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Abstract 

The synthesis and characterization of a new class of DTPA bisamide-linked glycoconjugates of 

different sugars (lactose, Lac, and galactose, Gal) and valencies (di and tetra) and their Ln(III) 

complexes is reported. The 1H NMR spectra of the Sm(III) and Eu(III) complexes of 

DTPAGal2, DTPAGal4, and DTPALac2 obtained between 7 and 80 ºC, indicate that most (if 

not all) of the four possible diastereoisomeric pairs of structures, resulting from the chirality of 

the three bound DTPA nitrogen atoms, are present in solution, with different relative 

populations. The dynamic effects of racemization of the central nitrogen on the NMR spectra 

show that this process is in fast exchange at 60 ºC for the Sm(III) complexes and in slow 

exchange at 7 ºC for the Eu(III) complexes. The in vitro r1 nuclear magnetic relaxation 

dispersion (NMRD) of the water protons of the Gd(III)-DTPA bis-amide glycoconjugate 

containing two lactosyl moieties, Gd(III)-DTPALac2, was studied, yielding the molecular 

parameters that govern its relaxivity. Its r1 value, at 25 oC and 20 MHz,  is 13% higher than 

that reported for Gd(III) chelates of lower molecular weight DTPA-bisamides, such as DTPA-

BMA, consistent with a five times longer τR value. The water exchange rate, kex, and the 

electron spin relaxation parameters of the Gd(III)-DTPALac2 complex are within the usual 

range for similar Gd(III)-DTPA bisamide chelates.  
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Introduction 

Magnetic resonance imaging (MRI) is one of the fastest growing techniques in medical 

diagnosis, due to the excellent spacial resolution and contrast, in particular for soft tissues. The 

image contrast is based mainly on the differences of water proton longitudinal (1/T1) and 

transversal (1/T2) relaxation rates in different tissues. This contrast can be enhanced with the 

administration, prior to the scan, of paramagnetic contrast agents (CAs), usually Gd(III) (4f 7) 

complexes,[1,2] which accelerate the proton relaxation processes in the surrounding water 

through dipolar interactions between the unpaired electron spin of the metal ion and the proton 

nuclei of the water molecules. The Gd(III) chelate of DTPA (DTPA = 3,6,9-

tris(carboxymethyl)-3,6,9-triazaundecan-1,11-dioic acid)), [Gd(DTPA)(H2O)]2-, was the first 

contrast agent (CA) used for human MRI, under the name of Magnevist®.[3]  Its success 

stimulated further studies on modifications of its structure, leading amongst others to the 

neutral derivative [Gd(DTPA-BMA)(H2O)] (Omniscan®) (DTPA-BMA = diethylenetriamine-

pentaacetic acid-N,N”-bismethylamide), BMA= bismethylamide), in which two carboxylates 

were converted into amide functions. [4] These, as well as other hydrophilic linear or 

macrocyclic Gd(III) chelates of similar dimensions and simplicity, once injected, rapidly 

diffuse from the intravascular space into the interstitial space, but do not enter the intracellular 

space. Their rapid renal elimination produces a rapid decrease in tissue Gd concentration. [5]  

Although much used, eg. in neuro-pathological conditions, which are often associated with 

disruption of the blood brain barrier (BBB) or altered capillary permeability, these extracellular 

fluid (ECF) CAs also have inherent disadvantages due to their lack of biospecificity, low 

relaxivities and little uptake elsewhere in the body. Their rapid diffusion from the vasculature 

limits their uses as blood pool agents, eg. in estimates of blood flow and perfusion. For such 

applications, several formulations of DTPA conjugates have been tested, both through covalent 

binding of the Gd(III) chelate to suitable macromolecules (albumin,[6] dextran [7], polylysine [8], 

dendrimers [9]) or non-covalent binding to HSA (human serum albumin) [10], eg. of the Gd-
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DTPA derivative MS-325.[11] The search for new ligands with high tissue and/or organ 

specificity started with hepatobiliary CAs, eg. Gd(III) chelates which are hepatocyte-specific 

and are excreted through the hepatobiliary system.  Amongst these are Gd(III) chelates of 

DTPA-derived ligands bearing various lipophilic substituent groups which promote specific 

carrier-mediated uptake into the hepatocytes, such as benzyloxymethyl in 

[Gd(BOPTA)(H2O)]2- (BOPTA = 4-carboxy-5,8,11-tris(carboxymethyl)-1-phenyl-2-oxa-5,8,11 

-triazatridecan-13-oic acid) [12] and ethoxybenzyl in [Gd(EOB-DPTA)(H2O)]2- (EOB-DTPA = 

(S)-N-[2-[bis(carboxymethyl)amino]-3-(4-ethoxyphenyl)propyl]-N-[2-[bis(carboxy 

methyl)amino]ethyl]glycine).[13] Liposomes can also be efficient carriers to deliver Gd(III)-

based CAs to the liver and spleen and hence enhance their MRI image contrast, eg. the 

amphiphilic Gd(DTPA)-stearylamide was incorporated into the phospholipid lamella of egg 

lecitin and cholesterol liposomes.[14]  

The hepatocyte cells on liver express a tissue specific lectin (hepatic lectin) that recognizes 

terminal β-galactosyl residues on desialylated glycoproteins - the asialoglycoprotein receptor 

(ASGPR).[15] Liver targeting has been successfully achieved through conjugation of 

pharmaceutical agents to galactose/lactose.[16] Moreover, a multivalence effect has been 

demonstrated on the liver uptake of glycoconjugates (tetra>tri>di>mono).[17] Several agents,  

relying on macromolecular bioconjugates and on polymer scaffolds, have been described for 

hepatic imaging through the targeting of the ASGPR.[18-25] These agents are inherently 

polydisperse and ill characterised which constitutes a  drawback.     

