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Abstract 

 

Carbon nanotubes / poly(vinylidene fluoride) composites were prepared using CNT 

with different oxidation and thermal treatments. The oxidation procedure leads to 

CNT with the most acidic characteristics that lower the degree of crystallinity of the 

polymer and contribute to a large increase of the dielectric constant. The surface 

treatments, in general, increase percolation threshold and decrease conductivity, but, 

on the other hand, are able to promote the nucleation of the electroactive phase of the 

polymer, which is suitable for the use of PVDF in sensors, actuators and other smart 

materials applications. Finally, the surface treatments do not seem to affect CNT 

interaction among them, reaching similar degrees of dispersion in all cases, as shown 

by the SEM results.  

The maximum value of the dielectric constant is ~630. It is demonstrated that the 

composite conductivity can be attributed to a hopping mechanism that is strongly 

affected by the surface treatment of the CNT.  

 

Keywords: carbon nanotubes, surface functionalization, PVDF composites, electrical 

properties 
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Introduction 

 

Carbon allotropes such as single-walled carbon nanotubes (SWCNT) or multi-

walled carbon nanotubes (MWCNT) are considered, since the work of Iijima [1], 

exceptional materials due to their remarkable electrical and mechanical properties [2, 

3]. The inclusion of these materials in a polymer matrix improves the mechanical and 

electrical properties of the polymer [4, 5], and the application range for such material 

is very broad [6]. 

 Several types of polymers – polypropylene (PP), polycarbonate (PC) and 

poly(vinylidene fluoride) (PVDF) – have been used to study several physical 

properties in MWCNT composites. PVDF is the main representative of a family of 

polymer materials with interesting scientific and technological properties. This 

polymer is known for its outstanding electroactive properties, non-linear optical 

susceptibility and high dielectric constant, among polymers [7]. 

 The conductivity of MWCNT/PVDF composites is usually understood within 

the framework of the percolation theory [8-10]. The percolation theory defines the 

percolation threshold, a critical concentration at which a giant cluster emerges in the 

domain marking the beginning of a second order phase transition. Within this 

theoretical framework, a power law is predicted for the electrical conductivity for 

concentrations larger than the percolation threshold: 

 



 0 c 
t

         (1) 

 

where  is the composite conductivity, 0 the filler conductivity, is the filler volume 

fraction, c is the critical volume fraction and t the critical exponent. It is worth to 

point that the critical exponents are believed to be universal [11], in contrast with is 

stated in a recent review [12], that demonstrates the existence of non-universal values 

for the conductivity critical exponent. It is important to notice that the origin of the 

conductivity critical exponent is not well understood. On the one hand, there is the 

Alexander-Orbach conjecture [13] which relates the conductive critical exponent to 

the system dimension and other critical exponents from the percolation theory, 

predicting therefore a universal critical exponent. On the other hand, several models 

have been proposed for the origin of a non-universal conductivity critical exponent,  
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[14]. Using hopping between the fillers as conduction model [15], it results in a 

conduction critical exponent that is equal to that predicted by the effective medium 

theory [16]. 

 One of the first attempts to include CNT in a PVDF matrix was performed in 

2003 by Seoul et. al  [17]. The production of SWCNT/PVDF composites and the 

composite conductivity in the solution was reported for spin-coated films and 

electrospun fiber mats. A percolation threshold for the conductivity of 0.003 wt % 

was found for SWCNT/PVDF solutions, 0.015 wt % for SWCNT/PVDF spin-coated 

films and 0.04 wt % for SWCNT/PVDF electrospun fiber mats. The dielectric 

properties of MWCNT/PVDF composites prepared by a physical blending and hot-

moulding process [18] increases rapidly with increasing CNT volume fraction, 

leading for values of the dielectric constant as high as 300 with a percolation 

threshold of 1.61 %vol. The conduction mechanism is described by the formation of a 

conductive network through hopping and tunneling processes. MWCNT/PVDF 

composites were also prepared by a solution method and hot moulding technology 

[19].The effect of stretching in the electrical properties of the nanocomposites was 

studied, demonstrating that the dielectric constant and conductivity decrease with 

stretching, due to the rearrangement of MWCNT in the composites along the tensile-

strain direction. The effects of varying MWCNT aspect ratio in MWCNT/PVDF 

composites [20] was also studied, with an increase of the dielectric constant with 

increasing MWCNT aspect ratio. Further, the percolation threshold increases with 

increasing aspect ratio, in contrast with the accepted  1/L scaling for the percolation 

threshold, where L is the length of the filler [21, 22]. This fact was attributed to the 

