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a b s t r a c t

This manuscript describes the detailed characterization of edible films made from two different protein
products e whey protein isolate (WPI) and whey protein concentrate (WPC), added with three levels of
glycerol (Gly) e i.e. 40, 50 and 60%(w/w). The molecular structure, as well as barrier, tensile, thermal,
surface and optical properties of said films were determined, in attempts to provide a better under-
standing of the effects of proteinaceous purity and Gly content of the feedstock. WPI films exhibited
statistically lower (p < 0.05) moisture content (MC), film solubility (S), water activity, water vapor
permeability (WVP), oxygen and carbon dioxide permeabilities (O2P and CO2P, respectively) and color
change values, as well as statistically higher (p < 0.05) density, surface hydrophobicity, mechanical
resistance, elasticity, extensibility and transparency values than their WPC counterparts, for the same
content of Gly. These results are consistent with data from thermal and FTIR analyses. Furthermore,
a significant increase (p < 0.05) was observed in MC, S, WVP, O2P, CO2P, weight loss and extensibility of
both protein films when the Gly content increased; whereas a significant decrease (p < 0.05) was
observed in thermal features, as well as in mechanical resistance and elasticity e thus leading to weaker
films. Therefore, fundamental elucidation was provided on the features of WPI and WPC germane to food
packaging e along with suggestions to improve the most critical ones, i.e. extensibility and WVP.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Biopolymer-based films have been a subject of a rising interest
in recent years, because of general concerns about limited natural
resources as feedstock for, and environmental impacts caused by
nonbiodegradable plastic-based packaging materials. A variety of
polymers from renewable sources e e.g. polysaccharides, proteins,
lipids and their composites, derived from plant and animal feed-
stocks, have thus been investigated toward development of edible/
biodegradable, nontoxic packaging materials that might replace
synthetic polymers (Kester & Fennema, 1986; Krochta & de Mulder-
Johnston, 1997).

In particular, various whey protein products have been devel-
oped in recent decades e including whey protein concentrates
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(WPC) produced by ultrafiltration (UF), with protein contents
ranging in 35e80%(w/w) on a dry basis, as well as whey protein
isolates (WPI) produced by ion-exchange and subsequent UF,
with protein contents above 90%(w/w) (Mulvihill & Ennis, 2003).
Besides their distinct protein contents, WPI and WPC differ in the
levels of such other constituents as lipids, minerals and lactose.
These differences may influence markedly the intermolecular
bonds in films manufactured therefrom e and consequently their
barrier, mechanical and thermal properties, as a result of distinct
molecular structures (Khwaldia, Perez, Banon, Desobry, & Hardy,
2004).

Use of whey protein to manufacture films has indeed received
a great deal of attention e since they are edible and biodegradable,
allow upgrade of a cheesemaking effluent, and possess interesting
mechanical properties. Detailed reviews are already available on
this subject (Gennadios, 2004; Khwaldia et al., 2004; Ramos,
Fernandes, Silva, Pintado, & Malcata, 2012); the film-forming
properties of whey proteins have accordingly been applied to
manufacture transparent, flexible, colorless and odorless films
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(Fairley, Monahan, German, & Krochta, 1996a,b). With regard to
manufacture itself, films based on whey proteins are usually
obtained by casting and drying aqueous WPI and WPC; they have
shown a moderate potential as moisture barriers (McHugh, Aujard,
& Krochta, 1994), but a good potential as oxygen barriers (Maté &
Krochta, 1996; McHugh & Krochta, 1994a).

On the other hand, formulation of protein-based films requires
incorporation of plasticizer above a minimum threshold e to
reduce their brittleness, allow easier removal from the forming
support and confer plastic properties (Hernandez-Izquierdo &
Krochta, 2008). The plasticizer molecules lead to decreases in
intermolecular forces along the polymer chains, thus improving
flexibility, extensibility, toughness and tear resistance of the film;
however, they also decrease its mechanical resistance and barrier
properties (Karbowiak et al., 2006). The most common plasticizers
are polyols (e.g. glycerol, sorbitol and polyethylene glycol 400),
mono-, di- or oligosaccharides, and lipids and derivatives thereof
(Guilbert, 1986). Among these, glycerol (Gly) produces the best
effects in whey protein films, thus leading to more stable, flexible
and less brittle films under various relative humidities (RH) (Osés,
Fernández-Pan, Mendoza, & Mate, 2009). Hence, Gly was chosen
as plasticizer for this study.

There is large information available on the barrier and
mechanical properties of whey protein-based films (Bodnár, Alting,
& Verschueren, 2007; Fairley et al., 1996a,b; Krochta & de Mulder-
Johnston, 1997; McHugh & Krochta, 1994a), but little information
exists on the molecular structure of those films; hence, this work
contributed to elucidate the relationships between barrier, tensile,
surface and thermal features by providing data on said molecular
structure, especially within wide ranges of Gly content. The afore-
mentioned fundamental relationships are crucial to optimize film
composition in a rational manner (in terms of protein feedstock and
Gly level) toward pre-specified physical properties. Furthermore,
one may therewith gain access to accurate prediction and
successful manipulation of the physical properties of those films,
using easily accessible formulation parameters.

In view of the above, one goal of this work was to provide an
array of data to support comparative characterization of films
obtained fromWPI andWPC, at various levels of addition of Gly (i.e.
40, 50 and 60%, w/w). Moreover, moisture, solubility, density, water
activity, molecular structure and surface hydrophobicity, as well as
thermal, barrier, tensile and optical properties of these films were
studied in attempts to shed light on the relationships holding
among these properties and the nature of the proteinaceous feed-
stock and the plasticizer content utilized; this is a sine qua non for
rational improvement of such films, toward their eventual appli-
cation as edible packaging.
2. Materials and methods

2.1. Materials

Whey protein isolate (WPI) was obtained from Armor Proteines
(Saint Brice en Coglés, France), whereas whey protein concentrate
(WPC) was obtained fromMyprotein (Cheadle, UK); both had been
Table 1
Values (average � standard deviation) of chemical composition of commercial whey pro

Whey protein
product

Composition

Protein
(%, w/w)

Lactose
(%, w/w)

Lipids
(%, w/w)

Ash
(%, w/w)

WPI 92.0 � 1.0 1.0 � 0.1 1.0 � 0.1 2.0 � 0.1
WPC 82.0 � 2.0 6.0 � 0.4 1.6 � 0.1 4.4 � 0.1
characterized previously (Ramos, 2011), and their composition is
depicted in Table 1. Ultrapure water (with a resistivity of
18.2 MU cm) was obtained with a Milli-Q Ultrapure water purifi-
cation system (Millipore, Bedford MA, USA). Glycerol (Gly, 99%
purity) was supplied by Panreac (Barcelona, Spain). All other
chemicals were reagent-grade or better, and were used without
further purification.
2.2. Film preparation

Film-forming solutions were prepared by slowly dissolving
10%(w/w) WPI and WPC powder in deionized water, following the
procedure reported by Perez-Gago and Krochta (2002). Gly was
added, at three different levels, to plasticize the films: 40, 50 and
60%(w/w), on a protein basis, and the resulting solutions were
magnetically stirred for ca. 2 h. Subsequently, the solutions were
heated in a water bath at 80 �C for 20 min, under stirring; this step
is essential to formation of intermolecular bonds, which will in turn
assist in establishment of a crosslinked polymeric network struc-
ture. Such a process is necessary to obtain a flexible film that is able
to retain its structural integrity under high moisture environments
(le Tien et al., 2000). The solutions were cooled for 1.5 h to room
temperature, and then vacuum was applied for 30 min to remove
any air incorporated during stirring (Seydim & Sarikus, 2006). The
solution pH was adjusted to 7.0, using 0.1 M NaOH.