In a previous paper, we reported the synthesis and physico-chemical characterization of a new 

class of multivalent glycoconjugates, Ln(III) chelates of the tetraazatetracarboxylate chelator  

DOTA conjugated to glycodendrimeric moieties (DOTA = 1,4,7,10-tetrakis(carboxymethyl)-

1,4,7,10-tetraazacyclododecane).[26] Previous to our work, only a class of low molecular weight 

and  well characterised galacto/mannopyranosyl conjugates of  DOTA-like chelators has been 

described for potential MRI and scintigraphic applications.[27] These monovalent Gd(III)-
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glycoconjugates are responsive contrast agents activated by galactosidase/mannosidase-

mediated hydrolysis.[28] In the present paper we report the synthesis and characterization of 

(thio)glycoconjugates of the linear chelator DTPA, namely the DTPA bisamides 1 and 2 with 

different terminal sugar residues: galactose (Gal) nd lactose (Lac), and different  valences (2 

and 4) (Figure 1). The thioglycosides are galactosidase-resistant ligands, probing a 

conformational space and displaying biological activities, very similar to that of their O-linked 

natural counterparts, ensuring thus an increased metabolic stability in vivo.[29] The physico-

chemical characterization of some of their Ln(III) complexes in aqueous solution by 1H NMR 

and water 1H NMRD studies is also described. The proton relaxivity of the Gd(III) chelates 

describes the efficiency of the magnetic dipolar coupling between the water proton nuclei and 

the paramagnetic metal ion, therefore it is a direct measure of the efficacy of the chelate as a 

CA.  

 

Results and Discussion 

Synthesis of the ligands: The synthesis of the DTPA-bisamies 1 and 2 (Figure 1) was 

undertaken through a well established route consisting on the derivatisation of the 

commercially available DTPA bisanhydride with amine-functionalised blocks. Two different 

types of amine-functionalised sugar blocks were prepared: a monovalent block 5 (Scheme1) 

and a divalent glycodendrimer block 9 (Scheme 2).[26,31] The standard DCC/HOBT coupling 

procedure revealed successful for preparing the fully protected amino-functionalised sugar 

blocks. These compounds were deprotected with TFA/CH2Cl2 to afford the terminal amines 6 

and 10 as their TFA salts.  

 In order to ensure the formation of the required bisamides, the amino-functionalised blocks 6 

and 10 were used in a slight excess, over two molar equivalents in relation to the DTPA 

bisanhydride block (Scheme 3). The intermediate sugar-protected bisamides were carried 

through and deprotected with KOMe to give the final compounds 1 and 2 in reasonable yields. 
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NMR studies of the Ln(III)-glycoconjugates: The 1H NMR spectra of the 1:1 diamagnetic 

(La(III)) and paramagnetic (Sm(III) and Eu(III)) complexes with the ligands DTPAGal2, 

DTPALac2  and DTPAGal4 were obtained in D2O, pH 7.5 as a function of temperature (7, 25, 

40, 60 and 80 ºC) (see Figure 2 for some typical spectra). The spectra of the La(III) complexes 

are identical to those of the corresponding free ligand at the same pH, except for the protons of 

the DTPA moiety, which, as a result of ion coordination, give more complex resonances: 

multiplets at 2.92, 2.78, 2.68 and 2.45 ppm for the backbone NCH2CH2N protons, and a series 

of partially overlapping AB patterns in the 3.2-3.5 ppm region for the CH2 protons of the 

acetate and amide arms, quite similar to what has been described for [La(DTPA)]2- and other 

La(DTPA-bisamides). [32-36] For the Sm(III) and Eu(III) complexes, the protons of the sugar 

moieties and the ones at the bridging arms further away from the DTPA moiety are hardly 

perturbed by the paramagnetic centre, with very small broadenings and paramagnetic shifts 

smaller than 0.05 ppm, due to the r-6 and  r-3 dependency, respectively, of the dominant dipolar 

contributions to the paramagnetic relaxation and shift induced by the Ln(III) ion, where r is the 

Ln(III)-proton distance in the complex.[36] However, the side chain protons closest to the DTPA 

amide moiety (eg. CH2(f) and CH2(g)) are increasingly shifted and broadened, in particular the 

CH2 resonances of the DTPA moiety, although these strongly shifted resonances are difficult to 

assign. However, their features show some similarities with the corresponding paramagnetic 

complexes of the parent DTPA and some DTPA-bisamide ligands .[36-42]  

For the Sm(III) complexes, eg. Sm(III)-DTPAGal2, the strongly shifted resonances are very 

broad at 25 ºC but become sharper as temperature increases. At 60 ºC some of these resonances 

are seen in the diamagnetic region of the spectrum (3.32, 2.22, 2.10, 1.69, 0.68 ppm), but seven 

distinct strongly shifted resonances appear at the low frequency + 0.1 ppm to –1.4 ppm region 

(0.06, -0.29, - 0.52, - 0.82, - 0.88, -0.98, - 1.39 ppm) (Fig. 2B). In contrast, in the case of the 

Eu(III) complexes, eg. Eu(III)-DTPAGal2, the strongly shifted resonances are quite sharp at 

low temperature (7 ºC, see Fig. 2C):  five more intense (33.40, 29.48, 27.41, 22.92, 16.75 ppm) 
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and five less intense (30.90, 38.05, 26.80, 24.38, 20.53 ppm) resonances are observed in the 

high frequency +35 ppm to +15 ppm region, about eight in the +10 ppm to + 5 ppm region and 

about twenty in the – 3 ppm to – 18 ppm region. These resonances broaden completely as the 

temperature increases to 25 ºC, but at 60 ºC some sharp, but somewhat less shifted resonances 

start to reappear, eg. at + 6.2, + 3.2, + 2.2, + 0.9, -0.1, -4.5, -8.5 and –10.2 ppm (data not 

shown). Comparison with 1H NMR spectra of corresponding DTPA complexes [33,39] suggests 

that the strongly shifted resonances at low frequencies for the Sm(III) complex and at high 

frequencies for the Eu(III) complex correspond to two CH2 protons of the DTPA 

ethylenediamine backbone, which have the largest dipolar induced shifts due to their very large 

and positive axial geometric factor G = (3 cos2θ - 1)/r3,[39]  where θ is the angle between the 

