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Abstract 

The polymorphic yeast Candida albicans is an important opportunistic human 

pathogen and the most common causative agent of fungal invasive infections. Host 

physical barriers and immune system integrity are crucial factors in controlling the 

establishment of Candida infections. However, the high adaptability of C. albicans to 

different host niches is also a determinant factor. The host-fungus interplay is dynamic 

and the balance between fungal elimination and tissue damage depends on both the 

host response and how the pathogen reacts to immune effector molecules and cells.  

The murine model of hematogenously disseminated C. albicans infection is widely 

used to ascertain strain virulence and host-fungus interactions. However, distinct C. 

albicans strains may present distinct virulence phenotypes and elicit quantitatively and 

qualitatively different immune responses. Hence, results obtained with one strain 

cannot be taken as representative of the whole species. Moreover, most studies 

focused on C. albicans internalization and killing by phagocytes, rather than on the 

overall immune response. Here, a comparative analysis of the early immune response, 

host survival and kidney fungal burden was done in mice infected intravenously with 

three C. albicans strains with different attributed virulence, SC5314, ATCC 90028 and 

ATCC 32354. Strain SC5314 was the most virulent and elicited a more marked 

inflammatory response, with higher neutrophil recruitment. In contrast, ATCC 32354 

presented the lowest virulence and stimulated less markedly the innate immune 

response than the other strains. These results provide additional evidence on the 

association between C. albicans virulence and the early immune response, which may 

be useful in delineating vaccination or immunotherapeutic strategies against 

disseminated candidiasis.      

Secretion of C. albicans hydrolytic enzymes during infection is a virulence attribute that 

aids adhesion to and invasion of host tissues, and immune evasion. Among these 

enzymes, secreted aspartyl proteases (Sap) encoded by a 10-member gene family 

(SAP1 to SAP10) have been particularly studied. Several members of the Sap family 

were claimed to play a significant role in the progression of candidiasis established by 

the hematogenous or intraperitoneal routes. This assumption was based on the 
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observed attenuated virulence of sap-null mutant strains. However, the exclusive 

contribution of SAP genes to their attenuated phenotype was not unequivocally 

confirmed, as the Ura status of several mutant strains could also have contributed to 

the attenuation. In this study, the importance of SAP1 to SAP6 in murine models of 

hematogenously disseminated candidiasis and C. albicans peritonitis was reassessed 

by using sap-null mutant strains not affected in their URA3 gene expression. In 

systemic candidiasis established by intravenous infection, SAT1-flipping constructed 

Δsap123 and Δsap456 mutants did not present a significant reduction in virulence 

contrasting the attenuated virulence found in equivalent Ura-blaster mutants. Using 

the newly assessed mutant strains, the median survival time of BALB/c mice infected 

with the Δsap123 strain was similar to that of wild-type (WT) SC5314-infected mice, 

while those infected with mutant strains lacking SAP5 showed slightly extended 

survival times. Nevertheless, WT and Δsap456 strains were equally able to invade mice 

kidneys. Likewise, SAP4 to SAP6 deficiency had no noticeable impact on the immune 

response elicited in the spleen and kidneys of C. albicans-infected mice. These results 

suggest that Sap1 to Sap6 do not play a significant role in C. albicans virulence in the 

murine model of hematogenously disseminated candidiasis. Contrastingly, in the 

murine model of C. albicans peritonitis, ∆sap456-infected mice presented lower kidney 

fungal burden than WT- or ∆sap123-infected mice.  WT-infected mice presented 

higher proportions of T regulatory cells (Foxp3+) in the spleen and mesenteric lymph 

nodes than non-infected or sap-null mutant-infected counterparts. In addition, 

CD4+CD25+ T cells of WT-infected mice were the most effective in suppressing the 

proliferative response of CD4+CD25- T cells whereas those of ∆sap456-infected mice 

were the least suppressive. Furthermore, CD4+ T cells of WT-infected mice were the 

ones producing the highest levels of IL-10. Interestingly, ∆sap456-infected mice 

presented less Foxp3+ cells in kidney lesions than the other fungal challenged mice. 

Altogether, these results implicate Sap4 to Sap6 in the host immune response to C. 

albicans peritonitis, providing additional evidence for the role of these enzymes in this 

infection model.  

To circumvent host immune defenses, C. albicans developed multiple evasion 

mechanisms. Among these, production of Saps has been particularly highlighted due to 
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their ability to degrade and/or inactivate diverse host immune effector molecules. The 

mammalian pattern recognition receptor galectin-3 (Gal-3) was shown to specifically 

bind β-1,2 mannosides on C. albicans cell wall. This interaction directly induces fungal 

cell death and also promotes pro-inflammatory cytokine TNF-α production by host 

cells. In this study, we assessed whether this lectin could be degraded by native Sap2 

or recombinant Sap1 to Sap3 isoenzymes. All C. albicans Saps tested degraded and 

inactivated the host receptor Gal-3. This may constitute a fungal strategy to control 

and evade host immune mechanisms dependent on Gal-3. Degradation of this protein 

might thus generate a protective microenvironment of reduced Gal-3 activity, which 

may facilitate C. albicans survival in the host. 

