
From Business Process Modeling to Data Model:
A systematic approach

Estrela Ferreira Cruz
Escola Superior de Tecnologia e Gestão
Instituto Politécnico de Viana do Castelo

Viana do Castelo, Portugal
e-mail:estrela.cruz@estg.ipvc.pt

Ricardo J. Machado and Maribel Y. Santos
Centro de Investigação Algoritmi

Escola de Engenharia da Universidade do Minho
Guimarães, Portugal

e-mail:{rmac,maribel}@dsi.uminho.pt

Abstract—Business process modeling and management ap-
proaches are increasingly used and disclosed between organi-
zations as a means of optimizing and streamlining the business
activities. Among the various existing modeling languages, we
stress the Business Process Model and Notation (BPMN), cur-
rently in version 2.0. BPMN is a widespread OMG standard
that is actually used either in academia and in organizations.
BPMN enables business process modeling, but does not facilitate
the modeling of the information infrastructure involved in the
process. However, interest in the data and its preservation has
increased in BPMN’s most recent version.

The aim of this paper is to study BPMN 2.0, particularly
on the usage and persistence of data, and present an approach
for obtaining an early data model from the business process
modeling, which may then be used as a starting data model in
the software development process.

I. INTRODUCTION

The globalization of the markets and the constant increase
of competition between companies’ demand constant changes
in organizations in order to adapt themselves to new cir-
cumstances and to implement new strategies. Organizations
need to have a clear notion of their internal processes in
order to increase their efficiency and the quality of their
products or services. This will enable to increase the benefits
for their stakeholders. For this reason, many organizations
adopt a business process management (BPM) approach. BPM
includes methods, techniques, and tools to support the design,
enactment, management, and analysis of such operational busi-
ness processes [1].A business process is a set of interrelated
activities that are executed by one, or several, organizations
working together to achieve a common business purpose [2].

There are several languages and tools that can be used to
model business processes such as Petri nets, EPC (Event-
driven Process Chains), IDEF (Integrated Definition Methods),
BPMN (Business Process Model and Notation), among others
[3]. In this paper BPMN is used because it is one of the
best known standards and it is actually used in organizations.
According to Andreas Meyer [4], BPMN is a modeling lan-
guage really well accepted in companies and that receives the
influence of these, as is the case of SAP, Unisys and Oracle.

If from one side the business process management and
modeling are increasing their relevance, on the other side
the software development teams still have serious difficul-
ties in performing elicitation and defining the applications

requirements [5]. In fact, one of the main software quality
objectives is to assure that a software product meets the
business needs [5]. For that, the software product requirements
need to be aligned with the business needs, both in terms of
business processes as in terms of the informational entities
those processes deal with. This drives us to the question:
“How can we use Business Process Models to design software
applications?”.

Researchers and professionals in information systems have
recognized that understanding the business process is the key
to identify the user needs of the software that supports it [6].
However, the tasks of business process analysis and software
development are managed by different groups of people and
commonly use different languages.

BPMN is a business process modeling language developed
by OMG with the aim of providing a language easy to
understand and usable by people with different roles and
training from top managers to information technology (IT)
professionals [7], [8].

When dealing with the activities of the business process it
is inevitable to mention the data involved, or the information
that flows throughout the process. So, to enable process control
and business supporting software development, it is needed to
store that information. However, as referred by OMG, data
modeling is not a BPMN 2.0 goal [8]. Nevertheless, data is a
key component whose relevance has increased, not only as a
support to the business itself, but also for Business Intelligence
(BI) operations [4]. Therefore, the data model is a fundamental
model for designing software applications.

This paper addresses data persistence in BPMN 2.0 and
presents an approach for obtaining a data model from the
business process model, which may then be used in the
software development process and this way assure that the
data model fits the business process needs.

The remainder of this paper is structured as follows. In the
next section, some related work is presented. In section III
a brief description of BPMN 2.0 language is made, giving
special attention to how data and its persistence is represented.
In section IV our approach for obtaining the data model from
BPMN is described. Finaly, conclusions and some references
to future work are presented.

2012 Eighth International Conference on the Quality of Information and Communications Technology

978-0-7695-4777-0/12 $26.00 © 2012 IEEE

DOI 10.1109/QUATIC.2012.31

205

II. RELATED WORK

Although previous work about data modeling within BPMN
already exists, to our knowledge, all previous work is related
with BPMN versions prior to 2.0 and none of them addresses
the attainment of a data model that operationally supports
the business process. In these studies some flaws have been
identified, by the authors themselves, especially to distinguish
persistent from non-persistent data.

