Design and implementation of a hierarchical
SIP-based peer-to-peer network

Oscar Bravo, Antonio Costa and Maria Jodao Nicolau
Centro Algoritmi, Universidade do Minho, Portugal
Email: a48058 @alunos.uminho.pt, costa@di.uminho.pt, joao@dsi.uminho.pt

Abstract—Peer-to-peer (P2P) has gained popularity in Internet
due to the increased number of users and distributed services
such as file sharing and voice calls over IP (VoIP). Currently, the
most popular P2P networks store information pertaining to its
resources in a distributed manner using Distributed Hash Tables
(DHT). In this type of networks, the peers are deterministically
positioned and resources are also allocated to each peer for
indexing in a deterministic manner.

This paper presents a new hierarchical SIP based P2P network.
A pure SIP solution was used because we believe that an open
solution such as SIP can facilitate the creation of new types
of services and permit the facilitated integration of different
services. A two level hierarchy is used and is aimed towards
the improvement of network efficiency where peers can move
dynamically from one layer to another according to its available
resources. In addition to this, the proposed implementation
architecture allows the independence of the underlying DHT
algorithms.

The proposed architecture was implemented and tested in a
realistic scenario which was created inside a Linux cluster. The
DHT algorithms, Chord and EpiChord, were also implemented
and used to index resources in either flat or hierarchical net-
works. Results indicate that the proposed two-layer hierarchy
significantly improves the P2P overlay performance while in the
presence of peers with limitations.

Index Terms—P2P Networks, DHT Algorithms, P2PSIP, SIP

I. INTRODUCTION

The increased number of users on the Internet in com-
bination with the large number of available services, makes
peer-to-peer networks assume an increasingly important role.
Currently, there is a large amount of scientific work that
addresses various aspects of these types of networks. The P2P
network scalability is one of the most important aspects to
consider because these networks increasingly consist of a large
number of nodes which often has a direct influence on P2P
network performance.

In a traditional P2P overlay, all peers have the same role and
importance. They are equally involved in the routing, storage
and location of resource tasks. However, there are cases where
assigning the same importance to all peers may not be the
most desirable for either performance reasons or for other
reasons such as security issues. This work presents a particular
interest in studying the influence that nodes possessing lower
capacities can have on the performance of the P2P overlay.

In this context, we consider that a member may have
a negative impact on P2P network performance for several
reasons: poor quality network connection (traffic limitations,
lower bandwidth, or links with a high probability of packet

losses), little time spent in the overlay which can generate
a large amount of traffic to maintain the overlay (transfer of
resources, updating tables, etc) and limited resources in terms
of hardware (CPU, memory and battery). Smart-phones are a
good example of a mobile device which is able to participate
in a P2P overlay however, its participation may have a negative
impact on the overlay performance due to possible limitations
in terms of connectivity and its characteristics, including the
battery.

The existence of peers in the overlay along with some
of the listed conditions, may influence the performance of
overlay which will then increase the time needed to locate
resources. In order to minimize these problems, a two-tier P2P
overlay was implemented. The lowest level of the hierarchy
is composed of nodes with some limitations called clients. A
client does not form or participate in P2P overlay, does not
receive messages that are not for it, nor is it responsible for
storing data. Instead, it uses a peer belonging to the overlay
as an intermediary to access the overlay services. The upper
level of the hierarchy consists of nodes (peers) that actually
form the P2P overlay. They act as normal peers by storing
resources and forwarding messages between themselves. The
only change that is needed on peers, is the addition of support
for clients. That is, allow peers to receive requests to store
or find resources in the overlay from outside it. Whenever a
request from a client is received, for example the storage of
a resource in the overlay, the peer receiving the request from
the client stores the resource in the overlay as its own.

Many of the existing solutions that aim to implement peer-
to-peer networks are closed solutions designed for specific
applications. However, there is an academic effort which
aims to develop generic peer-to-peer networks, based on
open solutions. The use of generic networks possesses some
advantages because they are not limited to one type of service
or application. Instead, they can be used to implement different
services or support multiple applications. Moreover, the fact
that they use open solutions such as SIP (Session Initiation
Protocol) [1], may also represent an advantage because there
is a greater knowledge of how these solutions work which can
facilitate its implementation as well as allow different entities
to gain improved interoperability with each other since the
operation of the solution used is well known.

In order to evaluate the hierarchical P2P network, a JAVA
implementation was developed. Communication is attained
through a P2PSIP protocol and, of the various solutions

for P2PSIP protocols studied, the draft specification protocol
dSIP [2] was chosen because it is entirely based on SIP.
A new message type is proposed in order to distinguish
between clients and peers and support the two level hierarchy.
Two DHT algorithms were also implemented: Chord [3] and
EpiChord [4]. Due to its popularity, Chord is mandatory in
all solutions. EpiChord is a variant of Chord and was also
chosen as of a result of its claims to improve the overlay
performance. The Chord implementation was based on the
work of Cyrano [5] although many of the components have
been adapted and rewritten. The implementation of EpiChord
was built from scratch. Chord and Epichord were extended in
order to support the hierarchical structure of the proposed P2P
overlay.

This paper is structured as follows: section II describes
peer-to-peer networks and emphasizes major related work on
P2PSIP approaches. This section also includes a description of
Epichord. Section III presents a conceptual description of the
proposed hierarchical SIP based solution and explains major
decisions taken. Section IV provides details regarding the
Java implementation built. Section V describes a set of tests
conducted in a realistic emulated network environment, for
flat and hierarchical overlays, in the presence of limited peers.
Results are then compared and discussed. Finally, section VI
presents conclusions and outlines future work.