The solutions obtained were poured onto Teflon-coated plates
(38 � 34 cm); to control film thickness, the amount of each film-
forming solution poured was the same (300 mL). The spread
solutions were allowed to dry at room conditions (ca. at 23 �C and
50% relative humidity, RH) for 24 h, following Gounga, Xu, and
Wang (2007) and Osés et al. (2009). Once formed, the films were
peeled off and conditioned at 23 � 2 �C and 50 � 2% RH, in
a controlled temperature and humidity storage room, for at least
72 h prior to testing (ASTM, 2000).

Right before testing, the film thickness was measured using
a micrometer Model m120 (from Adamel Lhomargy, Roissy en Brie,
France), to the nearest 0.001 mm; the thickness was calculated as
the average of five measurements, taken at different locations on
each film sample.
2.3. Film characterization

2.3.1. Moisture content and solubility
The moisture content (MC) of the protein films was determined

after drying in an oven at 105 �C, under forced air circulation for
24 h. Small specimens (0.200 g) of films were cut after adequate
conditioning, and placed on Petri dishes e which were weighed
before and after oven drying. MC values were determined as
a fraction of initial filmweight lost (ASTM,1994) during drying, and
reported on a wet basis.

The film solubility in water (S) was determined according to
Gounga et al. (2007). The determinations of MC and S were per-
formed in triplicate.
tein isolate (WPI) and whey protein concentrate (WPC) powders.

Moisture
(%, w/w)

Calcium
(mg 100 g�1)

Sodium
(mg 100 g�1)

Potassium
(mg 100 g�1)

3.0 � 0.1 389.1 � 12.2 100.1 � 7.3 31.1 � 1.3
3.3 � 0.2 200.0 � 11.0 400.1 � 17.9 50.2 � 2.4
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2.3.2. Density
The film density (rs) was calculated directly from the film

weight and dimensions (Salgado, Ortiz, Petruccelli, & Mauri, 2010),
according to:

rs ¼ m=A� d (1)

where A is the film area (12.6 cm2 in our case), d the thickness (cm),
m the dry mass (g) and rs the dry matter density (g cm�3). The film
density was expressed as the average of five independent
determinations.

2.3.3. Water activity
The water activity (aw) of preconditioned films was measured

using a HygroLab 2 (from Rotronic, Bassersdrof, Germany). Pieces of
films (ca. 0.5 g) were placed on the sample holder of the aw device;
a sealed system was formed by placing the aw probe on top of the
sample holder. The probe was equipped with a small fan to help
circulate air inside the sample container, a thin film capacitance
sensor able to measure RH from 0 to 100 � 1.5%, and a platinum
resistance temperature detector with a precision of �0.3 �C. When
aw became constant (which usually took less than 1 h), its valuewas
recorded. Calibration resorted to six saturated solutions of known
aw (viz. LiCl ¼ 0.114, MgCl2 ¼ 0.329, K2CO3 ¼ 0.443,
Mg(NO3)2 ¼ 0.536, NaBr ¼ 0.653 and KCl ¼ 0.821). These
measurements were carried out in quadruplicate.

2.3.4. Surface hydrophobicity
The sessile dropmethod, based on the optical contact angle, was

used to estimate the surface hydrophobicity of the films. The
contact angle (q) was determined with a face contact angle meter
OCA 20 (from Dataphysics, Filderstadt, Germany), according to
Kwok and Newman (1999): a 2 mL-droplet of ultrapure water was
deposited on the film surface with a 500 mL precision syringe
(Hamilton, Bonaduz, Switzerland), using a needle with a diameter
of 0.75 mm. The image of the drop, taken by 5 s, was recorded with
a video camera, and its profile was numerically solved and fitted to
LaplaceeYoung equation. Ten replicated measurements of q (upper
and lower surfaces of the film) were obtained.

2.3.5. Differential scanning calorimetry
Differential scanning calorimetry (DSC) measurements were

performed with a Shimadzu DSC-50 calorimeter (from Shimadzu
Corporation, Kyoto, Japan), equipped with STARe 6.1 Thermal
Analysis System software. The instrument was calibrated with an
indium standard, characterized by a Tm of 156.6 �C and a DHm of
28.71 J g�1 (TA Instruments, New Castle DE, USA). Each sample was
heated at a rate of 10 �C min�1, from �150 �C (assured with liquid
nitrogen) to 250 �C, under an inert atmosphere (100 ml min�1 of
N2).

The glass transition temperature (Tg) was recorded as the
inflexion point of the baseline, caused by the discontinuity in the
specific heat of the sample (Ghanbarzadeh & Oromiehi, 2008). The
temperature of melting (Tm), observed as an endothermic peak, and
the associated enthalpy (DHm) were determined (and expressed as
J g�1 protein) as reported by Ryan et al. (2008). These experiments
were performed at least in duplicate, using punctured aluminum
DSC pans (Al crimp Pan C.201-52090) containing 10 mg of dry
sample. The samples were weighed with an automatic electro-
balance AE 200 (from Mettler, Columbus OH, USA), with a preci-
sion of �0.01 mg. An empty pan was used as reference.

2.3.6. Thermogravimetry
Thermogravimetric analyses (TGA) were performed with a TGA-

50 apparatus (from Shimadzu Kyoto, Japan). Samples were placed
in the balance system, and heated from 30 to 575 �C at 10 �C min�1,
under a nitrogen atmosphere. The samples were pre-weighed
(10 mg) in aluminum pans (Al crimp Pan C.201-52943), using an
empty pan as reference. The initial decomposition temperature
(Tdi), the derivate maximum decomposing rate temperature
(DTGmax), and the corresponding weight losses e as well as the
residual mass were all determined. The measurements were per-
formed at least in duplicate.

2.3.7. FTIReATR analysis
The spectra of the films were determined using Fourier trans-

form infrared spectrometry (FTIR) with a PerkineElmer 16 PC
spectrometer (Boston MA, USA), under attenuated total reflectance
(ATR) mode. The spectra were recorded in absorbance mode from
650 to 4000 cm�1, using 16 scans at 4 cm�1 resolution. Three
replicates were collected for each film surface sample. The spectra
were input to a data analysis package (Barros, 1999) e and three
spectral regions were preferentially selected (i.e. 800e1150,
1600e1700 and 3000e3600 cm�1) owing to their relevance; for
instance, to ascertain the protein secondary structure contents,
spectra were curve-fitted in the 1600e1700 cm�1 region (amide I),
using apporpriate Gaussian and Lorentzian functions.

For each region analyzed, a linear baseline was subtractede and
the absorbance was normalized to the peak maximum, so as to
avoid undesirable intensity variations (Lefèvre, Subirade, & Pézolet,
2005); initial values of the peak positions were then determined by
Fourier deconvolution. The parameters of Fourier deconvolution
were chosen after several trials, so as to produce reasonable fits e
and to obtain enough bands, thus narrowing themajor components
of the amide I band (Mangavel, Barbot, Popineau, & Gueguen,
2001). All data were treated with Peakfit software, v. 4.12 (from
SYSTAT Software, Richmond CA, USA).