Arnon Sturm [9] sugests a method for building a data
warehouse schema for specifying business processes in order
to allow the off-line analysis of business processes’ execution.
The data warehouse schema is composed of a small set of
“snowflakes”. A snowflake is the basic structure of the data
warehouse. For each data object affected by the process a
snowflake schema is created. The method comprises two steps:
the first step is the creation of the data schema of each
snowflake, the second populates the database with relevant
data. The proposed method can generate schemas for all
“snowflakes” of the business process specification. However,
the creation of multiple schemes will overwhelm the design of
the warehouse, so Arnon Sturm argues that one must carefully
select the business processes to consider.

Brambilla et al. [10] explore BPMN for the generation of the
data design, business logic, communication and representation.
The authors separate the different concerns in different model
types and interpret the BPMN in order to meet the needs of a
Rich Internet Application. With respect to the data, the authors
use BPMN data objects to identify the data. To distinguish
between persistent and volatile data, the authors have chosen
to identify, in the process model itself, persistent data with a
’P’ and volatile data with a ’V’.

Magnani and Montesi [7], after identifying the gaps in data
modeling using BPMN, proposed an extension to BPMN 1.2
with the aim of improving the representation of data. Their
extention was named BPDMN (Business Process and Data
Modeling Notation). Some of the concepts proposed, namely
a way to identify the existence of persistent data were included
in BPMN 2.0 [7] with the introduction of the data store,
although with a different graphic symbol.

Wohed et al. [11] make an assessment of BPMN capabili-
ties, its strengths and weaknesses, to model a business process
and conclude that, in BPMN 1.2, data are only partially
represented.

III. THE BPMN LANGUAGE

BPMN 2.0 provides three main types of diagrams [8], [12]:
∙ Process diagrams - Defines a set of business activities

carried out by an organization for the concretization of a
goal (product or service). The business process includes
the flow and use of information and resources.

∙ Choreography diagrams - This is a type of process
diagram that describes how participants coordinate their
interaction. A participant, in general, defines a role in the
organization or a business partner and is represented in
a pool. The exchanged information is represented by the
incoming and outgoing messages.

∙ Collaboration diagrams - This type of diagram focuses
on the exchange of information between participants,
represented by pools. The processes communicate by
exchanging messages.

The basic process models can be grouped into two types of
processes [8]:

∙ Private Business Processes - A private process is a
process internal to a specific organization. Each private
process is represented within a Pool.The process flow
must be in one pool and should never cross the boundaries
of that Pool. The interaction between distinct private
Business Processes can be represented by incoming and
outgoing messages.

∙ Public Processes - A public process represents the in-
teractions between a private Business Process and other
Processes or Participants. Only activities that are used to
communicate with the other participants must be included
in the public process.

The Business Process Diagrams use a set of graphical
objects that can be grouped into five basic categories [8]:

∙ Flow Objects - are the main graphical elements to define
the behavior of a Business Process. There are three kinds
of Flow Objects: Events, Activities and Gateways.

∙ Data - represent the data involved in the process.
∙ Connecting Objects - model the connection between

the several process elements. There are four types of
connecting objects: Sequence Flows, Message Flows,
Associations and Data Associations.

∙ Swimlanes - represent the participants in the process.
A participant is a person, or something, involved in the
process. Participants in the process can be grouped into
pools or, more particularly, in Lanes. A pool can be
divided into several Lanes, for example, to represent the
different departments of an organization.

∙ Artifacts - are used to provide additional information to
the process, such as a note (“Text Annotation”).

The following subsection addresses data in BPMN 2.0,
mainly its representation and flow.

A. Data on BPMN

Process modeling must be able to model the data items
(physical documents or electronic information) that are cre-
ated, manipulated, and used during the execution of a process
[8]. The data involved in the process can be considered
persistent or not persistent (volatile). The persistent data is
the one that remains beyond the life cycle, or the scope, of
the process [8].