II. PEER-TO-PEER NETWORKS

In a peer-to-peer network, the manner in which data is
indexed as well as how the nodes (peers) are positioned in
the network (overlay), has lead some authors to classify P2P
networks into two distinct forms: unstructured and structured
overlays [6] [7]. In an unstructured P2P overlay, the mech-
anism for resource location on the network usually involves
the use of flooding techniques [6] [7]. Here the network is
flooded with messages aiming to find the location of the
desired resource. This mechanism presents some issues due to
the large amount of traffic that can be generated. In addition
to this, it cannot ensure that a resource existing somewhere in
the network will be found. Currently, P2P networks are mostly
structured networks. Structured overlays are characterized by
the fact that its topology is predefined and nodes are placed
in the overlay in a controlled manner. Resources are also
allocated to peers in a deterministic way. This improves
resource location and makes it more efficient. This type of
overlay is sometimes called a DHT overlay because the overlay
usually relies on mechanisms based on Distributed Hash
Tables (DHTs) for the placement of resources. Currently, the
most popular DHT algorithms are Chord [3] and Kademlia [8].

A. SIP based Peer-to-peer Networks

SIP (Session Initiation Protocol) is a standard signaling
protocol created in the context of IETF (Internet Engineering
Task Force) which works at the application layer. It is widely
used for establishing sessions between one or more partic-
ipants, for example; in the establishment of telephone calls
over the Internet, multimedia content distribution, conferences,

etc. Currently, there is an IETF working group (P2PSIP WG)
dedicated to the study and creation of P2PSIP protocols. Of the
various existing proposals, dSIP [2], P2PP [9] and RELOAD
[10] were studied. The P2PP [9], is a draft specification for
a P2P protocol which allows the P2P overlay to be created
through a structured or unstructured P2P protocol. The mes-
sages used by this protocol are not SIP messages, but binary
messages instead. With this protocol, sending SIP messages
between peers is achieved by encapsulating SIP messages
in binary P2PP messages. The RELOAD protocol (Resource
Location And Discovery) [10] [1] is the latest proposal from
the P2PSIP WG. Just as P2PP, it also uses a binary protocol
for the construction and management of the overlay, allowing
the use of SIP or other protocols on top of RELOAD protocol.

B. Distributed Session Initiation Protocol (dSIP)

Distributed Session Initiation Protocol (dSIP) is a draft
specification [2] of a P2PSIP protocol. It is regarded as an
evolution of SoOSIMPLE [11] which was specified by some of
the same authors of dSIP. This protocol is based entirely on
SIP which is used to perform the entire management of the
P2P overlay such as peers and resource management.

The fact that SIP is an extensible protocol permitted the
creation of new SIP headers needed to carry relevant informa-
tion to the management of the P2P overlay. According to the
authors of dSIP, the use of traditional SIP messages, allows the
use of mechanisms commonly used in SIP, in dSIP in order
to overcome the problems caused by NATs and firewalls.

The dSIP protocol was developed to be modular and can
be used with multiple DHT algorithms, requiring support at
least for Chord. Peers are organized in overlay according to
the DHT algorithm in use. Unique identifiers (Peer-ID and
Resource-ID), are assigned to peers and resources, both of
which must belong to the same address space. The calculation
of these identifiers can be obtained using different hashing
algorithms however, all overlay peers must use the same al-
gorithm. For example, identifiers can be obtained by applying
the SHA-1 algorithm to the combination of IP address and
port of the peer or by using a certifying entity responsible for
issuing the identifiers. The DHT algorithm uses Peer-ID to
determine the location of the peer in the overlay as well as the
identifiers of the resources for which the peer is responsible.
The Resource-ID is used to identify resources and can be
obtained by applying a hash function on the name or on a set
of words that describe the resource. The resource is stored in
the peer that has the Peer-ID which is closest to the Resource-
ID.

Due to the constant entry and exit of peers into and out of a
P2P network, the information regarding resources stored in the
overlay must be constantly exchanged between peers so that
resources are always accessible. Data redundancy mechanisms
are implemented in order to prevent data loss when a peer fails
before transmitting information on resources for which it was
responsible to another peer.

The precise manner in which the location of resources is
done depends on the DHT algorithm used. Generally speaking,

for the location of a given resource, a peer should consult its
routing table and send the message to the peer that has the
Peer-ID nearest to the Resource-ID of the wanted resource.
This peer, depending on the routing mechanism in use, should
forward the message to the closest known peer or send a reply
message containing this information.

C. EpiChord

EpiChord is a resource location algorithm for peer-to-peer
networks based on Distributed Hash Tables (DHTs), developed
by Ben Leong et al [4]. One of the main features that
differentiates EpiChord from other existent DHT algorithms
is the use of a routing table (called by the authors as cache)
with no maximum limit of entries. Other DHT algorithms such
as Chord have a maximum of O (log N) entries. Since the
number of entries in the routing table can affect the number
of hops needed to find a resource in the overlay, EpiChord
authors claim that this reduces the average number of hops
needed to locate a resource.

