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Abstract. In the recent past, the problem of constructing bases for spaces of monogenic polynomials, in the framework of
Clifford Analysis, has been considered by several authors, using different methods. In this talk we consider bases of 3D
monogenic polynomials isomorphic to the complex powers, which are particularly easy to handle, from the computational
point of view. Explicit constructions of such polynomial bases are performed and a numerical cost comparison with the well
known Fueter polynomial basis is carried out.

Keywords: homogeneous monogenic polynomials, hypercomplex analysis, Appell sets
PACS: 02.30.-f, 02.30.Lt

INTRODUCTION AND BASIC
NOTATION

Let {e1,e2, · · · ,en} be an orthonormal base of the Eu-
clidean vector space Rn with a product according to the
multiplication rules

ekel + elek =−2δkl , k, l = 1, . . . ,n,

where δkl is the Kronecker symbol. This non-
commutative product generates the 2n-dimensional
Clifford algebra C`0,n over R and the set {eA : A ⊆
{1, · · · ,n}} with eA = eh1 eh2 · · ·ehr , 1 ≤ h1 < · · · < hr ≤
n, e /0 = e0 = 1, forms a basis of C`0,n. Considering the
subset

An := spanR{1,e1, . . . ,en} ⊂C`0,n,

the real vector space Rn+1 can be embedded in An by
the identification of each element (x0,x1, · · · ,xn) ∈ Rn+1

with the paravector x ∈ An. Here, x0 and x = e1x1 +
· · ·+enxn are, the so-called, scalar and vector parts of the
paravector x ∈ An. The conjugate of x is x̄ = x0− x and
the norm |x| of x is defined by |x|=√

xx.
In what follows we consider Cl0,n-valued functions

defined in some open subset Ω ⊂ Rn+1, i.e. functions
of the form f (z) = ∑A fA(z)eA, where fA(z) are real
valued. The generalized Cauchy-Riemann operator in
Rn+1, n≥ 1, is defined by

∂ := 1
2 (∂0 +∂x),

where

∂0 := ∂
∂x0

, and ∂x := e1
∂

∂x1
+ · · ·+ en

∂
∂xn

.

Functions f satisfying ∂ f = 0 (resp. f ∂ = 0) are called
left monogenic (resp. right monogenic). Following [1],

we use f ′ = ∂ f = 1
2 (∂0−∂x) as the hypercomplex deriva-

tive of a monogenic function f . Since a hypercomplex
differentiable function belongs to the kernel of ∂ , it fol-
lows that in fact f ′ = ∂0 f =−∂x f similar to the complex
case.

We also consider the hypercomplex monogenic poly-
nomials in terms of the so-called Fueter variables

zk = xk− x0ek, k = 1, . . . ,n. (1)

This implies the use of the Fueter polynomials of degree
of homogeneity k, as defined in [2]

zν1
1 × . . .× zνn

n :=
1
k! ∑

π(i1,...,in)
zi1 · · ·zin , (2)

where the sum is taken over all k! = |ν |! permutations of
(i1, . . . , in), i j ∈ {1, . . . ,n}, j = 1, . . . ,n, (see also [3]).

HYPERCOMPLEX APPELL
SEQUENCES

We recall the classical definition of sequences of Ap-
pell polynomials [4] adapted to the hypercomplex case:
a sequence of monogenic polynomials (Fk)k≥0 of ex-
act degree k is called a generalized Appell sequence if
F0(x) ≡ 1 and F ′

k = kFk−1, k = 1,2, . . . . (see, e.g.
[5]). The equivalent definition through the validity of a
binomial-type expansion is provided by ([6]):

Theorem 1 A monogenic polynomial sequence (Fk)k≥0
is an Appell set if and only if it satisfies the binomial-type
expansion

Fk(x) = Fk(x0 + x) =
k

∑
s=0

(
k
s

)
Fk−s(x0)Fs(x), x ∈An.