In BPMN 2.0, the elements that manipulate data are “Item-
Aware elements”, i.e., are elements that allow the storage and
transmission of items during the process flows [8]. As stated in
[8], “the data structure these elements hold is specified using
an associated ItemDefinition”. The item definition involves the
specification of the data that are stored or transferred. On the
“itemDefinition” properties there is a reference to the structure
definition (structureRef). This reference could point to a file

206

location (usually a XML schema1) where the data structure is
defined. This specification is optional.

In BPMN 2.0 the data can be represented in a process dia-
gram by the elements presented in Figure 1. Data manipulation
elements can be grouped into:

Fig. 1. Data representation elements (adapted from [8])

∙ Data Objects - data objects represent the information that
flows through a process. A data object can be referenced
by DataObjectReference. A data object reference is a way
to reuse one data object in the same diagram. A data
object reference can represent a different state of the same
data object at different points in the process. On a process
diagram this is represented by < 𝐷𝑎𝑡𝑎𝑂𝑏𝑗𝑒𝑐𝑡𝑁𝑎𝑚𝑒 >
[< 𝐷𝑎𝑡𝑎𝑂𝑏𝑗𝑒𝑐𝑡𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑆𝑡𝑎𝑡𝑒 >] [8].

∙ Data Store - a data store is a mean to handle persistent
data. It provides a mechanism for an activity to store
information or use the information stored. A data store
can represent paper documents (a file folder, an agenda,
a notebook, etc.) or an electronic database [12].

Data objects and data stores are exclusively used in process
diagrams [8].

During the process execution, resources and/or data are
consumed and produced. The transmission of the data created
or used during a process execution can be represented by:

∙ Messages - A Message is used to represent the contents
of a communication between two participants. Each par-
ticipant is represented by a different pool. So, a message
crosses the pool boundary to show the interactions be-
tween separate private Business Processes [8]. A message
can represent any kind of information like an email, a fax,
a letter, a phone call, etc. [12]. Graphicaly, an initiating
message is represented by a white envelope. An non-
initiating message is represented by a gray envelope [8].

1The default XML schema is presented in:
http://www.w3.org/2001/XMLSchema.

∙ Data Associations - A Data Association can be used to
model how data comes and goes from activities or events
within a pool. This way is possible to identify the activity
that sends data to a data store and the activity that gets
data from a data store.

The next section presents an approach to obtain the per-
sistent data model that supports a process modeled with the
BPMN 2.0 Business Process diagram.

IV. DATA MODELING

Business process management initially focused its attention
on designing and documenting business process, in order to
describe which activities are performed and the dependencies
between them [4]. Data did not receive much attention. Evo-
lution and practice have extended BPMN attention to data.
An example of this are the changes made from BPMN 1.2
to BPMN 2.0, where there has been an increase of the data
relevance, particularly with the introduction of new model
constructs such as “Object data collection” and “Data store”.
However, BPMN aims to support the modeling concepts that
are applicable to business processes, leaving out aspects such
as data models. As stated in [8], BPMN does not provide
model elements for describing the data structure nor a lan-
guage for data manipulation.

If one wants to model the data involved in the business
process, then it is needed to include in the business process
diagram the information about all data involved in the process.
However, to avoid increasing the model complexity with this
extra data modeling perspective, which could turn business
process essential features vaguer, this approach should be
applied as a further step to modeling the business process and
the resulting model should be kept as a branch.

As stated by Brambilla et al., one issue to be considered in
the creation of a BPMN diagram is the level of granularity,
or detail, which shall be applied [10]. In our approach, the
level of detail should be large with respect to the data. In
fact, our approach is based on the private business process,
where messages exchanged with other participants, or business
partners, can and shall be highlighted, but without going into
detail on the private processes of other participants involved.

To define a persistent data model one needs to identify the
domain entities, their attributes, and the relationships ((1 : 𝑛),
(𝑚 : 𝑛) or (1 : 1)) between entities [3].

A. The proposed approach

In [14], Borger claims that a notion of state is missing in
BPMN, and consequently the specification of data dependence
conditions is poorly supported. To overcome this fact, we
opted by involving BPMN participants in the process. A
BPMN participant is always related with all activities where
he/she participates and, consequently, with the data stores
manipulated by these activities.

Our approach is based on the following considerations:

∙ The information about the participants in the process
is relevant to the process, especially for its control,

207

so all participants involved in data exchanges shall be
represented in the data model.

∙ The pool representing the organization (company, depart-
ment, etc.) that is designing the process shall disclose all
internal roles involved. The other pools, as they represent
entities outside the organization, do not have that need.
It is only needed to show the input and output flow of
information, e.g. through messages.