Ln(III)-proton vector and the main symmetry axis of the magnetic susceptibility of the 

complex. [36]  

In Ln(III) complexes of DTPA-bis amides with non-chiral centers in the side chains, all three 

bound nitrogen atoms are chiral and four diastereoisomeric pairs of enantiomers are possible, 

leading to a maximum of eight NMR signals for each group of magnetically equivalent 

protons. [36,40] Two isomerization processes have been described in solution for this type of 

complexes. While the racemization of the terminal N atoms, which involves decoordination-

inversion-coordination of the N atoms and the neighbouring acetate groups, has a high energy 

barrier, a lower energy process involves racemization of the central nitrogen, via 

interconversion between the two possible conformations of the ethylene bridges, which results 

in the magnetic averaging of the two halves of the complex around the central glycinate group 

of DTPA, reducing by half the number of observed resonances. [36,40] This is the dynamic 

process observed in the complexes studied here, which is in fast exchange at 60 ºC for the 

Sm(III) complexes and in slow exchange at 7 ºC for the Eu(III), due to the much larger dipolar 

shifts induced by Eu(III) relative to Sm(III).   The minimum of seven low frequency shifted 

resonances, observed for the Sm(III) complex at high temperature (Fig. 2B), resulting from two 
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ethylenic protons, indicates that most (if not all) of the four possible isomers are present in 

solution, with different relative populations. This is confirmed by the observation that the same 

two ethylenic protons give a minimum of ten (out of a maximum of sixteen) high frequency 

shifted resonances in the Eu(III) complex at high temperature (Fig. 2C). The Ln(III) complexes 

of other DTPA-bis amides, such as DTPA-BPA (BPA = bispropylamide) and DTPA-

BENGALAA (BENGALAA = N,N”-bis[N-(aza-D-galacto-5,6,7,8,9-pentahydroxynonyl)carba 

moylmethyl]amide) [35,41] have shown the presence of the four diastereoisomeric pairs, while 

for bisamides containing long (C14 to C18) aliphatic chains only two pairs have been detected 

in solution. [42]   

Water Proton Relaxation (NMRD) studies of Gd(III)-DTPALac2: The efficiency of a 

contrast agent is given by its proton relaxivity, defined as the paramagnetic enhancement of the 

longitudinal water proton relaxation rate referred to 1 mM concentration (r1, in s-1 mM-1). 

Proton relaxivity has contributions from interactions of the Gd(III) ion with the inner sphere 

water protons (inner sphere relaxivity) as well as with the bulk water protons (outer sphere 

relaxivity). The inner sphere term is determined by the exchange rate of the inner sphere water 

protons (usually equal to the water exchange rate, kex), the rotational correlation time of the 

complex (τR), and the longitudinal and transverse electronic relaxation rates of the Gd(III) 

(1/T1e and 1/T2e). The outer sphere contribution to the overall proton relaxivity depends on the 

electron spin relaxation rates and the diffusion coefficient for the diffusion of a water proton 

away from a Gd(III) chelate (see Appendix). [43] 

The water proton longitudinal relaxivity of the Gd(III)-DTPALac2 chelate was measured in 

aqueous solution at 25 and 60 °C at proton Larmor frequencies between 0.2 and 20 MHz. The 

NMRD profiles obtained (Figure 3) are typical of low molecular weight Gd(III) chelates. They 

were fitted to the usual Solomon-Bloembergen-Morgan theory that relates the paramagnetic 

relaxation rates to the microscopic parameters of the Gd(III) chelates (see equations in 

Supporting Information). In the analysis of the NMRD profiles we fixed the water exchange 
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rate and its activation enthalpy to values that were previously determined for similar DTPA-

bisamide complexes (kex
298 = 0.40×106 s-1 and ∆H‡ = 40.0 kJ mol-1).[43] The diffusion 

coefficient and its activation energy were also fixed to common values (DGdH
298 = 24×10-10 m2 

s-1; EDGdH = 20 kJ mol-1), as these two parameters are not much dependent on the nature of low 

molecular weight complexes.[43,44] Thus, in the analysis of the proton relaxivities we fitted the 

rotational correlation time, τR, its activation energy, ER, and the parameters describing the 

electron spin relaxation, i.e. the trace of the square of the transient zero-field-splitting (ZFS) 

tensor, ∆2, and the correlation time for the modulation of the ZFS, τv. The parameters obtained 

for the Gd(III)-DTPALac2 conjugate are presented in Table 1 and compared with those 

available for other relevant small Gd(III) complexes. The fits of the NMRD profiles obtained 

are shown in Figure 3.  

The relaxivity of Gd(III)-DTPALac2 (MW = 1569) at 25 oC and 20 MHz is 5.72 mM-1s-1, 

corresponding to an increase of 13 % compared to that for the commercial contrast agent 

Gd(III)-DTPA-BMA, which is a lower molecular weight DTPA-bisamide complex (MW = 

574).[44] This relaxivity difference is consistent with the five-fold increase in the rotational 

correlation time, as it is τR that dominates the high-field NMRD values. Another DTPA-

bisamide chelate, the Gd(III)-DTPA-BENGALAA, with an intermediate molecular weight 

(MW = 963), also has an intermediate τR value.[41] The temperature dependence of the NMRD 

profiles clearly shows that the proton relaxivity of these small molecular weight chelates is 

limited by fast rotation: proton relaxivities increase when the temperature decreases, thus the 

rotation slows down. The parameters obtained for the electron spin relaxation of the Gd(III) 

complex are also within the usual range for similar Gd(III)-DTPA bisamide chelates. Although 

the simplified model of electron spin relaxation used here is not fully adequate to describe 

Gd(III) chelates,[45] the application of the novel theories requires EPR data in a large field 

range which was beyond the scope of the present study. 
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Experimental Section 

Materials and equipment. Chemicals were purchased from Sigma-Aldrich and used without 

further purification. Solvents used were of reagent grade and purified by usual methods. 

Reactions were monitored by TLC on Kieselgel 60 F254 (Merck) on aluminium support. 

