
Joana Margarida Gonçalves Mota Silva 

 
 
 
Neurodegenerative role of stress and  
glucocorticoid hormones through  
Alzheimer’s disease Tau protein: a  
proteomic link between stress and brain 
pathology. 
 

Tese de Mestrado 
Mestrado em Genética Molecular 

Trabalho realizado sob a orientação de 
Doutor Ioannis Sotiropoulos 
Doutora Ana João Rodrigues  
Professor Doutor Nuno Sousa 
Professora Doutora Dorit Schuller 

Outubro de 2012 

Universidade do Minho 

Escola de Ciências 

Escola de Ciências da Saúde 



 
Anexo 3 

 

 

DECLARAÇÃO 

 

 

Nome 

_______________________________________________________________________________________ 

Endereço electrónico: _______________________________ Telefone: _______________  / _______________ 

Número do Bilhete de Identidade: ______________________   

Título dissertação □/tese □ 

_______________________________________________________________________________________ 

_______________________________________________________________________________________ 

_______________________________________________________________________________________ 

Orientador(es): 

_______________________________________________________________________________________ 

____________________________________________________   Ano de conclusão: ___________ 

Designação do Mestrado ou do Ramo de Conhecimento do Doutoramento: 

_______________________________________________________________________________________ 

 
 
Nos exemplares das teses de doutoramento ou de mestrado ou de outros trabalhos entregues para 
prestação de provas públicas nas universidades ou outros estabelecimentos de ensino, e dos quais é 
obrigatoriamente enviado um exemplar para depósito legal na Biblioteca Nacional e, pelo menos outro para 
a biblioteca da universidade respectiva, deve constar uma das seguintes declarações: 
 

1. É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE/TRABALHO APENAS PARA EFEITOS DE 
INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE 
COMPROMETE; 

 
2. É AUTORIZADA A REPRODUÇÃO PARCIAL DESTA TESE/TRABALHO (indicar, caso tal seja 

necessário, nº máximo de páginas, ilustrações, gráficos, etc.), APENAS PARA EFEITOS DE 
INVESTIGAÇÃO, , MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE 
COMPROMETE; 

 
3. DE ACORDO COM A LEGISLAÇÃO EM VIGOR, NÃO É PERMITIDA A REPRODUÇÃO DE QUALQUER 

PARTE DESTA TESE/TRABALHO 
 
 
 
 
Universidade do Minho,  ___/___/______ 
 
 
Assinatura: ________________________________________________ 

Joana Margarida Gonçalves Mota Silva

joanamgmsilva@gmail.com                                     914190915

13362429

 x

Neurodegenerative role of stress and glucocorticoid hormones through Alzheimer's disease Tau protein: a 

proteomic link between stress and brain pathology

Doutor Ioannis Sotiropoulos, Doutora Ana João Rodrigues, Professor Doutor Nuno Sousa, Professora Doutora

Dorit Schuller                                                                                                                                  2012

Mestrado em Genética Molecular

31     10    2012



iii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Nothing in life is to be feared, only to be understood.” 
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ABSTRACT 

 

Neurodegenerative role of stress and glucocorticoid hormones through Alzheimer’s 

disease tau protein: a proteomic link between stress and brain pathology. 

 

The importance of mechanistic understanding of TAU-mediated neurodegeneration as well as of 

involvement of risk factors in Alzheimer’s disease (AD) and related Tauopathies has been recently 

recognized towards prevention of tauopathy-associated dementias. Several lines of clinical 

investigation have identified different risk factors such as aging, genetic mutations, stressful 

environmental circumstances and gender, although their inter-significance to the onset and 

progression of TAU-related AD pathology is unclear. Previous studies have revealed that stress 

triggers APP misprocessing and Aβ generation as well as abnormal tau hyperphosphorylation but 

there is lack of molecular evidence of stress role on TAU aggregation mechanisms and its 

significance on cognitive and the less studied emotional component of AD pathology. Using a newly 

generated transgenic model expressing P301L-TAU, this study shows that prolong stress triggers 

TAU pathology, aggravating levels of tau aggregates and associated behavioral impairments in a 

gender-specific manner, with female animals being more vulnerable to the deleterious effects of 

stress which influences both their emotional and cognitive status. Furthermore, molecular analysis 

revealed that stress deregulated chaperone-mediated TAU degradation machinery by altering 

molecular chaperones such as Hsp90 and Hsp70 while it resulted in increased generation of 

truncated TAU triggering apoptotic pathways. These Master project findings provide further 

molecular evidence of the neurodegenerative potential of stress providing further support of gender 

implication in stress-triggered brain pathology in AD and other Tauopathies. 

 

 

 

 

 



viii 
 

 

 

 

 

 

 

 

 

  



ix 
 

RESUMO  

 

O papel do stresse na neurodegeneração induzida pela Tau: ligação proteómica entre 

o stresse e a doença de Alzheimer. 

 

Compreender os mecanismos moleculares bem como o envolvimento dos factores de risco no 

desenvolvimento das doenças neurodegenerativas, como a doença de Alzheimer ou as Tauopatias, 

tem sido um dos grandes focos de interesse da comunidade científica, de forma a identificar as 

estratégias preventivas destas demências. Várias linhas de investigação científica têm vindo a 

identificar alguns factores que contribuem para o desenvolvimento da Doença de Alzheimer, tais 

como a idade, mutações específicas ou parâmetros ambientais, no entanto a sua relevância no 

contexto destas patologias ainda é escasso. Estudos recentes demonstraram o envolvimento do 

stresse crónico e das hormonas de resposta ao stresse, os glucocorticóides, como potenciais 

agentes desencadeadores/promotores dos mecanismos neurodegenerativos da doença de 

Alzheimer, e com impacto tanto a nível cognitivo e na componente emocional da doença. 

Neste trabalho estudamos um ratinho transgénico que expressa a Tau humana mutada que 

contém uma das mutações identificadas mais comuns (P301L). Demonstramos que o stresse 

crónico despoleta algumas das características patológicas associadas com as Tauopatias e que 

este efeito é dependente do género do animal. Enquanto que os machos apenas apresentam um 

fenótipo ansioso, nas fêmeas, o stresse crónico despoleta/agrava a formação dos agregados da 

Tau e induz o aparecimento de deficits cognitivos (além dos emocionais).  

A análise molecular revelou ainda que o stresse desregula a maquinaria celular envolvida no 

folding/degradação da Tau, pois altera os níveis das Hsp90 e 70; e também parece ter um efeito 

substancial nos níveis envolvidos na apoptose (Bcl2,Bax). 

Este estudo contribuiu para o melhor conhecimento dos mecanismos moleculares patogénicos 

induzidos pelo stresse no contexto de uma Tauopatia, e demonstrou que o género é um factor 

determinante no desenvolvimento destas patologias. 
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1. GENERAL INTRODUCTION 

 

1.1 ALZHEIMER´S DISEASE – A 100-YEARS OLD DISORDER WITH UNCLEAR 

ETIOLOGY 

In 1906, Dr Alois Alzheimer described a surprising new clinical disorder after examining Auguste D, 

a 51 year old woman that exhibited a cluster of clinical symptoms, including progressing amnestic 

disorder, alexia, aphasia and agraphia, accompanied by disorientation, auditory hallucinations, 

paranoia, profound agitation and marked psychosocial impairment (Graeber & Mehraein, 1999). 

Auguste D died after four and a half years since the first symptoms appeared. This fast 

development of the disease and its pronounced symptoms made this clinical case unusual leading 

Dr Alzheimer to investigate the neuropathological features. The histological analysis of her brain 

revealed that “cerebral cortex was severely damaged exhibiting numerous small miliary foci and 

neurons with several fibrils”. All of these histopathological findings, the early onset and the rapid 

progression of the disease were completely apart from all the mental disorders described so far 

considering this condition as a unique disease, named later as “Alzheimer’s disease” (AD). 

(Feldman, 2007).  

Today, AD is considered a progressive age-related neurodegenerative and irreversible disorder while 

it is the most common type of dementia with a parallel decline in language and learning functions, 

followed by apathy and severe mood deficits. In advanced stages of the disease, psychosis and 

agitation become part of the daily life of patients, affecting much of their activities. (Kelly, 2008). 

Among AD patients,  5-7% of them develop an early onset of the disease, after 40 years old (so-

called familial AD) usually due to one or more mutations in genes related to the disease (see below) 

while more than 95% of AD cases  (sporadic AD) are affected later in life (>65 years old), without 

clarified genetic mutations. In general, AD patients exhibit an age-dependent increased probability 

for developing the disease with individuals beyond the age of 70 exhibiting a dramatic increase 

(Feldman, 2007) (Morawe, et al., 2011). AD is currently affecting more than 26 million people 

worldwide while this number is expected to rise to 106 million by 2050 (Frisardi, et al., 2011) due 

to the increased longevity, raising AD one of the major health problem for modern societies. Thus, 

the importance of an early diagnosis and treatment are of extreme relevance for public health 

(Wehling & Groth, 2010). 
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Although the understandings of the molecular and cellular pathways underlying the disease have 

grown enormously in the last years, AD etiopathology is still unclear with many parameters which 

are involved in the development of the disease with aging being the main predominant risk factor. In 

addition, genetic mutations in specific genes have also been found to be responsible for the 

development of the disease (e.g. APP, PS1, PS2), especially in the familial AD (Turner, et al., 2003). 

Furthermore, gender differences are also quite pronounced in AD as women are more prone to 

develop AD; a difference commonly associated with the post-menopausal decline in levels of the 

protective estrogen hormones (see review in (Pike, et al., 2009)). In addition, other predisposing 

factors have been associated with the onset of AD, such as vascular risk factors for heart disease or 

stroke, (e.g. like diabetes, hypertension, smoking and obesity) (Reitz, et al., 2011). Recently, 

chronic psychological stress is also thought to have a detrimental role of AD since several studies 

describe elevated cortisol levels in AD patients  (Swaab, et al., 1994) (Hartmann, et al., 1997) and 

stress and stress hormones are also known to trigger neuronal atrophy and memory impairment 

(Cerqueira, et al., 2005)(Magariños, et al., 1996) that also characterize AD pathology. Despite the 

above evidence, the significance interplay of all these risk factors on the initiation and/or 

progression of AD remain unclear and not well understood.  

1.2 ALZHEIMER´S DISEASE PATHOLOGY AND ITS PROGRESSION 

Over the last decades, huge research efforts have been focused on clarifying the detailed 

anatomical progression and underlying neurodegenerative mechanisms of AD pathology.  

Histopathologically, AD brains are characterized by two principal hallmarks: 1) deposits of amyloid 

β peptide (Aβ), a cleavage product of the transmembrane protein called Amyloid Precursor Protein 

(APP) and 2) intracellular neurofibrillary tangles (NFT’s), formed by the aggregates of abnormally 

hyperphosphorylated Tau protein (Gendron & Petrucelli, 2009). In addition, AD brains are 

characterized by neuronal atrophy and loss of synaptic connections that is followed by neuronal loss 

leading to severe whole brain atrophy at the late stages of the disease (Figure 1a). 

