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Abstract

Some recent studies arising in the kinetic theory of chemically reactive mixtures will be revisited here, with the aim
of describing some methods and tools of the kinetic theory used to model reactive mixtures and investigate some
mathematical and physical problems.
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1 Introduction

The kinetic theory of gases is a branch of statistical

mechanics which deals with non-equilibrium dilute

gases, i.e. gas systems slightly removed from equi-

librium. Instead of following the dynamics of each

particle, the kinetic theory approach describes the

evolution of the gas system in terms of certain sta-

tistical quantities, namely velocity distribution func-

tions, which give information about the distribution

of particles in the system as well as the distribution

of particle’s velocities. One of the main tasks is then

to deduce the macroscopic properties of the gas sys-

tem from the knowledge of the molecular dynamics

in terms of the distribution functions and, at the

same time, to derive governing equations for these

macroscopic properties in the hydrodinamic limits.

Historically, the modern kinetic theory starts

with the contributions from August Krönig (1822-

1879), Rudolf Clausius (1822-1888), James Maxwell

(1831-1879) and Ludwig Boltzmann (1844-1906) and

the central result of this theory is attributed to

the celebrated Boltzmann equation (BE), derived

in 1872, see Ref. [1]. This is an integro-differential

equation that describes the evolution of a gas as a

system of particles (atoms or molecules) interacting

through brief collisions in which momentum and ki-

netic energy of each particle are modified but the

states of intramolecular excitation are not affected.

The Boltzmann equation arises in the descri-

ption of a wide range of physical problems in Fluid

Mechanics, Aerospace Engineering, Plasma Physics,

Neutron Transport as well as other problems where

chemical reactions, relativistic or quantum effects

are relevant. From the mathematical point of view,

the Boltzmann equation presents several difficulties,

mainly associated to the integral form of the colli-

sional term describing the molecular interactions. In

particular a general method for solving the Boltz-

mann equation does not exist, and only equilibrium

(exact) solutions are know. Thus the mathemati-

cal analysis of the Boltzmann equation, in particu-

lar the properties of the collisonal terms, existence

theory and approximate methods of solutions, con-

stitute an interesting research topic in Mathematical

Physics.

Available techniques for solving the Boltzmann

equation and its variants are based on the approxi-

mate methods proposed by David Hilbert (1862-

1943) in 1912 and by Sidney Chapman (1888-1970)

and David Enskog (1884-1947) around 1916-17. The

Hilbert method is a formal tool that obtains ap-

proximate solutions of the Boltzmann equation in

the form of a power series of a small parameter in-

versely proportional to the gas density (the Knudsen

number). Enskog generalized the Hilbert’s idea and

introduced a systematic formalism for solving the

Boltzmann equation by successive approximations,

and Chapmann followed the method of Maxwell to

determine the transport coefficients of diffusion, vis-

cosity and thermal conductivity. The ideas of En-

skog combined with the method of Chapman led to

the so called Chapman-Enskog method described in

Ref. [2] and then followed by several authors and
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extended to more general gas systems.

In this paper, we present a general review of some

recent studies arising in the kinetic theory of chemi-

cally reactive mixtures, mainly oriented to the mod-

elling of reactive systems, mathematical structure

and properties of the governing equations, applica-

tion to detonation dynamics and existence results.

The studies presented in this paper have been

obtained in collaboration with several researchers,

cited here in chronological order, Miriam Pan-

dolfi Bianchi (Politecnico di Torino, Italy), Gilberto

Medeiros Kremer (Universidade Federal do Paraná,

Curitiba, Brazil), Filipe Carvalho (CMAT-UM,

Ph.D. Student), Jacek Polewczak (California State

University, Northridge, LA, USA).

The paper is organized as follows. The main ba-

sic aspects of the kinetic theory are introduced in

Section2, with emphasis on the mathematical mod-

elling, consistency properties of the kinetic mod-

elling and connection to hydrodynamics. A particu-

lar model for symmetric chemical reaction is intro-

duced in Section 3 and then used in Section 4 to

mimic detonation problems. The simple reacting

spheres (SRS) model is briefly described in Section 5

and an existence result about the solution of the par-

tial differential equations of the model is presented

in Section 6.

2 Kinetic theory background

In kinetic theory of gases, the state of a chemically

reactive mixture can be described by the Boltzmann

equation. There exist several references on this topic

and we quote here the relevant contributions pre-

sented in the books [3, 4, 5, 6].

In this section, we introduce the background of

the kinetic theory of chemically reactive mixtures

necessary to follow the general ideas and results pre-

sented in the following sections. We have tried to be

as concise as possible in this presentation and do not

use so much specialized formalisms. However some

notations and nomenclature are needed to introduce

the topic and the results.

2.1 Mathematical modelling

The present work is restricted to a dilute reac-

tive mixture consisting of four constituents, say Aα,

α=1, 2, 3, 4, with molecular masses mα, diameter dα
and chemical binding energies εα. Internal degrees

of freedom, like translational, rotational and vibra-

tional molecular motions, are not taken into account.