Previous reports have shown that mice immunized with Sap2 were protected against 

mucosal or peritoneal C. albicans infection. Here, we extended these studies and 

evaluated the suitability of C. albicans recombinant Sap2 (rSap2) as protective 

immunogen for vaccination against hematogenously disseminated candidiasis. Four 

different immunogenic preparations were tested, respectively using Alum, Imiquimod, 

Freund’s or CpG plus Alum as adjuvants. Moreover, as the hypha-associated isoenzyme 

Sap5 is preferentially expressed during systemic candidiasis, it was also evaluated as 

target antigen for Candida vaccination, together with Alum or Imiquimod. All these 

approaches failed in protecting the immunized mice from fungal infection. This 

suggests that the C. albicans enzymes Sap2 and Sap5, despite their potential role in 

virulence, do not appear to be suitable target proteins in immunopreventive strategies 

against hematogenously disseminated candidiasis.   

In summary, results presented in this thesis provide additional evidence for the 

differential involvement of Saps in distinct C. albicans infection models. Moreover, 

these results, by showing that host immune response to C. albicans is affected by lack 

of SAP expression, are in support of a previously hypothesized immunomodulatory role 

for Saps. Finally, the lack of host immune protection against hematogenously 

disseminated candidiasis by means of Sap immunization reinforces the limited role of 

these proteins in this type of infection.  
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Resumo 

A levedura polimórfica Candida albicans é um importante patógeno oportunista em 

humanos, sendo o mais frequente agente causador de infeções fúngicas invasivas. A 

integridade das barreiras físicas do hospedeiro, bem como do seu sistema imunitário, 

são fatores cruciais no controlo de infeções por leveduras do género Candida. Todavia, 

a grande adaptabilidade de C. albicans a diferentes nichos do hospedeiro é também 

um fator determinante. As interações fungo-hospedeiro são dinâmicas e o equilíbrio 

entre a eliminação do fungo e o dano tecidular depende tanto da resposta do 

hospedeiro, como da forma como o patógeno reage às células e moléculas imunitárias. 

O modelo de candidíase sistémica originada pela via endovenosa em murganhos é 

amplamente utilizado para avaliar a virulência das estirpes e as interações entre fungo 

e hospedeiro. No entanto, estirpes diferentes de C. albicans podem apresentar 

fenótipos de virulência distintos e desencadear respostas imunitárias, quer qualitativa, 

quer quantitativamente, diferentes. Deste modo, os resultados obtidos com uma 

estirpe não poderão ser considerados representativos da espécie. Além disso, a 

maioria dos estudos incidiram na internalização e morte de C. albicans por células 

fagocíticas, em detrimento da resposta imunitária global. Nesta tese foi feita uma 

análise comparativa da resposta imunitária precoce, da carga fúngica renal e da 

sobrevivência de murganhos infetados pela via endovenosa com três estirpes de C. 

albicans, com reconhecidas diferenças de virulência, SC5314, ATCC 90028 e ATCC 

32354. A estirpe SC5314 foi a mais virulenta e desencadeou uma resposta inflamatória 

mais exuberante, com um maior recrutamento de neutrófilos. Pelo contrário, a estirpe 

ATCC 32354 foi a menos virulenta e estimulou menos a resposta imunitária do que as 

outras estirpes. Estes resultados reforçam a associação entre a virulência de C. 

albicans e a resposta imunitária precoce, o que poderá ser útil no planeamento de 

estratégias de vacinação ou imunoterapêuticas contra a candidíase disseminada.  

A secreção de enzimas hidrolíticas por C. albicans durante a infeção é considerada um 

fator de virulência que auxilia a adesão e invasão de tecidos do hospedeiro e a evasão 

à resposta imunitária. Entre estas enzimas, as proteases aspárticas secretadas (Sap), 

codificadas pela família de genes SAP1 a SAP10 foram estudadas mais 

aprofundadamente. Foi atribuído um papel importante a vários membros desta família 
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na progressão da candidíase estabelecida pelas vias endovenosa e intra-peritoneal. 

Para tal contribuíram a virulência atenuada observada em mutantes deficientes nestas 

proteases. Contudo, o contributo exclusivo dos genes SAP para o fenótipo observado 

não foi inequivocamente demonstrado, uma vez que a inserção ectópica do gene 

URA3 em vários mutantes poderá ter contribuído para a diminuição da virulência. 