Along the disease progression, different brain regions are affected starting from trans-entorhinal 

region (stage I/II) and hippocampus and later the pathology spreads to forebrain nuclei, thalamus 

and amygdala (stage III/IV – limbic stages), and in the last stages of the disease, diffusing through 

neocortical regions (stage V/VI) (Braak & Braak, 1991) (Nagy, et al., 1999).  
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FIGURE 1. Histopathological hallmarks of Alzheimer’s disease. (a) Crosswise brain slice where AD brain (right) exhibits 

severe atrophy in comparison to healthy aged-matched one (left); (b) Histological detection of NFT’s and Amyloid 

plaques in AD brain (adapted from Kelly, 2008 and Vogels, 2009). 

 

1.2.1. AMYLOID PLAQUES AND APP PROCESSING 

Amyloid plaques consist of a central extracellular core of aggregated amyloid β-peptide (Aβ), a 39-

43 aminoacid peptide, arranged as β-sheet filaments surrounded by dystrophic axons and 

dendrites.  Aβ is a cleavage product of amyloid precursor protein (APP) (Huang & Jiang, 2009) 

(Figure 2). 

APP is a trans-membrane protein with a large extracellular domain. It is synthesized in the 

endoplasmic reticulum, transported to Golgi network, and then to the cell membrane, via the 

secretory pathway (Mattson, 2004). It is expressed in many cells and tissue types including 

endothelial, glial and neuronal cells. APP undergoes post-translational proteolytic cleavage via two 

different pathways: a) the non-amyloidogenic pathway where APP is sequentially cleavage by α-

secretase and γ-secretase (Figure 2a) b) the amyloidogenic pathway where APP is cleaved by BACE-

1 (β-secretase) and γ-secretase resulting in the production of Aβ (Golde, et al., 2010) (Figure 2). 

Cumulative evidence suggest a key role of the amyloidogenic pathway to AD pathology as many 

cleavage products of this pathway have neurotoxic properties; e.g. the BACE-1 cleavage product, C-

terminal fragment (C99) as well as the γ-secretase cleavage product, Aβ and AICD are 

demonstrated to process cognition-impairing properties damaging many cellular pathways related to 

neuronal malfunction and survival (Turner, et al., 2003) (Lichtenthaler, et al., 2011). 



6 
 

 

FIGURE 2. Mechanisms of APP processing. (a) Non-amyloidogenic pathway – the consecutive cleavage of APP by α-

secretase and γ-secretase generates p3 fragment and AICD at the end; (b) Amyloidogenic pathway – the cleavage of 

APP by β-secreatase and γ-secretase results to the production of AICD and amyloid β (Aβ). (Adapted from O’Brien & 

Wong, 2011).  

 

Based on the predominant hypothesis for AD, Aβ is the triggering parameter of the disease 

causing synaptic atrophy and loss, neuronal atrophy and disconnection which results in cognitive 

deficits, defining Aβ neurotoxic properties. Previous studies have shown that the soluble Aβ, and not 

the amyloid deposits, appear to exert neurotoxic effects, rapidly blocking long-term potentiation 

(LTP) in the hippocampus (Walsh, et al., 2002), increase oxidative stress activating Fyn signaling 

pathways, and stimulating GSK3β-mediated hyperphosphorylation of the cytoskeletal protein, Tau 

(First described in (Takashims, et al., 1998) (Small & K., 2008). Indeed, many studies 

demonstrated the neurotoxic actions of Aβ are mediated by Tau protein  (Rapoport, et al., 2002)  

(Roberson, et al., 2007) (Shipton, et al., 2011). 

 

1.2.2 NEUROFIBRILLARY TANGLES AND TAU PROTEIN 

Neurofibrillary tangles (NFT’s) are the other main hallmark of AD pathology. NFT’s are made of 

highly insoluble paired helical filaments (PHF) that appear as left-handed double helices and 

straight filaments (SF), consisted of abnormally hyperphosphorylated TAU.  
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Tau is a soluble microtubule associated protein that modulates the stability and assembly of MTs, 

inhibiting MT depolymerisation and reducing their dynamic. Thus, Tau has an important role in 

axonal growth and development, maintaining axonal morphology, cellular trafficking, and 

transporting cargo from the pre- to the post-synaptic regions, critical for synaptic function (Gendron 

& Petrucelli, 2009). Tau protein is attached to the MTs by the C-terminal region, and the N-terminal 

protrudes from the MTs, determining the space between them and playing an important role in the 

interaction with other cytoskeleton proteins (Gendron & Petrucelli, 2009). The phosphorylation of 

certain residues within the Mt-binding domain of Tau protein impairs its interaction with MT, leading 

to the detachment of Tau and its subsequent aggregation into NFTs and MT’s destabilization  

(Deshpande, et al., 2008)  (Gendron & Petrucelli, 2009).  

The human Tau gene is located in chromosome 17. Alternative mRNA splicing of exons 2, 3 and 

10, leads to 6 isoforms of the protein, which are all expressed in the adult brain. The expression of 

the six isoforms varies during brain development (Ballatore, et al., 2007). The isoform of Tau 

expressed in fetal human or rodent brain is the smallest one (see Figure 4) which is highly 

phosphorylated. Following the brain development, Tau expression pattern changes and fetal Tau 

expression is reduced while all the six isoforms are expressed in adults humans (Billingsley & 

Kincaid, 1997) but only 4 isoforms are expressed in adult rodent brain (Figure 3) (Ballatore, et al., 

2007).  

 

FIGURE 3. TAU isoforms in the fetal and adult brain. Tau isoforms are generated by the alternative splicing of exon 2 and 

3 (E2 or E3) and exon 10 (R2) which results in the generation of two main subgroups of isoforms depending of the 

number of repeats located in the Microtubule-assembly domain (three or four repeats; 3R or 4R) (adapted by Chun & 

Johnson, 2007).  
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TAU PHOSPHORYLATION AND ITS ROLE IN AD PATHOLOGY 

Tau protein can be phosphorylated at several sites (such as serine, threonine and tyrosine residues) 

along its structure. Specifically, 80 putative sites of threonine and serine phosphorylation exist in the 

longest isoform of Tau (441 residues). Kinases are the responsible enzymes that phosphorylate Tau 

by transferring phosphate groups from high-energy donors, like ATP, to specific substrates by a 

process known as phosphorylation. Tau kinases are divided in two groups: i) proline-directed 

kinases, such as GSK-3β, cdk5, MAP kinase and stress-activated kinases and ii) non-proline 

directed kinases, such as PKA, CaMKII and MARK/PAR-1 (Avila, et al., 2004). In addition to 

kinases, Tau phosphatases [such as protein phosphatase 1 and 2 A (PP1 and PP2A)] also regulate 

its phosphorylation pattern as they remove phosphate groups from Tau protein. PP2A is the most 

activated enzyme in dephosphorylation process of abnormally phosphorylated Tau and its levels are 

decreased in AD brains (Wang, et al., 2007).  

But is phosphorylation itself a detrimental effect for Tau and its function? Indeed, Tau 

phosphorylation is a natural and dynamic process in cells known to regulate tau function (e.g. 

binding to MTs). Under pathological conditions e.g. AD pathology, Tau is abnormally 

hyperphosphorylated in many sites such as within the repeat region which impairs the interaction 

between Tau and microtubules leading to the detachment of Tau for microtubules (Gendron & 

Petrucelli, 2009) (Deshpande, et al., 2008). In addition, hyperphosphorylation is suggested to alter 

conformation of Tau protein which leads to Tau aggregation into oligomers and then, into insoluble 

paired helical filaments (PHFs) and subsequently to Neurofibrillary tangles (NFTs) (Figure 4). In the 

“pre-tangle state”, where Tau monomers/oligomers aggregate into β-sheets (Ballard, et al., 2011), 

the hyperphosphorylated Tau is soluble. Then, it gradually aggregates into non-soluble fibrillary 

inclusions in the dendrites and cell body. These aggregates are resistant to proteasomal or 

lysosomal degradation resulting in higher accumulation of Tau aggregates, and consequent NFTs 

formation (Braak & Tredici, 2011). Curiously, NFT’s bearing neurons appear to survive for decades 

(Morsch, et al., 1999) and MT’s reduction in AD occurs independently of tau filaments and NFT 

formation (Cash, et al., 2003). Indeed, tau hyperphosphorylation, without the formation of 

filaments, can result in neurotoxicity; e.g. phosphorylated Tau at, pT231, pS262 and 

pS396/404have neurotoxic functions by interfering with MT stability and assembly, comprising 

defective dendritic plasticity and axonal transport.  
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FIGURE 4. Normal and pathological Tau phosphorylation. Under normal conditions, tau phosphorylation is a dynamic 

procedure for maintenance of Tau normal function trough the balanced action of kinases vs phosphatases that 

phosphorylated/dephosphorylate Tau. Under pathological conditions, Tau is abnormally hyperphosphorylated leading to 

its detachment from the microtubules and the formation of soluble aggregates and later insoluble aggregates. (Modified 

from Götz & Ittner, 2008). 

 

Furthermore, recent evidence aims to distinguish between cellular mechanisms triggered by Tau 

hyperphosphorylation versus these initiated by Tau aggregates. Kimura et al., (JBC 2010) has 

shown that animals expressing human non-mutated tau exhibit Tau hyperphosphorylation (but not 

Tau aggregates), synaptic loss and cognitive deficits by age while animals expressing the human 

mutated Tau saw tau aggregates and neuronal loss. 

 

1.3 TAU PATHOLOGY – BEYOND ALZHEIMER’S DISEASE 

Besides AD, intracellular aggregates of hyperphosphorylated Tau protein are also found in many 

other neurodegenerative disorders, in the absence of amyloid deposits, that are clinically 

characterized by dementia and/or motor syndromes, so called “Tauopathies” (Hernández & Avila, 

2007). This heterogeneous group of disorders include frontal temporal dementia with Parkinsonism 

linked to chromosome 17 (FTDP-17), Pick’s disease, and progressive supranuclearplasy and 

corticobasal degeneration. Each Tauopathy exhibits a characteristic regional pattern of NFT 

formation, and degeneration of vulnerable neuronal networks follows a stereotypical pattern (see 

Table 1). Despite the diverse phenotype and clinical presentation, the progressive accumulation of 
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NFTs is a common marker to all Tauopathies (Gendron & Petrucelli, 2009). Clinically, most 

tauopathies present a diagnostic challenge for the clinician and neuropathologists, due to the 

substantial overlap of pathological features that exist among  tauopathies, with many cellular lesions 

being encountered in more than one disease. (Tolnay & Probst, 2003).  

 

TABLE 1. Tauopathies: Some of characteristic disorders exhibiting tau protein aggregates.  (Tolnay & Probst, 1999)  

(Tolnay & Probst, 2003)   (Hernández & Avila, 2007) 

 

Tauopathies are linked to different Tau mutations (32 Tau mutations have been so far described) 

which are  missenses, deletions or silent mutations in the coding region of the protein, or intronic 

mutations located after exon 10 (Goedert, 2005). Tau mutations fall into two large categories: the 

first affect the protein while the second influences the alternative splicing of Tau pre-mRNA. Several 

mutations in exon 10 of Tau, such as P301L, K280, N296 and N296H, have effects on both 

protein and mRNA levels, (e.g. the splicing) and can result in the expression of different isoforms 

(Goedert, 2005). The most frequent mutation of human Tau gene is the well-characterized P301L 

that reduces Tau ability to bind to microtubules and enhances its ability to aggregate (Kimura, et 

al., 2010). 