MWCNT agglomeration that reduces the effective aspect ratio. Finally, it was 

demonstrated that the dielectric constant follows a power law that is in accordance to 

the percolation theory [8-10], with a critical exponent that depends on the MWCNT 

aspect ratio, i.e. non-universal critical exponent MWCNT/PVDF composites prepared 

by a melt-compounding approach [23] show percolation threshold between 2 and 2.5 

wt% for the composites conductivity. It has been also reported that the inclusion of 

MWCNT in a PVDF matrix acts as a nucleation agent producing the polar  PVDF 

crystal form [24]. Furthermore, by mixing MWCNT with PVDF in the molten state in 

an ultra high-shear extruder[25], it was demonstrated that the percolation threshold 

depends on the shear, being 2.5 wt% for samples obtained under low-shear processing 
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and 1.5 wt% for samples obtained under high-shear processing. In MWCNT/PVDF 

samples produced by solution casting [26], a percolation threshold of 0.23 vol% (0.19 

wt%) was reported for the conductivity, whereas no percolation threshold was found 

relative to the dielectric constant. Instead, it was possible to infer that between 0.12 

vol% and 0.23 vol% there is a jump in the dielectric constant, less than one order of 

magnitude, at 1 kHz. Electrospun SWCNT/PVDF and MWCNT/PVDF composites 

with the fillers having similar surface chemistry were also studied [27]. The focus was 

in the crystalinity and in interfacial interaction between filler-matrix of the 

electrospun nanofibers. A decrease in the electrical conductivity with increasing filler 

concentration was observed. In particular, when the concentration of MWCNT and 

SWCNT was increased from 0.01 wt% to 0.1 wt%, the electrical conductivity was 

reduced, in contrast to previous results. In this context, it was demonstrated that the 

formation of a capacitor network for MWCNT/PVDF composites is the main 

mechanism for the enhancement of the dielectric constant, and it is also responsible 

for the deviations from the percolation theory [28, 29]. Furthermore, it was shown 

that the PVDF degree of crystallinity also influences the electrical properties of the 

composite [30]. 

In this type of composites, the main problem is controlling the filler dispersion 

and the matrix-filler interaction. Attempts have been made by preparing spherical 

composite particles by sonication [31] and different mixing procedures [32], but some 

of the most interesting strategies include the functionalization of the fillers. In 2007, 

Dang et. al [33] presented a wet-chemistry procedure to prepare functionalized 

MWCNT/PVDF composites. The MWCNT were modified with 3,4,5 

trifluorobromobenzene (TFBB) in order to improve their dispersion in PVDF. A value 

of 8000 for the dielectric constant was reported, although with a large dielectric loss. 

The percolation threshold was investigated by fitting a power law to the experimental 

results, observing a percolation threshold of 8 vol % and non-universal critical 

indices. It is important to note that by functionalizing the MWCNT, the dielectric 

constant increases relatively to the pristine MWCNT, due to blocking of the charge 

carriers by the functional groups. In 2008, a procedure to functionalize the MWCNT 

was presented by Li et. al [34]. Pristine, carboxylic and ester functionalized MWCNT 

were used to produce MWCNT/PVDF composites by evaporating suspensions of the 

nanotubes in PVDF. A percolation threshold was reported around 3.8 vol% for the 

three types of MWCNT/PVDF composites and it was found that for the same 
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MWCNT concentration, 6 vol%, the conductivity of the pristine MWCNT/PVDF 

composite is nearly two orders of magnitude larger than that of the functionalized 

MWCNT/PVDF composite. This fact was explained by a reduction of the MWCNT 

length, due to the use of the functional groups. A linear relation, 



log  
1/3

between the conductivity and the volume fraction was also found, that 

is typical of fluctuation-induced tunnelling [35], but also for hopping between 

adjacent fillers, corresponding to a weak disorder regime [36]. The electrical 

properties of pristine MWCNT/PVDF and functionalized (oxidized) MWCNT/PVDF 

composites have been also studied [37-39]. It was found that the interfacial 

polarization is the main reason for the enhancement of the dielectric constant with the 

addition of MWCNT, which is higher for the functionalized MWCNT. It was also 

reported that the percolation threshold is ~ 3.8 vol% for the electrical conductivity 

and that the conductivity of the pristine MWCNT is higher than that of the 

functionalized material for the same vol%, due to a reduction of the MWCNT length, 

caused not only by the oxidization procedure but also by differences in the 

aggregation of the fillers.  