2.3.8. Water vapor permeability
The water vapor permeability (WVP) of films was gravimetrically

assessed, according to the protocol B of ASTM (1995) e with the
adaptations proposed byDebeaufort,Martin-Polo, andVoilley (1993)
specifically for edible films. Circular aluminum cups, with a diameter
of 8 cm and a depth of 5 cm, were accordingly used. Deionized water
(30 mL) was placed in each test cup, to expose the lower film face to
a high RH. The films samples were mounted with the upper surface
facing the RH (50 � 2%) of the environment-controlled room. The
weight loss of the cups was monitored over a 72 h-period, with
weights recorded at 4 h-intervals. WVP (expressed as
g mmm�2 d�1 kPa�1) of the filmwas calculated as follows:

WVP ¼ ðDW � FTÞ=ðS� DpÞ (2)

whereDW is theweight loss of the cup per day (g d�1) (i.e. the slope
of the linear behavior), FT is the film thickness (mm), S is the area of
exposed film (m2) and Dp is the vapor pressure differential across
the test film (kPa). At least 3 replicates were produced from each
film type.

2.3.9. Oxygen and carbon dioxide permeability
Oxygen permeability (O2P) and carbon dioxide permeability

(CO2P) were determined based on the reference method (ASTM,
2002a). A sample film was thus sealed between two chambers,
each onewith two channelse one for gas inlet and the other for gas
outlet. In the lower chamber, O2 (or CO2) was supplied at
a controlled flow rate, using an electronic flow meter ADM 2000
(from J & W Scientific, Folsom CA, USA) to keep the pressure
constant inside that compartment. The other chamber was purged
by a stream of nitrogen, also at a controlled flow rate; nitrogen
acted as carrier for O2 (or CO2).
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The values for O2P and CO2P (cm3 mm m�2 d�1 kPa�1) were
determined by gas chromatography (Chrompack 9001, Middelburg,
Netherlands), at 110 �C e with a molecular sieve 5 Å 80/100 mesh
1 m � 1/800 � 2 mm column to separate O2, and a Porapak Q 80/100
mesh 2 m � 1/800 � 2 mm SS column to separate CO2, using
a thermal conductivity detector (TCD) at 110 �C. Helium at
23mLmin�1 was used as carrier gas. A standardmixture containing
10%(v/v) CO2, 20%(v/v) O2 and 70%(v/v) N2 was used for calibration.
Three replicates were obtained for each sample.

2.3.10. Tensile properties
The tensile properties of films e tensile strength (TS), elongation

at break (EB) and Young’s Modulus (YM), were measured according
to the reference method (ASTM, 2002b), using a Universal Testing
machinemodel 4501 (from Instron, CantonMA, USA), equippedwith
fixed grips (test method A). A 100 N-static load cell was used. The
film samples were cut into strips (80 � 15 mm). The initial grip
separation was set at 50 mm, and the crosshead speed at
4.8 mmmin�1. The TS, EB and YM values were determined using the
Series IX Automated Materials Testing System software, v. 809.00
(Instron). At least ten strips of each film sample were analyzed.

2.3.11. Light transmission and film transparency
The ultraviolet (UV) and visible light barrier properties were

measured on dried films at selected wavelengths (in the
200e800 nm range), using an UVeVIS Spectrophotometer (SPE-
CORD S 600, from AnalytikJena, Jena, Germany). The film samples
were cut into strips (4 � 1 cm) and attached to one side of
a colorimetric cup e while the empty colorimetric cup was used as
control. The relative transparency of filmswasmeasured at 600 nm,
and calculated as (Han & Floros, 1997):

Transparency ¼ A600=X (3)

where A600 is the absorbance at 600 nm and X the film thickness
(mm). At least five strips of each film type were tested.

2.3.12. Color
The film color was evaluated using a portable Chromameter CR-

400 (from Minolta Chroma, Osaka, Japan). A CIELab color scale was
employed to measure the degree of lightness (L), redness (þa) or
greenness (�a), and yellowness (þb) or blueness (�b) of the films,
under D65 (daylight). Film specimens weremeasured on the surface
of the white standard plate, with color coordinates Lstandard ¼ 97.6,
astandard ¼ 0.01 and bstandard ¼ 1.60. The color of the films was
expressed as the total difference in color (DE), calculated as
Table 2
Values (average � standard deviation) of moisture content (MC), solubility (S),
density (rs) and water activity (aw) of whey protein isolate (WPI) and whey protein
concentrate (WPC)-based edible films, with various glycerol (Gly) contents.

DE ¼
h�

Lfilm � Lstandard
�2þ

�
afilm � astandard

�2þ
�
bfilm � bstandard

�2i1=2
(4)
For each condition, four samples were taken e and, on each film
piece, four readings were made on each side.
Protein film Gly (%) MC (%) S (%) rs (g cm�3) aw

WPI 40 15.10 � 0.14a 63.91 � 0.32a 1.32 � 0.00a 0.46 � 0.01a

50 16.82 � 0.25b 67.60 � 0.44b 1.35 � 0.03a 0.47 � 0.01a

60 18.70 � 0.49c 70.32 � 0.51c 1.38 � 0.08a 0.48 � 0.01a

WPC 40 17.91 � 0.32d 78.32 � 0.13d 1.26 � 0.05b 0.51 � 0.01b

50 19.62 � 0.17e 81.83 � 0.22e 1.29 � 0.02b 0.53 � 0.02b

60 21.71 � 0.31f 84.22 � 0.30f 1.31 � 0.00b 0.53 � 0.01b

Note: a, b, c, d, e, f Means within the same column, labeled with the same letter, do not
statistically differ from each other (p > 0.05).
2.4. Statistical analyses

Statistical analyses were performed using the Statistical Package
for Social Sciences, v. 17.0 (SPSS, Chicago IL, USA), via one-way
analysis of variance. The difference of means between pairs was
resolved via confidence intervals, using Tukey’s test. The signifi-
cance level was set at p < 0.05.
3. Results and discussion

3.1. Film appearance

Both WPI- and WPC-based films were transparent, flexible and
homogeneous. Their surfaces appeared smooth, without visible
pores or cracks. These films did not undergo any change in
appearance when different levels of plasticizer were used;
however, WPC-based films exhibited a slightly yellowish color
when compared with WPI ones.

Appearance of the two sides of the film was different for both
WPI and WPC films. The film side facing the casting plate was
indeed shiny, while the other was dull; this is likely an indication of
some phase separation occurring in the solution during drying.
Both types of film were easily separated from the casting plates,
except for those containing 60%(w/w) Gly e which were rather
sticky. Films manufactured from WPI with 10%(w/w) protein
showed a thickness of 0.13� 0.04 mm, irrespective of Gly contente
which is similar to those reported by Kokoszka, Debeaufort, Lenart,
and Voilley (2010), Osés et al. (2009), and Simelane and Ustunol
(2005) for the same protein concentration, i.e. 0.12 � 0.08,
0.13 � 0.01 and 0.14 � 0.02 mm, respectively. WPC-based films
exhibited a thickness of 0.17 � 0.04 mm for the various Gly levels
tested; this does not represent a significant increase (p > 0.05)
relative to WPI ones. Furthermore, when the Gly level was
increased in the film-forming solutions, the thickness values of
both films (results not shown) did not exhibit any statistically
significant differences either (p > 0.05).
3.2. Moisture content, solubility, density and water activity

The values obtained for the moisture content (MC), solubility
(S), density (rs) and water activity (aw) for both whey protein
products, as a function of the Gly level, are presented in Table 2.

WPI films exhibited significantly (p < 0.05) lower values of MC,
S, and aw, as well as significantly (p < 0.05) higher values of rs than
films manufactured from WPC. This observation may be rational-
ized by the differences in the film-forming product e especially the
presence of higher contents of contaminants (i.e. lactose, lipids and
minerals) in WPC (Table 1).