∙ Since a data store represents the persistent data, all data
stores involved in the process shall be represented in the
data model.

∙ If one wants to focus on different states in the same data
store, the data store name, similarly to what happens with
the data object, shall be given by < 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒𝑁𝑎𝑚𝑒 >
[< 𝐷𝑎𝑡𝑎𝑆𝑡𝑜𝑟𝑒𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑆𝑡𝑎𝑡𝑒 >].

∙ If there is involvement of data within a sub-process, the
data flow shall be viewed with the subprocess extended.

∙ Data objects may represent electronic data as well as
physical data. However, in both cases data must be stored.
For example, if a data object represents the arrival of a
shipment, the data about the shipment must be stored.

Our approach is organized into a set of three groups of
rules. Each group is devoted to a particular goal: the first group
(R1) identifies the data model entities, the second group (R2)
identifies the relationships between entities, and in the third
group (R3) the entities’ attributes are identified.

The first group of rules is explained below:

∙ R1.1: Each data store, identified by a name, must be
represented by an entity in the data model. The entity
name is the name of the data store.

∙ R1.2: When two data stores have the same name, it is
considered that they represent the same data store, so it
will be represented by the same entity in the data model.

∙ R1.3: A role played by a participant (represented by a
Lane or a Pool) must be represented by an entity in the
data model: - If the pool is divided into several lanes,
each lane will be represented by a data model entity. The
name of each entity will be the name of the corresponding
lane; - If the pool is not divided, the pool will result in
an entity. The entity name will be the Pool name.

∙ R1.4: If a participant has the same name as a data store it
will be represented by the same entity in the data model.

The second group of rules is explained below:

∙ R2.1: When a participant is responsible for an activity
that manipulates a data store, the entity that represents the
participant must be related with the entity that represents
the data store. Each participant can perform the same
activity several times, so the relationship between the
entity that represents the participant and the entity that
represents the data store, by default, will be (1 : 𝑛).

∙ R2.2: If, in R2.1, the activity that handles the data
store is cyclical (denoted by a circle arrow), or “Multi-
instantiable” (denoted by three bars), i.e., it may be
repeated several times within the process instance, then
the relationship between the entity that represents the

participant and the entity that represents the data store
is (𝑚 : 𝑛).

∙ R2.3: If the activity that handles the data store sends
or receives information to/from another participant, this
means that the participant provides or uses information
from that data store. Therefore, there must be an “indi-
rect” relationship between the entity that represents this
participant and the entity that represents the data store.
By default, the relationship type will be (1 : 𝑛).

∙ R2.4: If, in R2.3, the activity fulfills the conditions
presented in R2.2, the relationship type will be (𝑚 : 𝑛).

Two rules have been created to identify the entities at-
tributes. One to identify the attributes of the entities that
represent the participants and the other to identify the attributes
of the entities that represent the data stores:

∙ R3.1: A data store is an “Item-Aware element”, so, as
mentioned before, the data structure definition of these
elements could be specified as a XML file. The definition
of the structure will be used to identify each item that
belongs to the data store. Each item identifies an attribute
of the entity that represents the data store.

∙ R3.2: In Swimlanes only the name is identified. Conse-
quently, the attributes of an entity that represents a role
played by a participant are static: ID and Name. The ID
represents the participant identification (code number).
It could be the number of the employee, the code of
business partner, etc. The Name represents the participant
name, for example the name of the employee.

In the presented approach, the data stores and the roles
played by participants give origin to entities in the data model.
The relationship between the identified entities is deduced
from the information exchanged between participants and the
activities that manipulate the data store in two ways: directly
by the participant that performs the activity and indirectly by
the participant that sends or receives information to/from the
activity that operates the data store.

In the next two subsections, two examples demonstrating
the application of the proposed approach are described.

B. Doctor’s Office example

The diagram shown in Figure 2 represents a process of
appointment scheduling and attendance at a doctor’s office.
The diagram, adapted from [8], was complemented in order
to highlight the data. Based on this diagram, the following
entities can be identified: Receptionist, Patient and Doctor
originated from participants (R1.3) and Appt, Symptoms and
Prescription originated from data stores (R1.1 and R1.2).