Disease Clinical Tau inclusions References 

Alzheimer’s 
Disease 

Progressive loss of memory and cognitive 
functions, resulting in a severe dementia. 

NFT’s, NTh’s and 
dystrophic neurites. 

(Braak & 
Braak, 1991); 
(Nagy, et al., 

1999). 

Pick’s Disease 
Behavior changes, speech difficulty(aphasia), 

and impaired cognition 

Pick bodies, BN’s 
and neuritic 
inclusions. 

(Brion, et al., 
1991); (Buée-
Scherrer, et 
al., 1996). 

FTDP-17 Behavioral disturbances, cognitive 
impairment and parkinsonism. 

NFT’s, NTh’s and 
BN’s. 

(Spillantini 
MG, 1998) 

PSP Non-hereditary neurodegenerative disorders 
clinically characterize by akinesia, rigidity, 
occulomotor abnormalities and late-onset 

dementia 

NFT’s and NTh’s. 

(Steele, et al., 
1964); 

(Bergeron, et 
al., 1997). 

CBD 
Various neuronal 
inclusions and 

NTh’s. 

(Rebeiz, et al., 
1967); (Rinne, 
et al., 1994). 

 

(FTD) Fronto-temporal dementia. (NThs) Neuropil threads. (NFTs) neurofibrillary tangles. (ArGs) argyrophilic grains. (BNs) ballooned 

cells. (OMMs) oligodendroglial microtubular masses 
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1.4 MORE PARTNERS IN TAU-RELATED NEURODEGENERATIVE MECHANISMS 

 

1.4.1 ABNORMAL CONFORMATION AND TRUNCATION OF TAU 

Besides hyperphosphorylation, other Tau posttranslational changes, such as truncation and 

conformational changes have been found to participate in Tau-triggered neurodegenerative 

pathways linked to Tau aggregation mechanism(s). Truncation is the process that leads to a protein 

with less a.a. residues than the normal protein due to mutations and/or mistranslated RNA or due 

to cleavage by proteases, giving rise to a malfunctioning protein. Tau cleavage (at a highly 

conserved aspartate residue (Asp421) in the C-terminus of the protein) and caspase activation are 

both co-localized in AD brain suggesting that activation of caspases and cleavage of tau may 

proceed to the formation of NFT’s (Gamblin, et al., 2003) (Quintanillaa, et al., 2012). Cathepsin D 

is also known to cleave Tau protein, generating fragments similar to those found in NFT’s. 

Conformational changes lead to alterations in the structure of Tau protein and consequent 

alteration in its function; e.g. MC1-detected conformational changes of Tau is found in AD brains 

(Weaver, et al., 2000) related with its malfunction and aggregation in neuronal soma. Both 

truncation and abnormal conformation changes in tau protein have been linked to AD pathology, 

raising new questions about the development of tangle pathology. Overall, hyperphosphorylation, 

truncation and abnormal conformation of Tau are all interconnected with its neurotoxicity as well as 

its aggregation and tangle formation while the absolute sequence of these events remains a 

fundamental question in Tau-related neurodegeneration. 

 

1.4.2 DEGRADATION MECHANISMS 

A major factor that determines the half-life of a protein is the presence of signals that control its 

degradation and turn-over. Regarding tau protein, its stability and degradation is shown to be 

dramatically affected by the aforementioned post-translational modifications that occur in AD 

brains. The existence of ubiquitin-independent proteasomal degradation of tau protein has been 

previously reported as Tau protein is degraded by the 20S proteasome in vitro (Feuillette, et al., 

2005). However, there is strong evidence of tau degradation by the ubiquitin-proteasome system 

(UPS)  (David, et al., 2002). Accordingly, attachment of ubiquitin marks misfolded or/and 
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hyperphosphorylated Tau protein for degradation (Kirkin, et al., 2009). Chaperones, such as Heat 

Shock Protein 70 (Hsp70), Hsp90 and co-chaperone CHIP (carboxyl terminus of the Hsp70-

interacting protein) are the main proteins responsible for Tau ubiquitination and degradation (Koren, 

et al., 2009) while Tau hyperphosphorylation is necessary for the addition of ubiquitin by the E3 

ubiquitine ligase known as CHIP. After misfolded Tau is recognized by Hsp40, Hsp70 and CHIP 

proteins, the addition of Hsp90 with the help of Hop (Hsp70/Hsp90 organizing protein), results to 

Tau ubiquitination and transportation to the proteasome (Salminen, et al., 2011)(Figure 5).  

 

 

FIGURE 5. Model of Tau protein processing through the chaperone network. Hyperphosphorylated Tau affects its 

degradation by the molecular chaperones. This aberrant Tau is recognized by Hsp40/Hsp70 complex, and then can be 

directly degraded or passed on to Hsp90, forming an intermediate complex, together with Akt. After this complex 

formation, refolding machinery can repair Tau or degradation of the protein can take place, by the inhibition of Hsp90 

(adapted from Koren et al, 2009). 

 

Furthermore, small Hsp, like Hsp22 and Hsp27, participating in the chaperone network can also be 

involved in Tau degradation machinery, as it happens after phosphorylation by stress activated 

kinases, such as SAPK/P38 MAPK (Stetler, et al., 2009) (Koren, et al., 2009). These proteins can 

guide abnormal proteins to the proteasome in an ATP-dependent manner.  

 

1.4.3 APOPTOTIC MECHANISMS  

Despite the ubiquination of misfiled and/or aggregated Tau, their degradation is very problematic as 

they are resistant to proteasome clearance and this result to their accumulation in neuronal soma 
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that may lead to extensive cell damage and consequent cell death. Indeed, neuronal loss is found 

in entorhinal cortex, hippocampus, frontal, parietal and temporal cortices of AD patients while 

apoptotic mechanisms have been involved (Engidawork, et al., 2001a) (Engidawork, et al., 2001b). 

Apoptosis, also referred to as type I programmed cell death, is morphologically characterized by 

membrane blebbing, cytoplasmic shrinkage and pyknosis, as well as condensation of the 

chromatin, and karyorrhexis (fragmentation of the nucleus), ultimately leading to the formation of 

apoptotic bodies, a prominent morphological feature of apoptotic cell death (Galluzzi, et al., 2012). 

In AD brains, caspase-3 is shown to be critical initiator of apoptotic pathways (Shimohamaa, et al., 

1999) (H. Sua, et al., 2001) in which B cell lymphoma 2 (Bcl-2) family members are also involved. 

This family of proteins is divided into two groups: pro-apoptotic proteins (e.g. Bax and Bak) and anti-

apoptotic proteins (e.g. Bcl-2 and Bcl-xL). The pro-apoptotic members cause the formation of pores 

in the outer mitochondrial membrane (which is counteracted by the anti-apoptotic members) 

resulting in the release of cytochrome c into the cytosol that causes the formation of apoptosomes. 

Once the apoptosomes are formed caspase-9 is activated. Caspase-3 activation is necessary but not 

enough to execute an apoptotic cell death, and in some cases it may exert unrelated cell death 

roles by targeting specific substrates. Indeed, fine tuning of caspase-3 activity may avert completion 

of a full apoptotic program but safeguard physiological activities unrelated to cell death.[reviewed in 

(D’Amelio, et al., 2012)]. It remains unclear whether apoptotic cell death is part of AD neuronal 

death, due to accumulation of abnormal tau or if caspase-3 is part of a cellular response for 

maintaining homeostasis and achieving survival. 

 

1.5. RISK FACTORS OF ALZHEIMER´S DISEASE – CAN CHRONIC STRESS “CROSS-

TALK” WITH THEM? 

As clinical therapeutic trials against AD pathology failed to provide a promising approach yet, recent 

research efforts have been focusing on risk factors of the disease towards a prophylactic strategy. 

Increasing evidence support a causal role of lifetime stressful events in AD suggesting the 

involvement of chronic stress and glucocorticoids (GC), the primary stress hormones, in the 

pathogenesis and/or progression of the disease and associating elevated GC levels with 

hippocampal degeneration and atrophy and cognitive deficits in AD patients (Elgh, et al., 2006) 

(Hartmann, et al., 1997). But what is stress and how does our organism receive and cope with it? 
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Stress may be defined as a disruption of homeostasis following the impact of internal or external 

challenges (‘stressors’). Stressors are recognized and perceived by the brain through the release of 

molecules that target different responses (e.g. dopamine, serotonin, corticosteroids) as an adaptive 

mechanism to the adverse change (Joëls & Baram, 2009). The principal neuroendocrine system 

activated upon stressful conditions is the hypothalamo–pituitary–adrenal (HPA) axis, with results in 

the production of corticosteroids (cortisol in humans adnd corticosterone in rodents) which serve as 

a feedback inhibitory signal back to hypothalamus and pituitary (Figure 6).  

 

 FIGURE 6. HPA axis and its feedback inhibition. Stressful stimuli trigger the hypothalamic release of corticotropin 

releasing hormone (CRH) and arginine vasopressin (AVP) activating the synthesis of adrenocorticotropin hormone 

(ACTH) at pituitary. ACTH secretes into the bloodstream stimulating corticosteroids secretion from adrenal cortex into 

the blood which serve as a feedback inhibitory signal to hypothalamus and pituitary (Adapted from Schloesser et al, 

2012). 

 

Corticosteroids are divided in two main categories, glucocorticoids (GC) (glucose + cortex + steroid) 

and mineralocorticoids (MC). In mammalian brain, they primarily act through mineralocorticoid and 

glucocorticoid receptors (MR and GR, respectively). MR’s have higher affinity for corticosteroids and 

they are the first to be occupied (even at low corticosteroid levels). On the other hand, GR have ten-
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fold lower affinity. Accordingly, on basal, non-stressful conditions, GR are partially occupied and 

become increasingly occupied when corticosteroid levels are elevated (as in stressful conditions) 

(Kloet, et al., 2008). While stress and stress response are adaptive and important for maintenance 

of mental and physical health, exposure to stressful conditions for longer periods can become 

maladaptive resulting in damages in brain and many peripheral tissues affecting their function 

(Joëls & Baram, 2009). Indeed, elevated GC levels and GR activation are connected with the 

detrimental effects of chronic stress on neuronal and brain function (Sapolsky, et al., 1990) (Stein-

Behrens, et al., 1994)[see above and for review (Sotoripoulos, et al., 2008)], compromising 

neuronal survival and causing cognitive and emotional deficits through dendritic atrophy and 

synaptic loss in hippocampus and prefrontal cortex  (Cerqueira, et al., 2005) (Cerqueira, et al., 

2007) (Rothman & Mattson, 2010). These brain areas are critically affected in AD also exhibiting 

neuronal and synaptic atrophy/loss (for review, see Sotiropoulos et al, 2008). Indeed, AD patients 

also exhibit increased circulating GC levels, consistent with a suggested HPA-axis deregulation, 

possible relating AD with an altered stress-response (Rothman & Mattson, 2010). Indeed, elevated 

GC levels are associated with hippocampal degeneration, atrophy and cognitive deficits in these 

patients (Hartmann, et al., 1997). Furthermore, animal studies have also demonstrated that 

chronic stress and/or GC triggers both AD neurodegenerative mechanisms (Green, et al., 2006)  

(Catania, et al., 2007)  (Sotiropoulos, et al., 2008). Specifically, chronic stress and GC affect APP 

processing favoring the amyloidogenic pathway which results in increased C99 and Aβ levels 

affecting enzymes involved in APP misprocessing such as BACE-1, nicastrin and presenilin (Catania, 

et al., 2007) (Sotiropoulos, et al., 2008). In addition, exposure to chronic stress and/or GC 

treatment in both cellular and animal models induced Tau hyperphosphorylation followed by 

decrease degradation and accumulation of Tau in neuronal perikarya (Sotiropoulos, et al., 2008) 

(Sotiropoulos, et al., 2011). 