1) Routing Strategy: In addition to the use of a cache with
no defined size, the EpiChord implements a new strategy
known as reactive routing. This routing strategy uses the
resource location messages to piggy-back useful information
to maintain the cache of the overlay nodes. The nodes in the
overlay observe the resource location traffic that they receive
and add routing information to the messages they send in order
to keep nodes’ caches updated. On the other hand, other DHT
Algorithms such as Chord, need to periodically send messages
to the various entrances of their routing tables (finger table in
Chord’s case) in order to verify their validity. In EpiChord,
this behavior is only necessary if network traffic is too low.
In this case, the number of messages that each node receives
may not be enough to keep the cache updated. If necessary,
an EpiChord peer sends messages to only a few entries from
its cache in order to keep the cache updated.

With this strategy, the information contained in the cache is
not always the most up to date when compared to other routing
strategies. Therefore, in order for resource location to occur,
a mechanism that sends messages in parallel to minimize
the effect of invalid entries in the cache will be necssary.
Sending messages in parallel is not always a good solution
because of the extra traffic it generates. However, being as
the EpiChord cache can have a very large number of entries,
the number of hops needed to find the resource is reduced
which in turn causes a reduction of the generated traffic. The
Epichord authors state that sending messages in parallel can
improve the average performance of the resource location in
number of hops and latency when compared to a traditional
implementation of Chord with similar resource location traffic.

2) Resource Location: As stated above, the location of re-
sources in EpiChord is completed by sending messages (called
queries) in parallel. To initiate the location of a resource, p
messages are sent, where p is a configurable parameter of the
system.

The algorithm used to determine the destination for each of
the p outgoing messages is simple: the cache is consulted in

order to obtain a set of nodes closer to the node responsible for
the resource to locate. For example, by calling id the identifier
of the resource to locate, the p messages are sent as follows: a
message is sent to the node in the cache that is the immediate
successor of the id to locate and p—1 messages are then sent to
nodes (from cache) that precede the ¢d of the resource. Figure
1 shows an example of the algorithm described above, the
node z, in this example, wants to find the resource identified
by id.

increasing id

\v\ p — 1 entries

1 entry

@ cache entry

Fig. 1. Lookup Example - Destination of p messages [4]

When a node z initializes the location of a resource iden-
tified by ¢d, the nodes that receive messages for the resource
location must send a reply message according to the following
conditions:

o If the node is responsible for the resource, the answer
must contain the value associated with the resource (if
any) and it must also send routing information containing
the details of its predecessor.

o If the node is the predecessor of id relatively to node x,
the response message contains information regarding the
node’s successor as well as the best [next hops obtained
through the cache, where [is a configurable parameter of
the system.

o If the node is the successor of id relatively to node x,
the response message should contain information as to
the node’s predecessor as well as the best [next hops
obtained through the cache.

When the responses are received by node z, it checks the
routing information contained and updates its cache with this
information. In addition to updating the cache, = sends a
new location message to the nodes contained in the response
messages that are closer to the destination compared to nodes
that have already responded. That is, as peers respond, the
two closest nodes (successor and predecessor of the identifier
to locate) are updated. New messages are only sent if the
recipient is closer to the destination than the current best
successor or predecessor.

The location algorithm uses an iterative routing strategy
which allows the node that initiates the location to verify if
it is approaching the desired node as well as to keep track
of sent messages. It is possible to detect cases where a node
is referenced multiple times in response messages from other
nodes, thus avoiding sending repeated messages to the same
node.

III. P2P HIERARCHICAL OVERLAY

Although the solution presented is an open and generic P2P
overlay that suits multiple applications, the developed proto-
type was intended to support a VoIP application. Therefore,
once the overlay is formed, it is used to store and locate
resources, providing in a distributed manner, services that
usually a Registrar and a Location Server offer in a traditional
VoIP architecture.

The resources that are stored by a P2P overlay consist in a
key/value pair where the key is the identifier of the resource
and the value is the resource itself. In the context of this work,
the key is the SIP address of the user and the value is the
current temporary SIP location where the user can actually be
contacted. The resource identifier is used by the DHT overlay
algorithm to define the location in which the resource must be
stored in the overlay.

dSIP was the chosen P2PSIP protocol to use due to the
fact that this is a solution based entirely on SIP. The fact that
dSIP is entirely based on SIP is advantageous because the SIP
protocol is standardized, supported natively in many devices,
and widely used in various applications including voice calls
over IP (VoIP). The use of a well-known protocol such as SIP,
makes it easier to implement new services as well as allow
interoperability between different services.

A. Two-tier Hierarchy

In addition to the creation of a P2PSIP overlay using the
Chord or EpiChord, the application is able to create an overlay
with two hierarchical levels. The first hierarchical level is
composed exclusively of peers. The second level contains
clients that connect to one or more peers and uses services
provided by the overlay without actively participating in its
construction and management. The creation of this hierarchy
is based on the idea that in some scenarios, it may be better
for the performance of the overlay that certain peers do not
actively participate in the overlay, becoming clients. For active
participation in the overlay, one can understand the exchange
of messages between peers, the management and construction
of the overlay, and also the storage of information. Figure
2 shows an example of the hierarchical structure described.
The figure depicts that an overlay is composed exclusively of
peers. Clients are in the lower level accessing overlay services
through one or more peers.

DHT
Chord/EpiChord

@ Peer
O Client

Fig. 2.

P2PSIP - Two-tier Hierarchy

B. DHT Algorithms

The draft specification of the dSIP [2] protocol does not
impose restrictions on DHT algorithms that can be used
by the overlay. However it states that at least the Chord
algorithm must be implemented. In this work, in addition to the
mandatory implementation of Chord algorithm, it was decided
that the EpiChord be implemented as well. This is a variant
of the Chord algorithm which promises to improve the overall
overlay performance. With the implementation of these two
DHT algorithms, we intend to analyze the performance of both
in a real scenario in order to verify whether or not the results
obtained are in agreement with the simulation results obtained
by the authors of EpiChord. In addition to this, we also intend
to analyze its usage in a hierarchical overlay.