Besides elastic scattering, particles undergo reactive

collisions with a reversible bimolecular chemical re-

action which can be represented schematically by

A1 +A2 
 A3 +A4 (1)

The mass conservation associated to the chemical re-

action results in m1+m2 =m3+m4. We assume that

collisions take place when the particles are separated

by a distance d12 = 1
2(d1 + d2) or d34 = 1

2(d3 + d4).

A parameter of interest for the present mod-

elling is the heat of the chemical reaction defined

as QR = ε3 + ε4 − ε2 − ε1. The chemical reaction

is endothermic when QR > 0 and it is exothermic

when QR < 0.

At the molecular level, the thermodynamic state

of the mixture can be described by the constituent

distribution functions fα(x, cα, t), α = 1, . . . , 4, that

represent, at time t ∈ R+
0 , the number of particles

of constituent α with velocity cα ∈ R3 in the point

x ∈ R3. Functions fα, α = 1, . . . , 4, are governed,

in the phase space, by generalized Boltzmann equa-

tions of type

∂fα
∂t

+

3∑
i=1

cαi
∂fα
∂xi

= QEα +QRα (2)

where the differential term in the left-hand side

represents the streaming operator that describes

the motion of particles along their trajectories in

the phase space, and the term in the right-hand

side represents the collision part that describes the

changes of particles resulting from collisions. More

in detail, QEα =
∑4

β=1QEαβ is the elastic collision

term describing the dynamics of inert molecular

collisions among constituent α and all other con-

stituents β = 1, . . . , 4, and QRα is the reactive col-

lision term describing the dynamics of chemical in-

teractions. Terms QEα and QRα can be written in the

following form, see Ref. [6],

QEα =

4∑
β=1

∫
D×R3

(
f ′αf

′
β − fαfβ

)
gβασβαdΩβαdcβ (3)

QRα =

∫
D∗×R3

[
fβfδ

(
mαmγ

mβmδ

)3

−fαfγ
]
σ?αγgγαdΩ∗dcγ (4)

where the primes denote post-collisional states, gβα
is the relative velocity between the α and β par-

ticles, dΩβα and dΩ∗ are elements of solid an-

gles for elastic and reactive collisional processes,
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D and D∗ the corresponding domains of integra-

tion, σβα the elastic cross section and σ∗αγ the re-

active cross section. For what concerns the reac-

tive terms, the indices (α, γ, β, δ) are from the set

{(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1)}.
The specification of the cross sections σβα and

σ∗αγ complete the definition of the kinetic model at

the molecular level. In general, they satisfy symme-

trical relations as those assumed here, of type

σβα = σαβ, (m1m2g21)2σ∗12 = (m3m4g43)2σ∗34

In many kinetic theories, σβα follows a hard-spheres

model, which means that during elastic collisions,

the particles behave as if they are rigid spheres, and

σ∗αγ is defined in terms of the activation energy of

the chemical reaction, which means that only those

particles such that the kinetic energy of the relative

motion is greater than the activation energy can col-

lide with chemical reaction.

A kinetic theory based on the statistical descrip-

tion in terms of Eqs. (2) and (3-4) can be of great

importance in obtaining a detailed understanding of

several processes involving chemically reactive mix-

tures. The investigation of transport properties and

evaluation of transport coefficients is a valuable ex-

ample. In fact, the transport coefficients of viscosity,

diffusion, thermal conductivity and others can not

be obtained from macroscopic theories; they have

been supplied by experiments and phenomenologi-

cal considerations. However the kinetic theory can

provide these coefficients from the knowledge of the

solution of the Boltzmann equation, even if only ap-

proximate soloutions are available in general.

2.2 Consistency properties of the kinetic mod-
elling

The kinetic modelling defined in terms of Eqs. (2)

and (3-4) possesses the following properties con-

sistent with the chemical kinetics of the reaction,

macroscopic laws and equilibrium state.

2.2.1 Proposition (Elastic terms).

The elastic collision terms are such that∫
R3

QEα dcα = 0, α = 1, . . . , α (5)

that is, elastic collisions do not modify the number

of particles of each constituent. �

2.2.2 Proposition (Reactive terms).

The reactive collision terms are such that∫
R3

QR1 dcα =

∫
R3

QR2 dcα (6)

= −
∫
R3

QR3 dcα = −
∫
R3

QR4 dcα

that is, reactive collisions assure the correct chemi-

cal exchange rates for the chemical reaction (1). �

Motivated by the above Proposition 2.2.2, the reac-

tion rate of the α-constituent, that gives the produc-

tion rate of α-particles, is defined by

τα =

∫
R3

QRα dcα, with τ1 = τ2 = −τ3 = −τ4 (7)

2.2.3 Proposition (Conservation laws).

Elastic and reactive collision terms are such that

4∑
α=1

∫
R3

ΨαQEα dcα = 0 (8)