But does chronic stress damage our brain in the same way? Many studies have demonstated that 

chronic stress exhibit a different detrimental effect on genders affecting differentially their behaviour 

with female demonstrating a higher HPA axis response (for review see Dalla et al., 2010; see Figure 

10). Interestingly, gender differences also play an important role in the development and 

progression of the disease as women are more prone to develop AD pathology, associated with a 

decline in the estrogens production after menopause (Fratiglioni, et al., 1997). In addition, aged 

individuals have higher risk for AD with the prevalence of dementia doubling approximately every 5 
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years between the ages of 65 and 95 (Fratiglioni, et al., 1991) while it is also known that aged brain 

in more vulnerable to detrimental effect of chronic stress (Bloss, et al., 2011).  

As a recent study from Sotiropoulos and colleagues (2011) suggested an interactive role of stress 

and AD mechanisms through Tau, this Master thesis aimed to clarify the interaction of different risk 

factors of the disease, such as adverse stress, gender and aging, towards the development of AD 

brain pathology (Figure 7). 

 

 

FIGURE 7. Interplay of AD risk factors.  Schematic representation of the interconnections among stress, aging, gender 

and Alzheimer’s disease. (Drawn by J. Silva & I. Sotiropoulos).  
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2. OBJECTIVES 

 

Previous studies suggest that Tau protein may lie at the core of stress/GC-induced brain pathology, 

raising Tau hyperphosphorylation as critical mechanism in stress-triggered neuronal dysfunction and 

cognitive impairment. While aging, gender and chronic stress are risk factors for Alzheimer´s 

disease, their inter-significance on the development of Tau pathology is still unclear. Thus, this 

Master thesis aims to:  

  

I. Understand the behavioral importance of Tau on stress detrimental effects on cognitive 

and emotional deficits. 

II. Obtain molecular evidence about the role of stress and GC on different parameters of Tau 

pathology.  

III. Clarify the interaction of stress and Tau protein on cellular pathways related to neuronal 

survival. 

IV. Identify the significant interplay of gender, stress and aging towards the development of 

AD pathology. 

V. Monitor the influence of stress hormones on Tau subcellular localization. 
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3.1. BACKGROUND 

Tau pathology has been postulated as a common mechanism of neurodegeneration in many 

prolong neurological diseases termed Tauopathies, including Alzheimer’s disease (AD), 

frontotemporal dementia (FTD) and frontotemporal dementia with parkinsonism linked to 

chromosome-17 (FTDP-17) (Binder, et al., 2005) (Gong, et al., 2005). The identification of Tau 

mutations in FTDP-17 patients has established that Tau protein dysfunctions are central to the 

neurodegenerative process and the resulting dementia (Clarka, et al., 1998) (Spillantinia & Goeder, 

1998). Several Tau mutations have been expressed in transgenic mice; studies in mice expressing 

P301L, the most frequent Tau mutation (Nasreddine, et al., 1999), confirm that pathogenic Tau is 

a direct cause of Tau aggregates and NFT formation associated with AD neurodegeneration and 

pathology. Indeed, aggregation-prone P301L-Tau promotes its self-assembly forming insoluble, 

conformational abnormal Tau accumulations that trigger neurodegeneration processes that 

culminate in neuronal loss (Ballatore, et al., 2007) (Kimura, et al., 2010). Tau aggregates, neuronal 

loss and region atrophy are found in different AD brain areas such as hippocampus, entorhinal 

cortex, prefrontal cortex (PFC) and amygdala (Poulin, et al., 2011); such topographic pattern of 

neuropathology underlies the overall clinical manifestation of the disease, namely memory loss but 

also non-cognitive neuropsychiatric disturbances such as anxiety (Price & Morris, 1999) (Rosen, et 

al., 2006) (Bruen, et al., 2008).  

Tauopathies, namely AD, are complex multifactorial disorders with multiple precipitating factors 

such as aging, gender and stressful life events. Importantly, there are several interactions between 

these precipitating factors (for review, see Sotiropoulos et al. 2008). If aging has the highest impact 

on the development of AD as the probability of subjects is increased 5% for each year over 65, it is 

also known that the aged brain is more vulnerable to insults such as chronic stress (Sotiropoulos, et 

al., 2011). Moreover, epidemiological studies suggest that women are more prone to develop AD 

(Fratiglioni, et al., 1997) (Stein, 2001) and it has been demonstrated that the detrimental role of 

chronic stress seems to differ between males and females (Dalla, et al., 2011). Interestingly, 

elevated GC levels, the primary stress hormones, are associated with hippocampal degeneration 

and atrophy and cognitive deficits in AD patients (Elgh, et al., 2006) (Hartmann, et al., 1997) 

(Wilson, et al., 2007)and experimental studies confirm the detrimental effect of stress and/or GC 

on APP misprocessing and Tau hyperphosphorylation (Catania, et al., 2007) (Green, et al., 2006) 

(Sotiropoulos, et al., 2011). Despite the fact that many clinical studies highlight the important 
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contribution of stress, gender and aging on AD, few experimental studies have focused on dissecting 

their interplay towards the establishment of disease pathology. 

While our recent studies demonstrated that the stress/GC trigger Tau hyperphosphorylation and 

accumulation in brain areas targeted by stress, such as hippocampus and PFC (Sotiropoulos, et al., 

2011), the underlying mechanisms through which stress promotes Tau pathology are still unknown. 

Herein, we aim to provide novel molecular and behavioral evidence on: a) the detrimental role of 

adverse stress on Tau-triggered neurodegeneration focusing on both cognitive and emotional 

component of AD pathology and, b) the importance of gender and aging of stress-evoked pathology 

using middle-age and old male and female animals of a newly-generated transgenic mouse model 

that expresses the human mutated P301L-Tau (Kimura, et al., 2010).  
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3.2 MATERIAL AND METHODS 

ANIMALS AND TREATMENT 

Tg mice used in this study express the P301L mutated human Tau on a C57BL/6J background 

and were generated as previously described in (Kimura, et al., 2010). Tg mice and their littermate 

wild-type of both sexes that used in this study were separated at two age groups, 10-14 (middle-

aged) and 20-24 months old (old), respectively. Animals were housed 4-5 per cage under standard 

environmental conditions (temperature 22oC; relative humidity 70%; 12 h light/12 h dark cycle 

[lights on at 8 a.m.]; ad libitum access to food and drinking solution). Animals were subjected to 

prolonged stress over a period of 28 days (one stressor for 45 min/day in a random order; 

stressors: overcrowding; restraint; placement on a rocking platform; i.p. injection of hypertonic (9%) 

saline, 1ml/100g). Biometric and biochemical evidence of efficacy of the prolong stress was 

obtained based on measurements of daytime serum corticosterone levels (measured with a 

radioimmunoassay kit from ICN, Costa Mesa, CA), body weight changes, and glucocorticoid 

receptor (GR) levels (measured by Western blot analysis). All stressed animals showed significant 

elevations in daytime serum CORT levels (p<0.05), net loss of body weight (p<0.05) reflecting the 

stress efficacy (see Supplementary Table 1 and Supplementary Figure 1). 

 

BEHAVIOURAL TESTS 

Cognitive performance and emotionality were tested by Morris water maze (MWM) and Elevated 

plus maze (EPM) at the end of the stress period. For spatial reference memory, animals were tested 

over 9 consecutive days (3 trials/day; 60 s trial period) as previously described (Kimura, et al., 

2010)). For emotionality assessment, animals were tested in EPM apparatus for 7 min as previously 

described (Tanemura, et al., 2002). Briefly, animals were placed in the center of the EPM 

apparatus and entries as well as time spent in open and closed arm were measured. Data were 

collected using a CCD camera by the use of NIH Image program (http://rsb.info.nih.gov/nih-

image/) and were analyzed using customized software based on Matlab (version 7.2, Mathworks 

Co Ltd, CA) with image analysis tool box (Mathworks Co Ltd, CA) (Kimura, et al., 2007). 
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TISSUE COLLECTION 

One day after the last behavioral tests, half of animals were killed by decapitation. Brains were 

excised immediately. Prefrontal cortex, amygdala and hippocampus were dissected (on ice) and 

immediately stored at –80oC until they were used for Western blot analysis. The rest of animals were 

used for immunohistochemical analysis. 

 

WESTERN BLOT 

Sarkosyl-insoluble and –soluble fraction of tissue protein extracts was prepared as previously 

described (Kimura, et al., 2010) (Sahara, et al., 2002). Briefly, after homogenization, hippocampal 

and PFC lysates were centrifuged and supernatant was collected. Sarkosyl-insoluble, paired helical 

filament-enriched fractions were prepared from TBS-insoluble pellets which were re-homogenized in 

salt/sucrose buffer (0.8M NaCl, 10mM Tris/HCl, 1 EGTA, pH=7.4, 10% sucrose solution including 

protease and phosphatases inhibitors as above mentioned) and centrifuged. One tenth volume of 

10% sarkosyl solution was added to the supernatant, and after incubation at 37oC (1h), and 

centrifugation (150.000g), the resulting pellet was analyzed as the sarkosyl-insoluble fraction. After 

SDS–PAGE electrophoresis, and semi-dry transfer, all membranes were incubated in different 

antisera while blots were revealed by enhanced chemiluminescent (ECL, GE Healthcare Bio 

Science). Quantitation of immunoreactivity was performed with a computer-linked LAS-3000 Bio-

Imaging Analyzer System (Fujifilm).  

IMMUNOSTAINING 

As previously described (Kimura, et al., 2007), deeply anesthetized animals (pentobarbital 

50mg/Kg) were transcardially perfused with 10% formalin. Brains were post-fixed for 16hours and 

embedded in paraffin and sectioned (4 mm) in coronal plane. Deparaffinised sections were treated 

with various antisera against Tau-C3 (1:300), MC1 (1:100), active-caspase3 (1:300). 
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STATISTICAL ANALYSIS 

Results are expressed as group means  SEM. Statistical analysis (T-student’s Test, One-way 

ANOVA and Two-way ANOVA) was performed using SPSS, and differences were considered to be 

significant if p < 0.05. 
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3.3 RESULTS 

3.3.1 STRESS ALTERS COGNITIVE AND ANXIETY BEHAVIOR IN P301L-TAU ANIMALS 

IN A GENDER-SPECIFIC WAY 

In light of clinical evidence highlighting the important contribution of stress, gender and aging on AD 

pathology, we first investigated the effects of prolonged stress on cognitive performance in both 

male and female P301L-Tau animals in two different ages, middle aged (10-14 months old) and 

aged (20-24 months old) using the Morris water maze (MWM) test for assessing spatial reference 

memory. Middle-aged female Tg mice stressed (STR) exhibit a significant delay in learning position 

of the platform in comparison to non-stressed (CON) animals as assessed by error score curves, 

using repeated-measured ANOVA test (Figure 8A). This stress effect was even more pronounced in 

old female Tg animals (Figure 8B) as it is also shown by the probe test analysis (Figure 8C).  
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FIGURE 8. Adverse stress induced cognitive impairment in P301L-Tau Tg females. Morris Water Maze test was used to 

assess spatial reference memory in middle-age (10-14 months old; A) and old (20-24 months old; B) P301L-Tg female 

animals, represented as error score. Probe test score (C) at the end of learning acquisition period showing that old 

stressed animals were more affected in comparison to middle-aged stressed ones. All numerical data shown represent 

mean + SEM (N=10-12) (* p<0.05; *** p<0.001). 
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In contrast, male P301L-Tau Tg animals did not alter their spatial learning ability at both tested 

ages as revealed by MWM data (Figure 9A and 9B), confirmed by probe test (Figure 9C). 