In the application developed in this paper, both DHT algo-
rithms use SHA-1 with 160 bits as the hashing algorithm used
to generate the hash of the identifiers for peers and resources.
The use of identifiers consisting of 160 bits means that the ring
formed by the peers in the overlay has an address space of 2160
identifiers. Another important aspect in the implementation of
the DHT algorithms is the routing strategy. Due to the fact
that the EpiChord algorithm was designed to work with an
iterative routing strategy, it was decided that this should be
the behavior of both algorithms: Chord and EpiChord.

C. SIP messages used

The messages used by dSIP protocol messages are tra-
ditional SIP messages with the addition of two new types
of headers (DHT-PeerID and DHT-Link) needed to carry
information relevant to the P2P overlay management.

Since this work is intended to have clients and peers in
a two-level hierarchy and as dSIP protocol specifies only
messages that should be exchanged between peers, it was
necessary to specify a new type of message to be exchanged
between clients and peers. To simplify this process, a new SIP
header called ClientID was created. It is based on the DHT-
PeerID header. The new header is only used by clients and
aims to allow a peer to identify the origin of a message. The
existence of a header ClientID or DHT-PeerID in a message
allows peers to easily identify whether or not the message is
coming from a client or a peer.

IV. IMPLEMENTATION

This section describes a few aspects of the java imple-
mentation of the proposed peer-to-peer network. Figure 3
ilustrates the software architecture of the implementation. It
was designed to be generic and modular so that it can be used
by multiple applications and include other DHT algorithms.
In order to achieve this, the components are structured into 4
stacked layers.

The two bottom layers (named SIP and Transport) are
the basic communication layers which ensure a standard SIP
protocol on top of TCP or UDP. They were implemented using
the JAIN-SIP [12] library. This library provides a set of APIs
that allow you to send and receive SIP messages. Since the
upper layers only use a simple subset of the API, it could

Layer S 2 — m
< EpiChordPeer

iDHTi I ResourceMap I

.
Transport SIPLayer N —x
ConvertToSIP

Fig. 3. Application architecture - Layers

be replaced by another SIP stack implementation if necessary.
The two upper layers (DHT and P2PSIP) are responsible for
the creation and maintenance of the P2P overlay using SIP.
They are described in more detail in the next sections.

A. P2PSIP Layer Implementation

The P2PSIP layer is an intermediary layer that further
abstracts the SIP communication to the upper layer. It provides
a simple and more adequate high level communication API to
the DHT layer. It hides the details of the SIP supporting stack
and breaks dependencies between DHT and the SIP supporting
library. The SIP layer could be replaced in a more facilitated
manner.

As shown in figure 3, the SipLayer class is the main class
for this layer. The main interface for the upper layer consists
of two simple methods which can be invoked to send and
receive P2PSIP messages:

e public void sendP2PSIPrequest(P2PSIPMessage msg,
ITransactionListener callback) - This method is used for
sending a P2PSIP request and receives as parameters the
P2PSIP message to send as well as a reference to the
object to be notified when the reply to the sent message
is received.

o public void sendP2PSIPreply(P2PSIPMessage msg) -
This method is used for sending a reply message to a
received P2PSIP request. As parameters, it only has to
send the P2PSIP message in response to the request.

Both methods use the ConvertToSIP class to carry out the
conversion of the P2PSIPMessage Java object (containing the
information about the P2PSIP message to send) into an object
recognized by the SIP layer in use.

When a SIP message is received by this layer, its headers
are parsed in order to check whether or not it is a P2PSIP
message and to determine if it is a request or a reply. If the
received message is a valid P2PSIP request, it is converted to
a P2PSIP object and passed to the upper layer. If the received
message is a P2PSIP response, it is also converted into an
equivalent P2PSIP object and passed directly to the object that
sent the original request. The state of all ongoing requests is
maintained by this layer.

B. DHT Layer Implementation

The DHT Layer is responsible for the implementation of
the functionalities of the DHT algorithms in use. The major
class in this layer is Peer, and it uses classes ResourceMap

and DHT to maintain resources and the overlay. The two
DHT algorithms implemented (Chord [3] and EpiChord [4])
are subclasses of Peer that rewrite some of its methods. New
algorithms can be added in this way.

1) Chord implementation: The implementation of the
Chord algorithm was based on the draft specification [13] from
the same authors of dSIP. S. Cyrano et al [5] developed an
application that implements the dSIP protocol using Chord and
Kademlia algorithms. The application source code is available
online [5] and was partly used in the implementation of Chord.
In our implementation, the class hierarchy as well as some of
its components, such as the component responsible for creating
the P2PSIP messages were reused. All the reused components
suffered a significant amount of change, in order to create a
higher level of abstraction between the DHT and SIP layer.
In addition to this, the SIP stack used in [5] (MJSIP), was
replaced by the Jain-SIP in this work.

2) EpiChord implementation: For the EpiChord imple-
mentation, we also followed the draft specification [13] that
describes how the chord should be implemented in dSIP. One
of the main points of the EpiChord implementation is the
cache management because it is completely different from the
management of the Chord finger table. The EpiChord cache
is filled with information obtained from received messages. It
is important to detect and remove dead entries which failed
a certain number of times or whose lifetime exceeds a preset
value. The management of the cache is very important for the
proper functioning of the algorithm being as the location of
resources is based on the information contained in the cache.
In addition to this, due to the fact that there is no maximum
number of entries in the cache, the detection and removal of
entries that have already expired is important.