Neste estudo reavaliou-se a importância dos genes SAP1 a SAP6 na infeção 

disseminada por via endovenosa e na peritonite causada por C. albicans, usando 

mutantes deficientes nestes genes sem expressão de URA3 afetada. Na candidíase 

sistémica estabelecida pela via endovenosa, os mutantes Δsap123 e Δsap456, 

construídos pelo método “SAT1-flipping” não apresentaram uma redução significativa 

na virulência, contrariamente ao observado nos mutantes correspondentes, 

construídos pelo método “Ura-blaster”. Utilizando os mutantes novos, o tempo médio 

de sobrevida de murganhos BALB/c infetados com o mutante Δsap123 foi muito 

semelhante ao observado em murganhos infetados com a estirpe selvagem SC5314, 

enquanto os murganhos infetados com mutantes deficientes na expressão do gene 

SAP5 tiveram tempos de sobrevida ligeiramente mais alargados. No entanto, tanto a 

estirpe selvagem, como o mutante Δsap456, foram igualmente capazes de invadir os 

rins de murganhos infetados. Da mesma forma, a deficiência na expressão de SAP4 a 

SAP6 não afetou significativamente a resposta imunitária desencadeada, quer no baço, 

quer nos rins, de murganhos infetados com a levedura. Estes resultados sugerem que 

as Sap1 a Sap6 não desempenham um papel essencial na virulência de C. albicans no 

modelo de candidíase sistémica estabelecido pela via endovenosa. Pelo contrário, no 

modelo de peritonite causado por C. albicans, os murganhos infetados com a estirpe 

Δsap456 apresentaram carga fúngica renal menor do que a dos murganhos infetados 

com as estirpes selvagem ou Δsap123. Os murganhos infetados com a estirpe 

selvagem apresentaram frequências de células T reguladoras (Foxp3+) superiores às 

observadas nos murganhos infetados com as estirpes mutantes, tanto no baço como 

nos gânglios linfáticos mesentéricos. Além disso, as células T CD4+CD25+ de murganhos 

infetados com a estirpe selvagem suprimiram de modo mais marcado a proliferação de 

células T CD4+CD25- do que as células correspondentes de murganhos infetados com 

as estirpes mutantes, enquanto as células de murganhos infetados com a estirpe 

Δsap456 apresentaram o fenótipo menos supressor. Adicionalmente, as células T CD4+ 



 

xv 
 

de murganhos infetados com a estirpe selvagem foram as que produziram níveis mais 

elevados de IL-10. É particularmente interessante a observação de uma menor 

presença de células Foxp3+ nas lesões renais de murganhos infetados com o mutante 

Δsap456 em comparação com o observado nos murganhos infetados com as outras 

estirpes. O conjunto dos resultados obtidos implica o envolvimento das enzimas Sap4 a 

Sap6 na resposta imunitária à peritonite causada por C. albicans, acrescentando 

informação adicional sobre o papel destas proteases neste modelo de infeção.  

C. albicans desenvolveu diversos mecanismos para ultrapassar a defesa imunitária do 

hospedeiro. Entre eles, destaca-se a produção de Saps pela capacidade destas enzimas 

em degradar e/ou inativar diversas moléculas da resposta imunitária do hospedeiro. O 

recetor de padrões microbianos galectina-3 (Gal-3) liga especificamente 

oligomanosídeos β-1,2 presentes na parede celular de C. albicans. Esta interação induz 

a morte da levedura e promove a produção da citoquina pro-inflamatória TNF-α pelas 

células do hospedeiro. Neste estudo foi avaliada a degradação da Gal-3 pelas Sap2 

nativa e Sap1, Sap2 e Sap3 recombinantes. Todas as Saps testadas foram capazes de 

degradar e inativar a Gal-3.  Esta poderá constituir uma estratégia para controlar e 

evadir os mecanismos imunitários dependentes de Gal-3. A degradação deste recetor 

poderá originar um microambiente de atividade Gal-3 reduzida, o que poderá facilitar 

a sobrevivência do patogéneo no hospedeiro. 

Estudos prévios mostraram que murganhos imunizados com Sap2 ficaram protegidos 

contra a candidíase mucocutânea e contra a peritonite causada por C. albicans. Aqui, 

alargamos estes estudos e avaliamos a adequação do uso das Sap2 recombinante 

(rSap2) como imunogénio para vacinação contra a candidíase sistémica estabelecida 

por via endovenosa. Foram testadas quatro formulações imunogénicas diferentes, 

utilizando como adjuvantes Alum, Imiquimod, Freund e uma mistura de CpG e Alum. 

Adicionalmente, como a isoenzyma Sap5 é expressa preferencialmente durante a 

candidíase sistémica, foi igualmente avaliado o seu uso como antigénio alvo para 

vacinação contra a doença, utilizando Alum ou Imiquimod como adjuvantes. Nenhuma 

das preparações testadas resultou na proteção dos murganhos imunizados contra a 

infeção fúngica. Estes resultados sugerem que as enzimas Sap2 e Sap5, apesar do seu 

potencial papel na virulência de C. albicans, poderão não ser proteínas-alvo adequadas 
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para utilização em estratégias imuno-preventivas contra a candidíase sistémica 

estabelecida pela via endovenosa.  

Em resumo, os resultados apresentados nesta tese fornecem informações adicionais 

sobre o envolvimento diferencial das Saps em modelos de infeção distintos. Além 

disso, estes resultados, ao mostrarem que a resposta imunitária do hospedeiro é 

afetada pela falta de expressão de genes SAP, suportam um papel imuno-modulador 

das Saps que havia sido previamente sugerido. Finalmente, a falta de proteção 

imunitária do hospedeiro contra a candidíase sistémica estabelecida pela via 

endovenosa reforça o papel limitado destas proteases neste tipo de infeção.   
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1. General introduction 

The genus Candida is composed of a very heterogenous group of more than 150 yeast 

species (1), yet only a few are recognized human pathogens. The species most 

commonly encountered in medical practices are C. albicans, C. glabrata, C. tropicalis, 

C. parapsilosis and C. krusei (2, 3). Besides the yeast form, the majority of the members 

of the genus can also display a filamentous type of growth, as pseudohyphae. In 

addition, C. albicans and C. dubliniensis also form true hyphae, in addition to 

pseudohyphae (2). 