Detection was by examination under UV light (254 nm), by adsorption of iodine vapour and by 

charring with 10% sulphuric acid in ethanol. Flash chromatography was performed on 

Kieselgel 60 (Merck, mesh 230-400). The relevant fractions from flash chromatography were 

pooled and concentrated under reduced pressure, at temperature below 40 oC. FAB mass 

spectra (positive mode) were recorded using a VG Autospec mass spectrometer with 3-

nitrobenzyl alcohol (NBA) as matrix. Electrospray ionization (ESI) mass spectra were obtained 

for compounds with molecular weight above 2000. 1H NMR (1D and 2D) and 13C NMR 

spectra were run on a Varian Unity Plus 300 NMR spectrometer, operating at 299.938 MHz 

and 75.428 MHz, for 1H and 13C, respectively. Chemical shifts (δ) are given in ppm relative to 

the CDCl3 solvent (1H, δ 7.27; 13C 77.36) as internal standard. For 1H and 13C NMR spectra 

recorded in D2O, chemical shifts (δ) are given in ppm, respectively, relative to TSP as internal 

reference (1H, δ 0.0) and tert-butanol as external reference (13C, CH3 δ 30.29). 13C NMR 

spectra were proton broad-band decoupled using a GARP-1 modulated decoupling scheme. 

Assignments of the 1H and 13C NMR spectra were aided by two-dimensional gradient based 

double quantum filtered shift correlated spectra (DQF-COSY) and heteronuclear multiple 

quantum correlated spectra (HMQC). The pD of the D2O solutions was adjusted with DCl or 

CO2-free NaOD and converted to pH values using the isotopic correction pH = pD - 0.4. The 

pD values were measured on a HANNA pH-meter with a HI1310 combined electrode 

(HANNA instruments, Italy).  

The 1/T1 nuclear magnetic relaxation dispersion (NMRD) profiles of the water protons at 25 

and 60 oC were obtained on a Spinmaster FFC fast cycling NMR relaxometer (Stelar), covering 
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a continuum of magnetic fields from 5x10-4 to 0.47 T (corresponding to a proton Larmor 

frequency range of 0.022-20 MHz). The Gd(III) concentration was verified by ICP 

measurement (Perkin-Elmer Instruments, Optim 2000 DV). 

Synthesis and characterisation  

Synthesis of fully protected hexanediamine-functionalised monovalent thioglycosides (5a, 

and 5b). Typical procedure illustrated for (5a): A solution of peracetylated 

(galactosylthio)propionic acid 3a29a (0.375 g, 0.859 mmol), 1,6-hexanediamine monoBoc (4) 

(0.169 g, 0.781 mmol) and HBT (1-hydroxybenzotriazol) (0.140 g, 0.940 mmol) in 

dichloromethane (10 cm3) was ice-cooled. To this solution was added drop wise a solution 

DCC (dicyclohexylcarbodiimide) (0.194 g, 9.40 mmol) in dichloromethane (5 cm3). After 15 

minutes the reaction mixture was removed from the ice bath and allowed to reach room 

temperature. The reaction mixture was further stirred at room temperature overnight. The DCU 

(dicyclohexylurea) precipitate was removed by filtration and washed with dichloromethane. 

The filtrate was concentrated under reduced pressure to give tick syrup. This material was 

taken into ethyl acetate (100 cm3) and sequentially washed with KHSO4 (aq. Sol. 1 M.; 3 x 50 

cm3), NaHCO3 (sat. sol.; 3 x 50 cm3) and brine (50 cm3). The organic phase was concentrated 

under reduced pressure to give a white foam. Purification by dry flash chromatography 

(CH2Cl2 /MeOH; 100% CH2Cl2 -> 50% MeOH) afforded the title compound as a white foam 

(0.480 g, 97 % yield). 1H, δ (300 MHz, CDCl3) 1.34 (4H, m, NH(CH2)2(CH2)2(CH2)2NH), 1.43 

(9H, s, tertBu), 1.50 (4H, m, NHCH2CH2(CH2)2CH2CH2NH), 1.99, 2.05, 2.06 and 2.16 (12H, s, 

4xOAc), 2.50 (2H, m, SCH2CH2), 2.88-3.06 (2H, m, SCH2), 3.09 (2H, m, 

NH(CH2)5CH2NHBoc), 3.24 (2H, m, NHCH2(CH2)5NHBoc), 3.48 (1H, m(br)), 3.95 (1H, td, 

J= 7.2, 5.7 and 0.9 Hz, H-5), 4.11 (1H, dd, J= 11.2 and 5.7 Hz, H-6a), 4.19 (1H, dd, J= 11.2 

and 7.2 Hz, H-6b), 4.54 (1H, d, J= 9.9 Hz, H-1), 5.04 (1H, dd, J= 10.2 and 3.3 Hz, H-3), 5.23 

(1H, appt, J= 9.9 Hz, H-2), 5.43 (1H, dd, J= 3.3 and 0.9 Hz, H-4), 5.98 (1H, t(br), NH); HRMS 

(FAB+, NBA) Calc. for C28H47N2O12S  (M+H)+ 635.2844. Found 635.2856.  
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(5b): Starting from peracetylated (lactosylthio)propionic acid 3b29a (1.70 g, 2.35 mmol) and 

1,6-hexanediamine monoBoc (4) (0.507 g, 2.35 mmol), the title compound (5b) was obtained 

as a white foam (2.01 g, 93% ). 1H, δ (300 MHz, CDCl3) 1.33 (4H, m, 

NH(CH2)2(CH2)2(CH2)2NH), 1.42 (9H, s, tertBu), 1.70 (4H, m, NHCH2CH2(CH2)2CH2CH2NH), 

1.97, 2.04, 2.05, 2.07, 2.13 and 2.16 (21H, s, 7xOAc), 2.46 (2H, t, J= 6.6 Hz, SCH2CH2), 2.81 

(1H, m, SCHaHb), 3.03 (1H, m, SCHaHb), 3.08 (2H, m, NH(CH2)5CH2NHBoc), 3.21 (2H, m, 