4∑
α=1

∫
R3

ΨαQRα dcα = 0 (9)

where (Ψ1,Ψ2,Ψ3,Ψ4) is a function of the molecu-

lar velocities cα whose components are given alter-

natively by

Ψα = mα

Ψα = mαcαx, Ψα = mαcαy, Ψα = mαcαz (10)

Ψα =
1

2
mαc

2
α + εα

Therefore elastic and reactive collision terms are

consistent with the physical conservation laws for

mass, momentum components and total energy of

the whole mixture. �

2.2.4 Proposition (Equilibrium).

The following conditions are equivalent

(a) QEα = 0 and QRα = 0, α = 1, . . . , 4

(b)

4∑
α=1

∫
R3

(
QEα +QEα

)
log

(
fα
m3
α

)
dcα = 0

(c) fα is Maxwellian, fα = fMα , given by

fMα = nα

(
mα

2πkT

)3/2

exp

(
−mα(cα−u)2

2kT

)
(11)
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for α = 1, . . . , 4, where k is the Boltzmann con-

stant, and nα, u, T are functions of (x, t), see

Subsection 2.3, with

n1n2

n3n4
= exp

(
QR
kT

)(
m1m2

m3m4

)3/2

(12)

�

Proposition 2.2.4 characterizes Maxwellian distribu-

tions defining an equilibrium solution of the Boltz-

mann Eqs. (2). More in detail, Maxwellian distri-

butions (11) with uncorrelated number densities nα
characterize a mechanical equilibrium only, in the

sense that QEα = 0 but QRα 6= 0 in general. Con-

versely, Maxwellian distributions (11) with the num-

ber densities constrained to the mass action law (12)

characterize a complete thermodynamical equilib-

rium state (mechanical and chemical), since QEα = 0

and QRα = 0.

2.2.5 Proposition (Entropy production).

Elastic and reactive collision terms are such that

−
4∑

α=1

∫
R3

log

(
fα
m3
α

)
QEα dcα ≥ 0 (13)

−
4∑

α=1

∫
R3

log

(
fα
m3
α

)
QRα dcα ≥ 0 (14)

Moreover, the convex function

H(t) =

4∑
α=1

∫
S

∫
R3

fα log

(
fα
m3
α

)
dcαdx (15)

with S being a closed domain in R3 where the mix-

ture evolves, is a Liapunov functional for the ex-

tended Boltzmann equations (2), that is

• dH
dt

(t) ≤ 0, for t ≥ 0,

• dH
dt

(t) = 0, iff the distribution functions are

Maxwellian characterized by Eqs. (11-12). �

The first part of Proposition 2.2.5 means that both

elastic and reactive collisions contribute to increase

the entropy of the mixture. The second part indi-

cates that theH-function drives the reactive mixture

from the initial distribution to an equilibrium state.

The proof of the second part of the proposition,

see Ref. [7], indicates that function H splits into a

mechanical part and a reactive part, HE +HR, such

that both HE and HR show a time decreasing be-

haviour and that dHE
dt =0 iff fα are Maxwellian given

by (11), whereas dHR
dt = 0 iff fα are Maxwellian con-

strained by (12).

2.3 Connection to hydrodynamics

The kinetic model previously introduced provides a

consistent macroscopic theory in the hydrodynamic

limit of Euler or Navier-Stokes level.

2.3.1 Macroscopic variables

The starting point foi the macroscopic description

is the definition of certain average quantities, called

macroscopic variables, taken over the distributions

fα by integrating with respect to the velocities cα.

The number density of each constituent and the one

of the mixture are given by

nα(x, t) =

∫
R3

fα(x, cα, t) dcα , n =

4∑
α=1

nα

and the corresponding mass densities are defined as

%α(x, t) = mα nα(x, t) , % =

4∑
α=1

%α

The mean velocity of the mixture is given by

u(x, t) =
1

%(x, t)

4∑
α=1

∫
R3

mαcαfα(x, cα, t) dcα

and the diffusion velocity of each constituent is

uα(x, t) =
1

%α(x, t)

∫
R3

mα(cα − u)fα(x, cα, t) dcα

The components of the mixture stress tensor are

pij(x, t) =

4∑
α=1

∫
R3

mα(cαi − ui)(cαj − uj)

× fα(x, cα, t) dcα

The pressure of the mixture is defined by

p(x, t) =
1

3

4∑
α=1

∫
R3

mα(cα − u)2fα(x, cα, t) dcα

so that the temperature is assumed as

T (x, t) =
p(x, t)

kn(x, t)
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The components of the heat flux of the mixture are

qi(x, t) =

4∑
α=1

( ∫
R3

1

2
mα(cα − u)2(cαi − ui)

× fα(x, cα, t) dcα + nαεαuαi

)
2.3.2 Balance equations

To complete the connection, one can derive the ba-

lance equations and the conservation laws describing

the balance of the constituent number densities, and

conservation of both momentum components and to-

tal energy of the whole mixture. It is enough to con-

sider the Boltzmann Eqs. (2), then multiply both

sides by the elementary function Φα whose compo-

nents are Φαβ = δαβ and functions (10) of Proposi-

tion 2.2.3, and finally integrate with respect to cα.