 In the above description, it is evident that the mechanism of conductivity itself 

and the role of filler surface characteristics in the overall electrical result is not stated. 

In order to systematically address these issues, this work describes the effect of 

MWCNT surface functionalization through oxidation and selective removal of 

oxygen-containing surface groups at different temperatures on the phase content, 

degree of crystallinity and morphology of the samples. Moreover, the electrical 

response is studied and its origin is theoretically investigated. 

 

Experimental 

Commercial multi-walled carbon nanotubes (Nanocyl - 3100) have been used 

as received (sample CNTs). Further details on this material can be found elsewhere 

[40]. CNTs sample was functionalised as described in an earlier work [41]. Briefly, 

oxidation under reflux with HNO3 (7 M) for 3 h at 130 ºC was carried out, followed 

by washing with distilled water until neutral pH, and drying overnight at 120 ºC 

(sample CNTox). The CNTox material was heat treated under inert atmosphere (N2) 

at 400 ºC for 1 h (sample CNTox400) and at 900 ºC for 1h (sample CNTox900), in 

order to selectively remove surface groups. The obtained samples were characterised 
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by adsorption of N2 at -196 ºC, temperature programmed desorption (TPD). The total 

amounts of CO and CO2 evolved from the samples were obtained by integration of 

the TPD spectra. 

Polymer films with thicknesses between 100 and 150 m were produced by 

mixing different amounts of MWCNT (0.1, 0.15, 0.2, 0.25, 0.5 and 1.0 wt%, 

corresponding to 1.1710
-3

, 1.7610
-3

, 2.3410
-3

, 2.9210
-3

, 5.8310
-3

 and 1.1610
-2

 

volume fractions – Ф) with N,N dimethylformamide (DMF, Merck 99.5%) and PVDF 

(Solef1010, supplied by Solvay Inc., molecular weight = 352×103 g/mol) according 

to the procedure previously described [42]. For the calculation of the volume fraction 

the same density has been considered for all MWCNT independently of the oxidation 

treatment. Solvent evaporation, and consequent crystallization, was performed inside 

an oven at controlled temperature. The samples were crystallized for 60 min at 120 °C 

to ensure the evaporation of all DMF solvents. After the crystallization process, the 

samples were heated until 230 °C and maintained at that temperature for 15 min to 

melt and erase all polymer memory. This procedure should produce -PVDF 

crystalline phase samples [43]. 

The crystalline phase or phases present in the composites were identified by 

Fourier transform infrared spectroscopy (FTIR) using a Perkin-Elmer Spectrum 100 

apparatus in ATR mode from 4000 to 650 cm
-1

. FTIR spectra were collected after 32 

scans with a resolution of 4 cm
-1

. 

The thermal behavior of the samples was evaluated by differential scanning 

calorimetry (DSC), using a Pyris apparatus from Perkin-Elmer. Samples of 

MWCNT/PVDF were cut into small pieces and placed in aluminium cans with 

perforated lids and heated from 30 to 200 ºC, at a heating rate of 10ºC/min, in order to 

estimate the melting temperature and the degree of crystallinity of each sample. 

The topography of the samples and the MWCNT distribution was analysed by 

scanning electron microscopy (SEM, FEI – NOVA NanoSEM 200).  

The dielectric response of the nanocomposites was evaluated by dielectric 

measurements with a Quadtech 1920. The real (ε’) and imaginary part of the 

permittivity (ε’’) were obtained in the frequency range of 500 Hz to 1 MHz at room 

temperature. The d.c. electrical volume conductivity of the samples was obtained by 

measuring the characteristic I-V curves at room temperature with a Keithley 6487 

picoammeter/voltage source. The current and voltage were measured and the 
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resistivity was calculated taken into account the geometrical factors. For the dielectric 

and the d.c. electrical measurements, circular gold electrodes of 5 mm diameter were 

previously evaporated by sputtering onto both sides of each samples.  