Furthermore, no effect of stress was found in non-Tg littermates (Supplementary Figure 2) and no 

gender, age or strain differences were detected under non-stressed (CON) conditions. These 

findings reveal that gender (female) and age (older animals) increase the susceptibility to stress-

induced cognitive impairments in P301L Tg mice. 
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FIGURE 9. Male P301L-Tau Tg animals were not cognitively affected by stress. Morris Water Maze test and Probe test 

was used to assess spatial reference memory in middle-age (10-14 months old; A) and old (20-24 months old; B) 

P301L-Tg male animals showing that stress don´t affect male P301L-Tau tg animals. All numerical data shown 

represent mean + SEM (N=10-12) (* p<0.05). 

 

Anxiety is increasingly recognized in AD patients (Wilson, et al., 2011). Herein, we assessed anxiety 

levels in the EPM test. As shown at Figure 11, stress significantly increased anxiety behavior in both 

middle-aged and old female and male P301L-Tau animals as revealed by the time spent on the 

open arm of the apparatus (Figure 10A and 10C, respectively) and the number of entries (Figure 

10B and 10D). As above, exposure of non-Tg littermates to stress did not impact on anxiety-like 

behavior (Supplementary Figure 3). Note that two-way ANOVA analysis revealed a gender x age 
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effect given that male animals of both genotypes (P301L Tg and non-Tg) exhibited significantly 

decreased entries and the time spent in the open arm indicating a clear anxiogenic role of aging 

independently of the presence of P301L-Tau protein. 
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FIGURE 10. Adverse stress induced anxiety levels in both male and female P301L-Tau Tg mice independently of age. 

Stress increased anxiety levels as assessed by time spent in the open arms (A-C) and number of entries in the open 

arms (B-D). A-B) Time and entries in the open arms of EPM apparatus in female P301L-Tg mice C-D) Time and entries 

in the open arms in male P301L-Tau Tg mice. All numerical data shown represent mean + SEM (N=10-12) (* p<0.05). 

 

3.3.2 STRESS TRIGGERS TAU AGGREGATION PATHOLOGY IN FEMALE HIPPOCAMPUS 

In the light of experimental reports implicating stress and GC in AD neuropathology (Green, et al., 

2006) (Catania, et al., 2007) and in our previous findings that stress triggers Tau 

hyperphosphorylation and accumulation (Sotiropoulos, et al., 2008) (Sotiropoulos, et al., 2011),  

here we monitored the effects of stress on different indicators of Tau pathology focusing on 

hippocampus which is a brain area primarily affected in AD pathology involved in both cognitive and 

emotional behavior (Braak & Braak, 1991) (Poulin, et al., 2011). 
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FIGURE 11. Stress increased levels of sarkosyl-insoluble Tau in female but not male hippocampus. A-C. Western-blot 

analysis of sarkosyl-insoluble fraction of P301L-Tg mice; A.  Representative immunoblots of sarkosyl-insoluble fraction, 

using JM antibody; B. Quantification of insoluble Tau levels in midle-age(10-14 months) P301L-Tg mice; C. 

Quantification of insoluble Tau levels in old P301L-Tg; D-F. TBS-soluble Tau fraction of P301L-Tau Tg mice 

hippocampus; D. Representative imunoblots of TBS-soluble fraction, using Tau-5 antibody; E. Quantification of soluble 

Tau levels in midle-age P301L-Tg; C. Quantification of soluble Tau levels in old(20-24 months) P301L-Tg mice. All 

numerical data shown represent mean + SEM values (N = 6-7), depicted with respect to data obtained in control tissues 

(CON), set at 100%.  (* p<0.05). 
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contrast to their non-Tg littermates, sarkosyl-insoluble Tau (recognized by JM antibody) was 

extracted from the hippocampi of P301L Tg mice in both sexes (Figure 11). This finding is 

compatible with the presence of Tau aggregates that is characteristic for AD and other Tauopathies. 

As shown at Figure 12A-C, stress exposure resulted in a further increase in the levels of sarkosyl-

insoluble Tau levels in hippocampus of both adult and aged female P301L-Tau Tg animals. In 

contrast to females, male P301L Tg animals did not exhibited a significant change of sarkosyl-

insoluble Tau levels of hippocampus. In addition, no effect of stress was found on overall TBS-

soluble Tau hippocampal levels detected by a pan-Tau antibody at both genders and ages (Figure 

11D-F). As Tau pathological changes found in AD include aberrant conformation of the protein, we 

next monitored the conformational abnormal MC1-positive forms of Tau. As shown at Figure 12, 

MC1 staining was highly increased after exposure to stress (Figure 12B) in hippocampus of female 

Tg animals but not in males (data not shown). 

 

 

FIGURE 12. Tau conformation changes by adverse stress in P301L-Tg female hippocampus. MC1 staining of control (A) 

and stressed (B) female hippocampus of P301L-Tau Tg animals. 

 

3.3.3 STRESS INDUCES DYSREGULAYTION OF CHAPERONE-MEDIATED 

DEGRADATION MACHINERY AND TRIGGERS APOPTOTIC PATHWAYS IN P301L-TAU 

ANIMALS 

 

Tau degradation pathways are also critically connected with Tau aggregation and pathology. Based 

on our previous in vitro findings suggesting that stress hormones reduce Tau turnover resulting in its 
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accumulation (Sotiropoulos, et al., 2008), we analyzed different molecular chaperones, namely 

Hsp90 and 70 that are involved in Tau aggregation-degradation machinery (Dickey, et al., 2007); 

e.g. Hsp70 inhibits Tau aggregation by promoting its degradation (Petrucelli, et al., 2004). It is 

relevant to note that the same molecules are also bind to GC receptors participating in their cell 

signaling pathway (Conway-Campbell, et al., 2011). We found that stress increased protein levels of 

Hsp90 but reduced these of Hsp70 and its co-chaperone, Hsp105 while others such as Hsp60, 

Hsp27 and 40 were not affected (Figure 13A). Furthermore, other co-chaperones and transcription 

factors involved in the Tau degradation were affected by stress. Specifically, the levels of CHIP 

protein, a co-chaperone molecule that is involved in protein folding and it is known to direct interact 

with the above chaperones for facilitating degradation of insoluble tau aggregates (Petrucelli, et al., 

2004), were increased by adverse stress (Figure 13A); in contrast, a small decrease in HSF1 levels 

suggesting an overall deregulation on Tau degradation machinery. 

P301L-Tau expression is correlated with cell loss (Kimura, et al., 2010). Similarly, GC triggers 

apoptotic cell death affecting the ratio of Bax/Bcl-2 (Crochemore, et al., 2005). Thus, we next 

monitored the possible interaction of stress and P301L-Tau on apoptotic pathways in our Tg 

animals. Western blot analysis revealed that exposure to adverse stress evoked a significant 

increase in the protein levels of the pro-apoptotic molecule Bax with no significant changes in the 

levels of Bcl-xL and Bcl-2; this results in an altered ration of Bax/Bcl2 (Figure 13B and C). 

Subsequently, we monitored the levels of the active caspase-3, critically involved in Tau pathology 

as it is connected with the generation of truncated forms of Tau. As shown in Figure 13F, adverse 

stress increased levels of active-caspase3 while this increase is also accompanied by an elevation in 

the levels of truncated Tau (Figure 13G).  
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FIGURE 13. Stress-induced changes in molecular chaperones and apoptotic proteins in female P301L-Tau hippocampus. 

A-B. Representative blots and quantification analysis of different molecular chaperones involved in Tau degradation 

showing that stress decreased the Hsp70 and Hsp105 protein levels but increased Hsp90 and CHIP ones; C-E. Pro- 

and anti-apoptotic-related molecules are increased and decreased, respectively, by stress; F-G. Representative blots and 

quantification analysis of Tau-C3; H-I. Active caspace-3(H) and truncated Tau (I) staining was increased by adverse 

stress in hippocampus of female P301L-Tau Tg animals. All numerical data shown represent mean + SEM values (N = 

6-7), depicted with respect to data obtained in control tissues (CON), set at 100%.  (* p<0.05). 
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We next, counted cell numbers of male and female hippocampus showing that stressed animals 

exhibit a significant reduction in cell density in CA3 of aged female hippocampus but not in the 

male hippocampus (Table 2).  

 

TABLE 2. Reduced cell density in CA3 region of Hippocampus in females but no in male P301L-Tau anaimals.  

 

Female Male 

CON STR CON STR 

Hippo (CA3)  
10-14m 7,723 ± 0,341 7,941     ± 0,389 7,849 ± 0,256 7,818 ± 0,148 

20-24m 7,539 ± 0,152 6,796 * ± 0.133 7,562 ± 0,167 7,911 ± 0,279 
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3.4 DISCUSSION 

 

3.4.1 THE NEURODEGENERATIVE POTENTIAL OF STRESS ON TAU PATHOLOGY 

The importance of mechanistic understanding of TAU-mediated neurodegeneration as well as of 

involvement of risk factors in Alzheimer’s disease (AD) and related Tauopathies has been recently 

recognized towards prevention of Tauopathy-associated dementias. Cumulative evidence from 

human and animal studies suggests the implication of stress and its primary physiological 

response, GC, in the onset and/or progression of AD (Wilson, et al., 2007) (Johansson, et al., 

2010); for review see Sotiropoulos et al., 2008b). Our recent studies show that stress triggers Tau 

hyperphosphorylation and accumulation probably by affecting Tau turnover and aggregation 

(Sotiropoulos, et al., 2008) (Sotiropoulos, et al., 2011). Here, we demonstrate that exposure to 

prolong stress in the presence of the mutated human Tau protein (P301L) also triggers other 

parameters of Tau pathology, such as Tau aggregation, abnormal conformation and truncation as 

stress elevated sarkosyl-insoluble Tau aggregates, conformational abnormal MC1-positive form of 

Tau and Tau-C3-recognized truncated Tau.  