The relationship between the entities is described next:

∙ The Receptionist reads and writes the data store Appt, so
by R2.1, the relationship type is (1 : 𝑛). A receptionist
can make several appointments. An appointment is made
by one receptionist.

∙ The Doctor participant handles Symptoms, Prescription
and Appt data stores, so there is a relationship between
the entity Doctor and each one of the entities Symptoms,

208

Fig. 2. Business process diagram focused on data

Prescription and Appt. Since a Doctor can perform the
same activities several times, by R2.1, the relationship
between Doctor and Symptoms entities is (1 : 𝑛) as well
as between Doctor and Prescription and between Doctor
and Appt.

∙ The Patient participant has an “indirect relationship” with
the Appt and Symptoms data stores, since the activities
that manipulate these data stores are activated by mes-
sages sent by the Patient. Once a patient can perform the
same activities several times, by R2.3, the relationship
between the entity Patient and the entity Appt is (1 : 𝑛).
For the same reason, the relationship between the entities
Patient and Symptoms is (1 : 𝑛).

∙ The Patient participant receives a message as a result of
the activity that manipulates the data store Prescription.
So, by R2.3, the relationship between the entity Patient
and the entity Prescription is (1 : 𝑛).

Figure 3 shows the data model resulting from the application
of our approach to the diagram shown in Figure 2.

Fig. 3. Doctor’s Office Data Model

By R3.2, the entities Receptionist, Patient and Doctor will
have the same attributes: ID and Name; By R3.1, the attributes
of the entities appt, Symptoms and Prescription are detailed
in a XML file.

Fig. 5. Nobel Prize Data Model

C. Nobel Prize example

The diagram shown in Figure 4, represents the Nobel Prize
in Medicine Process Diagram. As we can see in Figure 4,
there are four roles, or participants, involved (Nobelcommittee,
NobelAssembly, Nominators and Experts) and three different
data stores (Nominators, Candidates and Recommendations).
By R1.3, each participant will be represented by an entity in
the data model. By R1.1, each data store will be represented
as an entity in the data model. But, the Nominators participant
has the same name as the Nominators data store, so, by R1.4,
both are represented by the same entity in the data model.

Figure 5 shows the data model resulting from the application
of the aproach to the diagram shown in Figure 4.

The relationship between the entities is described next:
∙ The activities that manipulates the Nominators data store

are cyclic, so by R2.2, the relationship between Nobel-
committee and Nominators is (𝑚 : 𝑛). The same happens
between the entities Nobelcommittee and Candidates.

∙ By R2.1, the relationship between the entities Nobelcom-
mittee and Recommendations is (1 : 𝑛).

∙ The activities that manipulates the Candidates data store
are cyclic and exchange information with the Expert
participant, so by R2.4, the relationship between the
entities Candidates and Expert is (𝑚 : 𝑛).

∙ By R2.3, the relationship between the entities No-
belAssembly and Recommendations, is (1 : 𝑛).

By R3.1, the attributes of the entities Nominators, Candi-
dates and Recommendations are detailed in a XML format
file. By R3.2, the entities Nobelcommittee, NobelAssembly,
Nominators and Experts will have the same attributes: ID and
Name. Since Nominators is a participant and a data store, its
attributes will be the joint of all.

V. CONCLUSIONS AND FUTURE WORK

The growing organizations’ interest in BPM has been ac-
companied by the increasing number of theories, modeling
languages and supporting software applications in this area.
Among the various tools and languages for business process
modeling, BPMN has been used here because it is a well-
known OMG standard and it is effectively used in business
organizations [16], [4].

From BPMN 1.2 to BPMN 2.0 one can note a growing
concern with data, including the possibility of identifying data

209

Fig. 4. The Nobel Prize Process Diagram (adapted from [15])

persistence. In BPMN 2.0 data persistence can be identified
through the use of a data store. Thus, it becomes possible
to identify data that are maintained in a persistent manner.
However, to enable the ulterior obtention of the data model,
it is necessary that the business process modeling is made
taking data into account, i.e. the modeler must monitor the data
throughout the process. Moreover, it is necessary to identify
the activities that write or make use of the information stored
in the data store, and ensure that the roles responsible for
performing those activities are identified.