 

Results 

 

The oxidising treatment originates materials with large amounts of surface acidic 

groups, mainly carboxylic acids and, to a smaller extent, lactones, anhydrides and 

phenol groups [40, 41, 44, 45], formed at the edges/ends and defects of graphitic 

sheets [46]. The different surface oxygenated groups decompose by heating, releasing 

CO and/or CO2, during a thermal programmed desorption (TPD) experiment. As this 

release occurs at specific temperatures, identification of the surface groups is possible 

[40, 41, 44, 45].  

 

Table 1 - BET surface areas obtained by adsorption of N2 at -196ºC and amounts of CO2 and CO 

obtained by integration of areas under TPD spectra (adapted from [41]).  

 

Sample SBET (m
2
/g) pHPZC CO2 (μmol/g) CO (μmol/g) CO / CO2 

CNTs 254 7.3 70 193 2.76 

CNTox 400 4.2 778 1638 2.11 

CNTox400 432 6.9 230 1512 6.57 

CNTox900 449 7.4 24 204 8.50 

 

The total amounts of CO and CO2 evolved from the samples, obtained by integration 

of the TPD spectra, are presented in Table 1. It is clear that the treatment with HNO3 

produces a large amount of acidic oxygen groups, which decompose to release CO2. 

Part of these groups (carboxylic acids) are removed by heating at 400 ºC. A treatment 

at 900 ºC removes almost all the groups, so that the obtained surface chemistry is 

similar to that of the original sample.. The CNTox sample has the highest amount of 

surface oxygen. This sample also presents the lowest ratio CO/CO2, indicating that this 

is the most acidic sample. CNTox900 presents the highest CO/CO2 ratio, suggesting 

the less acidic characteristics. The acid character of the samples decreases by 

increasing the thermal treatment temperature, since the acid groups are removed at 

lower temperatures than neutral and basic groups, as seen in previous works [40, 41, 

44, 45], and in agreement with the pHPZC values of the samples. 
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The surface areas of the samples, calculated by the BET method (SBET), are included 

in Table 1. The oxidation treatments lead to an increase of the surface area, as the 

process opens the endcaps of CNTs and creates sidewall openings [47]. The surface 

areas slightly increase as the thermal treatment temperature increases, since 

carboxylic acids and other groups, introduced during oxidation, are removed. 

FTIR was used to identify the phase or phases present in the samples. The 

presence of -PVDF can be identified by the 766 cm
-1

 absorption band and the 

presence of the -phase by the 840 cm
-1

 absorption band [48-50]. Fig. 1 shows the 

FTIR spectra for the four functionalized MWCNTs at 2.9210
-3

 volume fraction (Ф) 

and for the MWCNT/PVDF samples at all volume fractions. 

The characteristic absorption bands for the - and PVDF are present in all samples, 

apart from the pure polymer without MWCNT fillers, which is fully in the  phase 

PVDF, after processing under the same conditions as the composite samples. From 

the FTIR curves, the amount of  (F) and -phase (F) can be calculated by equation 

2, following the procedure described elsewhere [43, 51]. 

 



F() 
A

(K /K )A  A
         (2) 
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Figure 1. Left: FTIR spectra of the different functionalized MWCNTs polymer 

composites at 2.9210
-3

 Ф; Right: FTIR spectra obtained for the PVDF/MWCNT 

composites at different volume fractions. 

 

In equation 2, F() represents the -phase content; A and A the absorbencies at 766 

and 840 cm
-1

, corresponding to the  and -phase material, respectively; K and K 



9 

 

are the absorption coefficient at the respective wave number. The values of K and K 

are 7.710
4
 and 6.110

4
 cm

2
/mol, respectively [43, 51]. 

Figure 2 shows the quantification of  and -phase for composites at Ф 

=2.9210
-3

 for the different functionalized MWCNTs/PVDF samples and as a 

function of volume fraction for the MWCNT/PVDF composites. 
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Figure 2.  (F) and -phase (F) content for (left) the four functionalized 

MWCNT/PVDF composites at Ф =2.9210
-3

 and (right) as a function of volume 

fraction for MWCNT/PVDF composites. 