Even though the prevalence of infections caused by non-albicans Candida species is 

rising, the majority of candidiasis cases, regardless of clinical setting and geographical 

location, are still caused by C. albicans (4). 

C. albicans commonly colonizes the human gastrointestinal, respiratory and 

reproductive tracts, and the skin (5), generating no obvious pathology. However, under 

certain conditions, C. albicans is capable of causing a wide spectrum of infections, from 

superficial thrush to life-threatening systemic candidiasis, making it the most prevalent 

fungal pathogen in humans (6, 7).  

Transition from colonization to mucosal invasion and/or systemic dissemination 

depends upon host and fungal factors (8). Infection of a host starts with the adherence 

of fungi to the epithelial surface layers and further dissemination to different host sites 

(9). The immune status of the host is important for the transition from commensal to 

pathogen (10). However, the adaptation of C. albicans to new niches within the host is 

also critical for this transition (2). Fungi respond to change in a specific environment by 

inducing transcriptional and translational changes that promote survival and fitness 

under the new environmental conditions (11-13). 

2. Candida infections 

Clinical disease can be divided into two broad categories, mucocutaneous and systemic 

infection, each with its own risk factors.  
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2.1. Mucocutaneous candidiasis 

Infections of the skin and mucous membranes due to Candida spp. are growing in 

incidence and can occur either in immunocompromised or in immunocompetent 

patients (14-16). 

 

Oropharyngeal candidiasis  

Oropharyngeal candidiasis (OPC) is very common in HIV-positive individuals, affecting 

nearly 90% of subjects at some stage during the course of HIV disease progression (17-

20). C. albicans is always the most prevalent species in this type of infection, followed 

by C. glabrata, C. dubliniensis and C. tropicalis (17). 

In non-HIV-infected individuals, the epidemiological data of OPC are not as intensively 

studied as in HIV-infected individuals. Predisposing factors in these patients include 

concomitant treatments with corticosteroids, antibiotics or immunosuppressive and 

anticancer drugs (21), diabetes, elderly and infancy (22). The most important 

predisposing factor for OPC other than T-cell immunodeficiency is the wearing of 

removable dentures (23). 

 

Candida esophagitis  

Candida esophagitis occurs in patients with chronic diseases, most of whom have been 

previously treated with antibiotics or steroids, but the disease most frequently occurs 

in those with advanced HIV infection and affects 10% of patients with AIDS (24, 25). 

Some of these patients have concomitant OPC (26). 

 

Vulvovaginal candidiasis  

Vulvovaginal candidiasis (VVC) is a mucosal infection caused by several Candida spp. 

with C. albicans as the most common yeast obtained from vaginal fungal cultures (27-

30). Approximately 70% to 75% of women experience at least one episode of VVC in 

their lifetime, and 20% suffer from recurrence (28, 31), usually caused by the same 

single strain through sequential infections (32, 33). Subjects at higher risks for VVC are 

pregnant HIV-infected women and, to a lesser extent, HIV-negative pregnant women 

(34). HIV-infected women have higher frequencies of Candida spp. colonization than 

HIV-negative women (34-36), yet the influence of CD4+ T cell numbers in the 
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occurrence of VVC is not consensual. Other risk factors are diabetes, and antibacterial 

vaginal or systemic therapy (5). 

 

Chronic mucocutaneous candidiasis  

Chronic mucocutaneous candidiasis (CMC) is a set of syndromes in which patients have 

chronic and/or recurrent infections of the skin, nails, and mucous membranes due to 

Candida spp. (5), without a known underlying cause (37). 

 

2.2. Disseminated candidiasis 

Candida species have emerged as an important cause of bloodstream and deep tissue 

infections. Bloodstream infections caused by these organisms are also designated as 

candidemia, which often lead to Candida spread to internal organs, a condition known 

as disseminated or systemic candidiasis. Most cases occur in hospitalized patients and 

up to half are associated with intensive care units (38-41). 

 

Nosocomial Candida infections 

The incidence of nosocomial fungal infections (defined as invasive fungal infections 

acquired in a health care-associated setting) has dramatically increased. As the 

population of immunosuppressed individuals has increased (secondarily to the 

increased prevalence of cancer, chemotherapy, organ transplantation, and 

autoimmune diseases), so has the incidence of Candida invasive infections (42, 43).  

 

Frequency  

Candida species are by far the most common fungi causing invasive disease in humans 

(44-46).  

