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INTRODUCTION 
This work aims at the development of piezoelectric 
materials for flexible sensors produced with various 
geometries, at low cost and high production rates, 
adequate for the industrial scale. In particular the filament 
form, appropriate for integration into textiles, is 
described, but other geometries, such as tape, are also 
being studied. The filaments are produced by co-extrusion 
of multiple layers with piezoelectric and electrically 
conductive polymer composites. 

In the last years, many researchers and also some 
industrial enterprises have put large effort studying the 
integration of systems and devices into textile products 
[1,2]. This integration normally requires separate 
industrial processes for the textile and the device. 
Preferably, functional fibres providing a more significant 
part or even the complete solution for a given application 
should be used. In this work, the production and testing of 
filaments working as mechanical sensors is presented. 

PIEZOELECTRIC POLYMERS AND THEIR 
APPLICATION IN TEXTILES 
Poly(vinylidene fluoride) (PVDF) is a polymer that has 
been extensively studied due to its piezoelectric 
properties. These properties depend on the degree of 
crystallinity, structure and orientation of the polymer 
crystalline fraction, which, in turn, depends on the 
processing conditions [3]. The piezoelectric properties of 
the polymer can be useful in applications such as sensor 
and actuator devices.  

PVDF presents at least 4 crystalline phases. The non-
polar α-phase is obtained by crystallization from the melt 
[3]. The β-phase is the most interesting form the point of 
view of the electroactive activity, and results optimally 
from stretching α-PVDF at 80ºC using a stretch ratio (R) 
between 3 and 5 [4,5]. The molecular chains are thus 
aligned. Further, a poling process is carried out through 
the application of a strong electrical field to the PVDF 
layer [6]. After poling, the polymer has an optimal 
piezoelectric response. This means that an electrical 
potential will be produced upon mechanical excitation of 
the polymer, or a mechanical action is produced in the 
polymer when it is subjected to an electric field. To 
measure this electrical potential (or to apply voltage to the 
polymer), electrodes making up equipotential surfaces 
have to be provided, at which the voltage produced by the 
polymer (applied to the polymer) can be connected to 
adequate signal conditioning (drive equipment). 

PVDF-based sensors are available on the market in the 
form of films. In this case, a thin PVDF layer is deposited 
with electrode layers on both sides, normally by 
metallization or sputtering. Some research work has 
targeted the development of PVDF sensors in 
filament/cable form. The filament-shaped piezoelectric 
sensor for textile applications should be arranged in a 
coaxial manner, as shown in figure 1. 

 

Figure 1: Layer arrangement for piezoelectric filament 

Several authors have studied different aspects related to 
the production of such filaments. Vatansever et al [7] 
reported on the production of simple PVDF 
monofilaments which are stretched and poled inline by an 
electric field produced between two parallel plates.  
Walter et al [8] have extensively studied the phase 
transitions in extruded PVDF monofilaments and 
produced a piezoelectric composite based on 
monofilaments. Mazurek et al [9] described the 
production of concentric piezoelectric cables by co-
extrusion and sequential processing. 

The use of conductive polymer composites for creation of 
the electrodes has been studied in previous work [10]. 
PVDF filament has been co-extruded with a 
Polyproplylene/Carbon Black conductive inner core and a 
PVDF outer layer, and it has been shown that the 
electroactive phase content is not affected by the 
conductive inner core, depending only on the processing 
temperature and stretch ratio, as previously found for 
single filaments. Similar work has been described by 
Lund and Hagström in [11]. 

DEVELOPMENT AND TEST 
In this work, two and three-layer filaments incorporating 
electrically conductive layers as electrodes and a 
piezoelectric layer, in a coaxial arrangement, are 
produced using conventional polymer extrusion 
equipment. The process is presented in figure 2 



 

Figure 2: Schematic view of the production process 

The conductive layers are produced using a commercial 
PP/carbon black composite polymer (Pre-Elec Premix 
1396). In the case of two-layered filaments, the outer 
electrode is achieved by painting the filament with 
conductive silver ink. Poling is accomplished by applying 
high voltage (in the order of 10 kV) directly connected 
between the inner and the outer electrodes. Variable 
periods of time and poling temperatures were studied in 
order to optimize the piezoelectric response. 

The filaments are then connected to a charge amplifier 
and the signals are acquired with a data acquisition board 
and a computational application developed in Labview. 
Piezoelectric activity is tested by applying mechanical 
action, either using a vibration generator to produce cyclic 
bending deformation, or using a universal testing machine 
to deform the filament in an extensional manner. 

RESULTS 
To achieve stable production conditions for both 2 and 3-
layered filaments, the experimental conditions have to be 
optimized for the specific equipment and materials used 
in order to optimize the α-to-β phase transition.  β-phase 
content larger than 70%  were obtained in the PVDF 
layer. Piezoelectric activity has been shown and depends 
on the processing and poling conditions. Figure 3 shows a 
signal acquired by applying traction stress with a 
universal testing machine (1mm extension of a 10 cm 
long filament at a frequency of about 1 Hz). 

 

Figure 3: Output at the charge amplifier (amplitude about 
250mV) 

 

 

CONCLUSIONS 
Multilayered all-polymer filaments that exhibit 
piezoelectric behavior have been produced through an 
industrial scalable methodology based on co-extrusion.  
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