Another aspect that must be taken into account in what
concerns the implementation of this algorithm, is the manner
in which resources are inserted and located in the overlay.
While Chord uses a mechanism based on simple exchanging
messages to insert or locate resources, in EpiChord, the
process is slightly more complex. It uses a mechanism based
on sending messages in parallel.

3) Message headers: Our implementation of Chord and
EpiChord algorithms did not change any of the SIP message
headers defined in dSIP. The fashion in which the DHT-Link
header must be processed was merely re-defined. In both
Chord and EpiChord implementations, DHT-Link header is
used by a peer to send information related to his successor,
predecessor, or elements of the routing table (finger table in
Chord, and cache in EpiChord) to another peer. According to
[13], the link parameter of the header must possess one the
following values:

¢ Pn - information about the nth predecessor of the peer.

e Sn - information about the nth successor of the peer.

e FI'n - information about the nth entry of the finger table.

The n must be a positive value and for links of the type .S or
P it indicates their depth. For example, if the link parameter
has the value P1, it means that the DHT-Link header contains
information about the peer’s immediate predecessor and if

the value is S5 it means that the DHT-Link header contains
information about its fifth successor. If the value is S0 or PO,
it means that the header contains information about the peer
itself. For type F', the n references the index of the entry in
the finger table of the peer.

Figure 4 presents an example of a DHT-Link header used
in the implementation of Chord in dSIP. In this example,
the header possesses information regarding the immediate
successor (S1) of the peer sending the message. The relevant
attributes of the peer such as its identifier (peer ID) and IP
address are visible in this header.

DHT-Link: <sip:peer@192.0.2.1;peer-ID=671a65bf22>;
1link=S1;expires=600

Fig. 4. Chord - DHT-Link header of dSIP protocol

The contents of the DHT-Link header in the implementation
of the EpiChord algorithm is slightly different especially
in the link and expires parameters. Since EpiChord uses a
cache instead of a finger table, the value F'n that the link
parameter can possess, no longer makes sense. Therefore, in
the implementation of EpiChord, F'n was replaced by a new
value C' (no index), which indicates that the header contains
information related to a chache entry.

Another difference in the EpiChord implementation has to
do with the meaning of the parameter expires of the DHT-
Link header. EpiChord does not use the expires parameter in
its cache entries. It uses a parameter named lifetime, instead.
It has a different meaning. To avoid creating a new header in
which the only difference would be that the expires parameter
would be called lifetime, it was decided that the same header
from the Chord implementation be used. In this case, the
expires parameter contains the value of the lifetime.

V. TESTS AND RESULTS

The proposed architecture was fully implemented in Java
and the resulting prototype was exhaustively tested in realistic
environments. First emulation in a single Linux system was
used and later on, a Linux cluster was used. An initial
group of tests was conducted in order to simply validate the
implementation. Previous results published by the authors of
EpiChord, using simulation tools, were used as a reference
to validate this implementation. In the second group of tests,
the goal was to evaluate the benefits of a having a two layer
hierarchy when compared to a flat overlay in the presence of
nodes with limited resources.

Table I summarizes the parameters used in all tests. Table
IT shows the two metrics considered to analyze the results: the
average lookup time in seconds required to locate a resource
in the overlay and the average number of hops.

A. Testing scenario

In all tests, each peer (or client) in the P2P overlay per-
forms intensive lookup operations for a set of pre-configured
resources. The developed application was modified so that
each peer carries out approximately two lookups per second.

32 peers in preliminary tests
Number of peers ZOOppeers inpmajor tes)t/s
Lookup rate two lookup operations per second for each peer
Stabilization time | 60 seconds
Timeout 5 seconds

, Chord (iterative mode)

DHT Algorithms | g i ord with 3 variants: (P=1:L=1), (P=3:L=3) and

(P=5;L=3)
Overlay Flat (with and without limited peers)
Configuration Hierarchical (two levels, with limited clients)
Exec Ubuntu 11.04 with CORE on Intel, IGB RAM
Environment CentOS Linux cluster nodes (4 CPUs, 8GB RAM)

TABLE 1
PARAMETERS AND VALUES USED IN TESTING SCENARIOS

Metric
Lookup Time

Description

Average lookup time required to locate a resource in
the overlay

Number of hops in the overlay needed to find a
resource

Number of hops

TABLE II
PERFORMANCE METRICS

The list of resources that each peer should try to locate is
predefined (previously created and stored in a configuration
file), forcing the same lookup sequence in each test for each
peer. Thus, the results obtained from different tests can be
compared.

Some peers were named as bootstrap peers. All initialized
peers receive a given list of bootstrap peers to which they
should try to connect to in order to join the overlay. When
initializing, each peer establishes a connection with the first
peer on the list. The other peers are used if the selected peer
does not respond. In each test, 6 peers were chosen to act as
bootstrap peers. In order to prevent a bootstrap server from
being overloaded during initialization (only because it is the
first on the list), a Round Robin technique was used to rotate
the list of bootstrap peers that each peer receives.

The booting process of peers and clients was made using
a bash script which initializes the Java application of each
peer or client with various parameters according to the test
to be performed. First, the bootstrap peers are initialized
and then the remaining peers. If the test uses clients, these
are the last to be initialized. The JAVA application receives
various parameters to configure itself such as for instance, the
DHT algorithm to use. One of these parameters is used to
set how long the application should wait before starting to
locate a resource. Being as the tests are focused on lookup
performance, the value of this parameter was set to the 90s.
Thus, the lookup tests only start when the overlay is stabilized
and the results are more reliable.