Data from the most recent studies in the US indicate that Candida spp. are now the 

third most frequent nosocomial bloodstream isolates (47-51). However, in Europe, 

Candida species are considered to be between the fifth and tenth most common 

causative pathogen of bloodstream infections (41). The true incidence of disseminated 

candidiasis may nevertheless be markedly underrepresented in studies focusing on 

blood cultures, because of the difficult diagnostic in these samples (52, 53) and thus, 
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studies which reflect clinical diagnoses of disseminated candidiasis, rather than relying 

upon blood cultures, have indicated a predicted value of 24 cases per 100,000 

population in the US (54). Hence an estimated number of 60-70,000 cases of 

disseminated candidiasis occur per year in the US alone, with a health care cost 

associated of $2-4 billion/year (54, 55).  

Through the late 1980s, the predominant species causing invasive Candida infections 

was C. albicans. Indeed, C. albicans is by far the most virulent species of Candida in 

animal models (56-61). However, since the 1990s there has been a steady increase in 

the relative frequencies of non-albicans species of Candida causing disseminated 

candidiasis. This epidemiological trend has profound consequences for selection of 

empiric antifungal therapy. C. albicans has been responsible for approximately 50% of 

invasive Candida infections, with C. glabrata generally as the second most common 

cause of infection in the US and much of Europe, causing 15-25% of cases (44, 47, 50, 

62-70). In contrast, in Latin America, Portugal and Spain, C. parapsilosis is the second 

most common cause of invasive candidiasis (71-74). C. tropicalis was acknowledged as 

causative of 10-20% of cases in most studies. The frequency of other species remains 

low, except in major cancer centres where widespread azole prophylaxis is used. In 

such centres, C. krusei may cause 10% of cases of invasive Candida infections (71, 75-

78).  

 

Origin 

The origin of the infecting strain in the establishment of systemic infections is still 

controversial. Although the GI tract of most people is colonized by Candida, it is not 

clear whether the strains that colonize healthy hosts are responsible for causing 

subsequent invasive disease when those hosts acquire the appropriate risk factors, or 

if infections are caused by acquisition of more virulent strains from environmental 

sources in the nosocomial setting. Available data suggest that in most cases, the 

source of an infecting C. albicans strain is indeed endogenous flora (79-83), but that in 

certain circumstances exogenous transmission may occur in the nosocomial setting 

(84, 85). 
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Risk factors 

The majority of patients who develop disseminated candidiasis are not 

immunosuppressed in the classical sense (such as neutropenic, corticosteroid-treated, 

infected with HIV, etc.) (39, 41, 62, 63, 67, 70, 86, 87). Rather, the predominant risk 

factors for disseminated candidiasis are common iatrogenic and/or nosocomial 

conditions. In particular, 65-90% of patients with disseminated candidiasis harboured a 

central venous catheter (39, 62, 88-90). This and other medical devices are easily 

colonized by candidal cells from mucosal surfaces and provide the opportunity for 

these cells to form biofilms, which are more resistant to drugs and capable of greater 

tissue invasion, enabling fungal spread from one tissue site to another (91). 

Hospitalization in the intensive care unit (ICU) provides the opportunity for 

transmission of Candida among patients and has been shown to be an additional 

independent risk factor. Another important independent risk factor for development 

of disseminated candidiasis is colonization by Candida spp. (82, 92-96). Patients with 

higher colonization burdens and more sites colonized have a proportional higher risk 

of developing hematogenously disseminated disease (97, 98) (and treatments that 

lower colonization burden simultaneously decrease the risk of candidemia (99).  Broad-

spectrum antibiotic therapy may alter the growth of normal bacterial flora, resulting in 

increased Candida colonization burden (100-102) and, consequently, increasing the 

risk of disseminated candidiasis (103-105). Additionally, disruption of normal skin 

barriers, for example by burn injury or percutaneous catheter placement (104, 106-

111), and disruption of gut mucosal barriers by abdominal surgery, instrumentation, 

induction of mucositis (63, 111, 112) or parenteral nutrition (113), are major risk 

factors for invasive Candida infections. Direct translocation of Candida across the GI 

tract of animals and humans has been well documented (8, 113, 114), and GI surgery is 

a well-described clinical risk factor for development of disseminated candidiasis (115-

118). More recently, cardiac surgery has also been described as a major risk for 

disseminated candidiasis (119-121). Neutropenia or abnormalities in neutrophil 

function dramatically increases the risk of developing disseminated candidiasis and the 

expected mortality rate (67, 70, 92, 122-126). Concordant with their well-characterized 

suppression of phagocyte function, glucocorticoids also increase the risk of 
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disseminated candidiasis (123, 127-129). Similarly, diabetes markedly increases the 

incidence of both mucocutaneous and disseminated candidiasis (130, 131).  

Candidemia in cancer patients is also thought to develop from initial GI colonization 

with subsequent translocation into the bloodstream after administration of 

chemotherapy. In a murine model of GI candidiasis, systemic chemotherapy with 

cyclophosphamide, which causes simultaneously neutropenia and GI mucosal damage, 

led to disseminated fungal infection and 100% mortality ensued in mice previously 

colonized with C. albicans (114). In this study, neutropenia alone or combined with 

macrophage depletion did not result in Candida translocation and mice death. 