On the other hand, an increase in content of Gly from 40 to
60%(w/w) inWPI films produced a significant increase (p< 0.05) in
MC e 3.60%, and in S e 6.41%; whereas no significant changes
(p > 0.05) were observed for rs and aw. In the case of WPC films,
a significant increase (p< 0.05) in MCe 3.80%, and in Se 5.90%was
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also observed, when Glywas increased from 40 to 60%(w/w), yet no
significant changes (p > 0.05) were observed for rs and aw. The
observed increase may be attributed to the hygroscopic nature of
Gly e which attracts and holds water molecules, thus favoring
wetting of the film surface and moisture absorption thereby
(Kokoszka et al., 2010).

In the case of S, our results proved that WPI films kept their
integrity after 24 h of immersion inwater. The partial insolubility of
these films may be attributed to establishment of stronger inter-
molecular bonds (e.g. disulfide bonds, as a result of the heat
treatment) between protein molecules in the matrix of WPI films
(McHugh, Avena-Bustillos, & Krochta, 1993; McHugh & Krochta,
1994b). This will likely account for the proteinaceous polymeric
network of such films being highly stable, since only small mole-
culese e.g. small peptides, monomers and nonprotein material, are
soluble (Yoshida & Antunes, 2004).
3.3. Surface hydrophobicity

Surface hydrophobicity of protein films was evaluated via
measuring the contact angle of water (q) upon the film surface by
the sessile drop method. In general, films with higher q values
exhibit a higher surface hydrophobicity (Tang & Jiang, 2007);
quantitative differentiation between “hydrophobic” and “hydro-
philic” surfaces is indeed based on whether q > 65� or q < 65�,
respectively (Vogler, 1998).

From inspection of Fig. 1, films from WPI containing 40%(w/w)
Gly can be considered to have hydrophobic surfaces, since q took
Fig. 2. Shape and behavior of water droplets on the upper surface of 10%(w/w) WPI-
values of 69.5 � 2.6� and 65.8 � 2.1� for the upper and lower
surfaces, respectively. Conversely, WPI-based films with higher Gly
content (i.e. 50 and 60%, w/w) and WPC-based films (for all Gly
contents) could be considered to have hydrophilic surfaces, since
their values for qwere below 65�. Furthermore, WPI films exhibited
higher q values on both (upper and lower) surfaces when compared
with WPC films; statistically significant differences (p < 0.05) were
recorded between the two film products for a given content of
glycerol e see Fig. 1.

The results for the contact angle suggest that the surface
hydrophobicity of WPI and WPC films does not depend on which
surface (upper or lower) is tested e since statistically significant
differences were not obtained (p > 0.05). It is also apparent in Fig. 1
that q (for the upper and lower surfaces) of WPI and WPC films
decreased proportionally to the increase in Gly; once again, such
a behavior was expected due to the hygroscopic nature of Gly
(Sobral, dos Santos, & García, 2005).

In order to complement the data produced, the behavior of
awater droplet on the upper surface ofWPI andWPC-based films is
depicted in Fig. 2, as a function of Gly content. It is apparent that
both the whey product and the Gly content had a strong influence
on the shape of said drop. A higher hydrophobicity could be
attributed to WPI films, because of the lower enlargement of the
water droplet as compared with their WPC counterparts. On the
other hand, as the content of Gly increased, the enlargement of the
water droplet also becamemore notoriouse see Fig. 2. This result is
consistent with the claim by Sobral et al. (2005), who reported that
increasing concentrations of Gly facilitate water absorption and
transport within the films.
3.4. Thermal properties

The properties of WPI and WPC films, at various levels of Gly,
were also analyzed in terms of thermal performance via differential
scanning calorimetry (DSC) and thermogravimetry (TGA).

DSC thermograms (Fig. A.1) showed two thermal transitions for
WPI and WPC films, irrespective of their content of Gly; a glass
transition for the amorphous fraction, and a melting transition for
the crystalline one. The glass transition temperature (Tg), the
melting temperature (Tm) and the melting enthalpy (DHm) values
are summarized in Table 3.

WPI films exhibited Tg values significantly higher (p< 0.05) than
those obtained forWPC films, at a given content of Gly (see Table 3)
e thus suggesting stronger films. In addition, WPI films exhibited
values for Tm and DHm significantly higher (p < 0.05) in the case of
films with 40 and 50%(w/w) Gly, thus unfolding more heat-stable
films; however, they showed lower Tm and DHm values (p > 0.05)
in the case of films with 60%(w/w) Gly, when compared with WPC
films e see Table 3. The aforementioned differences between WPI
and WPC films may arise from the higher hydrophilic nature of the
and WPC-edible films, with various glycerol (Gly) contents, by 5 s of exposure.



Table 3
Values (average� standard deviation) of thermal properties, obtained from viz. differential scanning calorimetry (DSC) and thermogravimetry (TGA) analyses of whey protein
isolate (WPI) and whey protein concentrate (WPC)-based edible films, with various glycerol (Gly) contents, in terms of glass transition temperature (Tg), melting temperature
(Tm), enthalpy of melting (DHm), initial decomposition temperature (Tdi), derivate maximum decomposing rate temperature (DTGmax), weight loss and residual mass.

Protein film Gly (%) DSC TGA

Tg (�C) Tm (�C) DHm (J g�1) Tdi (�C) Weight loss (%, w/w) DTGmax (�C) Weight loss (%, w/w) Residual mass (%, w/w)

WPI 40 50.2 � 0.7a 184.5 � 1.3a 209.9 � 2.4a 298.4 � 1.4a 45.0 � 0.2a 369.3 � 2.2a 64.0 � 0.6a 3.2 � 0.3a

50 46.9 � 0.5b 168.0 � 1.2b 186.9 � 1.4b 292.1 � 0.8b 46.0 � 0.4b 362.7 � 1.5b 65.4 � 0.4b 2.1 � 0.1b

60 42.9 � 0.4c 152.0 � 1.3c 180.0 � 1.1c 281.9 � 1.6c 47.5 � 0.5c 350.3 � 1.3c 66.4 � 0.3c 1.6 � 0.2c

WPC 40 43.6 � 0.6d 172.8 � 1.0d 193.8 � 2.1d 291.0 � 1.9d 46.0 � 0.3b 366.8 � 1.6d 65.1 � 0.5b 2.9 � 0.2a

50 41.3 � 0.2e 161.7 � 1.0e 183.9 � 1.5e 286.1 � 1.2e 47.7 � 0.5c 353.6 � 1.2e 66.8 � 0.3c 0.9 � 0.1d

60 36.5 � 0.2f 156.8 � 2.9c 181.0 � 1.4c 280.1 � 2.1f 48.7 � 0.3d 340.1 � 1.5f 67.5 � 0.2d 0.6 � 0.1e

Note: a, b, c, d, e, f Means within the same column, labeled with the same letter, do not statistically differ from each other (p > 0.05).
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latter (associated also with higher MC, S and aw, as well as lower q
as reported above).

From inspection of Fig. A.1 and Table 3, it is possible to conclude
that Tg and Tm decreased as Gly content increased from 40 to
60%(w/w). This trend is a consequence of the plasticizing effect of
Gly molecules e which typically increase the free volume of the
polymer network and the segmental mobility of the polymer
chains, thus decreasing both Tg and Tm (Sobral, Menegalli, Hubinger,
& Roques, 2001; Sobral, Monterrey-Quintero, & Habitante, 2002).
For WPI and WPC films (see Fig. A.1a and b, respectively), Tg
decreased when the Gly content was raised from 40 to 60%(w/w) e
and such a decrease was statistically significantly (p < 0.05) for
both protein films (see Table 3).