Thus, this paper presents an approach to model data in-
volved in a business process from a private BPMN process
diagram. In the proposed approach, data stores and process
participants in the business model originate entities in the
data model. The relationship between those entities can be
deduced from the information exchange between participants
and the activities that manipulate the data stores. Nonetheless,
there may be relationships between the entities that represent
the various data stores whose identification isn’t possible to
achieve here. For this reason, we can say that this approach
only partially identifies the relationship between entities. On
the other hand, information about the participants is scarce,
leading to all entities that are obtained from the participants
to have the same attributes. For the mentioned reasons, we may
conclude that the proposed approach allows the identification
of an early data model that may serve as a basis for further
development.

Typically, in a real situation, a software product does not
support only one process, but rather a set of processes. So,
in order to generate a data model useful for the development
of such software product, it will be necessary to assemble all
data models resulting from the application of the proposed
approach to each process being supported. One way to solve
this problem is to group on the same entity all entities with
the same name, gathering its attributes and maintaining the
relationships.

An alternative way is to use a use case driven method.
For that, a method like 4SRS (4-step rule set) [17] may be
used. The 4SRS method generates a logical architecture and
corresponding class diagrams [18] from user requirements,

represented as use cases. It employs successive transformations
of the software architecture in order to satisfy the elicited user
requirements. In order to obtain a data model from a set of
business processes, the 4SRS needs to be extended so that the
use cases can be derived from the BPMN.

REFERENCES

[1] W. van der Aalst, “Business process management demystified: A tutorial
on models, systems and standards for workflow management,” vol. 3098
of LNCS, pp. 21–58, Springer, 2004.

[2] R. K. L. Ko, “A computer scientist’s introductory guide to business
process management (bpm),” Crossroads, vol. 15, pp.11-18, June 2009.

[3] M. Weske, Business Process Management Concepts, Languages, Archi-
tectures. Springer, 2010.

[4] A. Meyer, “Data in business process modeling,” in 5th PhD Retreat of
the HPI Research School on Service-oriented Systems Engineering, 2010.

[5] P. Jalote, A concise Introduction to Software Engineering. Springer, 2008.
[6] H. Mili, G. B. Jaoude, ric Lefebvre, G. Tremblay, and A. Petrenko,

“Business process modeling languages: Sorting through the alphabet
soup,” in OOF 22 NO. IST-FP6-508794 (PROTOCURE II), 2003.

[7] D. M. Matteo Magnani, “Bpdmn: A conservative extension of bpmn with
enhanced data representation capabilities,” in CoRR, 2009.

[8] OMG, “Business process model and notation (bpmn), version 2.0,” tech.
rep., OMG, 2011.

[9] A. Sturm, “Enabling off-line business process analysis: A transformation-
based approach,” in BPMDS, 2008.

[10] M. Brambilla, J. C. Preciado, M. Linaje, and F. Sanchez-Figueroa,
“Business process-based conceptual design of rich internet applications,”
Web Engineering, International Conference on, vol. 0, pp. 155–161, 2008.

[11] P. Wohed, W. van der Aalst, M. Dumas, A. ter Hofstede, and N. Russell,
“On the suitability of bpmn for business process modelling,” in Business
Process Management, vol. 4102 of LNCS, pp. 161–176, Springer, 2006.

[12] T. Allweyer, BPMN 2.0 - Introduction to the standard for business
process Modeling. Books on Demand GmbH, Norderstedt, 2010.

[13] B. List and B. Korherr, “An evaluation of conceptual business process
modelling languages,” in Proceedings of the 2006 ACM symposium on
Applied computing, SAC06, pp. 1532–1539, ACM, 2006.

[14] E. Borger, “Approaches to modeling business processes: a critical
analysis of bpmn, workflow patterns yawl,” in Software and Systems
Modeling - Springer, 2011.

[15] OMG, “BPMN 2.0 by example,” tech. rep., OMG, 2010.
[16] M. Muehlen and J. Recker, “How much language is enough? theoretical

and practical use of the business process modeling notation,” in AISE,
vol. 5074 of LNCS, pp. 465–479, Springer, 2008.

[17] R. Machado, J. Fernandes, P. Monteiro, and H. Rodrigues, “Refinement
of software architectures by recursive model transformations,” in Product-
Focused Software Process Improvement, vol. 4034 of LNCS, pp. 422–428,
Springer, 2006.

[18] M. Y. Santos and R. J. Machado, “On the derivation of class diagrams
from use cases and logical software architectures,” in 2010 Fifth Inter-
national Conference on Software Engineering Advances, 2010.

210