Likewise, GI mucosal damage alone was not sufficient for the development of 

candidemia. Instead, both neutropenia and GI mucosal damage were crucial for C. 

albicans dissemination from the GI tract. 

Patients with late stage HIV disease have an extremely high incidence of developing 

mucocutaneous candidiasis (130, 132). However, HIV infection is not an independent 

risk factor for disseminated candidiasis. The occurrence of disseminated candidiasis in 

patients infected with HIV is attributable to the increased incidence of the usual risk 

factors for candidemia, including indwelling catheters, broad-spectrum antibiotics, 

hospitalization in an ICU, parenteral nutrition, and neutropenia (106, 110). Patients 

infected with HIV who do not have additional risk factors for disseminated candidiasis 

are not at increased risk of developing the disease. 

 

Therapeutic strategies 

Not only are invasive Candida infections extremely difficult to diagnose, they are also 

difficult to treat. Even with first-line antifungal therapy, disseminated candidiasis has 

an attributable mortality of up to 40% (87, 133, 134) , or even over 50% attributable 

mortality in patients that undergone myeloablative chemotherapy (93, 105, 123) . 

Unfortunately, newer therapies, such as voriconazole, lipid-based amphotericin 

formulations, and echinocandins, have not considerably improved survival of patients 

with candidemia, compared to the classical amphotericin B deoxycholate (135-137). 

Data from several studies supported that delayed initiation of therapy for candidemia 

is associated with significantly higher mortality (138-140). 
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Because of the difficulties in confirming the diagnosis with laboratory studies, empiric 

therapy administration must often be based on a clinical diagnosis of disseminated 

candidiasis. A clinical diagnosis of disseminated candidiasis is typically made in a  

patient with signs, symptoms, and laboratory features consistent with infection, who 

does not respond to broad-spectrum antibacterials, and who has risk factors for 

disseminated candidiasis. In such patients, early empiric therapy is appropriately 

administered. If a clinical response is seen, a clinical diagnosis of disseminated 

candidiasis can be made retrospectively. Consensus guidelines on the empiric 

treatment of disseminated candidiasis are available (141, 142). In the guidelines of the 

European Society of Clinical Microbiology and Infectious Diseases (ESCMID), it is clear 

that all three echinocandins (anidulafungin, caspofungin and micafungin) are likely 

equivalently efficacious for the treatment of disseminated candidiasis in ICU patients. 

The use of fluconazole has only marginal support and voriconazole and liposomal 

amphotericin B have moderate support. Combination therapy is not recommended, 

either for these patients or for hemato-oncological patients. For the last group of 

patients, caspofungin and micafungin are the most appropriate antifungal drugs for 

treatment of invasive candidiasis and candidemia in neutropenic patients or 

hematopoietic stem cell transplant recipients. For empirical treatment in neutropenic 

patients, the use of caspofungin and liposomal amphotericin B have a strong 

recommendation, while there is moderate support for voriconazole and micafungin 

(142). 

From these guidelines it is also clear that catheter removal is not mandatory if 

echinocandin is being used (142, 143). 

 

3. Candida virulence factors 

Candida pathogenicity is a complex and highly regulated multifactorial process(144). 

The expression of several C. albicans genes or proteins associated with infection has 

been extensively studied. The role of a determined putative virulence factor can be 

assessed by comparing the biological response of the fungus with and without the 

factor. The most convincing evidence for a factor to be considered as a virulence 

determinant is the simultaneous loss of the factor and of virulence, and the regaining 
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of virulence when the factor is restored (144). Virulence factors must help the 

pathogen to grow at elevated temperatures, facilitate adherence, penetration and 

dissemination, or assist in resistance against or evasion from innate immune defenses.  

It has become clear that a complex combination of properties rather than a single 

putative virulence factor are usually required for a fungus to successfully adapt to the 

different host niches met during the infectious process (144, 145) .  

 

3.1. Morphogenesis 

One of the most unique characteristics of C. albicans is its ability to reversibly change 

between the unicellular yeast and filamentous (hyphae and pseudohyphae) growth 

modes (146). Polymorphism of C. albicans is known to be one of the most important 

virulence factors of the fungus (145, 147, 148) and has been associated with tissue 

destruction and invasion (149-153), although both C. albicans yeast and hyphal cells 

are found in infected host tissues (147). In fact, the nature of association between 

fungal morphogenesis and host invasion is a highly debated aspect of fungal virulence 

(154, 155). 

The switch from yeast to hyphal growth is controlled both by the environment and by 

numerous other stimuli. The standard trigger of hyphal growth is nutrient poor media 

and a rise in temperature, together with N-acetyl-glucosamine (GlcNAc) or serum 

(146). External pH is another signal regulating morphogenesis (156). In the host, C. 

albicans switches to the hyphal form to adhere to and penetrate through tissues, and 

this fungal plasticity has been demonstrated in several studies to be strongly required 

for C. albicans pathogenesis (157-159). 

The yeast-hypha transition process is regulated by different interconnected signal 

transduction pathways (160). Efg1 (161, 162), and Cph1 (161) have been identified as 

key transcriptional regulators for the cAMP-protein kinase (PKA) and the mitogen-

activated protein kinase (MAPK) pathways, respectively. The role of these factors in 

morphogenesis and their relevance for Candida infections was demonstrated by using 

strains which lacked either functional Efg1, Cph1 or both factors (147, 161-170) . 