B. Emulated execution environments

The first tests were conducted on a single Linux machine
using the Common Open Research Emulator (CORE) [14].
The CORE [14] is a tool which emulates newtorks on one or
more machines. Networks created in CORE can connect to
other emulated networks and/or real networks.

Fig. 5.

Topology used to perform tests

The network topology created in CORE consists of 4
routers, 3 switches and 32 hosts (peers or clients), as shown in
Figure 5. The topology was configured in order to replicate the
testing conditions that were used by the authors of EpiChord.
The objective was to validate the implementation by compar-
ing the results obtained with the simulation results published
in [4]. For this reason, physical links between hosts and the
switches in the topology were set with a delay of 80ms. This
results in an average Round Trip Time (R1'T) between peers
of 0.16s. This is the same value that was used in the tests
conducted by the authors of EpiChord.

Due to the limitations of the machine on which CORE was
executed, the maximum number of peers supported was 32 and
therefore far from the minimal of 200 reported in [4]. It was
therefore necessary to use a linux cluster (SeARCH [15]) to
perform tests with a larger number of peers (200 peers at least).
Using a restricted access account, we were unable to install
CORE on the cluster and use it to create the network topology.
The alternate solution found was to use multiple cluster nodes
with multiple instances of the application in execution in each
node. While in a real topology each peer has a different IP
address, in this case, all instances of the application running
on the same node share the same IP address. Therefore, in
our tests, instead of varying the IP address of peers, each peer
used a different port number.

Of the various performance metrics to be analyzed in the
tests, the only one that could be affected by this solution
is the lookup time. The parameter number of hops is not
affected because it refers to the number of hops in the overlay
and not in the physical network. In this execution scenario,
connections between peers are often made on localhost. In
this case, the delay in message delivery is virtually nil. To
solve this problem, the developed application was modified
to simulate a delay. When a message is received, instead of
being processed immediately, the application makes a short
waiting period in order to simulate the delay the message
would experience within a real network. This simulated delay
is a random value between two parameters, r#tMin and rttMax,
passed to the application.

Before testing with a greater number of peers, it was nec-
essary to verify whether or not the results obtained originally
in CORE with 32 peers were identical to the results obtained

with 32 peers with the cluster using the solution described and
with the same delays (between peers). The results in both tests
were similar so we concluded that our solution was valid. The
remaining tests were made in the cluster. The tests performed
with 200 peers required the usage of two cluster nodes with
8GB of RAM and 4 CPUs each.

C. Chord and EpiChord configuration

The parameters of Chord and EpiChord algorithms used in
the tests are the same that the authors of EpiChord used in their
tests. However, some parameters could not be used because
they were not mentioned in their tests. One such exampe is
the number of entries in the Chord finger table. In [13] the
recommended value is 16 for small networks and 32 for large
ones. The chosen value is 32.

In the Chord algorithm, one minute (60s) was chosen as the
stabilization period. This means that every minute each peer
will check the state of their direct neighbors (predecessor and
successor). In addition to the stabilization period, a period to
check the finger table entries was also set. The value is also
not specified in the tests made by the authors of EpiChord,
so it was defined in the 70s. The value in the range of values
recommended in [13].

In the EpiChord implementation, a stabilization period of
60s and a maximum lifetime for the entries in cache of
120s was also used. These were the same values used by
the authors of EpiChord in their tests. With regards to the
level of parallelism in the location of resources, our tests were
made with three different levels of parallelism. The following
combinations were tested: P =1L =1, P=3 L = 3 and
P =5 L = 3, where P indicates the number of messages to
be sent in parallel to begin the process of locating a resource
or peer, and L is the number of contacts that each peer sends
in its response messages.

Another parameter, common to both algorithms which was
also defined by the authors of EpiChord in their tests, is the
timeout value. The EpiChord authors used 0.5s as the value for
this parameter in their tests. However, in our tests, this value
produced a high number of lost messages. Therefore, 5s was
used as timeout. The reason why the timeout value used by the
authors of EpiChord did not work practically is probably due
to the fact that this value has been used in simulation and not a
in real environment. Even considering that the application was
developed to support concurrency (multi-threading), EpiChord
was implemented on top of another protocol (SIP), and the
SIP stack itself defined 32s as an optimal timeout value. The
values had to be adjusted. Therefore, in this work 5s was used
as the timeout value.

D. Flat P2P overlay

Figures 6a and 6c¢ depict the results of the tests conducted
with 200 peers. The first column, for each DHT algorithm,
shows the results when all peers have similar resources
(equally capable). By analyzing the results and comparing
them with the results obtained by the authors of EpiChord in
their simulation tests (See [4], Fig. 11 and 12 for 200 nodes),

1,2
“E’ 11 # Flat 200 peers
= 1.0 Flat 200 peers (16% limited)
a o 09 & Flat 200 peers (33% limited)
2 = 8,3 @ Flat 200 peers (50% limited)
(=2 >
= 2 0,6
o »w 05
£ g 0
=~ 03
2 02
& 0,1
0.0 » EpiChord EplChord EpiChord
Chord
(P=11=1) | (P=3L=3) | (P=5L=3)
Flat 200 peers 0,631 0,223 0,162 0,159
Flat 200 peers (16% limited) 0,823 0,277 0,211 0,203
Flat 200 peers (33% limited) 1,015 0,340 0,247 0,245
Flat 200 peers (50% limited) 1,194 0,396 0,291 0,285