Intensively studied have been the so-called standard ho-
mogeneous Appell polynomials ( [5, 6, 7]) which can be
written in the form

Pk(x0,x) =
k

∑
s=0

(k
s

)
cs(n)xk−s

0 xs, (3a)

where

cs(n) =

{
s!!(n−2)!!
(n+s−1)!! , if s is odd,

cs−1(n), if s is even.
(3b)

The study of sets of Appell polynomials has developed
in several directions using different methods, see, e.g. [8,
9, 10, 6, 11]. For our purpose here, we call the attention
to the following homogeneous monogenic polynomials

Rk
iii (x) =

(
x0 +(i1x1 + · · ·+ inxn)(i1e1 + · · ·+ inen)

)k
,

(4)
where iii := (i1, . . . , in) is a real unit parameter-vector,
i.e. i21 + · · ·+ i2n = 1. It follows immediately from this
last condition that, since (i1e1 + · · ·+ inen)2 = −1, the
polynomials (4) are isomorphic to the complex integer
powers of z and thereby they are called pseudo-complex
polynomials. In this way, it is clear that (Rk

iii )k≥0 is a
sequence of homogeneous monogenic paravector valued
Appell polynomials.

Restricting ourselves from now on to the case n = 2,
the following result of [12] shows the importance of the
aforementioned two types of Appell polynomials.

Theorem 2 There are exactly two different types of non-
trivial Appell polynomials in R3, of the form

Pk(x0,x1,x2) =
k

∑
s=0

(
k
s

)
ds xk−s

0 (X1e1 +X2e2)s,

where X j = X j(x1,x2), j = 1,2, are two real valued linear
functions (∂1X1 ·∂2X2 6= 0) and d0 = 1, namely

1. The 3D standard Appell polynomials (3),

Pk(x) =
k

∑
s=0

(k
s

)
cs(n)xk−s

0 (x1e1 + x2e2)s,

where

cs(n) =
(

s
b s

2c
)

and b ·c is the floor function.
2. The 3D pseudo-complex polynomials (4),

Rk
iii (x) =

(
x0 +(i1x1 + i2x2)(i1e1 + i2e2)

)k
,

where i21 + i22 = 1.

The use of the Fueter variables (1) allows to rewrite
the 3D pseudo-complex polynomials in the form

Rk
iii (z1, . . . ,zn) = (z1i1 + · · ·+ znin)k(i1e1 + · · ·+ inen)k.

All this together with a result of [13, Theorem 1], con-
cerned with the construction of a complete set of pseudo-
complex Appell polynomials, allows to conclude the fol-
lowing:

Theorem 3 The set {Rk
iiiks
}k

s=0 is a basis for the space of
homogeneous monogenic paravector valued polynomials
of degree k in R3, provided that the k + 1 unit vectors
iiiks = (iks1, i

k
s2) ∈ R2, with s = 0, . . . ,k, are pairwise non-

collinear.

TWO EXAMPLES OF A COMPLETE
SET OF PSEUDO-COMPLEX POWERS

The motivation for the present work came from the idea
of developing an efficient algorithm to obtain pseudo-
complex bases of Appell polynomials. The fact that,
apart from the concrete parameter choice, the pseudo-
complex polynomials Rk

iii obey all the same principle
structure, isomorphic to the complex powers zk, sug-
gested immediately the idea of economizing numerical
costs for their construction. Moreover, and as we will see
in this section, it leads us to an interesting study about
the appropriate parameter choice and its connection with
the primitive roots of unity. Other aspects of monogenic
polynomials, for instance of combinatorial nature, are
discussed in [14].