Disruption of CPH1 caused attenuated C. albicans hyphal formation on solid media, 

while mutants lacking EFG1 failed to produce hyphal cells under most conditions 

investigated. Moreover, mutants lacking EFG1 had significantly attenuated virulence in 
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murine models of hematogenously disseminated infection (164, 171) , in a murine 

model of Candida peritonitis (172), in the interaction with macrophages (164), in the 

ability to colonize successfully on polyurethane central venous catheters (165), and 

also in the ability to invade or damage endothelial (166), epidermal (163, 173, 174) or 

intestinal cells (163).  

The transcription factor Rim101 regulates pH-dependent transition and mutant strains 

lacking RIM101 also have a defective virulence phenotype (175). The TEA/ATTS 

transcription factor Tec1 is essential for serum-induced filamentation (176) and the 

Δtuc1 mutant was found to be locked in the filamentous form, with negative 

consequences in its ability to cause disease. Furthermore, there are a number of other 

transcription factors (Czf1, Flo8, Hap5 Efh1, Ace2 Mcm1, Ash1 and Cph2) involved in 

filamentation under specific growth conditions (146). The attenuated virulence, or 

even avirulence, of the mutant strains lacking any of these genes seemed to be caused 

not only by the interference in the filamentation process, but also by a reduction or 

loss of expression of virulence-associated genes under their regulation (164, 177, 178) . 

 

3.2. Phenotypic switching 

Phenotypic switching in C. albicans affects several phenotypic and metabolic 

parameters, including recognized virulence traits. Colonies of C. albicans show 

reversible morphological variation that occurs spontaneously in stress, resulting in 

changes in cell surface, colony appearance, metabolic, biochemical and molecular 

attributes, with impact on fungal virulence (15, 179). Interestingly, strains isolated 

from vaginitis or systemically infected patients showed higher frequencies of 

switching, indicating a strong role for the switching phenomenon in establishing 

disease (180). Although many phenotype switching phenotypes have been described in 

C. albicans, the white-opaque system in strain WO-1 is the most studied (181, 182). 

The ability to switch to the opaque form (mating-competent form) depends on 

whether the mating type locus (MTL) is homozygous. Most C. albicans cells are unable 

to switch since they are heterozygous for the MTL (MTLa/MTLα) and express the 

heterodimeric α1/α2 repressor (182). Although transition occurs at very low levels, 

white-opaque switching can be induced by environmental signals. One of the most 

relevant is the induction of switching to the opaque phase by anaerobic conditions, 
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such as those encountered by passage of white cells through the mammalian intestine 

(183).  

Like the yeast-hyphae transition, white-opaque phase transition also influences fungal 

virulence (180, 184). Macrophages seem to preferentially phagocytose white cells 

(185) and that has also been recently observed with neutrophils. Neutrophils 

phagocytosed more efficiently white cells that were beginning filamentation, 

indicating that suppression of filamentation observed in opaque cells avoided 

neutrophil recognition and may represent a strategy for immune evasion (186).  In 

contrast, dendritic cells phagocytosed white and opaque phase cells equally (186). 

However, white cells are known to be more resistant to candidacidal activity of PMN 

(187). Indeed, the viability of opaque cells is reduced when compared to white cells 

under many growth conditions (188, 189). However, even though opaque cells are 

generally considered as less virulent than white cells in several murine models (184, 

190), they were found to be better able than white cells to infect skin (180).  

 

3.3. Adhesins 

Adherence of C. albicans cells to host tissues is a complex multifactorial phenomenon 

employing several types of adhesins expressed on morphogenetically changing cell 

surfaces.  

The C. albicans agglutinin-like sequence (ALS) gene family is composed of at least eight 

genes encoding cell-surface GPI-anchored proteins that have long been associated 

with adhesion of C. albicans cells to host tissues and even to abiotic surfaces (191, 

192). High allelic variability has been shown in ALS genes, often within the same C. 

albicans strain, leading to strikingly different adherence profiles (191, 193). Of the ALS 

family members, the ALS1 and ALS3 genes encode adhesins with the broadest array of 

substrate affinity (193). The structural and functional diversity within the Als family 

most certainly provides C. albicans with an array of cell wall proteins capable of 

recognizing and interacting with a wide range of host constituents during infection 

(193). The expression of some ALS genes has also been involved in biofilm formation 

(194, 195) and in other growth-related functions (191). ALS gene family members were 

differentially expressed in response to specific stimuli in vitro and have been 

associated with hyphal morphogenesis (196-198). The expression of Als proteins was 
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detected by immunohistochemistry in C. albicans cells infecting the kidneys, spleen, 

heart, liver and lungs of mice (196). ALS genes might be differentially regulated in a 

niche-specific fashion. ALS6 and ALS7 were expressed at relatively low levels, and ALS4 

appeared to be downregulated in vaginal samples. Interestingly, ALS expression 

patterns determined by RT-PCR in clinical samples were similar to those observed in 

the corresponding animal models of oral, vaginal and systemic candidiasis, and in 

reconstituted human epithelial models (199-201). Als3, and to a lesser extent Als1 and 

Als5, were found to be important for the epithelial and endothelial invasion process 

(193). Als3 also binds cadherins and induces fungal endocytosis by host cells (202). 