The resulting equations are

∂nα
∂t

+

3∑
i=1

∂

∂xi

(
nαuαi + nαui

)
= τα (16)

∂

∂t

(
%ui)+

3∑
j=1

∂

∂xj

(
pij+%uiuj

)
=0, i=1, 2, 3 (17)

∂

∂t

(
3

2
nkT+

4∑
α=1

nαεα+
1

2
%u2

)
+

3∑
i=1

∂

∂xi

[
qi (18)

+

3∑
j=1

pijuj+

(
3

2
nkT+

4∑
α=1

nαεα+
1

2
%u2

)
ui

]
=0

Macroscopic Eqs. (16-18) constitute a system of 8

equations in 36 uknowns, namely nα, τα, uαi, ui,

pij , T and qi, where α = 1, 2, 3, 4 and i, j = 1, 2, 3.

To close the system one passes to the hydrodynamic

limit and deduces the constitutive equations for the

28 unknowns τα, uαi, pij and qi.

2.3.3 Hydrodynamic limit

The passage of the kinetic level of Eqs. (2) to the hy-

drodynamic limit requires the solution of the Boltz-

mann Eqs. (2), that can be obtained resorting to a

systematic expansion technique, see Refs. [2, 5, 6, 8]

for a detailed description of the Chapaman-Enskog

method, Hilbert method and moment method.

In particular, concerning the Chapaman-Enskog

(CE) method, one starts with an appropriate scall-

ing of Eqs. (2) in terms of the so called elastic and

reactive Knudsen numbers [3], consistent with the

chemical regime of validity of the resulting macro-

scopic equations. This scalling defines a clear sepa-

ration of the effects of the fast and slow processes,

the former being some collisonal processes (elastic

or reactive) that drive the distribution function to-

wards a local equilibrium state, and the latter be-

ing the other processes that contribute to disturb

the distribution function. Then one assumes that

the thermodynamical state of the reactive mixture

is close to the equilibrium and looks for a solution

of Eqs. (2) of type

f̃α=f (0)
α

[
1 +

+∞∑
n=1

εnφ(n)
α

]
(19)

where f
(0)
α is a quasi-equilibrium distribution func-

tion, ε represents a formal expansion parameter re-

lated to the Knudsen numbers (then it is settled

equal to one) and
∑+∞

n=1 ε
nφ

(n)
α f

(0)
α is the disturbance

induced by the slow processes, that is assumed to be

small.

Introducing expansion (19) into Eqs. (2), neglect-

ing non-linear terms in the disturbances and equa-

ting equal terms in εn, one obtains linear integral

equations for the zero-order term f
(0)
α as well as for

the disturbances φ(1), φ(2), etc. The consistency

properties introduced in Subsection 2.2 are funda-

mental to obtain the solution of these integral equa-

tions. After an involved analysis of the equations,

the disturbances are obtained as functions of nα, u,

T and both transport fluxes and transport coeffi-

cients. Inserting the considered approximate solu-

tion into the definitions of the reaction rate τα, dif-

fusion velocities uαi, stress tensor pij and heat flux

qi, one obtains the constitutive equations that allow

to close the macroscopic Eqs. (16-18).

In particular, it comes out that the zero-order

approximation f
(0)
α is the Maxwellian distribution

(11) that leads to the reactive Euler equations with-

out transport effects; the first-order perturbed dis-

tributions, f
(0)
α (1 + φ

(1)
α ), are governed by linearized

Boltzmann equations and lead to the Navier-Stokes

equations involving the transport effects of diffusion,

viscosity, thermal conductivity and maybe others;

successive approximations lead to the Burnett and

super Burnett complicated equations.

According to Propositions 2.2.4 and 2.2.5, one

concludes that in a hydrodynamic limit of an Eule-

rian regime, the mechanical entropy of the mixture

remains constant and slow reactive processes con-

tribute to drive the mixture from a mechanical to a

complete thermodynamical equilibrium state. Con-

versely, in the hydrodynamic limit associated to the

Navier-Stokes equations, both elastic and reactive
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collisions contribute to increase the entropy of the

mixture, and the entropy flux is also due to diffu-

sion,heat transfer and sheat viscosity phenomenon.

The Chapman-Enskog method converges asym-

ptotically for small Knudsen number, and the Euler

and Navier-Stokes equations have a good accuracy.