In this section we construct two particular bases of the
form

{Rk
iiik0
,Rk

iiik1
, . . . ,Rk

iiikk−1
,Rk

iiikk
} (5)

for the space of homogeneous monogenic paravector val-
ued polynomials of degree k in R3. It is clear that condi-
tions referred in Theorem 3 still allow a wide choice of
parameter-vectors, leading to different sets in (5). In fact,
each unit vector iiiks can be written in the form

iiiks = (cosαk
s ,sinαk

s ),

where αk
s are real numbers. The parameter set

Ak = {αk
0 ,αk

1 , . . . ,αk
k} (6)

defines completely the set of unit vectors

{iiik0, iii
k
1, . . . , iii

k
k} (7)

and therefore, according to Theorem 3, in order to ob-
tain a basis, the parameter set (6) should be defined in
such a way that the k +1 unit vectors in (7) are pairwise



noncollinear. Throughout this work, a set (6) in the afore-
mentioned conditions is called a primitive parameter set.
We present now two different primitive parameter sets
both connected, as it seems to be natural, with the primi-
tive roots of unity.

Example 1 For k = 0,1, . . . , the set

Ak = {αk
s =−π

2 +(s+1) π
k+1 , s = 0, . . . ,k}, (8)

is obviously a primitive parameter set. This natural
choice of the parameters αk

s leads to a set of k+1 equally
distributed points in the real interval ]− π

2 , π
2 ] (see Ta-

ble 1) which are associated with primitive roots of unity
of a certain order.

TABLE 1. Primitive parameter sets
associated with Example 1.

k Ak

0 { π
2 }

1 {0, π
2 }

2 {− π
6 , π

6 , π
2 }

3 {− π
4 ,0, π

4 , π
2 }

4 {− 3π
10 ,− π

10 , π
10 , 3π

10 , π
2 }

The first pseudo-complex powers associated with the
choice (8) of the primitive parameter set are:

• R0
iii00

= 1;

• R1
iii10

= z1e1, R1
iii11

= z2e2;

• R2
iii20

=− 1
4 (
√

3z1− z2)2, R2
iii21

=− 1
4 (
√

3z1 + z2)2,

R2
iii22

=−z2
2;

• R3
iii30

=− 1
4 (z1− z2)3(e1− e2), R3

iii31
=−z3

1e1,

R3
iii32

=− 1
4 (z1 + z2)3(e1 + e2), R3

iii33
=−z3

2e2.

We point out that for the choice (8), Ak−1 ⊂ Ak′−1 if
and only if k and k′ are integer powers of 2, with k < k′.
This observation was the motivation for constructing
another parameter set in such a way that Ak ⊂ Ak+1, i.e.

Ak+1 ={αk+1
0 ,αk+1

1 , . . . ,αk+1
k ,αk+1

k+1}
={αk

0 ,αk
1 , . . . ,αk

k ,αk+1
k+1}= Ak ∪{αk+1

k+1}. (9)

This idea was firstly considered in [14], where the fol-
lowing primitive parameter set plays an important role.

Example 2 The set

Ak = {αk
0 ,αk

1 , . . . ,αk
k}, (10a)

with

αk
0 = α0

0 =π
2 , (10b)

αk
s = αs

s =π
2 − (2n′+1)π

2n+1 , for s = 1, . . . ,k, (10c)

where n and n′ are integers such that s = 2n + n′ and
n′ = 0, . . . ,2n−1, is a primitive parameter set.

Table 2 contains the first parameter sets corresponding
to the choice (10). In this table we highlight, for each
degree k, the new element αk

k .

TABLE 2. Primitive parameter sets asso-
ciated with Example 2.

k Ak

0
{ πππ

2
}

1
{

0, π
2
}

2
{

0, πππ
4 , π

2
}

3
{− πππ

4 ,0, π
4 , π

2
}

4
{
− π

4 ,0, π
4 , 3πππ

8 , π
2

}

5
{− π

4 ,0, πππ
8 , π

4 , 3π
8 , π

2 , , 3π
8

}

6
{− πππ

8 ,− π
4 ,0, π

8 , π
4 , 3π

8 , π
2 , , 3π

8
}

7
{
− 3πππ

8 ,− π
8 ,− π

4 ,0, π
8 , π

4 , 3π
8 , π

2 , 3π
8

}

By construction, Ak satisfies (9) and it is easy to see
that Ak can be written explicitly as

Ak =
{ lπ

2n

}2n−1

l=−2n−1+1∪
{

π
2 − (2l+1)π

2n+1

}n′

l=0
.