Both MC1-positive and truncated Tau are early pathological change in AD (Gamblin, et al., 2003) 

(Rissman, et al., 2004) (Weaver, et al., 2000) (de Calignon, et al., 2012), but others like sarkosyl-

insoluble Tau aggregates are suggested, by experimental and clinical evidences, to precede NFT 

formation, and consequently associated with neuronal and cognitive losses, being also considered 

as better indicators of neurodegenerative process and disease progression (Kimura, et al., 2010) 

(SantaCruz, et al., 2005) (Berger, et al., 2007). The sequence and relationship of different 

parameters of Tau-related neurodegeneration are still not well defined. Although we could not 

understand the clear progression of Tau pathology (conformational changes, truncation and 

aggregation), our results clearly demonstrate that chronic stress induced increased levels of 

Sarkosyl-insoluble Tau as well as increased levels of both MC1 and truncated Tau (cleaved by 

caspase 3 (Gamblin, et al., 2003), supporting relationship between stress and AD, given the 

induction of AD histopathological hallmarks by chronic stress. As C-terminus truncation of Tau 

facilitates its aggregation by enhancing the association of N-terminus with the Microtubule binding 

repeat of the protein, resulting in its aberrant pathogenic conformation of Tau (detected by MC1) 

(Rissman, et al., 2004) (Gamblin, et al., 2003), Tau misfolding, could be a result of Tau cleavage 
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by caspase-3 at Asp421; the same applies for oligomerization and formation of pathological (pre-

tangle) Tau aggregates. In addition, the Tau fragment produced by proteolytic cleavage clearly 

augments the nucleation of full-length Tau proteins into insoluble aggregates (Wang, et al., 2007). 

Disturbances in degradation of misfolded Tau protein are suggested to determine accumulation of 

tau aggregates and therefore, play an essential role in pathogenesis of Tau-related diseases. An 

essential step in Tau degradation is its binding to molecular chaperones such as Hsp70 as  their 

alterations can lead to failure of Tau degradation (Dou, et al., 2003) (Sahara, et al., 2005). Indeed, 

human data suggested a significant inverse correlation between insoluble Tau and Hsp70 protein in 

AD brains (Sahara, et al., 2007). Accordingly, our findings support adverse stress demonstrated a 

decrease in Hsp70 and Hsp105 levels, which ubiquinates Tau protein marking it for further 

degradation preventing its aggregation. Note that Hsp105 was shown to suppress apoptosis while 

its reduction could contribute to activation of apoptotic pathways by stress as shown in this study. 

In parallel, stress increased Hsp90 and CHIP levels and insoluble tau aggregates. Indeed, Hsp90 

binds Tau protein and promote its conformational change and aggregation (Tortosa, et al., 2009) 

while Hsp90 inhibition results in increased tau degradation and reduced subsequent aggregation 

with high therapeutic potential (Koren, et al., 2009). Note that CHIP correspond directly to Hsp90 

levels but not to Hsp70 as is previously shown by Sahara et al., (Sahara, et al., 2005).The fact that 

the same molecular chaperones bind to GC receptors regulating their cytoplasmic activation 

(Conway-Campbell, et al., 2011) suggests that this is the mechanistic link for the interplay between 

stress and Tau aggregation pathology in the P301L mice.  

The current study also demonstrated that stress in P301L mice alter the ratio of pro vs anti-

apoptotic molecules in favor of the previous; this is associated with reduced neuronal density in 

several brain regions. In this respect, it is important to note that the expression of P301L-Tau is 

correlated with cell death (Kimura, et al., 2010) (Wegmann, et al., 2011) and that increased GCs, 

the stress hormones, increase the ratio of Bax/Bcl-2 and trigger apoptotic cell death (Crochemore, 

et al., 2005). The demonstration of augmented caspase3 in P301L mice exposed to stress clearly 

suggests that this neurodegenerative process is triggered by stress in the context of an animal 

model of Tauopathies while additional, non-apoptotic neurodegenerative mechanism cannot be also 

excluded (Allen, et al., 2002) (Zehr, et al., 2004).   
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3.4.2 BEHAVIORAL EFFECTS OF STRESS IN P301L-TAU MICE AND THEIR GENDER-

SPECIFIC PROFILE  

The presence of Tau pathology in the hippocampus of stressed P301L mice, particularly in females, 

translated into functional deficits in the spatial reference memory, a hippocampal dependent task. 

Interesting, however, was the fact the cognitive deficits were confined to Tg females and were 

accentuated by age. While this fits with the pathological findings of increased Tau pathology in the 

hippocampal of these mice, it also reveals the existence of important interactions between genetic 

factors, stress, gender and sex, all of which are recognized to be precipitating factors of 

Tauopathies, namely AD (Elgh, et al., 2006) (Hartmann, et al., 1997) (Fratiglioni, et al., 1997) 

(Bloss, et al., 2011). Indeed, the absence of effects in non-transgenic animals clearly demonstrates 

that the expression of stress effects is potentiated in the presence of human mutated Tau, most 

likely due to the converging actions on common mediators of the neuropathological processes 

highlighted above. Noticeably, this phenotype is in good accordance with clinical data (REFS) 

showing that women exhibits higher risk in AD pathology. 

Although not central in dementia symptomatology, anxiety is a very frequent symptom in demented 

subjects; even though frequently observed in AD it is particularly common in FTD (Levy, et al., 

1996) (Porter, et al., 2003). Importantly, increased anxiety, largely determined by the combined 

activity of the amygdala and mPFC (Kim, et al., 2011), may precede cognitive impairment by 

several years (Jost & Grossberg, 1996). A few experimental studies suggest that Aβ is a central 

molecule in manifestation of anxious behavior as intraneuronal Aβ overproduction in amygdala of 

3xTg mice (España, et al., 2010) and exogenous Aβ administration (Catania, et al., 2007) 

(Pamplona, et al., 2010) resulted in symptoms of anxiety. The present findings of stress-induced 

heightened anxiety in P301L-Tau Tg mice demonstrate, for the first time, a role of Tau protein and 

its malfunction in the manifestation of anxiety behavior in the context of AD pathology. In contrast to 

the cognitive deficits, the present results show that stress-induced anxiety was similar among 

different ages of both male and female animals expressing the aggregation-prone P301L-Tau 

protein. This phenotypic profile is again in good correlation with pathological findings in the 

amygdala and PFC, but also with clinical characteristics (Seignourel, et al., 2008). 

Epidemiological studies show gender differences in the incidence and prevalence of AD with 

females being in higher risk, even after the age adjustment (Baum, 2005) (Andersen, et al., 1999) 

(Fratiglioni, et al., 2000) (Hy & Keller, 2000).Despite the fact that both AD and stress response 
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have a clear gender profile, there is paucity of research examining sex differences at a 

neurobiological and mechanistic level (National Institute of Mental Health 2011). Scrutiny of the 

existing AD Tg models reveal that several Aβ-based Tg mice exhibit a common pattern of higher 

female Aβ pathology, but not Tau one, under non-stressed conditions (Callahan, et al., 2001) 

(Wang, et al., 2003) (Schäfer, et al., 2007) (Rosario, et al., 2010) (Hirata-Fukae, et al., 2008). 

Curiously, there is only one Tg model  (Lewis, et al., 2001) displaying higher Tau pathology in 

female animals as a direct consequence of the higher transgene expression in this gender (Hsiao, et 

al., 1996) (Sahara, et al., 2002).  Our P301L-Tau Tg model demonstrates no gender differences on 

Tau pathology under non-stress conditions (Kimura, et al., 2010) (Kimura, et al., 2007). However, 

the present data provide molecular and behavioral evidence that the stress augment in 

hippocampal Tau pathology is gender specific; in line with the clinical evidence, we also found 

striker stress-induced deleterious effects in the female P301L. Our experimental findings are in line 

with a recent study showing that short repeated stress (5 days) triggered Aβ overproduction on the 

hippocampus of female but not male (5xTg) mice (Devi, et al., 2010). Interestingly, this gender-

susceptibility was not observed in other brain regions (e.g. PFC) nor in behaviors in which 

hippocampus is not typically implicated (e.g. anxiety); these findings are in agreement with our 

findings where both anxiety and Tau pathology in PFC was equally aggravated by adverse stress in 

both female and male P301L-Tau animals (data not shown). 

But what are the mechanisms underlying the gender susceptibility to stress-induced Tau pathology 

in the hippocampus of the female P301L mice? An age-dependent decline of estrogen hormones 

with loss of their neuroprotective effects have been widely suggested to be involved in AD gender 

susceptibility differences (Andersen, et al., 1999) (Fratiglioni, et al., 2000) (Wang, et al., 2003) 

(Gandy & Duff, 2000) (Manthey & Behl, 2006). While female rodents do not typically experience 

menopause and the associated depletion of estrogens, they exhibit after 12-16 months persistent 

diestrus periods with low estrogen levels (Felicio, et al., 1984) (Nelson, et al., 1982) (Alkayed, et al., 

2000) (Jezierski & Sohrabji, 2001) (Nordell, et al., 2003). The reduced estrogenic stimulus can 

render neurons more vulnerable to stress- and disease-related processes (Wang, et al., 2003) 

(Gandy & Duff, 2000) (Manthey & Behl, 2006) (McEwen, 2002). This, however, would not explain 

why the gender differences; while no define explanation can be provided at this moment, it is 

important to note that estrogen receptors (ERβ) are decreased in hippocampus of 12 and 24 

months-old female animals (Yamaguchi-Shima & Yuri, 2007). 
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Alternatively, changes in the organization role of sex hormones during early brain development 

(Cosgrovea, et al., 2007) (Mesquita, et al., 2007) may contribute to the described sex differences in 

both AD risk and stress vulnerability (Dalla, et al., 2011). The supporting evidence for the impact of 

the programming role of sex hormones in the vulnerability to AD neurodegenerative mechanisms 

comes from a recent study where demasculinization of neonatal male 3xTg mice that led to 

increasing hippocampal Aβ levels to approximately that of females and diminished the differences 

of adulthood hippocampal Aβ pathology (male << female) of male hippocampus (Rosario, et al., 

2010). Together with our current findings, the above evidence further supports the emerging idea 

that “feminized” hippocampus is inherently more vulnerable to stress-triggered pathology. An 

interesting, and not mutually exclusive, hypothesis stems from studies on the structure and function 

of the locus coeruleus (LC) that were shown to exacerbate AD pathology (Heneka, et al., 2006); 

importantly, this brain region exhibits increased sensitivity to stress in females (Curtis, et al., 2006) 

(Bangasser, et al., 2011) (Bangasser, et al., 2012) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

3.5 CONCLUSION 

 

As previously suggested (Carroll, et al., 2011), our findings clearly demonstrate that prolong stress 

exhibit a gender-specific detrimental effect on Tau pathology and associated cognitive component of 

AD pathology mirroring the clinical and epidemiological profile of the disease in humans. 

Furthermore, in contrast to their WT littermates, P301L-Tau mice were vulnerable to prolong stress 

suggesting that the presence of mutated Tau predisposes animals to detrimental stress effect, a fact 

that is supported by reports of an enhanced neurotoxic response to stress or stress hormones 

(Roberson, et al., 2007), in presence of Tau protein (Sotiropoulos, et al., 2008) (Rothman, et al., 

2012). Indeed, this study provides important evidence on association of genetic causes and risk 

factors such as adverse stress of Tau pathology as well as their interaction with gender, towards the 

optimization of treatment modalities in clinical use. 
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3.6 SUPPLEMENTARY DATA 

Supplementary Table I. Biometric data of control and stressed animals. Effects of stress on body weight and blood 

corticosterone levels of both P301L-Tg and WT animals at sacrifice.  

 

 

 

 

 

 

 

 

SUPPLEMENTARY FIGURE 1. Corticosterone levels. Corticosterone circulating levels in both P301L-Tau and WT animals. 