The DSC thermograms showed that Tm and DHm decreased
when the Gly content increased, for both WPI and WPC films (see
Table 3); in both cases, this decrease was statistically significant
(p < 0.05). Such a decrease in thermal stability was affected by the
presence of Gly, which reduced the interaction between proteins,
and thus stabilized the network structure (Barreto, Pires, & Soldi,
2003); in other words, higher Gly content required a lower
enthalpy to disrupt inter-chain interactions.

In addition, the DSC thermograms in Fig. A.1 suggest that Gly was
compatible with whey protein, and confirmed the effectiveness of
plasticization e since only one Tg followed by an endothermic peak
(Tm) was observed (Sobral et al., 2001; 2002). If a polymer and the
plasticizer, or two different polymers were immiscible, the mixture
would in fact exhibit two Tg values, corresponding to the two pure
phases (Arvanitoyannis, Psomiadou, Nakayama, Aiba, & Yamamoto,
1997; Carvalho & Grosso, 2004; Vanin, Sobral, Menegalli, Carvalho,
& Habitante, 2005).

TGA thermograms ofWPI andWPC films are depicted in Fig. A.2,
as a function of Gly content; the initial decomposition temperature
(Tdi), the derivate maximum decomposing rate temperature
(DTGmax), the corresponding weight losses and the residual mass
are shown in Table 3.WPI andWPC films displayed an initial weight
loss of ca. 10%(w/w), irrespective of Gly content, which is observed
up to ca. 130 �C; this can be related to the loss of free water
adsorbed on the films (Nuthong, Benjakul, & Prodpran, 2009; Su
et al., 2010). WPI and WPC started decomposing at 180e230 �C e

thus leading to a sharp weight loss between 280 and 500 �C; this is
chiefly associated with degradation of the major protein compo-
nent, as well as with the plasticizer incorporated in the film matrix.
Said degradation pattern was similar to that undergone by other
protein films, e.g. sodium caseinate and gelatin (Barreto et al.,
2003).

From the data tabulated in Table 3, one noticed that Tdi and
DTGmax of WPI films were significantly higher (p < 0.05) than their
WPC counterparts. Furthermore, WPI films exhibited a lower mass
loss during the heating scan thanWPC films; statistically significant
differences from each other (p < 0.05) were found at the same Gly
content. On the other hand, the WPI films exhibited the highest
residuemass for 40%(w/w) Gly; but the difference toWPC filmswas
only statistically significant when the Gly content was 50 or 60%(w/
w). Higher contents of Gly led to significant decreases (p < 0.05) of
Tdi and DTGmax, as well as significant increases in weight loss
(p < 0.05) of the protein films tested. The higher weight loss of WPI
and WPC films became significant above 180 �C (Fig. A.2); this can
be explained by the relatively high vapor pressure of glycerol
(Guerrero & de la Caba, 2010).

TGA results corroborated the conclusions drawn from DSC data:
TGA indicated that whey protein films decomposed at tempera-
tures of ca. 180 �C, whereas DSC unfolded Tm values ranging from
152.0 � 1.3 to 184.5 � 1.3 �C. In addition, the Tdi and DTGmax values
decreased when the Gly content increased e similarly to what
happened with Tg and Tm. Finally, TGA thermograms showed that
all films exhibited a single Tdi, which is an indication of a good
compatibility between protein and Gly.

3.5. FTIReATR analysis

The FTIR spectra of WPI andWPC films, with various contents of
Gly, are shown in Fig. 3. The main absorption peaks were located in
the spectral range: (i) 800e1150 cm�1, thus being attributed to
absorption bands of glycerol; (ii) 1200e1350 cm�1, related to
combination of NeH in-plane bending with CeN stretching vibra-
tions (amide III); (iii) 1400e1550 cm�1, associated to NeH bending
(amide II); (iv) 1600e1700 cm�1, governed by stretching vibration
of C]O and CeN groups (amide I); (v) 2850e2980 cm�1, assigned
to CeH stretching; and (vi) 3000e3600 cm�1, attributed to free and
bound OeH and NeH groups (Karnnet, Potiyaraj, & Pimpan, 2005;
Lodha & Netravali, 2005; Schmidt, Giacomelli, & Soldi, 2005).
However, only three spectral regions were selected for further
discussion e owing to their particular interest toward a better
understanding of the interactions among proteins and Gly, and the
underlying molecular mechanisms responsible for the specific
functional properties displayed.

The first spectral region (from 800 cm�1 to 1150 cm�1), attrib-
uted to absorption bands of Gly, produced five peaks for either
protein film corresponding to vibrations of CeC and CeO bonds
(Guerrero, Retegi, Gabilondo, & de la Caba, 2010). Comparing these
spectra, it can be concluded that changes occurred in the charac-
teristic peaks of WPI- and WPC-based films when the Gly content
increased. In particular, the bands associated with the backbone
CeC bond and stretching of the CeO linkage increased progres-
sively their frequency toward that recorded for pure Gly: i.e.
850 cm�1, 925 cm�1 and 995 cm�1, for the former; 1045 cm�1, for
stretching of the CeO bond in C1 and C3; and 1117 cm�1, for
stretching of CeO in C2 (Guerrero et al., 2010) e when Gly
increased from 40 to 60%(w/w). Hence, it can be realized that
a gradual increase in Gly content led to an increase in intensity of
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the bands in that spectral region, for both protein films e meaning
that the number of free hydroxyl groups of Gly increased, thus
becoming available to bind water molecules that may contribute to
increase the MC of films formulated with more concentrated Gly.
This observation is in agreement with results presented below e

which showed significantly higher values of MC in the case of films
with higher Gly content. Furthermore, a statistically lower
(p < 0.05) intensity was observed in the case of WPI than WPC
films, at both 40 and 50%(w/w) Gly; however, no significant
differences (p > 0.05) were observed at 60%(w/w) Gly (see Fig. 3).

The second spectral region (from 3000 cm�1 to 3600 cm�1) was
characterized by a broad absorption band at 3263 cm�1, for both
protein films at each Gly level; it was attributed to free and bound
OeH and NeH groups (le Tien et al., 2000). Several studies on
proteins in this spectral region indicated that the band corre-
sponding to NeH appears generally at 3254 cm�1 (Bandekar, 1992).
Hence, this band shift could be due to presence of other compo-
nents in the film formulation, especially Gly e owing to a large
amount of hydroxyl groups brought thereby (le Tien et al., 2000).
Within this region of the spectrum, WPI films showed significantly
lower (p< 0.05) band intensity than that observed withWPC films,
for all values of Gly content e but with a particular emphasis at 50
and 60%(w/w); and that an increase of Gly from 40 to 60%(w/w) led
to an increase in said band intensity (see Fig. 3).

The aforementioned observations can be rationalized on the
basis of protein crosslinking. In fact, the lower width of the band
observed for WPI films was probably derived from a higher degree
of crosslinking of the protein network e with chains closer to each
other, as promoted by more frequent hydrogen bonding; hence,
fewer freeeOH groups were available, and a lower susceptibility to
hydration was attained (Fairley et al., 1996a,b; McHugh et al., 1993;
McHugh & Krochta, 1994b). It is also consistent with the data dis-
cussed above pertaining to thermal stability e which showed that
WPI films were more thermostable, and thus entertained lower
weight losses probably because of a highly crosslinked network. It
could also explain the insolubility of WPI films (mentioned before
as well), since the protein polymer network of such films was
highly stable (Yoshida & Antunes, 2004).

