we can choose the alternative that attaints the maximum membership grade in 
overlapping area, that is, 468.4. From the Centroid Method, expressed in Eq. (1), the fuzzy decision D can 
be defuzzified, obtaining the crisp value of minimum maintenance cost equal to 472.69. 

Finally, applying the model proposed by Carvalho et al. 2010, it would be easy to determine the periodic 
time intervals between preventive maintenances that make sense to carry out, in order to verify both the 
goal and the constraint of the optimization problem. 

6 Conclusions and Further Work 
Making decisions under uncertainty environments is a very difficult task, especially if the decisor does not 
possess adequate decision support tools. In this paper, it has been illustrated that Fuzzy Set Theory may 
play a role of particular relevance in this area, providing critical support to solve many problems under 
such environments, consequently improving the quality of the final decision. To this end, some 
methodological guidelines have been given. 

Further work will be carried out in order to apply those decision making guidelines to the maintenance 
planning of specific components of wind turbines. 
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