Last expression reveals a block structure (see Figure 2)
which:

• for k = 2n − 1, reduces to all the 2n equally dis-
tributed points referred in Example 1;

• for k = 2n,2n + 1, . . . ,2n+1 − 1, adds to all the 2n

elements of A2n−1 the correspondent odd multiples
of π

2n+1 in ]− π
2 , π

2 ].

The first pseudo-complex powers corresponding to the
primitive parameter set (10) are as follows:

• R0
iii00

= 1;

• R1
iii10

= z2e2, R1
iii11

= z1e1;

• R2
iii20

=−z2
2, R2

iii21
=−z2

1, R2
iii22

=− 1
2 (z1 + z2)2;

• R3
iii30

=−z3
2e2, R3

iii31
=−z3

1e1,

R3
iii32

=− 1
4 (z1 + z2)3(e1 + e2),

R3
iii33

=− 1
4 (z1− z2)3(e1− e2).



k = 2 k = 3 k = 4

FIGURE 1. Primitive parameter sets of Example 1.

Block

k = 0

0

k = 1

1

k = 2 k = 3

2

k = 4 k = 5 k = 6 k = 7

3

FIGURE 2. The block structure of the primitive parameter sets of Example 2.

COMPUTATIONAL CONSIDERATIONS

In [14] the parameter set (10) was used to obtain a
link between combinatorics and hypercomplex function
theory, by means of a new combinatorial identity. Our
objective here is rather different, as we intent to study
pseudo-complex polynomials associated with the choice
(10) in a more detailed way and to stress their numerical
costs advantages compared with the Fueter polynomials.

Needless to say that the aforementioned parameter set
has obvious advantages from the computational point of
view, when we compare it with the parameter set (8). In
fact, denoting by Ik

s the unit vector

Ik
s := cosαk

s e1 + sinαk
s e2,

then it is clear that (10b) implies that

iiiks = iiiss and Ik
s = Is

s, s = 0, . . . ,k.

Therefore, using for simplicity, Rk
s := Rk

iiiss
and Is := Is

s,
we can write, for s = 0, . . . ,k,

Rk
s =

(
x0 +(cosαk

s x1 + sinαk
s x2)Ik

s)
k

=
(
x0 +(cosαs

s x1 + sinαs
s x2)Is)k,

which means that

Rk
s = Rk−1

s R1
s , (11a)

for s = 0, . . . ,k−1, and

Rk
k = (R1

k)
k. (11b)



Here we use also the simplified notation R1
s for denoting

the first degree polynomial R1
iiiss

.
In other words, the first k− 1 pseudo-complex poly-

nomials (PCP) of degree k can be obtained by simply
multiplying the polynomials of degree k− 1 by an ap-
propriated first degree polynomial (see Figure 3).

In this way, the first pseudo-complex powers corre-
sponding to the primitive parameter set (10) can be ob-
tained in the following way:

• R0
0 = 1;

• R1
0 = x0 + x2I0, R1

1 = x0 + x1I1;

• R2
0 = R1

0R1
0, R2

1 = R1
1R1

1,

R2
2 = (R1

2)
2, where R1

2 = x0 +
√

2
2 (x1 + x2)I2;

• R3
0 = R2

0R1
0, R3

1 = R2
1R1

1, R3
2 = R2

2R1
2,

R3
3 = (R1

3)
3, where R1

3 = x0 +
√

2
2 (x1− x2)I3.

R0
0

R1
0

²²

R1
0

R1
0

²²

R1
1

R1
1

²²

R2
0

R1
0

²²

R2
1

R1
1

²²

R2
2

R1
2

²²

R3
0 R3

1 R3
2 R3

3

FIGURE 3. An efficient scheme to obtain a basis of PCP.