On the other hand, the observed increase in intensity of the
band when the Gly content increased could be explained by Gly
reacting with protein through covalent bonds (Jiang, Li, Chai, &
Leng, 2010), which may interfere with the hydrogen bonds estab-
lished between the protein molecules that released eOH groups. It
is expected that amino or hydroxyl groups of non-crosslinked
proteins can form hydrogen bonds with eOH groups of water
molecules, thus turning to be more susceptible to hydration.
However, these groups become more involved in protein hydrogen
bonding upon crosslinking, so they are accordingly less susceptible
to hydration.

The third spectral region corresponds to the absorption of
Amide I (from 1600 cm�1 to 1700 cm�1) that is sensitive to the
secondary structure of the protein, and is mainly governed by
stretching vibration of C]O (70e85%) and CeN groups (10e20%)
(Pereira, Souza, Cerqueira, Teixeira, & Vicente, 2010). By decon-
volution of this region, eight bands were observed in the range
1616e1682 cm�1 and 1618e1683 cm�1 within the spectra of WPI
and WPC films, respectively, for all Gly concentrations e see
Fig. 4.
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The bands observed at 1623 and 1633 cm�1, and at 1626 and
1635 cm�1, for WPI and WPC films, respectively, are characteristic
of amide groups involved in the extended b-sheet structure
(Allain, Paquin, & Subirade, 1999), whereas bands at 1616 and
1682 cm�1, in the case of WPI films, and at 1618 and 1683 cm�1, in
the case of WPC ones, were associated with formation of inter-
molecular antiparallel b-sheets (Lefèvre et al., 2005). In addition,
the bands observed at 1644 and 1652 cm�1 in the case of WPI
films, and at 1645 and 1653 cm�1 in the case of WPC ones were
attributed to unordered and a-helix structures, respectively (Allain
et al., 1999; le Tien et al., 2000); whereas the bands at 1667 and
1675 cm�1, and at 1668 and 1676 cm�1, for WPI and WPC films,
respectively, correspond to turns (Goormaghtigh, Cabiaux, &
Ruysschaert, 1990). A shift to a low wavenumber suggested
stronger crosslinking via hydrogen bonds (Gilbert et al., 2005;
Lefèvre & Subirade, 2000).

In the case of WPI films, the most intense band corresponds to
b-sheet structures (i.e. 1633 cm�1) e see Fig. 4a; this accounts for
an area of 18%. Conversely, the strong band for WPC films resulted
from unordered structure (i.e. 1645 cm�1) e Fig. 4b, attributed to
19% thereof. In fact, the area associated with peaks at 1616, 1623,
1633 and 1682 cm�1 indicates that 46.1% of the amide I region of
WPI films is due to intermolecular and intramolecular b-sheets;
therefore, ca. 46.1% of the amino acids are likely engaged in b-
sheet aggregation (Jiang et al., 2010), whereas 16.5% correspond to
a-helix e and 37.4% to other structures, e.g. random coil segments
and turns. On the other hand, WPC films presented 43.1% of b-
sheets and 56.9% of the remaining structures e with 15% being
attributed to a-helix. Significant differences (p < 0.05) were found
between the protein films with regard to the percent area of b-
sheets, whereas no significant differences (p > 0.05) were
observed between the contents of a-helix. A high content of b-
sheet structures is commonly found in aggregated proteins,
especially those for which thermal denaturation was extensive;
moreover, aggregation is followed by frequent formation of
intermolecular antiparallel b-sheets (Fabian et al., 1999; Lefèvre
et al., 2005). Therefore, the higher content of b-sheet structures
observed in WPI than in WPC films likely derives from the high
purity of the former, associated with the higher content of calcium
(see Table 1). It has been suggested (Nicolai, Britten, & Schmitt,
2011; Vardhanabhuti, Foegeding, McGuffey, Daubert, &
Swaisgood, 2001) that higher contents of calcium in whey
protein products led systematically to higher aggregation rates,
thus contributing to the increasing gel strength and to the
development of intermolecular antiparallel b-sheets. This finding
implies that stronger crosslinking occurred between WPI than
WPC aggregates. Furthermore, it is possible that intermolecular
disulfide bonds were established during aggregation in WPI
gelation (Nicolai et al., 2011; Sothornvit, Olsen, McHugh, &
Krochta, 2007). However, physical interactions including hydro-
phobic effects and hydrogen bonds are necessarily involved
(McHugh et al., 1994).
Table 4
Values (average� standard deviation) of barrier properties, viz. water vapor permeability
protein isolate (WPI) and whey protein concentrate (WPC)-based edible films, with vari

Protein film Gly (%) WVP (g mm m�2 d�1 kPa�1)

WPI 40 8.25 � 0.31a

50 10.11 � 0.20b

60 11.92 � 0.10c

WPC 40 10.81 � 0.23d

50 12.72 � 0.27e

60 14.04 � 0.34f

Note: a, b, c, d, e, f Means within the same column, labeled with the same letter, do not st
No significant differences (p > 0.05) were found in the position
of each aforementioned band (in this spectral region) for either
whey protein, irrespective of the Gly content of the film. This is the
reason why the FTIR spectrum of WPI and WPC films with 50%(w/
w) Gly was used below to compare the deconvolution of the Amine
I region e see Fig. 4a and b, respectively.

3.6. Barrier properties

Results pertaining to water vapor, oxygen and carbon dioxide
permeabilities (WVP, O2P and CO2P, respectively) of WPI and WPC
films, at different levels of Gly, are shown in Table 4. It is apparent
that films made from WPI exhibited significantly lower (p < 0.05)
values of WVP, O2P and CO2P than their WPC counterparts, for
a given content of Gly. These results are consistent with the higher
rs values observed forWPI films, as well as with the results from the
thermal and FTIR studies e showing that WPI films were more
stable than WPC films, as a likely consequence of a network
strongly crosslinked via non-covalent and covalent bonds. This
piece of evidence contributes markedly to reduction of the inter-
stitial spacing between molecules, thus leading to a more compact
matrix in WPI films; as a consequence, lower diffusion rates for
water and gas molecules resulted, arising from obstruction to
transport through the more closely packed protein network.
Similar results were reported by Anker, Stading, and Hermansson
(2000), when studying the relationship between microstructure
and barrier properties of whey protein films. The presence of
a higher content of lactose in WPC powder (as apparent in Table 1)
may have contributed to this finding, since this compound has
a relatively lowmolecular weight and exerts a plasticizing effect on
the protein polymer (Ghanbarzadeh & Oromiehi, 2008) e with
consequent increases in permeability to water and gases (Hong &
Krochta, 2006).

For both films, an increasing Gly content led to a higher
permeability to water vapor e see Table 4; there were indeed
significant differences (p < 0.05) between the WVP values of those
films manufactured with a different Gly content. This could be
explained by the fact that Gly reduces internal hydrogen bonding of
protein molecules, and thus increases intermolecular spacing e so
the permeability of protein films is promoted (Cuq, Gontard,
Aymard, & Guilbert, 1997).