 

Figure 2 shows that all samples present a mixture of  and -PVDF phases, with the 

-phase content of the polymer ranging from 64.0% to 77.7%. The larger value of -

phase was obtained for CNTox900 composite, corresponding to the less acidic sample 

and with a larger surface area. In any case, it can be concluded that the surface 

treatments does not have strong influence in the nucleation of the electroactive  

phase of the polymer. 

DSC thermographs were used to determine the melting characteristics and to 

calculate the degree of crystallinity of the composites. The DSC curves for the four 

functionalized MWCNT at Ф =2.9210
-3

 and for MWCNT/PVDF composites at 

different volume fractions are presented in Figure 3.  
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Figure 3. DSC scans obtained for 2.9210
-3

 Ф of the different functionalized CNTs 

(left) and scans obtained for the MWCNT/PVDF composites at different volume 

fractions (right). 

 

In Figure 3 (left) it is shown that the melting temperature of the composites is shifted 

to higher temperature with respect to -PVDF, due to the presence of the -phase of 

the polymer with a higher thermal stability. In Figure 3 (right) it is shown that the 

shift to higher temperatures occurs for all concentrations above 1.17x10
-3

 which is 

correlated to the fact that all composite samples show a similar phase content. 

  

The degree of crystallinity (c) was calculated (Eq. 3) from the enthalpy of the 

melting peak (ΔHf) of the DSC scans, taken into consideration the enthalpy of a fully 

crystallized PVDF (ΔH100- = 93.07 Jg
-1

; ΔH100- = 103.4 Jg
-1

) and the relative fraction 

of  (x) and -phases (y)[7]. 



c 
H f

xH100  yH100
100       (3) 

 In Figure 4 the degree of crystallinity is shown for composites with 2.9210
-3

 

MWCNT volume fraction and for the MWCNT/PVDF composites at different 

volume fractions. 
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Figure 4. Degree of crystallinity (c) of the four types of MWCNT at 2.9210
-3

 Ф 

(left) and as a function of volume fraction for MWCNT/PVDF composites (right). 

 

Figure 4 indicates that there are not large variations of the degree of crystallinity, 

neither with the surface treatment of the CNT, nor with the variation in concentration 

for a given type of CNT. The degree of crystallinity is nevertheless smaller for the 

more acidic sample (CNTox), indicating larger surface interaction and hindering 

perfect crystallisation of the polymer. 

The morphology and fiber distribution of the prepared samples were analyzed by 

SEM. Fig. 5 shows representative images of the prepared samples. 
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Figure 5. SEM images of composites at 2.3410
-3

 Ф: a) fracture image of a 

MWCNT/PVDF sample; b) fracture image of a MWCNTox/PVDF sample; c) 

fracture image of a MWCNTox400/PVDF sample; d) fracture image of a 

CNTox900/PVDF sample; e) surface image of a MWCNTox900/PVDF. 

 

The fracture images (Figure 5 a) to d)) demonstrate that there is a good dispersion of 

the MWCNT in the polymer matrix and that the degree of dispersion is similar for the 

different functionalized MWCNT samples. The surface images (Figure 5 e)) 

demonstrate that the spherulitic structure characteristic of pure -PVDF is still 

present in the composite samples, indicating that the fillers, independently of their 

surface treatment, do not have a strong influence in the crystallization dynamics. 

Electrical measurements were performed to investigate the influence of the 

different CNT surface treatments in the overall electrical response of the composites. 

Dielectric constant and AC conductivity were measured for all MWCNT/PVDF 

composites. 

Figure 6 shows the dielectric constant as a function of the frequency for the 

(MWCNTox) MWCNT/PVDF composites. 
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Figure 6. Dielectric constant (ε’) as a function of frequency () for the (CNTox) 

MWCNT/PVDF composites. 

 

Figure 6 shows that the dielectric constant for the (CNTox) MWCNT/PVDF 

composites is almost independent of the frequency, except for the volume fractions 

2.3410
-3

 and 2.9210
-3

An increase in the dielectric constant is notorious, when 

compared with the -PVDF, for the samples with 2.3410
-3

, 2.9210
-3

 and 1.1610
-2

 

Ф of MWCNT. 