3 Model for symmetric reaction

A very simple model corresponds to a binary mix-

ture of constituents A and B undergoing the sym-

metric reaction A + A 
 B + B. In this particular

case, one has A2 = A1 = A, A4 = A3 = B, so that

mB = mA = m, dα = d, ε2 = ε1 = εA, ε4 = ε3 = εB,

QR = 2(εB − εA). Assuming hard sphere cross sec-

tions for elastic collisions and step cross sections with

activation energy for reactive interactions, the colli-

sion terms are (see Ref. [9] for a complete description

of the model)

QEα =

B∑
β=A

∫ (
f ′αf

′
β − fαfβ

)
d2gβα ·kβα dkβαdcβ (20)

QRα =

∫ (
fβf

′
β − fαf ′α

)
σ?α gα ·kα dkαdc′α (21)

In expression (21), the primes are used to distin-

guish two identical particles that participate in the

reactive event, and σ?α is given by

σ?α =

{
s2d2 if γα > ε?α
0 if γα < ε?α

(22)

where s represents the steric factor, γα is the rela-

tive translational energy, ε?α the forward (α=A) and

backward (α=B) activation energy, both expressed

in units of the thermal energy of the mixture, kT ,

γα=
mg2

α

4kT
, ε?α=

εα
kT

At the macroscopic scale, the mixture is described

by the variables nA, nB, u, T , that are governed

by balance equations and conservation laws of type

(16) and (17-18). At the hydrodynamic Euler level,

and for a chemical regime in which elastic colli-

sions are more frequent than reactive encounters,

the Chapman-Enskog method has been used in [9]

to obtain the following approximate solution for the

distribution function

f̃α = fMα [1 + φα] , (23)

where fMα is a Maxwellian distribution and

φα =

(
15

8
− 5m(cα − v)2

4kT
+
m2(cα − v)4

8k2T 2

)
(24)

×x2
A

d2

d2
r

Q?R
8

(
Q?R+Q?Rε

?
A−ε?+2ε?2A −1

)
e−ε

?
A

with xA = nA/n being the concentration of con-

stituent A, dr the reactive molecular diameter and

Q∗R = QR/kT . Expression (23) indicates that this

solution characterizes a non-equilibrium state and

expression (24) specifies the deviation from the equi-

librium in terms of the activation energy ε∗A and

reaction heat Q∗R. The macroscopic equations as-

sociated to this hydrodynamic limit characterizes a

non-difusive, non-heat conducting and non-viscous

reactive mixture, that is

uαi = 0, qi = 0, pij = pδij

and the reaction rate is explicitly given by

τB = −τA, τA = −4n2
Ad

2
r

√
πkT

m
e−ε

?
A Θ (25)

Θ=

[
1+ε?A+

x2
A

128

(
d

dr

)2

Q?R
(
1 +Q?R +Q?Rε

?
A

+ε?A − 2ε?2A
) (

4ε?3A − 8ε?2A − ε?A − 1
)
e−ε

?
A

]
The hydrodynamic equations are the reactive Euler

equations corrected with the effects of the reaction

heat. In one space dimension, they are given by

∂nα
∂t

+
∂

∂x

(
nαu

)
= τα , α = A,B (26)

∂u

∂t
+

1

%

∂p

∂x
+ u

∂u

∂x
= 0 (27)

∂p

∂t
+ u

∂p

∂x
+

5

3
p
∂u

∂x
+

2

3

B∑
α=A

εατα = 0 (28)

where u is now the x-component of the mixture ve-

locity.

4 Application to detonation pheno-
menon

Detonation is a rapid and violent form of combustion

accompanied by an important energy release. The

propagation of detonation waves in gaseous explo-

sives is a problem of great practical importance, due

to the economic impact as well as several engineer-

ing applications, such as safety and military issues,

propulsion devices and hard rock mining.

A detonation is essentially a reacting wave con-

sisting in a leading shock that propagates into the
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explosive, followed by a reaction zone where the re-

actants transform into products. The shock heats

the material by compressing it so that a rapid and

violent chemical reaction is triggered.

On the other hand, experimental and computa-

tional investigations show that the detonation wave,

specially in gaseous mixtures, tends to be unstable

to small perturbations and exhibit a significant un-

steady structure. The first step of a formal study of

the detonation instability is the analysis of the hy-

drodynamical stability, which consists in imposing

small deviations in the steady solution and studying

the evolution of the state variables perturbations.

The assumption of small deviations allows to lin-

earize the equations and determine the instability

modes and growth rate perturbations.

The kinetic theory of chemically reactive mix-

tures can be used to study the detonation phe-

nomenon and describe some of the physical and

chemical aspects observed in experiments. In parti-

cular the kinetic modelling of Section 3 has been

used in Ref. [10] to investigate the propagation and

hydrodynamic stability of a steady detonation wave

in a binary reactive mixture with a symmetric chem-

ical reaction. In this section we present the main

aspects of this study, with emphasis on the spatial

structure of the steady detonation wave and the re-

sponse of the steady solution to one-dimensional dis-

turbances.

4.1 Dynamics of steady detonation waves

We consider a detonating binary mixture undergoing

a reversible reaction of symmetric type, described

by the kinetic modelling of Section 3. The mathe-

matical analogue for the detonation dynamics is the

hyperbolic set of reactive Euler equations (26-28).