A significant increase (p < 0.05) in O2P and CO2P was observed
for WPI and WPC films, when the Gly level increased from 40 to
60%(w/w) e see Table 4. This confirms data reported for other
edible polymer films (Alves, Costa, & Coelhoso, 2010; Dole, Joly,
Espuche, Alric, & Gontard, 2004). Gly may compete with water
for the active sites on the polymer, thus enhancing water clustering
and increasing the free volume between molecules in the film
matrix ewhich contributes to a higher diffusivity and an increased
permeability (Lieberman & Gilbert, 1973). The O2P values obtained
for WPI films were lower than those observed by Gounga et al.
(2007) for 9%(w/w) WPI films, with 28, 33 and 50%(w/w)
(WVP), oxygen and carbon dioxide permeability (O2P and CO2P, respectively) of whey
ous glycerol (Gly) contents.

O2P (cm3 mm m�2 d�1 kPa�1) CO2P (cm3 mm m�2 d�1 kPa�1)

0.20 � 0.00a 1.02 � 0.01a

0.29 � 0.00b 1.21 � 0.03b

0.37 � 0.01c 1.41 � 0.01c

0.41 � 0.01d 1.58 � 0.02d

0.53 � 0.01e 1.75 � 0.04e

0.62 � 0.01f 1.98 � 0.04f

atistically differ from each other (p > 0.05).
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Gly e i.e. ca. 0.23, 0.38 and 0.50 g mm m�2 d�1 kPa�1, respectively.
These differences were probably due to the different protein
concentration used. According to those authors, a high concentra-
tion of protein increases the density of the film solution, thus
reducing the interstitial spacing within the matrix of polymeric
films e and, consequently, producing lower O2P values.

The O2P values observed were low when compared with alter-
native protein films e e.g. collagen, wheat gluten and soy protein
(McHugh & Krochta, 1994a); as well as with a few synthetic films e
e.g. low-density and high-density polyethylenes (Miller & Krochta,
1997), under similar RH and temperature. This could be related to
the more polar nature and more linear structure of the whey
protein matrix film that leads to a higher cohesive energy density
and a lower free volume (Miller & Krochta, 1997). Such a relatively
low O2P of whey protein films can be taken advantage of in
attempts to enhance chemical quality e including oxidative
damage of lipid ingredients and deterioration brought about by
aerobic microflora, as happens in nuts, confectionary, fried prod-
ucts, and fresh fruits and vegetables, as well as colored produce
(Baldwin, Nispero-Carriedo, Hagenmaier, & Baker, 1997).

On the other hand, WPI and WPC films displayed significantly
higher (p < 0.05) values of CO2P than those recorded for O2P e

which were 5.10-, 4.17- and 3.81-fold, for 40, 50 and 60%(w/w) Gly,
respectively, in the case ofWPI films; and 3.85-, 3.30- and 3.19-fold,
for 40, 50 and 60%(w/w) Gly, respectively, in the case of WPC
counterparts (see Table 4). This result was somehow expected; it
Table 5
Values (average � standard deviation, n ¼ 5) of optical properties, viz. light transmissio
concentrate (WPC)-based edible films, with various glycerol (Gly) contents.

Film Gly (%) Wavelength (nm)

200 280 350 400

Protein WPI 40 0.0 � 0.0a 1.8 � 0.0a 14.8 � 0.7a 28.6 � 0
50 0.0 � 0.0a 1.3 � 0.0a 10.9 � 0.2a 24.4 � 0
60 0.0 � 0.0a 1.5 � 0.0a 12.5 � 0.4a 26.1 � 0

WPC 40 0.0 � 0.0a 2.0 � 0.1a 36.5 � 0.8b 43.2 � 1
50 0.0 � 0.0a 1.5 � 0.0a 30.7 � 1.0b 35.3 � 1
60 0.0 � 0.0a 1.7 � 0.0a 34.3 � 1.1b 39.2 � 0

Synthetica LDPE e 13.1 67.5 79.9 83.4
OPP e 4.6 80.0 86.2 87.9
PE e 0.3 0.3 68.3 73.6

Note: a, b Means within the same column, labeled with the same letter, do not statistica
a From Shiku et al. (2003): LDPE: low-density polyethylene; OPP: oriented polypropy
can be attributed to the solubility of CO2 in water, which can go up
to 35-fold that of O2. According to Mujica-Paz and Gontard (1997),
this is the major reason why CO2 diffuses much faster, and thus
leads to much higher readings of permeability. Since CO2 is
essential for respiration of living tissues, films bearing higher CO2P
would be more appropriate for fresh fruits and vegetables (Ayranci
& Tunc, 2003). However, the scarce information available on CO2P
of edible polymers – and whey protein films in particular, hampers
more extensive conclusions.
3.7. Tensile properties

Data pertaining to the tensile properties of WPI and WPC films,
with different levels of Gly, are shown in Fig. 5. WPI films showed
significantly higher values (p < 0.05) of tensile strength (TS),
elongation at break (EB), and Young’s Modulus (YM) than those for
WPC films with the same Gly content. Hence, films made fromWPI
are stronger and more flexible than those made from WPC, owing
to their higher mechanical resistance (i.e. higher TS), higher stiff-
ness (i.e. lower YM) and higher extensibility (i.e. higher EB). The
aforementioned data are in agreement with our thermal and FTIR
observations, which showed that WPI films are stronger and more
stable than WPC films.

For both types of film, when the content of Gly increased, TS and
YM decreased e thus leading to weaker films. Significantly lower
values (p < 0.05) of both parameters were attained for those films e
see Fig. 5. Moreover, when the Gly content was increased from 40 to
50%(w/w), EB increased significantly (p< 0.05) for both protein films
(i.e. 15 and 38%, for WPI and WPC, respectively). On the other hand,
when the Gly content increased from 50 to 60%(w/w), EB decreased
(i.e. 5 and 4% for WPI and WPC, respectively); however, such
a decrease was not statistically significant (p > 0.05) (Fig. 5).
According to Barreto et al. (2003), a rising Gly content increases film
elasticity and elongation because it constrains establishment of
hydrogen bonds between the protein chains e thus increasing
intermolecular spacing, and therefore chain mobility (as explained
before). However, such an increase only took place up to some level
of Gly e in our case, the threshold was 50%(w/w); above this value,
the increase in Gly content did not produce any increase in elonga-
tion, probably as a result of film matrix saturation with Gly. This
observation is in agreement with our FTIR analysis of the spectral
regions, from 800 to 1150 cm�1 and from 3000 to 3600 cm�1 e

which unfolded a significantly higher intensity (p < 0.05) at a Gly
content of 60%(w/w), thus meaning that, at concentrations above ca.
50%(w/w), Gly did not react with the protein molecules to establish
covalent bonds; consequently, the number of free hydroxyl groups of
Gly increased, but was unable to enhance EB.
n (%) and transparency (A600/mm) of whey protein isolate (WPI) and whey protein

Transparency

500 600 700 800

.1a 35.5 � 1.1a 38.2 � 0.9a 42.6 � 1.2a 44.3 � 1.4a 3.21 � 0.22a

.4a 31.4 � 0.5a 35.5 � 0.6a 37.3 � 0.9a 38.9 � 1.1a 3.43 � 0.38a

.3a 33.5 � 1.0a 37.0 � 1.4a 39.6 � 0.9a 41.3 � 1.3a 3.01 � 0.17a

.3b 46.2 � 0.1b 55.3 � 1.5b 59.3 � 0.9b 64.6 � 1.6b 1.29 � 0.15b

.1b 40.7 � 1.1b 43.7 � 0.7b 53.5 � 1.3b 58.4 � 1.3b 1.47 � 0.21b

.9b 43.1 � 1.4b 46.5 � 1.3b 55.7 � 1.4b 60.5 � 1.1b 1.11 � 0.24b

85.6 86.9 87.8 83.6 3.05
88.8 89.1 89.3 89.6 1.67
82.1 83.5 84.2 84.9 1.51

lly differ from each other (p > 0.05).
lene; PE: polyester.