The frequency dependent dielectric constant, obtained for the MWCNTs composite 

samples, prepared with the different CNT treatments, show similar trends as those 

seen in Fig. 6. 

Fig. 7 shows the electrical conductivity as a function of frequency for 

MWCNTox/PVDF samples for the different volume fractions studied, calculated by 

equation 4 [52]: 

''0            (4) 
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Figure 7. Conductivity () for the MWCNTox composites as a function of frequency (). 

 

As a general trend, the electrical conductivity increases with increasing frequency for 

the MWCNTox /PVDF samples. This increase is observed for all samples with the 

exceptions of the composites with higher filler volume fraction (5.83x10
-3

 and 

1.16x10
-2

), which show a frequency independent behaviour. Moreover, the 

conductivity of the composites increases with increasing volume fraction of 

MWCNT. These trends are observed also for the composites with CNT undergoing 

different surface treatments. The fact that the samples with higher volume fractions 

show a frequency independent conductivity, leads to conclude that the increase in the 

conductivity with frequency for some of the samples is intrinsic to the matrix and it is 

related to ionic conductivity of the PVDF matrix. 

Figure 8 shows the dielectric constant as a function of volume fraction for the 

four types of MWCNT composites at a frequency of 1 kHz at room temperature.  
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Figure 8. Dielectric constant (ε’) as a function of volume fraction (Ф) for the different 

surface treatments performed on MWCNTs samples. 

 

The larger values of the dielectric constant are obtained for the oxidised CNT with a 

volume fraction of 2.9210
-3

 (0.25 wt%); the obtained value of ~ 630 is in accordance 

to the recent literature. It is worth to notice that the larger values of the dielectric 

constant are obtained for the more acidic sample. The higher value of the dielectric 

constant is achieved for lower volume fractions (two orders of magnitude) than Dang 

et. al [33] (0.15) but with lower values of the dielectric constant than these authors. 

Comparing with Li et. al [34], the higher value of the dielectric constant is also 

achieved for a lower volume fraction. As a function of concentration, Figure 8 shows 

an increase of the dielectric constant with volume fraction, followed by a decrease. 

This behaviour is typical of this type of composites and can be explained by the 

percolation theory. 

Figure 9 shows the concentration dependence of the DC conductivity for the 

different composites (left) obtained from the characteristic I-V curves (right). 
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Figure 9. DC conductivity () as a function of volume fraction (Ф) for the different 

functionalized MWCNTs (left), and characteristic IV curves for the different 

functionalized MWCNTs at 5.8310
-3

 right. 

 

It can be observed that the pristine MWCNT have a lower percolation threshold than 

the functionalized ones, which is in contrast to the same percolation threshold for the 

pristine and functionalized MWCNT obtained in the literature [34, 37]. The latter 

authors explain the higher conductivity obtained for composites with pristine 

MWCNT with a reduction of the length of the MWCNT. It is important to notice that 

if there is a reduction in the length of the MWCNT, different percolation threshold 

should be observed, which is not the case of the latter works.  

 As the conductance of the MWCNT is mainly determined by the  orbital’s 

[2], when the MWCNT are surface treated or functionalized, and the functional 

groups or defects are related to  orbitals, the conductance of the MWCNT is lowered 

and therefore the functionalized composites should show, in general, lower 

conductivity. 

 

Discussion 

 

It is important to notice that the oxidation procedure leads to samples with higher 

acidity, which induces a reduction of the degree of crystallinity of the polymer and an 

enlargement of the dielectric constant and lowering of the conductivity for a given 

concentration in the composite, due to the inclusion of defects in the surface of the 
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CNT. The surface treatments in general increase percolation threshold and decrease 

conductivity, but, on the other hand, are able to promote the nucleation of the 

electroactive phase of the polymer, which is suitable for the application of PVDF in 

sensors, actuators and other smart materials applications. The nucleation of the 

electroactive phase of the polymer is related to electrostatic interactions between the 

surface treated CNT and the polar groups of PVDF [48]. Finally, the surface 

treatments do not seem to affect CNT interaction among them, reaching similar 

degrees of dispersion in all cases, as shown by the SEM results.  

