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Abstract. In this paper, we explore the viability and possible limitations of a 

delay-tolerant positioning process for location-based logging. Instead of esti-

mating the device position on the device, a delay-tolerant technique stores the 

radio and Wi-Fi data needed to calculate that position, sends it to a server 

when appropriate, and it is the server that will calculate the position. This is 

very suitable for location logging because it supports the generation of fre-

quent position registers without incurring in high communication and energy 

costs. We have conducted a controlled experiment to assess the accuracy of 

this technique and the results suggest that the accuracy of the positions calcu-

lated on the server using this technique is the same as those that can be ob-

tained by calculating the position directly on the device.  
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1 Introduction 

Sensing is critically important for Ambient Intelligence, which relies to a large ex-

tent on the ability to perceive the physical environment and the activities taking place 

in it. Mobile phones, with their already substantial data capture and connectivity ca-

pabilities, have a unique potential to become powerful sensing devices for uncovering 

new knowledge about the realities of our world and the patterns of Human behaviour 

[1]. In particular, considering their widespread use and their continuous presence in 

people’s lives, they represent a major resource for location-based data collection. For 

example, to study mobility patterns within cities, there is a need to collect traces of 

users moving across the city in their daily life. In Experience Sampling studies [2, 3], 

there is a need to register, either implicitly or as part of an explicit user action, events 

as they occur in people’s daily lives and annotate them with location information that 

will normally be crucial for their interpretation. 

Location-based logging is fundamentally shaped by the need to combine frequent 

device positioning with the consequences that the process can have for users. These 

processes normally involve recruiting people to run the data collection applications on 

their own mobile phones and as part of their normal daily activities. This is crucial for 

generating realistic data and enabling larger scale studies. However, if the data collec-

tion implies significant energy, communication or privacy costs for users, it will be-



come a severe obstacle to large scale use and volunteer recruitment. Therefore, in our 

location logging processes we have included two important design principles: the first 

is avoiding the use of GPS. We would always need an alternative solution because we 

need to consider indoor locations, but the key issue is that the continuous use of the 

GPS would necessarily have a very high cost in terms of power consumption [6]; the 

second implication is to avoid depending on connectivity. In part this is also im-

portant to save energy, but since many people will not have a flat-rate data plan, there 

is also the issue that they will not accept the potential costs associated with data 

communications. The independence from connectivity would also allow us to perform 

the positioning without having to wait for the availability of a network connection.  

To comply with these principles, we introduce the concept of delay-tolerant posi-

tioning. In most location-based services, location is normally part of an interactive 

feature and thus needs to be immediately available. On the contrary, in location-based 

logging, location information is needed to annotate an event. Therefore it is possible 

to just store the information needed to determine location, and leave the actual loca-

tion calculation to some later point in time. Our data collection application, stores on 

the device the radio and Wi-Fi data generated that is used by the location API to de-

termine location and when a connection becomes available, a batch of GSM and Wi-

Fi information is sent to a server that will then use that information to calculate the 

positions. This approach does not make any use of the GPS and works very well with 

only occasional connectivity. For location-based logging applications, this means that 

frequent positioning records can be generated without forcing the device owner to 

incur in significant power or network costs. 

In this paper, we assess the viability of this delay-tolerant approach for location-

based logging. In particular, we aim to compare the level of accuracy with what can 

be obtained directly on the device and also to study the effect of other variables in that 

accuracy, such as the effect of time spent at the location before the location estimation 

and the nature of the Wi-Fi landscape at the point where location was estimated.  

After revising related work in the next section, we describe in section 3 the essen-

tial steps of our research methodology. In section 4 we present the main results re-

garding each of the proposed objectives of the study and, finally, in section 5 we pro-

vide our concluding remarks. 

2 Related Work 

Yoshida et al. detail the creation and deployment of a localization system based on 

Wi-Fi fingerprinting [7]. The paper focuses on the effect and efficiency of the method 

used for acquisition of fingerprint data and the influence that it could have on the 

accuracy of the localization results produced. Even though this work has different 

objectives, it has informed us about the need to devise a data collection protocol that 

could accommodate for the variation in the network landscape. 

Zandbergen [8] describes a study to estimate accuracy of positioning techniques, 

using a similar methodology. A mobile phone (iPhone 3G) was used to collect loca-

tion data (A-GPS, Wi-Fi and Cellular positioning) at several distinct metropolitan 



locations, and test the accuracy of each of the iPhone’s positioning methods against a 

benchmark location (ground truth). We aimed to test the accuracy of a delay-tolerant 

location calculation (with Wi-Fi and GSM data), against the location data provided by 

the device on-site, and also in relation to ground truth. 