NHCH2(CH2)5NHBoc), 3.45 (1H, m) 3.59 (1H, m, H-5), 3.78 (1H, appt, J= 9.6 Hz, H-4), 3.89 

(1H, appt, J=7.0 Hz, H-5´), 4.03-4.16 (3H, m), 4.28 (1H, m), 4.52 (1H, d, J= 7.8 Hz, H-1´), 

4.65 (1H, d, J= 10.5 Hz, H-1), 4.90 (1H, appt, J= 9.6 Hz, H-2), 4.96 (1H, dd, J= 10.2 and 3.3 

Hz, H-3´), 5.09 (1H, dd, J= 10.5 and 7.8 Hz, H-2´), 5.19 (1H, appt J= 9.3 Hz, H-3), 5.34 (1H, 

d, J= 2.4 Hz, H-4´), 6.30 (2H, t(br), NHC(O)); m/z (FAB+, NBA) 923 (M+H)+, 3); HRMS 

(FAB+, NBA) Calc. for C40H63N2O20S  (M+H)+ 923.3695. Found 923.3683.  

Synthesis of fully protected amino-functionalised divalent (9)  

A solution of divalent thiogalactoside 726 (0.968 g, 0.895 mmol) was stirred overnight with 

CH2Cl2/TFA (3/1, 10 cm3). The solvent was removed under reduced pressure to give a light 

yellow foam, which was redissolved in dichloromethane (DCM) (10 cm3) and the solvent was 

removed under reduced pressure. This procedure was repeated several times and the material 

was further dried under vacuum to give the carboxylic acid deprotected compound (8) as a 

thick light yellow foam. 1H NMR analysis revealed the disappearance of the signal at δ 1.4 

assigned to the tert-butyl group. No further purification or characterisation was carried on this 

material. All the material obtained (we assumed a 100 % yield on the deprotection reaction) 

was dissolved in ice-cooled DCM (10 cm3) and titrated (pH paper) to pH 9-10 with DIPEA 

(diisopropylethylamine). To this solution was added a solution of 1,6-hexadiamine monoBoc 

(4) (0.230 g, 1.07 mmol) in dichloromethane (5 cm3)  and HBT (0.140 g, 0.940 mmol). To this 

solution was added drop wise a solution of DCC (0.230 g, 1.10 mmol) in dichloromethane (5 
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cm3). After 15 minutes the reaction mixture was removed from the ice bath and allowed to 

reach room temperature. The reaction mixture was further stirred at room temperature 

overnight. The DCU precipitate was removed by filtration and washed with dichloromethane. 

The filtrate was concentrated under reduced pressure to give tick syrup. This material was 

taken into ethyl acetate (150 cm3) and sequentially washed with, NaHCO3 (sat. sol.; 3 x 100 

cm3) and brine (100 cm3). The organic phase was concentrated under reduced pressure to give 

a light yellow foam. Purification by dry flash chromatography (CH2Cl2 /MeOH; 100% CH2Cl2 

-> 50% MeOH) afforded the title compound as a white foam (1.01 g, 92 % yield). 1H, δ (300 

MHz, CDCl3) 1.32 (4H, m, NH(CH2)2(CH2)2(CH2)2NH), 1.43 (9H, s, tertBu), 1.51 (4H, m, 

NHCH2CH2(CH2)2CH2CH2NH), 1.72 (4H, m, NCH2CH2) 1.99, 2.05, 2.06 and 2.16 (24H, s, 

8xOAc), 2.52 (8H, m, overllaping signals from  SCH2CH2 and NCH2), 2.88-3.14 (8H, m, 

overllaping signals from  SCH2, NCH2C(O) (singulet at 3.02) and  NH(CH2)5CH2NHBoc), 

3.29 (6H, m, NCH2CH2CH2) and NHCH2(CH2)5NHBoc), 3.40-3.56  (1H, m), 3.96 (2H, td, J= 

6.4 and 0.9 Hz, H-5), 4.09 (2H, dd, J= 11.4 and 6.3 Hz, H-6a), 4.20 (2H, dd, J= 11.2 and 6.4 

Hz, H-6b), 4.56 (2H, d, J= 10.2, H-1), 4.74 (1H, t(br), NH), 5.05 (2H, dd, J= 10.0 and 3.3 Hz, 

H-3), 5.25 (2H, appt, J= 9.9 Hz, H-2), 5.44 (2H, dd, J= 3.3 and 0.9 Hz, H-4), 6.74 (2H, t(br), 

NH), 7.10 (2H, t(br); m/z (FAB+, NBA) 1223 (M-H)+, 100); HRMS (FAB+, NBA) Calc. for 

C53H86N5O23S2  (M+H)+ 1224.5155. Found 1224.5119.  

 

Synthesis of DTPA-glycoconjugate bisamides 1 and 2 

Typical procedure illustrated for DTPAGal2 (1a): A solution of fully protected amino-

functionalised monovalent thiogalactoside 5a (0.618 g, 0.973 mmol) was stirred overnight with 

CH2Cl2/TFA (3/1, 10 cm3). The solvent was removed under reduced pressure to give a light 

yellow foam, which was redissolved in DCM (10 cm3) and the solvent was removed under 

reduced pressure. This procedure was repeated several times and the material was further dried 

under vacuum to give a thick light yellow foam (6a). 1H NMR analysis revealed the 
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disappearance of the signal at δ 1.47 assigned to the tert-butyl group. No further purification or 

characterisation was carried on this material. All the material obtained (we assumed a 100 % 

yield on the deprotection reaction) was dissolved in ice-cooled DCM (5 cm3) and titrated (pH 

paper) to pH 9-10 with DIPEA. This solution was added to a solution of DTPA-bis anhydride 

(0.158 g, 0.442 mmol) in DMF (40 cm3) and pyridine (1 cm3). The reaction mixture was stirred 

at room temperature overnight and concentrated at reduced pressure to give a colourless oil. 

This material was carried through without further purification or characterisation. The residue 

was redissolved in a mixture ethanol (10 cm3) and KOH (aq. sol. 1M, 10 cm3) and stirred at 

room temperature overnight. The reaction mixture was adjusted to pH~1 with Amberlist 15. 