1,2
® 1,1
§ 1,0 Hier. 200 peers (16% clients)
; = 0,9 & Hier. 200 peers (33% clients)
i "g g’g Hier. 200 peers (50% clients)
= 5
S 8 0,6
= o 0,5
L @
O = 0,4
52 03
[~ 0,2 N2 - -
2 ; N 7/ N7 N7
s ,’/ e [0.0 § é § ; % 4 %
L ¢ ’ EpiChord EpiChord EpiChord
fo e (P=1L=1) | (P=3L=3) | (P=5L=3)
\
‘Hier. 200 peers (16% clients) 0,616 0,220 0,164 0,160
‘Hier. 200 peers (33% clients) 0,609 0,220 0,178 0,177
‘Hier. 200 peers (50% clients) 0,594 0,205 0,190 0,189

(a) Flat P2P overlay (lookup time)

(b) Hierarchical P2P overlay (lookup time)

4.8 4.8
3 ad B Flat 200 peers g- 4.4
=] ’ s (=] 4
= 40 Flat 200 peers (16% limited) = 4,0 Hier. 200 peers (16% clients)
[L.
=) g,g 1 & Flat 200 peers (33% limited) | G‘s gg & Hier. 200 peers (33% clients)
I 2 : o/ Timi 1 8
2 o5 Flat 200 peers (50% limited) 5 2.8 Hier. 200 peers (50% clients)
=
5] 2,4 E 2.4
= 20 2,0
= =
o L6 = 1,6 -
& 124 " 1,2 -
508 - & 08
> 04 . St 04 -
< 00 ‘ N £ » e 2 00 .
? Chord EplChord EpiChord EpiChord ol S ¢ < > Ep Ch EplChord
or (P=1L=1) (P=3L=3) (P=5L=3) °e " (P=11L=1) | (P=3L=3) (P=5L=3)
Flat 200 peers 4,531 1,499 1,081 1,047 \
Flat 200 peers (16% limited) 4,507 1,456 1,072 1,062 Hier. 200 peers (16% clients) 4,391 1,415 ‘ 1,048 1,034
Flat 200 peers (33% limited) 4,500 1,480 1,090 1,044 Hier. 200 peers (33% clients) 4,244 1,266 ‘ 1,029 1,016
Flat 200 peers (50% limited)| 4,496 1,467 1,078 1,068 Hier. 200 peers (50% clients)| 3,996 1122 1,005 0,997
(c) Flat P2P overlay (hops) (d) Hierarchical P2P overlay (hops)
Fig. 6. Intensive resource lookup on flat and hierarchical P2P overlay with 200 peers

it is possible to observe that they are very similar. Chord and
EpiChord algorithms are therefore working as expected and
were well integrated in the overwall architecture presented
in Figure 3. Further DHT algorithms can be integrated in
the future with little effort and little knowledge of the other
modules.

However, the average number of hops in resource location
of the chord algorithm is slightly higher than in our implemen-
tation. The reason for this may be due to the number of entries
in the finger table. While finger tables with 32 entries were
used in our tests, the tests made by the authors of EpiChord
did not mention this value.

In addition to the verification of the correct operation of
the implementations, these results also indicate that the use of
EpiChord improves the performance of resource location. It
improved about 72% of the lookup time as well as an average
of 73% of the number of hops needed to find a resource.

E. Flat P2P overlay with limited peers

In order to verify if an overlay benefits from the existence of
a hierarchy composed of peers and clients, where clients can
be peers with lower capacities, tests were conducted where
peers with connectivity limitations were introduced in the

overlay. For a fair comparison of results, these tests were
conducted under the exact same conditions except for the
connectivity limitations introduced in some topology peers.
For those selected peers, the connection delay was changed
from 80ms to 200ms. Thus, the average RTT of peers in the
overlay varies between 0.16 and 0.40s. In order to verify the
impact of such peers in the overlay, different scenarios were
created and more peers with limitations were introduced. This
would permit the assessment of the impact on the performance
of the overlay in resource location.

Figures 6a and 6¢ show also the results of the tests per-
formed on the following scenarios:

e Scenario 1 - Connectivity limitations in 16% of peers
e Scenario 2 - Connectivity limitations in 33% of peers
e Scenario 3 - Connectivity limitations in 50% of peers

Analyzing the data in figure 6a, it is evident that the
existence of peers with limited connectivity influence the
performance of the overlay for resource location. As would
be expected, scenario 3 presents the greatest increase in the
lookup time because it possesses the largest number of peers
with limitations (100 in 200). The average lookup time for
resource location in this scenario increased between 84%

and 89% in Chord, and 77% to 83% in all tested variants
of EpiChord. Analyzing the other two scenarios, it is also
clear, as expected, that the increase in resource lookup time is
directly connected to the increase in the number of peers with
limitations. These results also show that sending messages in
parallel with EpiChord, increases its immunity to problems
caused by limited peers.