Such equations admit steady traveling wave solu-

tions that describe a combustion regime in which

a strong planar shock wave ignites the mixture and

the burning keeps the shock advancing and proceed-

ing to equilibrium behind the shock. The Zeldovich,

von Neumann and Doering (ZND) idealized model

[11, 12] gives a good and accepted description of the

detonation wave solution. The configuration of the

ZND wave consists of a leading, planar, non-reactive

shock wave propagating with constant velocity D,

followed by a finite reaction zone where the chem-

ical reaction takes place. The spatial structure of

the detonation wave is determined by means of the

Rankine-Hugoniot conditions, connecting the fluxes

of the macroscopic quantities ahead (superscrip +)

and behind (plain symbols) the shock front, together

with the rate equation, describing the advancement

of the chemical process in the reaction zone. They

can be written in the form

dnA
dx

=
DtcτA

v −D + nA
dv
dnA

(29)

nB (nA) =

(
n+
B + n+

A

)
D

D − u
− nA (30)

T (nA) =
(D − u) (%+Du+ n+kT+)

n+kD
(31)

v (nA) =
2Q∗RnA+3%+D2−5n+kT+

8%+D
(32)

+
1

8%+D

[(
2Q∗RnA+3%+D2−5n+kT+

)2

−32%+Q∗RD
2
(
nA−n+

A

) ]1/2

System (29-32), with detonation velocity D, reaction

heat Q∗R and activation energy ε∗A as parameters,

characterize any arbitrary state within the reaction

zone (plain symbols) in dependence of the quiescent

initial state (superscrip +). This system has been

solved numerically with the following input data for

kinetic and thermodynamical reference parameters

D=1700ms−1, m = 0.01Kg/mol,

EA = 2400K, ε?A = 6

T+ = 298.15K, n+
A = 0.35mol/l, n+

B = 0mol/l,

Some numerical simulations have been performed in

Ref. [10] to determine the structure of the detona-

tion wave in both cases of exothermic (Q∗R < 0) and

endothermic (Q∗R > 0) chemical reactions. Figures

1 and 2 show representative profiles for the mixture

pressure p in both cases of exothermic and endother-

mic chemical reactions, respectively. The configura-

tion of the solution consists in a reactive rarefaction

wave (Figure 1) when the reaction is exothermic and

reproduces the typical structure of an idealized ZND

wave arising in real explosive system with exother-

mic chemical reaction [11, 12]. Conversely, the con-

figuration of the solution consists in a reactive com-

pression wave (Figure 2) when the reaction is en-

dothermic and reproduces the essential features of

the endothermic stage of a typical chain-branching

reactive system with pathological-type detonation

[11, 12]. Such detonation occurs when further com-

plexities are introduced in the reactive system and

7



some dissipative effects are present.
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Figure 1. Detonation wave profile (exothermic chemical re-

action) for the mixture pressure p.
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Figure 2. Detonation wave profile (endothermic chemical

reaction) for the mixture pressure p.

Other numerical simulations have been considered

in Ref. [10] to supplement the representation of the

detonation dynamics.

4.2 Linear stability of steady detonation
waves

The stability of the steady detonation solution de-

scribed in Subsection 4.1 is formulated in terms of an

initial-boundary value problem describing the evolu-

tion of the state variables perturbations.

We assume that a small rear boundary pertur-

bation is assigned so that a distortion in the shock

wave position is observed; such distortion induces

further perturbations in the state variables and the

steady detonation solution can degenerate into an

oscillatory solution in the long-time limit.

From the mathematical point of view, the stabil-

ity problem requires the transformation to the per-

turbed shock attached frame, and then the lineariza-

tion of the reactive Euler equations and Rankine-

Hugoniot conditions around the steady detonation

solution. A normal mode approach with exponential

time dependent perturbations and complex growth

rate parameter is adopted and standard techniques

are used to deduce the stability equations as well

as initial and boundary conditions. The details are

omitted here due to the space limitations. The

reader is addressed to Ref. [10] and the references

therein cited for the a comprehensive study on the

detonation satbility.

The initial boundary value problem describing

the detonation stability has been numerically treated

in Ref. [10], using a rather involved numerical

scheme that combines an iterative shooting tech-

nique with the argument principle. For a given

set of thermodynamical and chemical parameters

describing the steady detonation solution, the dis-

turbances of the state variables have been deter-

mined in a given rectangular domain of the growth

rate parameter. and detailed information about the

instability parameter regimes have been provided.

Figure 3 represents the stability boundary in the

parameter plane defined by the reaction heatQ∗R and

forward activation energy ε?A.

!2 !1 0 1 2
Q!R

5.5

6

6.5

7

7.5

8

"!A

Unstable
Stable

Figure 3. Stability boundary in the Q∗
R − ε∗A plane.