A more quantitative assessment of the electrical properties was achieved by analysing 

the results from Figure 9 with equation (1) from the percolation theory, but the 

obtained results are inconclusive, indicating that the theory is not appropriate for the 

proper description of the observed behaviour. Then, a description based on the 

network theory was applied, that allows to relate the composite conductance to the 

network disorder, by mapping the fillers to the vertices of the network and the edges 

to the gaps between the fillers [36]: 

 



Geff Gcut exp
lopt

Nmax 
1
3









        (5) 

 

In this equation, lopt is the length of the optimal path, that is the single path for which 

the sum of the weights along the path is the minimum. When most of the links of the 

path contribute to the sum, the system is said to be in the ”weak disorder” regime 

[53]. Conversely, the situation where a single link dominates the sum along the path is 

called the strong disorder limit [53]. In Equation (5), Nmax is the maximum number of 

fillers in the domain and Gcut is the effective conductance of the system before a bond 

with maximum conductance is added to (or removed from) the system [53]. The lopt 

parameter is related to the disorder strength when the system is in the weak disorder 

regime. At the weak disorder regime, the disorder strength is just the inverse of the 

scale over which the wave function decays in the polymer (x0), as expressed by the 

hopping conductivity equation at room temperature  [35, 54]. 

 



ij 0 exp 
xij

x0          (6) 
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In Equation (6), 0 is the dimension coefficient and xij is the distance between two 

fillers. As described in [36], applying Equation (6) to the gap between the fillers 

(described as the minimum distance between two rods) and defining the conductivity 

by hopping between adjacent fillers, results in Equation (5). This gives rise to the 

expression



log  
1
3 , as given by Equation (5), which corresponds to a weak 

disorder regime. This relation is also found in fluctuation-induction tunnelling [35] 

for the d.c.  conductivity. In order to prove the latter assumptions, the 



log  
1
3  

dependence was tested for the d.c.  measurements. Figure 10 shows the logarithmic 

plot of the d.c. conductivity as a function of volume fraction for all MWCNT/PVDF 

composite samples. 
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Figure 10. Logarithmic plot of the d.c. conductivity () as a function of volume 

fraction (Ф) for the different composites. Thick lines are linear fits to the presented 

data, R
2
 0.9 

 

As can be observed in Figure 10, there is a linear relation between the logarithm of 

the conductivity, but only for the higher volume fractions. A deviation from this 

behaviour was observed for the lower volume fractions and for the composites 

prepared with pristine MWCNT. This indicates that the composite conductivity is in 

the weak disorder regime [36] as the 



log  
1
3  dependence is observed. The 

deviation from the linear relation can be described by Equation (5), when the 

conductive network is not yet formed, which implies that 



Geff Gcutt [36], i.e., the 

effective conductance is controlled by the matrix conductance. This fact indicates that 
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the network is only formed by capacitors at the lower volume fractions and the matrix 

dominates the overall conductivity. As a conclusion, hopping between nearest fillers 

explains the deviation from the percolation theory and the overall composite 

conductivity is explained by the existence of a weak disorder regime. The formation 

of a capacitor network [29], where the plates of each capacitor are MWCNT pairs, 

explains the deviation from the expected linear relation between the logarithm of the 

conductivity and volume fraction, as predicted by the weak disorder regime. On the 

hand, the fact that the linear relation is not present in the composites prepared with 

pristine MWCNT indicates that the surface treatment of the CNT determines the 

nature of the transition of the isolator to the conductive regime, as well as the 

conduction mechanism of the composites. 

 

Conclusions 

Carbon nanotubes / poly(vinylidene fluoride) composites were prepared with different 

oxidation and thermal treatments. It is demonstrated that functionalized MWCNT can 

be used to increase the dielectric constant at very low volume fractions. It is also 

demonstrated that the composite conductivity can be attributed to a hopping 

mechanism. The oxidation procedure leads to CNT with the most acidic 

characteristics. These CNT lead to samples with lower degree of crystallinity of 

polymers and contribute to a large increase of the dielectric constant. The surface 

treatments lead to CNT that increase percolation threshold and decrease conductivity, 

but with the ability to promote the nucleation of the electroactive phase of the 

polymer, which is suitable for the use of PVDF in smart materials applications.  
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