F. Hierarchical P2P overlay

In order to demonstrate the benefit of the existence of a
hierarchy in a P2P overlay, we repeated the previous tests
exchanging limited peers by clients. The tests were made with
200 nodes (between peers and clients), in the resulting two-
level hierarchy, for the following scenarios:

e Scenario 1 - 16% of the nodes are clients (32 in 200)
e Scenario 2 - 33% of the nodes are clients (66 in 200)
e Scenario 3 - 50% of the nodes are clients (100 in 200)

The results obtained with this two-level hierarchy consisting
of peers and clients are presented in Figures 6b and 6d.
By analysing the average lookup times (6b) and comparing
them with the values obtained from the previous test (6a),
it is visible that the performance of the overlay in resource
location benefits from the existence of a hierarchy. The results
indicate that the exchange of the constrained peers by clients,
keeping these limitations, allows the overlay to improve its
performance. Analyzing the results of scenarios 1 and 3, we
conclude that the overlay can improve performance from 33%
to 100% in the Chord, from 26% to 93% with EpiChord
without parallelism, and from 24% to 50% in EpiChord
variants using parallelism.

VI. CONCLUSIONS AND FUTURE WORK

In this article, a pure SIP framework capable of build-
ing hierachical P2P newtorks was presented. The current
Java implementation includes two DHT algorithms, Chord
and EpiChord, but was designed to easily plug new ones.
The communication between peers is entirely done by the
P2PSIP protocol dSIP. The developed implementation allows
the creation of P2P overlays with one or two hierarchical
levels. To support the two-level hierarchy, the dSIP protocol
was extended. New headers were specified in order to allow
communication between peers (belonging to the overlay) and
clients (outside the overlay).

The results obtained from a flat P2P network are comparable
with the results obtained by the authors of EpiChord using
simulation. The results also indicate that increasing the number
of peers with limitations in the overlay significantly degrades
the overall performance of the overlay in resource location.
The results obtained on a hierachical P2P network, with two
levels, in which the peers with limitations become clients with
the same limitations, show that the existence of a two-level
hierarchy benefits the overlay performance. In this case, the
performance of the overlay is identical to the performance
achieved when the overlay has peers without limitations.

When comparing the results of the various tests made, with
Chord and with EpiChord without parallelism (ie, parameters

P and L with a value 1), it is visible that the use of a cache
in EpiChord improves the performance of the overlay.

Our next step is the design and implementation of a
mechanism that can dynamically promote clients to peers and
peers to clients. The parameters taken into consideration for
promotion and demotion must be carefully analyzed in order
to prevent this mechanism from having a negative effect on
the overlay performance. As a future work, we also intend to
conduct additional tests with a significantly greater number
of hosts (peers and clients). The goal is to reproduce, in a
more realistic environment, results that are usually obtained
by simulation. In such an environment the advantages and
disadvantages of using SIP to create a P2P hierarchical overlay
can be better analyzed.

ACKNOWLEDGMENT

This work is partially funded by FEDER Funds through the
Programa Operacional Fatores de Competitividade — COM-
PETE and by National Funds through the FCT - Fundacdo
para a Ciéncia e a Tecnologia (Portuguese Foundation for
Science and Technology) within project FCOMP-01-0124-
FEDER-022674

REFERENCES

[1] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne,
“A SIP usage for RELOAD,” Internet Draft, Jan. 2012. [Online].
Available: http://tools.ietf.org/html/draft-ietf-p2psip-sip-07

[2] D. Bryan, “dSIP: a P2P approach to SIP registration and resource loca-
tion draft standard,” http://tools.ietf.org/html/draft-bryan-p2psip-dsip-00,
Feb. 2007.

[3] I Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Trans. Netw., vol. 11,
no. 1, pp. 17-32, Feb. 2003.

[4] B. Leong, B. Liskov, and E. D. Demaine, “Epichord: Parallelizing
the chord lookup algorithm with reactive routing state management,”
Computer Communications, 2006.

[5] S. Cirani and L. Veltri, “A kademlia-based DHT for resource lookup in
P2PSIP,” http://tools.ietf.org/html/draft-cirani-p2psip-dsip-dhtkademlia-
00, Oct. 2007.

[6] G. Camarillo, “Peer-to-Peers (P2P) architecture: Definition, taxonomies,
examples, and applicability,” RFC 5694 (Informational), Nov. 2009.

[71 E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey
and comparison of peer-to-peer overlay network schemes,” IEEE Com-
munications Surveys and Tutorials, 2005.

[8] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the XOR metric,” Peer-to-Peer Systems, pp. 53—65,
2002.

[9]1 H. Schulzrinne, M. Matuszewski, and S. Baset, “Peer-to-Peer protocol

(P2PP),” http://tools.ietf.org/html/draft-baset-p2psip-p2pp-01, 2007.

C. Jennings, S. Baset, H. Schulzrinne, B. Lowekamp, and E. Rescorla,

“REsource LOcation and discovery (RELOAD) base protocol,”

http://tools.ietf.org/html/draft-ietf-p2psip-base-22, Jul. 2012.

D. Bryan, B. Lowekamp, and C. Jennings, “Sosimple: A Serverless,

Standards-based, P2P SIP Communication System,” AAA-IDEA, 2005.

M. Ranganathan, P. O’Doherty, and J. van Bemmel, “JAIN-SIP: Stack

sip for java.” [Online]. Available: http://jsip.java.net/

D. Bryan and M. Zangrilli, “A chord-based DHT for resource

lookup in P2PSIP,” http://tools.ietf.org/html/draft-zangrilli-p2psip-dsip-

dhtchord-00, Feb. 2007.

[14] J. Ahrenholz, “Comparison of CORE network emulation platforms,” in

IEEE Military Communications Conference, 2010, pp. 864-869.

SeARCH, “SeARCH: Services and advanced research computing,”

Cluster do Departamento de Informatica, Universidade do Minho.

[Online]. Available: http://search.di.uminho.pt

[10]

(11]
[12]

[13]

[15]