In this representation, a pair (Q∗R, ε
?
A) in the stability

zone indicates that for the corresponding values of

the reaction heat and activation energy, no instabil-

ity modes have been found. Conversely, a pair in the

instability zone indicates that for the corresponding

values of the reaction heat and activation energy, one

instability mode, at least, has been found. Moreover,

Figure 3 reveals that for a fixed value of the activa-

tion energy, the detonation becomes stable for larger

values of the reaction heat, whereas for a fixed value

of the reaction heat, the detonation becomes stable

for smaller values of the activation energy. These re-

sults are consistent with known experimental works

and numerical simulations [12], in the sense that in-

creasing the reaction heat, or decreasing the activa-

tion energy, tends to stabilize the detonation.

8



5 Simple reacting spheres model

The simple reacting spheres model considers hard-

-sphere cross sections for elastic collisions and reac-

tive cross sections with activation energy, of hard-

spheres type. The molecules behave as if they were

single mass points with two internal states of exci-

tation. Collisions may alter the internal states and

this occurs when the kinetic energy associated with

the reactive motion exceeds the activation energy.

The kinetic theory of simple reacting spheres

(SRS) has been developed in Ref. [13] for a qua-

ternary mixture A,B,C,D with the assumptions of

no mass exchange (m1 =m3, m2 =m4) and no alter-

ation of particle diameters (d1 =d3, d2 =d4). Further

advances concerning essentially physical and mathe-

matical properties of the SRS sytem and existence

theory for the partial differential equations of the

model have been considered in Refs. [14, 15, 16, 17].

The SRS theory has been extended in Ref. [18], with

no restrictions on the molecular masses and diame-

ters, and a global existence result has been stated.

The SRS modelling refers to the reactive mix-

ture introduced in Section 2, whose particles undergo

the reversible bimolecular reaction (1). The reactive

Boltzmann equations for this mixture have the gen-

eral form of Eqs. (2) but the collisional terms are

corrected for the occurrence of reactive encounters.

More specifically, the elastic operator contains a cor-

rection term which subtracts from the total number

of collisions those events that lead to chemical re-

action. As before, we assume that collisions take

place when the particles are separated by a distance

d12 = 1
2(d1 + d2) or d34 = 1

2(d3 + d4), but only those

particles such that the kinetic energy of the relative

motion is greater than the activation energy of the

chemical reaction can collide with chemical reaction.

The collision terms are given by (see Ref. [18] for

a detailed derivation)

QEα =

4∑
β=1

d2
αβ

∫
(f ′αf

′
β − fαfβ)〈ε, cα − cβ〉dεdcβ

− sd2
αγ

∫
(f ′αf

′
γ − fαfγ) (33)

×Θ(〈ε, cα − cγ〉 − Γαβ) 〈ε, cα − cγ〉dεdcγ

QRα = sd2
αγ

∫ [(
µαγ
µβδ

)3

f ′βf
′
δ − fαfγ

]
(34)

×Θ(〈ε, cα − cγ〉 − Γαβ) 〈ε, cα − cγ〉dεdcγ
Above, the primes indicate post collisional states,

µαβ=
mαmβ

mα+mβ
is a reduced mass of the colliding pair,

Γij=
√

2γi/µij is a threshold velocity for the chem-

ical reaction, Θ the Heaviside step function, and s

the steric factor. The second term in the right-hand

side of Eq. (33) is the correction term that excludes

from the total number of collisions those events that

lead to chemical reaction when the kinetic energy of

the colliding particles is greater than the activation

energy.

The SRS model possesses important mathemati-

cal properties. At the microscopic level, the model

incorporates the correct detailed balance and micro-

scopic reversibility principle, that is direct and re-

verse collisions of both elastic and reactive types oc-

cur with the same probability. At the macroscopic

level, the SRS model has good consistency proper-

ties (Subsection 2.2) concerning correct chemical ex-

change rates, conservation laws, entropy production,

H-function and trend to equilibrium.

Both microscopic and macroscopic properties as-

serting the consistency of the SRS model are crucial

for the mathematical analysis of the system of par-

tial differential equations of the SRS model. In par-

ticular, existence, uniqueness, and stability results

can be investigated on the basis of such properties.

6 Existence result for the SRS model

In this section, the global existence result of

Ref. [18], for the extended Boltzmann equations (2),

(33) and (34) of the SRS model, is revisited. The

proof of the theorem is based on the renormalized

theory proposed by DiPerna and Lions in Ref. [19]

for the inert one-component Boltzmann equation,

and then followed in Ref. [16] for a reactive mix-

ture such that reactive collisions do not cause nei-

ther mass transfer nor molecular diameter alter-

ation. The general idea of the proof is here sketched.