PlaceLab [9] is a positioning system that allows users to locally (on their device) 

calculate a location, based on the BSSIDs and signal levels of nearby Wi-Fi access 

points. This location is calculated by crossing the data gathered in real-time by the 

device with information stored locally on a database, to which the user previously 

subscribed. While this may address some of the connectivity issues we have identi-

fied, it would have important disadvantages in terms of deployment, given the need to 

install additional client-side software and database. 

Herecast [10] allows users to determine their symbolic location, e.g. building floor. 

Information about locations is kept in a database that is maintained and accessed by 

the community. While an alternative for cases in which information only needs to be 

generated occasionally and in familiar locations, this is not suitable for frequent loca-

tion logging.  

BikeNet [11] supports the collection of data related to performance, environmental 

and health aspects of cycling, and provides an example of a sensing system that 

demonstrates the effectiveness of the overall approach of relaying sensing data back 

to a server to address specific requirements of the sensing process.  

3 Delay-tolerant location data collection 

To investigate the potential and limitations of delay-tolerant positioning in an off-

the-shelf mobile phone, we have devised a controlled experiment in which we con-

ducted multiple positioning calculations at known locations using our own location 

data collection application to obtain real-time and delay-tolerant positions.  

3.1 The data collection Application 

To support the data collection process, we have developed an Android application 

to generate position records. The Android platform supports the Google location API 

[4] that allows devices to calculate their position using multiple types of data provid-

ers. In devices with a GPS chip, the GPS provider determines location with a high 

degree of accuracy and no data costs, but with a high energy cost. The network pro-

vider makes a combined use of GSM and Wi-Fi data by gathering data from two An-

droid APIs: TelephonyManager API and WifiManager API. The first generates in-

formation about the cellular network, e.g. local Cell IDs and respective signal level, 

for both the cell that the device is connected to, as well as neighbouring cells. The 

other enables the device to perform scans of the surrounding Wi-Fi radio landscape 

and retrieve the BSSIDs and signal levels of nearby Wi-Fi access points. When an 

application calls requestLocationUpdates() in the LocationManager API [5], infor-

mation from all the active providers is obtained, sent to an undisclosed Google service 

and the respective position is returned. In our application, we disabled the GPS pro-



vider and used only data from the network provider. When a position was to be esti-

mated, the procedure involved the following steps: 1) obtain data generated by the 

network provider 2) determine location using the LocationManager API; 3) generate a 

position record to be stored on the mobile device and uploaded to the server when 

appropriate. Each record comprises the following information: 

 Reading ID: A unique hash generated from the timestamp; 

 Timestamp: A timestamp of when the reading was done; 

 LocationID: A key identifying the test location where the reading was made; 

 Network Provider info: This is the information about the Wi-Fi and 2G GSM land-

scape at the moment of the reading, as generated by the network provider; 

 Real-time network position: The position as estimated on the device using infor-

mation from the network provider and respective accuracy estimation. 

3.2 Data Collection 

We have selected a total of 11 collection locations, as listed in Table 1. Consider-

ing that the nature of locations may affect the quality of the positioning process, we 

chose a diversified set of locations. In particular, we have selected 6 indoor locations 

and 5 outdoor locations. The outdoor locations were all located in residential areas 

with high density of Wi-Fi access points, and thus enough radio information for posi-

tioning techniques. To address the fact that different locations may have much strong-

er and much more frequent variation in their Wi-Fi radio landscape than others, we 

included 4 locations on campus, where we would expect the radio landscape to be 

more stable, and 7 on other locations across town, where a more dynamic landscape 

would be expected. 

Table 1. Data collection locations 

Indoor Outdoor 

Campus room, Campus cafeteria, Campus 
library, Café in the city, Cinema, 

Restaurant 

Outside rural residence 1 and 2 

Outside urban residence 1 and 2 

Outside location on Campus 

 

Additionally, we have defined a data collection protocol that explicitly addressed 

the possible effect of movement patterns in the data collected. In our target scenario, 

we should be able to track the position of a person that may be moving in a city, and 

therefore may only spend a few seconds at any given location.  

To explicitly address the possible effects of movement we defined a data collection 

protocol, in which the researcher would activate the application at some distance from 

the reference location. He would then approach the reference location and immediate-

ly, upon arrival, trigger the data collection process. This would immediately generate 

the first record. The researcher would then wait at the reference location for the appli-

cation to automatically generate the second record, two minutes later, and the third 

record, four minutes later. This was repeated twice at different times of the day. 