The resin was transferred into a column, thoroughly washed with water and eluted with aq. 

NH3 0.5 M. The relevant fractions were pooled and concentrated under reduced pressure 

(temperature below 40 0C ) to give the fully deprotected glycoconjugate as a off white solid 

(0.342 g, 71% yield over two steps). 1H, δ (300 MHz, D2O, pH 7.0): 4.48 (2H, d, J = 9.0 Hz, 

H-1), 3.54 (2H, app t, J = 9.0 Hz, H-2), 3.64 (2H, dd, J = 9.0 and 3.3 Hz, H-3), 3.70 (2H, m, H-

4), 3.96 (2H, app d, J = 3.3 Hz, H-5), 3.73 (4H, m, H-6a + H-6b), 1.32 (8H, m, 2 x 

NH(CH2)2(CH2)2(CH2)2NH), 1.51 (8H, m, 2 x NHCH2CH2(CH2)2CH2CH2NH), 3.20 (8H, m, 2 

x NHCH2(CH2)4CH2NH), 2.60 (4H, m, SCH2CH2), 2.95-3.01 (4H, m, SCH2),  3.24 (4H, s, 

DTPA amide NCH2C(O)), 3.76 (2H, s, DTPA central acetate NCH2CO2
-), 3.40 (4H, s, DTPA 

terminal acetate NCH2CO2
-), 3.34, 3.08 (8H, two m, DTPA skeleton NCH2); 13C, δ (75.6 ΜΗz, 

D2O): 86.18 (C-1), 69.67 (C-2), 74.05 (C-3), 79.07 (C-4), 68.94 (C-5), 61.30 (C-6), 25.90, 

25.83 (NH(CH2)2(CH2)2(CH2)2NH), 28.29, 28.42 (NHCH2CH2(CH2)2CH2CH2NH), 39.23, 

39.54  (NHCH2(CH2)4CH2NH), 26.49 (SCH2), 36.57 (SCH2CH2), 58.86 (DTPA amide 

NCH2C(O)), 54.58 (DTPA central acetate NCH2CO2
-), 58.95 (DTPA terminal acetate 

NCH2CO2
-),  50.59, 52.79 (DTPA skeleton NCH2), 170.77, 173.02, 174.28, 178.40 (DTPA 

acetate NCH2CO2
- and amide NCH2C(O), other CH2C(O)NH); m/z (FAB+, NBA) 1091 
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(M+H+, 23); HRMS (FAB+, NBA) Calc. for C44H80N7O20S2  (M+H)+ 1090.4899. Found 1090. 

4859.  

DTPALac2 - (1b): Fully protected monovalent thiolactoside (5b) (0.997 g, 1.08 mmol) was 

deprotected as described for compound (1a). Reaction with DTPA-bis anhydride (0.183 g, 

0.512 mmol), followed by deprotection and purification afforded glycoconjugate 1b as a off 

white solid (0.345 g, 48% yield over two steps). 1H, δ (300 MHz, D2O, pH 7.0): 4.46 (2H, d, J 

= 7.8 Hz, H-1), 3.54 (2H, dd, J = 10.2 and 7.8 Hz, H-2), 3.63 (2H, dd, J = 10.2 and 3.3 Hz, H-

3), 3.66 (2H, dd, H-4), 3.94 (2H, app d, J = 3.3 Hz, H-5), 3.70 (4H, m, H-6a + H-6b), 4.58 (2H, 

d, J= 10.2 Hz, H-1’), 3.36 (2H, app t, H-2’), 3.64 (2H, app t, H-3’), 3.68 (2H, dd, H-4’), 3.99 

(2H, dd, H-5’), 3.72 (4H, m, H-6a’ + H-6b’) (Gal unit: -H-1-H-6b; Gluc unit: -H-1’-H-6b’), 1.32 

(8H, m, 2 x NH(CH2)2(CH2)2(CH2)2NH), 1.52 (8H, m, 2 x NHCH2CH2(CH2)2CH2CH2NH), 

3.20 (8H, m, 2 x NHCH2(CH2)4CH2NH), 2.61 (4H, m, SCH2CH2), 2.98-3.01 (4H, m, SCH2),  

3.23 (4H, s, DTPA amide NCH2C(O)), 3.76 (2H, s, DTPA central acetate NCH2CO2
-), 3.38 

(4H, s, DTPA terminal acetate NCH2CO2
-), 3.37, 3.08 (8H, two m, DTPA skeleton NCH2); 

13C, δ (75.6 ΜΗz, D2O):  103.08 (C-1), 71.15 (C-2), 78.42 (C-3), 72.71 (C-4), 60.49 (C-5), 

75.55 (C-6), 85.59 (C-1’), 72.11 (C-2’), 78.82 (C-3’), 75.92 (C-4’), 68.76 (C-5’), 61.22 (C-6’) 

(Gal unit: C-1-C-6; Gluc unit: C-1’-C-6’), 25.86, 25.94 (NH(CH2)2(CH2)2(CH2)2NH), 28.33, 

28.47 (NHCH2CH2(CH2)2CH2CH2NH), 39.26, 39.58 (NHCH2(CH2)4CH2NH), 26.45 (SCH2), 

36.61 (SCH2CH2), 58.86 (DTPA amide NCH2C(O)), 54.33 (DTPA central acetate NCH2CO2
-), 

59.03, 59.11 (DTPA terminal acetate NCH2CO2
-),  50.53, 52.88 (DTPA skeleton NCH2), 

170.60, 173.41, 174.24, 178.82 (DTPA acetate NCH2CO2
- and amide NCH2C(O), other 

CH2C(O)NH) ); HRMS (ESI) Calc. for C56H100N7O30S2  (M+H)+ 1414.5950. Found 1414.5971. 

. 