All data shown represent mean + SEM values (* p<0.05). 
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SUPPLEMENTARY FIGURE 2. Adverse stress has no impact on cognitive performance of WT animals. Morris Water Maze 

test used to assess spatial reference memory in middle-age (10-14 months old; A and C. old (20-24 months old; B and 

D. WT female and male animals, showing that stress don´t affect male P301L-Tau tg animals. All numerical data 

shown represent mean + SEM values (N = 10-12). 
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SUPPLEMENTARY FIGURE 3. No stress-evoked changes in anxiety levels of WT animals.  Stress had no effect on anxiety 

levels as assessed by time spent in the open arms (A-C) and number of entries in the open arms (B-D). A-B) Time and 

entries in the open arms of EPM apparatus in female WT mice; C-D) Time and entries in the open arms in male WT Tg 

mice. All numerical data shown represent mean + SEM values (N = 10-12) (* p≤0.05). 
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SUPPLEMENTARY FIGURE 4.  No changes induced by stress in molecular chaperones female WT hippocampus. A-B. 

Representative blots and quantification analysis of different molecular chaperones involved in Tau degradation showing 

that stress as no effect on molecular chaperones, increasing only Hsp27. 

 

ADDITIONAL FIGURE 1. Adverse stress increases sarkosyl-insoluble Tau levels in both female and male, regarding age. A-

C. Western-blot analysis of sarkosyl-insoluble fraction of P301L-Tg mice; A.  Representative blots of sarkosyl-insoluble 

fraction, using JM antibody; B. Quantification of insoluble Tau levels in mild-age P301L-Tg; C. Quantification of insoluble 

Tau levels in old P301L-Tg. All numerical data shown represent mean + SEM values (N = 6-7), depicted with respect to 

data obtained in control tissues (CON), set at 100%.  (* p<0.05). 

 

 

 

B

Hsp105 Hsp90 Hsp70 Hsp60 Hsp27 CHIP 85k Da 95kDa
0

20

40

60

80

100

120

140

160

180 *

Re
la

tiv
e 

O
.D

. 
(%

 o
f c

on
tr

ol
)

(n
or

m
al

iz
ed

)

A CON STR

Hsp90

Hsp70

Hsp60

Hsp40

Hsp27

Hsp105

actin

- 105 kDa

- 90 kDa

- 70 kDa

- 60 kDa

- 40 kDa

- 27 kDa

- 42 kDa

HSF-1

CHIP

- 95 kDa

- 85 kDa

- 35 kDa

JM

JM

Female

CON STR

Male

CON STR

75

50

kDa

75

50

Sarkosyl-insoluble fraction
A

B

C

CON STR CON STR
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

*
*

F e m a l e M a l e

1 0 - 1 4  m o n t h s
I
n

s
o

l
u

b
l
e

 
T

a
u

 
(

 
%

)

CON STR CON STR
0

5 0

1 0 0

1 5 0

2 0 0

*
*

F e m a l e M a l e

2 0 - 2 4  m o n t h s

I
n

s
o

l
u

b
l
e

 
T

a
u

 
(

%
)

10-14m

20-24m



47 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. STRESS HORMONES INFLUENCE ON 
TAU LOCALIZATION 
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4. STRESS HORMONES INFLUENCE ON TAU LOCALIZATION 

4.1 BACKGROUND 

Microtubule-associated protein Tau (Tau) is postulated as a common crucial protein in mechanism 

of neurodegeneration in many chronic neurological diseases termed Tauopathies, including AD 

raising this protein as strong candidate for therapeutic intervention. While the mechanism(s) by 

which Tau mediates neurodegeneration are not completely understood, many studies have 

established that Tau dysfunction are central to the neurodegenerative process and the resulting 

dementia (Binder, et al., 2005) (Iqbal, et al., 2005) highlighting its hyperphosphorylation and 

mislocalization as initial steps of neuronal dysfunction. So, where is Tau protein localized and is Tau 

phosphorylation profile related to its distribution? The current view suggests TAU as a cytoskeletal, 

mainly axonal, protein with a major role in stabilizing microtubules (MT). Indeed, it is well known 

that Tau facilitates tubulin assembly by binding to MT, thus stabilizing polymerized MT, nucleating 

and orienting MT. In addition, Tau inhibits the rate of MT depolymeraziation e.g. reducing their 

dynamic instability (Avila, et al., 2004). During brain development, Tau and other microtubule-

associated proteins are initially distributed ubiquitously throughout neurons but during 

differentiation processes, Tau becomes sorted mainly into axons. Although most of the studies state 

that Tau is an axonal microtubule associated protein, several observations suggest that Tau is also 

distributed in the cell body and dendrites in adult rat brain (Papasozomenos & Binder, 1987) 

(Tashiro, et al., 1997 ) while Tau mRNA was also detected in the synaptosomal fractions of rat 

brain (Crispino, et al., 2001). Furthermore, as Tau is known to interact with other cytoskeletal 

proteins such as spectrin, F-actin and Fyn, very recent evidence suggest a novel role of Tau at 

neuronal dendrites connecting it with early stages of neurodegenerative mechanism involving Aβ 

toxicity and/or Tau hyperphosphorylation (Hoover, et al., 2010)  (Ittner, et al., 2010). As chronic 

stress and GC hormones are shown to trigger Tau hyperphosphorylation (Sotiropoulos, et al., 2008) 

(Sotiropoulos, et al., 2011) and in parallel, induce dendritic and synaptic atrophy/loss (Sousa, et 

al., 1999), this study aims to provide detailed in situ demonstration of TAU topology using electron 

microscopy and monitor the influence of stress hormones, GC, on Tau subcellular localization in 

neurons of hippocampus; a well-known target area for both stress and AD pathology. 
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4.2 MATERIAL AND METHODS 

 

ANIMALS 

Animals used in this study were divided into two groups: a) animals i.p. injected with the synthetic 

glucocorticoid Dexamethasone (DEX; 300μg/mL/kg BW; 1:10 Fortecortin TM, Merck, Darmstadt, 

Germany) for 15 days and control animals (vehicle-injected). Animals were group housed per cage 

under standard environmental conditions (temperature 22ºC, relative humidity 70%, 12h light/dark 

cycle, ad libitum access to food and drinking solution). Control, vehicle-injected and DEX-injected 

animals exhibited a 29.73%, 3.11% and -7.47% body weight changes, respectively.  

 

TISSUE AND SLICES PREPARATION FOR TRANSMISSION ELECTRON MICROSCOPY 

At the end of DEX treatment, animals were sacrifice by decapitation and brain was removed. 

Immediately, hippocampi were fixed in 4%PFA for 3 days(4ºC). Tissue was transferred to 0,8% 

gluteraldehyde in 0.1M of PB, pH=7.4. After PB washing, tissue was embedded in Epon resin and 

ultrathin sections (500 Å) were cut onto nickel grids.  

 

TAU IMMUNOGOLD STAINING 

Slices were treated with heated Citrate buffer (1x; Thermo Scientific, CA, USA) for 30min and left to 

cool down for 5-10min. After 20mM phosphate buffer (PB) wash (5min), non-specific binding 

blocked by 5% BSA(extra pure, EM specified, SIGMA-ALDRICH, ST Louis, MO, USA) at R.T. (10min). 

After PB wash, grids were incubated with primary antibody diluted in 1%BSA in PB (Tau-5, 1:50; 

p202Tau, 1:50; p231Tau, 1:150; Abcam) for 14h at R.T. followed by appropriate secondary gold 

antibody (anti-rabbit-gold or anti-mouse-gold, 1:15; Abcam). Negative control grids were incubated 

without primary antibody. Grids were stained with uranyl acetate, followed by lead citrate and 

observed in a Zeiss 902A electron microscope.  
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4.3 RESULTS AND DISCUSSION 

In line with the well-known axonal role of microtubule-associated Tau protein, we found that Tau 

expression was enriched at axonal compartment exhibiting the high dot signal forming the 

characteristic parallel arrays that are continuous over long distances (Figure 15A). These electron 

microscope findings support the main function and regulating role of Tau protein on axonal growth 

and structure (Mandelkow, et al., 2003).  In addition, Tau was detected at dendrites but at 

significantly lower levels of expression in comparison to the axons (Figure 15A). Indeed, previous 

immunohistochemical studies in rat brain and neuronal cultures suggested the presence of Tau 

protein at the somatodendritic compartment (Tashiro, et al., 1997 ) (Ballatore, et al., 2007). Most 

importantly, Tau was also found to be present at dendritic spines and synapses, specifically at 

postsynaptic part including postsynaptic density (Figure 15B-D). This finding further supports a very 

recent suggestion for synaptic Tau role where it binds to NMDA receptors through Fyn (Ittner, et al., 

2010). Surprisingly, Tau seems to be also detected pre-synaptically providing a completely new 

insight about novel Tau role and function. Further experimental evidence is required in order to 

confirm and further investigate a potential presynaptic role for Tau protein.  

In addition, endoplasmatic reticulum and Golgi apparatus (GA) exhibit Tau immunogold staining 

(Figure 16A, B) highlighting the fact that Tau is subject to several types of post-translational 

modifications such as glycosylation and phosphorylation that may occur when Tau is transferred to 

this cellular compartment. Previous studies have immunoisolated Tau with the Golgi membranes 

and immunodetected Tau at GA of motor neurons by electron microscope immunocytochemistry 

suggesting that TAU may regulate of GA structure by mediating their association with microtubules 

(Farah, et al., 2006). In agreement with previous studies describing association of Tau with 

mitochondria (Jung, et al., 1993), we found mitochondrial distribution of Tau (Figure 16C).  
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FIGURE 15. Electron microscope subcellular localization of Tau protein. Tau localization was primarily found at axons 

(red; A) and dendrites (green; d), but also at synapses (yellow; B-D). E-F: negative control. 

 

Supporting the fundamental involvement of Tau protein at cargo cellular mechanism at axon but 

also at soma  (Stamer, et al., 2002) (Mandelkow, et al., 2003). In addition, Tau was detected on 

cellular membrane providing further support of the interaction of Tau with membrane as shown by 

Brandt et al.,  (Figure 16D). Accordingly, further support of Tau role in transport of membranous 

organelles was based on Tau overexpression in neuronal but also non-neuronal cells which resulted 

in accumulation of organelles such as mitochondria, Golgi membranes, peroxisomes in the region 

around the nucleus  (Drewes, et al., 1998)  (Stamer, et al., 2002).  
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FIGURE 16. Tau localization at membranes of cellular organels. Micrographs of imunogold staining for Tau (Tau-5) 

showing that Tau protein is present at Endoplasmatic reticulum (ER), Golgi apparatus (GA), mitochondria outer 

membrane (M) and plasma membrane in hippocampus tissue. 

 

Phosphorylation of Tau protein is shown to regulate its function as well as its localization in different 

neuronal compartments. This is also true for pathological conditions such as Alzheimer´s disease 

(AD) pathology where tau is hyperphosphorylated and accumulated in the neuronal soma where 
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synaptic loss occurs. Indeed, previous studies have shown that chronic stress and stress hormones, 

glucocorticoids (GC), trigger Tau hyperphosphorylation and accumulation (Sotiropoulos et al., 2008; 

2011) followed by dendritic atrophy and synaptic loss. Based on the above findings, we aim to in 

vivo monitor the effect of prolong exposure to elevated GC levels on Tau subcellular localization as 

part of stress/GC-evoked synaptic pathology using animals that were i.p. injected with the synthetic 

glucocorticoid, dexamethasone (DEX) for 15 days. As electron microscope-based immunogold 

staining revealed (Figure 17), DEX treatment resulted in reduction of total Tau staining in dendrites 

and synapses in hippocampal tissue. 