3.3 Data processing 

Once in the server, a Perl script was used to calculate locations. The script parsed 

each location record and generated a JSON request with the respective GSM and Wi-

Fi information to be posted through HTTP to Google’s geolocation service
1
 that re-

turns a JSON reply containing the estimated position. The script then decodes the 

JSON response and stores the result as the delay-tolerant position for that record. We 

have made this estimation multiple times over the experience period to accommodate 

possible changes in accuracy through time. 

To compare the accuracy of the position records, we have defined a ground truth 

by setting a reference position for each of the locations in our study using the coordi-

nates obtained from a high-sensitivity GPS navigator (Garmin eTrex Legend HCx). 

For indoor locations, we used satellite imagery from Google Maps, always oriented 

towards north, and overlaid perfect squares over the images where one of the vertexes 

would overlay the point whose coordinates we wished to determine. Having done so, 

we then proceeded to take GPS coordinates of 2 of the vertexes (from the same edge) 

and then we used the Haversine formula [12] to calculate the distance between those 2 

points relative to the Earth’s surface. 

  (1) 

In formula (1) d is distance, r is radius (the radius of the Earth in our particular 

case), finally ф1 and ф2 and Ѱ1 and Ѱ2 are respectively, the X and Y coordinates for 

the relevant points. We solve the haversine for d and obtain the distance. Afterwards, 

having performed the distance calculations, we chose a vertex from each square, 

along which we would be travelling the previously determined distance, along a fixed 

bearing according to the following formulas for latitude and longitude: 

  (2) 

  (3) 

For formulas (2) and (3), d and r are again distance and radius (Earth’s radius) re-

spectively, Ѳ is the bearing (in radians, clockwise from north, i.e., North = 0, East = 

90, South = 180 and West = 270, given a conversion from degrees to radians), the rest 

of the variables are self-explanatory in name. In Formula (3) we use atan2(Y, X) 

which is a variant of the arctangent function which returns the arctangent of Y/X in 

the range –Π to Π (mathematical PI). 

4 Results 

Using our data collection application, we generated position records at the 11 cho-

sen locations during a three week period, with three weekly observations at each of 

                                                           
1  http://www.google.com/loc/json 



the reference locations, two times a day. This resulted in a total 54 readings per loca-

tion, or 594 readings in total. These were processed at the server at different moments, 

generating a total of 2816 delay-tolerant positions. 

To assess the accuracy of the delay-tolerant positions, we have used two different 

types of reference data: the estimated error (reported) given by the Google location 

API at the server and at the device; and our own estimation of that error (real) based 

on the ground truth positioning data calculated for each of the locations. Having de-

termined all the ground truth points, we then calculated for each location the distance 

from this reference position to each of the position records, including the delay-

tolerant positions. 

 

Fig. 1. Real-time (RT) vs delay-tolerant (DT) error results in reading 1 (left – all locations 

(AL), right – outdoor locations (OL) and bottom – indoor locations (IL)). 

The main conclusion from Fig. 1 is that, when considering the error in relation to 

the ground truth, there are no observed differences between the location determined in 

real-time at the device and the location determined later at the server. This is the most 

fundamental observation of this study in the sense that it backs up our initial hypothe-

ses regarding the viability of delay-tolerant positioning. It is also relevant to note that 

despite the differences in accuracy, the similarity between real-time and delay-tolerant 

locations existed for both indoor and outdoor environments. We can observe, howev-

er, that the error estimated by the Google Location API is shown to be lower in real-

time when compared to the error reported by the delay-tolerant estimation process, for 

all cases but one. We have no explanation for this behaviour of the Google API, but 

since the effective accuracy is not affected, it should not constitute any sort of prob-

lem for location data logging.  



 

Fig. 2. Left – Real-time (RT) error results for all locations (AL) in readings 1, 2 and 3. Right – 

Delay-tolerant (DT) error results for all locations (AL) in readings 1, 2, and 3. 

Fig. 2 reveals the errors obtained for all locations in all three readings, for the real-

time and the delay-tolerant processes. For all scenarios the first reading is always the 

best, with the third reading coming a close second and the second reading always 

being the worst. In regard to the time when the location was estimated on the server, 

we have not observed any meaningful effect. 