DTPAGal4 – (2): Fully protected aminofunctionalised divalent thiogalactoside (9) (0.464 g, 

0.379 mmol) was deprotected as described for compound (1a). Reaction with DTPA-bis 

anhydride (0.064 g, 0.179 mmol), followed by deprotection and purification afforded 
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glycoconjugate 2 as an off white solid (0.240 g, 69% yield over two steps). 1H, δ (300 MHz, 

D2O, pH 7.0): 4.46 (4H, d, J = 9.0 Hz, H-1), 3.52 (4H, app t, J = 9.0 Hz, H-2), 3.64 (4H, dd, 

dd, J = 9.0 and 3.3 Hz, H-3), 3.68 (4H, m, H-4), 3.95 (4H, app d, J = 3.3 Hz, H-5), 3.71 (8H, 

m, H-6a + H-6b), 1.28 (8H, m, 2 x NH(CH2)2(CH2)2(CH2)2NH), 1.49 (8H, m, 2 x 

NHCH2CH2(CH2)2CH2CH2NH), 3.18 (8H, m, 2 x NHCH2(CH2)4CH2NH), 3.48  (4H, m, 

NCH2C(O)), 2.75 (8H, m, NCH2), 1.83 (8H, m, NCH2CH2), 3.20 (8H, m, NCH2CH2CH2), 2.59 

(8H, m, SCH2CH2), 2.97 (8H, m, SCH2),  3.20 (4H, s, DTPA amide NCH2C(O)), 3.71 (2H, s, 

DTPA central acetate NCH2CO2
-), 3.33 (4H, s, DTPA terminal acetate NCH2CO2

-), 3.34, 3.18 

(8H, two m, DTPA skeleton NCH2); 13C, δ (75.6 ΜΗz, D2O): 86.29 (C-1), 69.66 (C-2), 74.09 

(C-3), 79.08 (C-4), 68.95 (C-5), 61.41 (C-6), 25.33 (NH(CH2)2(CH2)2(CH2)2NH), 28.53 

(NHCH2CH2(CH2)2CH2CH2NH), 39.32, 39.18  (NHCH2(CH2)4CH2NH), 56.57 (NCH2C(O)), 

52.51 (NCH2), 25.38 (NCH2CH2), 37.11 (NCH2CH2CH2), 26.70 (SCH2), 36.52 (SCH2CH2), 

59.20 (DTPA amide NCH2C(O)), 54.50 (DTPA central acetate NCH2CO2
-), 59.11 (DTPA 

terminal acetate NCH2CO2
-),  50.51, 52.89 (DTPA skeleton NCH2), 170.51, 173.40, 174.48, 

178.85 (DTPA acetate NCH2CO2
- and amide NCH2C(O)NH, other CH2C(O)NH); m/z (FAB+, 

NBA) 1932 (M+, 20), 1055 (100); HRMS (FAB+, NBA) Calc. for C78H142N13O34S4  (M+H)+ 

1932.8665. Found 1932.8576. 

Preparation of Ln(III)-glycoconjugates for NMR studies 

The Ln(III)-glycoconjugates were prepared by adding a slight excess (1.1 eq.) of LnCl3 

aqueous solution to an aqueous solution of the glycoconjugate. The pH of the solution was 

slowly adjusted to 5 with KOH (aq), stirred at 70 oC for eight hours and adjusted to pH 7 with 

KOH (aq). Any precipitate was filtered off. The solution was concentrated and purified by gel 

filtration with Sephadex G10, eluting with water. The relevant fractions were pooled and freeze 

dried to afford the Ln(III) complexes.  

Preparation of Gd(III)-DTPALac2 for NMRD measurements 
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Initially, the DTPALac2 conjugate was left to react with an excess of Gd(ClO4)3 stock solution 

and the excess of metal ion was backtitrated with Na2H2EDTA solution, allowing the 

calculation of the exact concentration of glycoconjugate. 

The Gd(III) chelate of DTPALac2 was prepared by adding an appropriate quantity of the 

glycoconjugate to aqueous solution of gadolinium perchlorate (3-5% glycoconjugate excess). 

The solution pH was slowly adjusted to 7 with KOH (aq). The Gd(III)-glycoconjugate solution 

was freeze-dried and diluted with 25 mM phosphate buffer (pH 7.4). The absence of free 

Gd(III) in the solution was verified by using xylenol orange indicator.[30] The Gd(III) 

concentration (4.63 mM) was verified by ICP measurement.  

 

Conclusions 

We have devised the synthesis of a new class of hydrophylic glycoconjugate DTPA-bisamides. 

Their dendrimeric architecture is especially suited for the variation of the valence of the 

glycoconjugates from a reduced number of building blocks in an interactive fashion. 

The Ln(III) ions in the chelates of these glyconjugates are nine coordinated, as expected  for 

DTPA bisamides, with one inner-sphere water molecule and eight positions occupied by three 

nitrogens and five oxygens of the DTPA moiety. In aqueous solution, these complexes display 

the four possible diastereoisomeric pairs, resulting from the chirality of the three bound DTPA 

nitrogen atoms, like the Ln(III) complexes of other DTPA-bisamides with smaller substituents, 

such as DTPA-BMA and DTPA-BENGALAA, [35,41] while bisamides containing long, micelle-

forming, aliphatic chains, only two pairs have been detected in solution, [42]  possibly stabilized 

by intermolecular interactions. 

The value found for the r1 relaxivity of Gd(III)-DTPALac2 at 25 oC and 20 MHz is 13% higher 

than that reported for Gd(III) chelates of lower molecular weight DTPA-bisamides, such as 

DTPA-BMA, consistent with a longer τR value. The τR value of these Gd(III) chelates is 

expected to increase linearly with molecular weight, as long as the internal mobility of the side 
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chains does not change significantly, leading to a proportional increase of the 20 MHz 

relaxivity. This result suggests that the relaxivity of the tetravalent Gd(III)-DTPAGal4 

glycoconjugate (MW= 2088) would be substantially higher. This finding, taken together with a 

potential to target the ASGPR (studies under way), makes these compounds promising for the 

design of medical imaging agents (MRI and gamma scintigraphy). 
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Table 1 - Parameters obtained from the analysis of the NMRD profiles for Gd(III)-DTPALac2 

in comparison with other Gd(III) complexes. 