 

 

FIGURE 17. DEX reduces dendritic and synaptic imunogold staining of Tau. Micrographs of imunogold staining for total 

Tau (Tau 5) showing a decreased staining of Tau in the hippocampal dendrites and synapses in DEX-treated animals 

(B) when compared to vehicle-treated ones (A). 

 

At the next step, we monitored the presence and localization of phosphorylated Tau isoforms in 

hippocampus of DEX-treated animals focusing on Thr231-phosphoTau as this epitope 

phosphorylation is strongly implicated in the neuropathology of AD associated with the appearance 

of tau aggregates and tangles as well as the severity of AD memory impairments of AD patients 

(Augustinack, et al., 2002) (Ewers, et al., 2007). We noticed an increase in staining of 

phosphorylated Tau at Thr231 epitope (Figure 18A and B), a primed site for GSK3β (Goedert, et al., 

1994) a Tau kinase that is known to be activated by stress and GC in both in vitro and in vivo 

studies (Sotiropoulos, et al., 2008) (Sotiropoulos, et al., 2011). The phosphorylation at Thr231 

diminishes the ability of Tau to microtubules and it is mainly found at soluble fractions (Cho & 
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Johnson, 2003) (Hamdane, et al., 2003), pointing for the role of stress in the initiation of Tau 

pathology through soluble abnormal Tau, supported by our previous studies (Sotiropoulos, et al., 

2011). Furthermore, this notion is in agreement with the recently suggested accumulation of 

hyperphosphorylated species of Tau at dendritic spines as one of the earlier parts of synaptic 

pathology characterizing AD (Hoover, et al., 2010). 

 

FIGURE 18. Increase phosphorylated Tau in dendrites of DEX-treated animals. Micrographs of immunogold staining of 

phosphorylated Tau at Thr231 epitope is increased in dendrites of DEX –treated animals (B) in comparison to vehicle-

treated ones (A). 
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4.4 CONCLUSION 

This ultrastructure study provides a direct, in situ evidence for TAU distribution in different neuronal 

compartments underscoring the dendritic and synaptic distribution of TAU protein under normal 

and stressful conditions  (Hoover, et al., 2010) (Ittner, et al., 2010). Specifically, these results 

highlight a subcellular mislocalization of Tau protein as a critical underlying mechanism of neuronal 

damage and possible atrophy due to exposure to high GC levels. As Tau is recently shown to 

structurally interact with synaptic receptors, our findings points towards novel mechanistic 

involvement and role of TAU at neuronal synaptic plasticity and signalling and ultimately in 

functionality of neuronal networks that mediate cognitive functions and provide a substrate for 

stress-triggered pathology. 
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5. GENERAL DISCUSSION 

 

Epidemiological studies show that AD is the leading cause of dementia in the population over 65 

years presently affecting more than 27 million people worldwide while this number will be increased 

to 106 million by 2050 (1 in 85 persons) raising the number of caregivers at 216 million 

(Brookmeyer, et al., 2007). Although the understanding of the pathophysiology and neurobiology of 

neurodegenerative disorders has considerably increased over the last decades, AD remains a 

complex multifactorial disease with many risk/predisposing factors, such as aging, gender and 

psychological stress, to be involved in its etiopathogenesis. In the light of lack of proper treatment 

for AD patients, better identification of mechanistic interactions of these risk factors is of great 

importance towards the exploration of potential biological targets for preventative and curative 

intervention which is urgently needed. 

Mounting evidence from human and animal studies suggests the implication of stress and its 

primary physiological response, GC, in the onset and/or progression of AD (see introduction; for 

review, see Sotiropoulos et al., 2008). Indeed, a role for high glucocorticoid levels in AD had been 

hypothesized since 1968 (McEwen, et al., 1968) (Sapolsky, et al., 1985) (Wolkowitz, et al., 1990) 

(Lupien, et al., 1998). Many AD patients show signs of GC hypersecretion and HPA axis 

deregulation (Hartmann, et al., 1997) (Elgh, et al., 2006) (Johansson, et al., 2010) while cortisol 

increase seems to be a very sensitive marker of cognitive decline in AD patients (Weiner, et al., 

1997). Recent studies from our group have shown that stress triggers Tau hyperphosphorylation 

and accumulation affecting Tau turnover and degradation (Sotiropoulos, et al., 2008) (Sotiropoulos, 

et al., 2011). These Master studies provide further evidence on stress role of other parameters of 

Tau pathology such as tau aggregates, pathological conformation changes as well as truncation of 

Tau (Figure 19). Indeed the last was connected to the increased activity of caspace-3 resulting in 

activation of apoptotic cascades and decreased cell density. Side by side, all these findings 

supports the neurodegenerative potential of chronic stress towards the development of AD 

pathology. Furthermore, we saw that adverse stress affect some critical molecular chaperones 

involved in misfolded and/or aggregated Tau degradation. Specifically, protein levels of inducible 

Hsp70 and Hsp105 were decreased by stress pointing towards the reduced Tau degradation in 

agreement of human data suggested a significant inverse correlation between insoluble Tau and 
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Hsp70 protein in AD brains (Sahara, et al., 2007). On the opposite, Hsp90 were increased by stress 

which could explain the inducible reduction of Hsp70 through a transcriptional effect of Hsp90 on 

HSF1 that triggers the production of inducible chaperones (e.g. Hsp70). Indeed, Hsp90 inhibitor 

has been suggested as a therapeutic tool for enhanced degradation of misfolded/aggregated 

proteins in many neurodegenerative diseases (e.g. Huntington, Machado-Joseph disease) (Koren, et 

al., 2009). 

 

FIGURE 19. Stress-trigged Tau aggregation pathology. Hypothetical model describing the detrimental role of adverse 

stress on different parameters of Tau pathology resulting in neuronal dysfunction and loss as well as in cognitive and 

emotional deficits. Specifically, stress increases tau aggregation by diminishing its chaperone-mediated degradation and 

in parallel triggers apoptotic mechanisms that result in neuronal dysfunction and loss affecting both cognitive and 

emotional performance. 
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Another interesting finding of this thesis focuses on the increase female hippocampal vulnerability to 

stress-triggered Tau pathology and the associated cognitive impairment. Despite the fact that both 

AD and stress response have a clear gender profile, there is paucity of research examining sex 

differences at a neurobiological and mechanistic level (National Institute of Mental Health 2011). 

Thus, our study is among the few ones that provides further evidence on gender differences on 

stress-trigged AD pathology that is in line with clinical evidence on gender differences in incidence 

and prevalence to AD (Gandy & Duff, 2000) (Wang, et al., 2003). In contrast to cognition, 

emotionality was similarly affected by stress between male and female animals. Indeed, clinical 

studies also demonstrated that there no gender differences in anxious behavior among AD patients 

suggesting that other brain areas don´t exhibit this gender-dependent vulnerable to AD pathology. 

This notion is in line with our findings that PFC is similarly affected between male and females 

(findings of current study and Devi et al, 2010). While we cannot provide a mechanistic evidence for 

this gender difference, the increased stress susceptibility of locus coeruleus (LC) in females 

(Bangasser, et al., 2011) (Bangasser, et al., 2012), could explain the higher stress damage of 

female hippocampus  as LC damage is shown to exacerbate hippocampal AD pathology (Heneka, 

et al., 2006)(Figure 20).   

 

 

FIGURE 20. Working model of gender differences in stress-triggered Tau pathology. Schematic representation of the areas 

affected by stress in male and female P301L-Tau animals suggesting the LC key contribution to this gender-specific 

vulnerability. In contrast to other brain areas, female hippocampus exhibits increased stress vulnerability to Tau 

pathology through LC damage (  Tau pathology; drawn by J. Silva & I. Sotiropoulos). 

 

Our findings provide experimental evidence on stress-gender interaction on AD pathology 

highlighting the importance of use of both genders in experimental studies for clarifying 
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mechanisms of disease pathology. We demonstrate for the first time that prolong stress exhibit a 

gender-specific detrimental effect on Tau pathology and associated cognitive and emotional 

component of AD pathology mirroring the clinical and epidemiological profile of the disease in 

humans. Furthermore, in contrast to their WT littermates, P301L-Tau mice were vulnerable to 

prolong stress suggesting that the presence of mutated Tau predisposes animals to detrimental 

stress effect; a notion that is in line with previous studies that demonstrated an enhanced 

neurotoxic response to stress or stress hormones, in presence of Tau protein (Sotiropoulos, et al., 

2008) (Rothman & Mattson, 2010). 

These studies provide novel mechanistic knowledge about the detrimental role of chronic stress 

towards the development of brain pathologies, highlighting Tau and its malfunction as a potential 

drug target for preventing or blocking neuronal degeneration and death.  
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6. MAIN CONCLUSIONS 

 

Accumulating evidence suggest a detrimental role of chronic stress of the initiation and progression 

of AD pathology. Many clinical studies demonstrate that AD patients exhibit higher GC levels and 

deregulation of HPA axis while previous animal studies saw that stress and/or GC trigger APP 

misprocessing and tau hyperphosphorylation. The current Master thesis provides further evidence of 

stress detrimental role on other parameters of Tau pathology showing that adverse stress increase 

levels of truncated and conformational altered Tau followed by elevated Tau aggregates, probably 

through failure of chaperone machinery. This results in activation of apoptotic pathways that leads 

to neuronal loss. Importantly, this stress effect exhibit a gender- and area-specific profile with female 

hippocampus being more vulnerable to stress-triggered Tau neurodegeneration. This study provides 

important evidence on association of genetic causes and risk factors such as adverse stress of Tau 

pathology as well as their interaction with gender, towards the optimization of treatment modalities 

in clinical use. 
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7. FUTURE PRESPECTIVES 

 

This Master thesis clearly demonstrated that adverse stress increased neurotoxic Tau aggregates 

resulting in activation of apoptotic pathway affecting protein levels of Bax, Bcl-2 and Bcl-XL. As these 

molecules are also implicated in autophagy (Zhou & Da Xing, 2011)  which is a cellular mechanism 

involved in many neurodegenerative diseases (Schaeffer & Goedert, 2012) (Cheung & Ip, 2011) 

(Caballero & Coto-Montes, 2012), a next step analysis could include the influence of stress on 

autophagic pathways in our P301L-tau animals. 

Furthermore, based on our current findings unrevealing a clear interplay on stress and gender on 

Tau-related neurodegeneration, future studies could focus on detailed clarification of physiological 

and cellular mechanisms underlying the increased vulnerability of female hippocampus. 

Specifically, as LC lesions are suggested to trigger hippocampal neurodegeneration in AD Tg models 

(Heneka, et al., 2006) and LC is known to be more affected by stress in female animals 

(Bangasser, et al., 2011), future studies could analyzed the role of stress on LC of female and male 

P301L-Tau animals. In addition, it would be interesting to monitor whether this female vulnerability 

is based on age-related estrogen decline by supplementation of 17beta-estradiol in the female 

P301L-Tau animals before their exposure to adverse stress.  
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