5 Conclusions and Future Work 

The main conclusion of this work is that a delay-tolerant positioning process is a 

perfectly viable alternative approach for our usage scenario, especially considering 

that in terms of real error (in relation to ground truth) both methods achieve the same 

performance. This is a very important contribution to inform the design of any sort of 

location-based logging tools in which, as in our case, the position information is not 

needed at the moment of logging. The second conclusion is that time spent at the 

target location does not improve the accuracy of the positioning process. Moreover, 

there seems to be no gain whatsoever in staying more than 2 minutes at a given loca-

tion. Together these two observations suggest that this process will perform well for 

the generation of location traces in high mobility scenarios. The only observed differ-

ence is in the estimated error that is associated with the location estimations, but this 

should not have any impact for most application domains.  

A limitation of this study is our lack of knowledge about the internals of the 

Google location API. There are no public details about how it uses the radio and Wi-

Fi information to calculate position, and whatever the current approach might be, it 

may suddenly change without any prior announcement. Such changes could possibly 

affect the results obtained in this study and lead to potentially different conclusions. 

Also, the internals of specific devices and particularly their support for capturing ra-

dio and Wi-Fi information may also vary and lead to potentially different results in 

specific types of mobile phones. As such, one possible future direction of research 

would be to conduct the experiment with several different devices and analyse the 

results obtained to get a grasp on what sort of variability can be expected from differ-

ent devices in terms of positioning error. Another line of research would be to under-

stand the maximum validity of the network information stored by the mobile device 



and sent later to the server. As network information associated with a position 

evolves, observations made in the past will eventually become unsuitable for an ade-

quate location determination. Understanding the timescale in which this effect may 

become relevant would help in defining upload policies for location logging tools. 

References 

1. Reichenbacher, T.: Geographic relevance in mobile services. Proceedings of the 

2nd International Workshop on Location and the Web - LOCWEB  ’09. pp. 1-4. 

ACM Press, New York, New York, USA (2009). 

2. Hektner, J.M., Schmidt, J.A., Csikszentmihalyi, M.: Experience sampling meth-

od: Measuring the quality of everyday life. Sage Publications, Inc (2006). 

3. Consolvo, S., Walker, M.: Using the experience sampling method to evaluate 

ubicomp applications. IEEE Pervasive Computing. 2, 24-31 (2003). 

4. Google: obtaining-user-location @ developer.android.com, 

http://developer.android.com/guide/topics/location/obtaining-user-location.html. 

5. Google: LocationManager @ developer.android.com, 

http://developer.android.com/reference/android/location/LocationManager.html. 

6. Kjærgaard, M.B., Langdal, J., Godsk, T., Toftkjær, T.: EnTracked: energy-

efficient robust position tracking for mobile devices. Proceedings of the 7th inter-

national conference on Mobile systems, applications, and services - Mobisys  ’09. 

p. 221. ACM Press, New York, New York, USA (2009). 

7. Yoshida, H., Ito, S., Kawaguchi, N.: Evaluation of pre-acquisition methods for 

position estimation system using wireless LAN. Third International Conference on 

Mobile Computing and Ubiquitous Networking (ICMU 2006). pp. 148-155 

(2006). 

8. Zandbergen, P.A.: Accuracy of iPhone locations: A comparison of assisted GPS, 

WiFi and cellular positioning. Transactions in GIS. 13, 5-25 (2009). 

9. Schilit, B.N., LaMarca, A., Borriello, G., Griswold, W.G., McDonald, D., La-

zowska, E., Balachandran, A., Hong, J., Iverson, V.: Challenge: Ubiquitous Loca-

tion-Aware Computing and the “Place Lab” Initiative. Proceedings of the 1st 

ACM international workshop on Wireless mobile applications and services on 

WLAN hotspots - WMASH  ’03. p. 29. ACM Press, New York, New York, USA 

(2003). 

10. Paciga, M., Lutfiyya, H.: Herecast: An open infrastructure for location-based 

services using WiFi. WiMob’2005, IEEE International Conference on Wireless 

And Mobile Computing, Networking And Communications, 2005. pp. 21-28. 

IEEE (2005). 

11. Eisenman, S.B., Miluzzo, E., Lane, N.D., Peterson, R.A., Ahn, G.-S., Campbell, 

A.T.: The BikeNet mobile sensing system for cyclist experience mapping. Pro-

ceedings of the 5th international conference on Embedded networked sensor sys-

tems - SenSys  ’07. p. 87. ACM Press, New York, New York, USA (2007). 

12. Robusto, C.C.: The cosine-haversine formula. The American Mathematical 

Monthly. 64, 38-40 (1957).  

 