 

 DTPA[44] DTPA-BMA[44] DTPA-BENGALAA[41] DTPALac2 DOTALac2[26] 

  (bisamide) (bisamide) (bisamide) (monoamide) 

kex
298/ 106 s-1 

3.3 0.45 0.22 0.40a  1.2a 

∆H‡ / kJ mol-1 51.6 47.6 42.5 40.0a 30.0a 

τrH
298 / ps 58 66 265 332±10 306 

ERH / kJ mol-1 17.3 21.9 19.7 36.3±0.2 29.9 
τv

298 / ps  25 25 16 10±2 33 

Ev / kJ mol-1 1.6 3.9 5.5 1a 1a 

∆2 / 1020 s-2 0.46 0.41 0.53 0.63±0.02 0.12 
 
a. Underlined parameters have been fixed in the fit.  
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Figure 1 - Structures of the DPTA-bisamides glycoconjugates (the labeling of the protons for 

spectral assignements is shown). 
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Figure 2A - 1H NMR spectrum of La(III)-DTPAGal2 glycoconjugate in D2O, pH 7.0, T = 25 

ºC.   
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Figure 2B - 1H NMR spectrum of Sm(III)-DTPAGal2 glycoconjugate in D2O, pH 7.0, T = 60 

ºC.   
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Figure 2C - 1H NMR spectrum of Eu(III)-DTPAGal2 glycoconjugate in D2O, pH 7.0, T = 7 ºC
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Figure 3 - Variable temperature NMRD profiles for Gd(III)-DTPALac2; T = 25 °C (triangles); 
and 60 °C (circles). The lines represent the least squares fit to the experimental data points as 
described in the text.  
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Scheme 1 : a) DCC/HBT, DCM; b) TFA/DCM (1/3).   
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Scheme 2 : a) TFA/DCM (1/3); b) i. DIPEA /DCM ii. DCC/HBT, DCM. 
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Scheme 3 : a) i. DIPEA/DCM ii. DMF / Py; b) i. KOH / EtOH ii. Amberlist 15, elution with 

NH3.  
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Supporting Information 
 
Table S1. Proton relaxivities of Gd(III)-DTPA-Lac2. 
 

Frequency
(MHz) 

25 °C  Frequency
(MHz) 

60 °C 

10.001 5.811 15.998 4.1
6.9516 6.175 10.853 4.123
4.8342 6.398 7.36 4.229
3.3593 7.080 4.9912 4.672
2.335 7.601 3.384 5.109

1.6231 7.540 2.296 5.843
1.1293 8.033 1.5569 5.993

0.78425 8.037 1.0565 6.301
0.54522 8.204 0.48561 6.311

0.379 8.281 0.32959 6.476
0.26382 8.347 0.22346 6.602
0.1833 8.551 0.15136 6.626

0.12722 8.644 0.10281 6.599
0.088466 8.656 0.069612 6.607
0.061485 8.682 0.047272 6.72
0.042866 8.526 0.032022 6.635
0.029663 8.581 0.021664 6.628
0.020774 8.681 0.014771 6.799
0.01433 8.578 0.010031 6.788

0.010031 8.734 20 4.011
12 5.823   
16 5.671   
20 5.722   

 
 
 
Equations for the determination of the relaxivity parameters 
 
NMRD. The measured proton relaxivities (normalized to 1 mM Gd(III) concentration) contain 

both inner and outer sphere contributions:  

r r r1 1is 1os= +                                                                (1) 

The inner sphere term is given by Equation (2), where q is the number of inner sphere water 

molecules.  

r
q

T1is
1m
H

m

= × ×
+

1
1000 5555

1
. τ

                                   (2) 

The longitudinal relaxation rate of inner sphere protons, 1/T1m
H is expressed: 
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( )
2 2 2 2

S I d1H d2H
6 2 2 2 2

GdH I d1H S d2H1m

1 2 3 71
15 4 1 1

o
H S S

rT
µ γ γ τ τ
π ω τ ω τ

⎡ ⎤⎛ ⎞= + +⎜ ⎟ ⎢ ⎥+ +⎝ ⎠ ⎣ ⎦

h                                    (3) 

Here rGdH is the effective distance between the Gd(III) electron spin and the water protons, ωI 

is the proton resonance frequency and τdiH is given by Equation (4), where τR is the rotational 

correlation time of the Gd(III)-Hwater vector:  

eRmd

1111

iiH T
++=

τττ
               i = 1 , 2                                                                    (4) 

The τR rotational correlation time is assumed to have simple exponential temperature 

dependence with an ER activation energy:  

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −=

15.298
11exp R298

RR TR
E

ττ                                                                             (5) 

The electron spin relaxation rates, 1/T1e and 1/T2e for metal ions in solution with S > 1/2 are 

mainly governed by a transient zero-field-splitting mechanism (ZFS).[46] In Equations (6-7) ∆2 

is the trace of the square of the transient zero-field-splitting tensor, τv is the correlation time for 

the modulation of the ZFS with the activation energy Ev, and ωs is the electron spin Larmor 

frequency: 

{ }1 1
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⎜
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                                  (7) 

τ τv v
298 v= −⎛

⎝⎜
⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

exp
.

E
R T

1 1
29815

                                                              (8) 

The outer sphere contribution is described by Equation (9), where NA is the Avogadro constant, 

and Jos is a spectral density function.  

( )[ ]
2 2 2 2

A 0 S I
1os os I 1e os S 2e

GdH GdH

32 1 3 ( , ) 7 ( , )  
405 4
Nr S S J T J T

a D
π µ γ γ ω ω

π
⎛ ⎞= + +⎜ ⎟
⎝ ⎠

h          (9) 
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      j = 1, 2                                                                                                       (10) 

 

A value of 3.6 Å was used for aGdH. For the temperature dependence of the diffusion 

coefficient for the diffusion of a water proton away from a Gd(III) complex, DGdH, we assume 

a exponential temperature dependence, with an activation energy EDGdH:  

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −=

TR
E

DD 1
15.298

1exp DGdH298
GdHGdH  (11) 

 

 

 

 

 

 