0

5

10

15

20

25

30

40 50 60 40 50 60

WPI WPC
Film upper surface Film lower surface

b

a

c

e

d

f

b

a

c

e

d

f

)%(ylG)%(ylG

Fig. 6. Values (average � standard deviation, n ¼ 4) of DE for the upper and lower
surface of 10%(w/w) WPI- and WPC-edible films, with various glycerol (Gly) contents.
Means labeled with the same letter do not statistically differ from each other
(p > 0.05).

Ó.L. Ramos et al. / Food Hydrocolloids 30 (2013) 110e122 119
3.8. Light transmission and film transparency

Light transmission (T) in the UVeVis range, as well as trans-
parency values pertaining to WPI- and WPC-based films, at
different contents of Gly, are displayed in Table 5.

Negligible transmission was noted at 200 nm for both WPI
and WPC films, while at 280 nm transmission values ranged from
1.3 � 0.0% to 1.8 � 0.0%, and from 1.5 � 0.0% to 2.0 � 0.1%, in the
case of WPI and WPC films, respectively. Hence, the films made
from both whey products held excellent barrier properties in the
UV region e probably owing to the high content of aromatic
amino acids in the protein-based structure that are able to
absorb radiation (Limpan, Prodpran, Benjakul, & Prasarpran,
2010). On the other hand, synthetic polymer films cannot in
general prevent passage of UV light above 280 nm, except for
polyester (see Table 5). These results suggest that whey protein
films might be able to retard lipid oxidation induced by UV light
in food systems.

In the visible range (350e800 nm), T ranged from 10.9 � 0.2 to
44.3 � 1.4%, and from 30.7 � 1.0 to 64.6 � 1.6%, for WPI and WPC
films, respectively (see Table 5); significantly lower (p < 0.05)
values of T were thus obtained for WPI films when compared with
WPC ones. Such an observationmay have arisen from differences in
the film-forming product e as explained above. The T values
obtained for WPI and WPC films were significantly lower than
those obtained by Gounga et al. (2007) in the case of 7%(w/w) WPI
with 20%(w/w) Gly, and by Fang, Tung, Britt, Yada, and Dalgleish
(2002) using 12%(w/w) WPI with 40%(w/w) Gly and 10 mM of
Ca2þ; hence, our WPI and WPC films blocked the passage of visible
light more effectively. In addition, those films exhibited better
barrier properties (in the visible range) than those by synthetic
polymer films (see Table 5).

In the UVeVis range, the Gly content did not significantly
(p > 0.05) affect the T values of WPI and WPC films (see Table 5).

On the other hand, the transparency obtained for WPI films was
significantly higher (p < 0.05) than that of WPC counterparts. As
happened with the T values of WPI and WPC films, the Gly content
did not significantly (p > 0.05) affect their transparency values
(Table 5).

Our WPI films exhibited a transparency similar to that obtained
for low-density polyethylene films e i.e. 3.05%; however, they
exhibited a higher transparency than films made from marlin
myofibrillar protein (Shiku, Hamaguchi, & Tanaka, 2003), from skin
gelatin with 50%(w/w) Gly e i.e. 1.82% (Jongjareonrak, Benjakul,
Visessanguan, Prodpran, & Tanaka, 2006), and from synthetic
polymer films, e.g. oriented polypropylene and polyethylene e i.e.
1.67 and 1.51%, respectively.

3.9. Color

Color attributes are of prime importance because they directly
influence product appeal and consumer acceptability. The total
color difference (DE) observed betweenWPI- andWPC-based films,
containing various levels of Gly, is shown in Fig. 6. DE provides
a good measure of the color difference, since it takes into account
all three color parameters: lightness (L), red-green (a) and yellow-
blue (b) components. WPI films showed lower DE values than WPC
ones, and these differences were significant (p < 0.05). In addition,
WPC films exhibited higher values of b than WPI ones (data not
shown); this fact was consistent with the slightly yellowish color
observed in WPC films, which may be attributed to presence of
contaminants e especially fat and phospholipids (Lorenzen &
Schrader, 2006). For practical uses, however, such a minor defect
of WPC films can be overcome via addition of coloring agents, as
frequently done in food packaging films, or else by laminationwith
opaque outer layers (Hong & Krochta, 2006).

Inspection of Fig. 6 indicates that statistically significant
differences (p > 0.05) were not obtained for DE values between
the upper and lower surfaces of WPI and WPC films e so such
a distinction was not pursued hereafter, as it will likely be irrel-
evant for industrial level processing. On the other hand, DE values
of WPI and WPC films decreased significantly (p < 0.05) when the
content of Gly increased from 40 to 60%(w/w). Since Gly is
a colorless component, the effect of such a plasticizer was prob-
ably related to dilution of the proteins and other components, due
to its increasing concentration in the film-forming solution (Sobral
et al., 2005). In addition, the increase in Gly level enhanced the
reflection of light on the film surface, thus producing increased L
values (data not shown).

4. Conclusions

This work provided a better understanding of the relation-
ships between several physical parameters and the molecular
structure of WPI- and WPC-edible films, for several distinct Gly
contents. The whey protein films studied exhibited good
mechanical and excellent oxygen barrier properties, much better
than competitive protein- (e.g. corn zein, wheat gluten and soy
protein isolate) or polysaccharide-based (e.g. starch, cellulose,
carrageenan and pectin) films; they were even comparable to the
best synthetic polymer films available in the market. Further-
more, they held excellent barrier properties in the UVeVis range,
clearly better than their synthetic counterparts. WPI films
possessed statistically lower (p < 0.05) moisture content, solu-
bility, water activity, water vapor, oxygen and carbon dioxide
permeabilities, and color change values, as well as statistically
higher (p < 0.05) density, surface hydrophobicity, mechanical
resistance, elasticity, and transparency than their WPC counter-
parts, for a given content of Gly. Film MC, S, rs and aw, as well as
surface, thermal, molecular, barrier, tensile and optical properties
were also influenced by the Gly content. Hence, the film
appearance, stability, consistence and barrier properties can be
manipulated to some extent by choosing the base material and
the level of addition of Gly.

Both whey protein films, and particularly whey protein isolate
plasticized with 40 or 50%(w/w) glycerol, displayed good
mechanical properties susceptible to minimize the decay
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permitted by minimal processing of fresh fruits and vegetables
that are still metabolically active e while providing partial
barriers to moisture and gas exchange helpful in constraining
moisture loss and/or reducing oxygen uptake from the environ-
ment (as slow respiration rates hamper spoilage). Moreover, they
could improve the visual appeal of fruits and vegetables that
directly influence consumers’ acceptability. However, existing
whey protein films are still characterized by lower percent
elongation and higher water vapor permeability than synthetic
polymer films. Hence, further research is warranted in attempts
to improve the current whey protein films, besides ascertaining
the impact of using such films for packaging a wider variety of
food products.
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Appendix A

Fig. A.1. DSC thermograms, showing the glass transition
temperature (Tg), the melting temperature (Tm) and the enthalpy of
melting (DHm), of 10%(w/w) WPI- (a) and WPC- (b) edible films,
with various glycerol contents.
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Fig. A.2. TGA thermograms, showing weight loss as a function of
temperature of 10%(w/w) WPI- (a) and WPC- (b) edible films, with
various glycerol contents.
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