To continue our goal we recall now the well known
fact that the generalized powers (2) form a paravector
valued basis for the Taylor series of a monogenic func-
tion, which is often used for practical applications (see,
e.g. [15]). Moreover, as is indicated in [2], the polynomi-
als Fk

s := z1
k−s× z2

s satisfy the recursion formula

Fk
s = 1

k{(k− s)z1Fk−1
s + sz2Fk−1

s−1 }, (12a)

for s = 1, . . . ,k−1, with

Fk
0 = zk

1 and Fk
k = zk

2. (12b)

In order to compare the numerical costs of construct-
ing a basis formed by the pseudo-complex polynomials
with that one formed by the Fueter polynomials, it is
enough to compute the number of basic operations as-
sociated to the schemes (11) and (12), respectively. In

other words, to get an idea of how much it costs to obtain
a basis of degree k, assuming that the corresponding ba-
sis of degree k− 1 is known, let us count the number of
multiplications required by both algorithms.

There are 4k real multiplications in (11a). In addition,
the use of (11b) requires 4(k−1) multiplications. Hence,
the total number of multiplications in this scheme is
8k−4.

On the other hand the use of the recursion formula
(12a) involves 22(k−1) multiplications, while (12b) de-
mands 8 operations. Therefore, this scheme requires the
total of 22k−14 multiplications.

Roughly speaking, the above numbers illustrate the
difference between multiplying two complex numbers
and two paravectors. Of course that some care must be
taken in comparing two algorithms of the same order.
In particular, we have to be aware of the fact that (11b)
involves also the computation of αk

k and this in turn
implies the evaluation of two trigonometric functions.

Our main objective was to study a certain type of Ap-
pell polynomials with properties similar to the complex
powers and to point out the computational efficiency of
the algorithm developed for the construction of a basis
for the space of homogeneous monogenic paravector val-
ued polynomials in R3.

ACKNOWLEDGMENTS

This work was supported by FEDER founds through
COMPETE–Operational Programme Factors of Com-
petitiveness (“Programa Operacional Factores de Com-
petitividade”) and by Portuguese funds through the
Center for Research and Development in Mathemat-
ics and Applications (University of Aveiro) and the
Portuguese Foundation for Science and Technology
(“FCT–Fundação para a Ciência e a Tecnologia”), within
project PEst-C/MAT/UI4106/2011 with COMPETE
number FCOMP-01-0124-FEDER-022690. The re-
search of the first author was also supported by FCT
under the fellowship SFRH/BD/44999/2008.

REFERENCES

1. K. Gürlebeck, and H. Malonek, Complex Variables
Theory Appl. 39, 199–228 (1999).

2. K. Gürlebeck, K. Habetha, and W. Sprößig, Holomorphic
functions in the plane and n-dimensional space,
Birkhäuser Verlag, Basel, 2008.

3. H. Malonek, Complex Variables 14, 25–33 (1990).
4. P. Appell, Ann. Sci. École Norm. Sup. 9, 119–144 (1880).
5. M. I. Falcão, and H. Malonek, “Generalized exponentials

through Appell sets in Rn+1 and Bessel functions,” in
AIP Conference Proceedings, edited by T. E. Simos,



G. Psihoyios, and C. Tsitouras, 2007, vol. 936, pp.
738–741.

6. I. Cação, M. I. Falcão, and H. Malonek, Math. Comput.
Model. 53, 1084–1094 (2011).

7. I. Cação, M. I. Falcão, and H. Malonek, Comput. Methods
Funct. Theory 12, 371–391 (2012).

8. H. R. Malonek, and R. De Almeida, Appl. Math. Lett. 23,
1174–1178 (2010).

9. S. Bock, and K. Gürlebeck, Math. Methods Appl. Sci. 33,
394–411 (2010).
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