We introduce the notation QE+
α , QE−α to repre-

sent the gain and loss terms of the elastic collision

operator, and QR+
α , QR−α with analogous meaning,

so that

QEα = QE+
α −QE−α , QRα = QR+

α −QR−α

6.0.1 Definition.

(Mild solution) Non-negative functions fα ∈
L1
loc

(
S × R3; [0, T ]

)
define a mild solution of the sys-

tem (2), (33-34) if, for each T ∈ ]0,∞[, the gain and

loss terms QE+
α , QE−α , QR+

α , QR−α are in L1(0, T ),

9



a.e. in (x, cα) ∈ S × R3 and

f#
α (x, cα, t)−f#

α (x, cα, s) =

∫ t

s

[
QE#
α (x, cα, τ)

+QR#
α (x, cα, τ)

]
dτ, 0<s<t<T (35)

where f#
α (x, cα, t) = fα(x+cαt, cα, t) and similarly

for QE#
α and QR#

α . �

6.0.1 Theorem (Global existence result).

Assume that for α = 1, . . . , 4, the initial distribu-

tions fα0 ≥ 0 are such that

sup
α

∫∫
S×R3

(
1+x2+c2

α+log+fα0

)
fα0 dcαdx <∞ (36)

with log+(z) = max{log(z), 0}. Then, there exists a

non-negative mild solution {f1, f2, f3, f4} of the sys-

tem (2), (33-34) with fα ∈ C([0, T ];L1(R3 × R3)),

such that fα(t)
∣∣
t=0

= fα0, for α = 1, 2, 3, 4. �

The result expressed in Theorem 6.0.1 states the

existence of a global in time, spatially inhomoge-

neous, and L1 solution for the SRS model, provided

that the initial mass, momentum, total energy and

entropy are finite, as assumed in hypothesis (36).

Sketch of the proof of Theorem 6.0.1. The proof

of Theorem 6.0.1 follows similar arguments as in

Ref. [16]. It is based on the following tools [19, 16].

(i) A priory estimations of type

sup
α

sup
t∈[0,T ]

∫∫
S×R3

(
1+x2+c2

α+log+fα
)
fαdcαdx<∞ (37)

that are obtained from the conservation laws of total

mass, momentum and total energy, as well as from

a suitable entropy identity (see Ref. [18]). Bounds

(37) assure that there is no infinite concentration of

densities in the system governed by Eqs. (2), (33-34).

(ii) Velocity averaging results that, in some sense,

transfer the regularity of functions fα for velocity

averaged quantities, such as the macroscopic vari-

ables, see Ref. [20]. Velocity averaging results com-

pensate the lack of regularity of the non-linear colli-

sion terms.

(iii) Renormalized theory [19], that considers a suita-

ble notion of mild solution, see Definition 6.0.2 be-

low. The method of renormalization introduces a

nonlinear change of variable that reformulates the

Boltzmann equations (2), (33-34) to an equivalent

form, provided that certain bounds are satisfied, see

Lemma 6.0.1.

6.0.2 Definition.

(Renormalized solution) Non-negative functions

fα ∈ L1
loc

(
S × R3; [0, T ]

)
are renormalized solutions

of the system (2), (33-34) if

1

1 + fα
QE±α ,

1

1 + fα
QR±α ∈ L1

loc

(
S × R3; [0, T ]

)
∂

∂t
log(1+fα) + cα

∂

∂x
log(1+fα) =

QEα +QRα
1+fα

in the sense of distributions on [0, T ]× S × R3 �

6.0.1 Lemma.

Non-negative functions fα ∈L1
loc

(
S × R3; [0, T ]

)
are

renormalized solutions of the system (2), (33-34) if

and only if they are mild solutions and

1

1 + fα
QE±α ,

1

1 + fα
QR±α ∈ L1

loc

(
S × R3; [0, T ]

)
�

Then the central idea of the proof is to define suita-

ble approximate collision terms QEαn and QRαn, with

n = 1, 2, . . ., satisfying the main consistency proper-

ties of QEα and QRα , such that the approximate prob-

lems

∂fnα
∂t

+

3∑
i=1

cαi
∂fnα
∂xi

= QEαn +QRαn

fnα (x, cα, 0) = fnα0(x, cα), α = 1, 2, 3, 4

can be studied with known methods for PDE’s

(semigroup techniques have been used, see [16] for

details). Then one takes the weak limit fnα −→ fα
and uses stability results to show that the sequence

{fn1 , fn2 , fn3 , fn4 } converges to a renormalized solution

of the system (2), (33-34). A crucial part in this pas-

sage to the limit is the estimation of the renorma-

lized collision terms, for which the velocity averaging

results provide an important tool. �

6.0.1 Remark (Relevance of Theorem 6.0.1).

The existence result stated in Theorem 6.0.1 has im-

portant implications at the level of approximation

questions. �

6.0.2 Remark (Future perspectives).

The spatially homogeneous theory of the SRS model,

in which the distribution functions do not depend on

the x variable, is a topic of great interest. Some ad-

vances have been made in view of studying existence

10



of solutions, uniqueness and stability results for the

homogeneous reactive equations.

Another regime of interest corresponds to the

case in which the distribution functions are assumed

very close to the equilibrium. In this case, one con-

siders the linearized version of the SRS model around

an equilibrium solution and uses the spectral prop-

erties of the linearized collision operators to prove

existence and stability of close to equilibrium solu-

tions for the SRS system. Some studies have been

developed also in this direction. �
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