Moreover, Als3 binds ferritin and allows C. albicans to use iron in oral cavities (203).  

HWP1 (hyphal wall protein) encodes a cell-surface adhesin expressed during hyphal 

development (204, 205) that promotes strong interactions between C. albicans and 

host cells (206). Production of Hwp1 has been confirmed in the mouse model of 

systemic infection by immunohistochemistry (204). Studies with a hwp1-deficient C. 

albicans mutant have reported its reduced adherence and mortality in murine models 

(206, 207), and HWP1 expression has been analysed in samples from human oral and 

vaginal infections (208, 209). Nevertheless, Hwp1 appears to be important not only for 

invasion but also for benign interactions of C. albicans with the host (208, 209). 

 

3.4. Biofilm formation 

Biofilms are surface-associated microbial communities with significant environmental 

and medical impact. C. albicans is able to form biofilms on catheters, endotracheal 

tubes, pacemakers and other prosthetic devices and has been involved in the 

establishment of device-associated nosocomial infections (91, 210). Moreover, 

biofilms have reduced susceptibility to several components of the host immune 

response and to antifungal drug therapy (211). C. albicans biofilms are heterogenous 

three-dimensional structures containing hyphae form cells, with altered phenotype, 

growth rate, and gene expression compared to planktonic cells, enclosed in an 

extracellular polymer matrix consisting of polysaccharides and proteins (212). 

Heterogeneity of these biofilms depends on the substrate composition, environmental 

conditions, and strains involved. Biofilm formation was found to be linked to 

dimorphism and phenotypic switching, well-known virulence traits for candidal cells 
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(210, 211, 213) and a variety of genes, such as the ALS gene family and HWP1 are 

upregulated during biofilm formation (197, 199, 211, 214) , in particular, ALS1 and 

ALS3 expression was reported as necessary for biofilm formation (194, 215).  

ALS1, ALS3, and HWP1 are regulated by the transcription factor Bcr1 (biofilm and cell 

wall regulator), which is under the control of transcription factor Tec1 (214-217) . 

Nobile et al (194) suggested that Hwp1 and Als proteins might function as 

complementary adhesions in biofilm formation. The hypha-associated EFG1 gene is 

also required for normal biofilm growth, and hypha-deficient mutants had defective 

biofilms that also adhered poorly to the substrate (165, 218). Besides, biofilms are 

under tight regulation of gene expression that is controlled through quorum sensing 

molecules (219). 

 

3.5. Hydrolytic enzymes 

Three types of secreted enzymes have been described extensively: phospholipases, 

lipases and secreted aspartyl proteases. 

 

3.5.1. Phospholipases B  

Phospholipases B (PLB) are enzymes that hydrolyze ester linkages of 

glycophospholipids and also possess lysophospholipase transacylase activity. Plb 

activity was the major phospholipase activity found in C. albicans culture supernatants 

(220). They play a central role in cellular processes such as signal transduction and 

inflammation through their effect on the metabolism of phospholipids and 

lysophospholipids. C. albicans extracellular Plb are encoded by five putative genes. 

PLB1 (221), PLB2 (222) and PBL5 (223) have already been cloned and described. PLB 

expression has been detected in mucosal, gastrointestinal and systemic infection 

models. Differential expression of PLB1 and PLB2 was demonstrated, by using RT-PCR, 

in samples from human oral and vaginal infections (224, 225). Several studies 

investigated the role of Plb in C. albicans virulence. A clinical isolate producing high 

amounts of phospholipases was invasive in a murine model of disseminated 

candidiasis whereas a low-producing strain was not (226). In this infection model, 

phospholipase activity highly correlated with the severity of kidney burden (227) and 

phospholipase-activity was the only putative virulence factor tested that predicted 
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mortality (226). Leidich et al (228) and Mukherjee et al (229) showed that mutant 

strains lacking PLB1, which have 1% of the extracellular Plb activity of the wild-type 

strain, had significantly attenuated virulence in a model of disseminated infection in 

mice.  In a similar model of infection, a mutant strain deficient in PLB5 caused reduced 

liver and kidney fungal burdens (223). Noteworthy, the ability of Δplb1 null mutant to 

penetrate host cells was dramatically reduced (190, 230). However, adherence of the 

yeast cells to human endothelial or epithelial cells was not affected in a Δplb1 null 

mutant strain, suggesting that Plb most likely contribute to the pathogenicity of C. 

albicans by damaging host cell membranes and aiding the fungus to invade host 

tissues (231, 232). To this hypothesis certainly contribute the findings that Plb 

secretion is mainly concentrated at the growing tips of mature and developing hyphae 

(229, 233).  

 

3.5.2. Lipases  

At least ten members constitute C. albicans Lipase (LIP) gene family, and there is 

plenty evidence that this gene family is differentially expressed in vivo (234). 

Expression of LIP5, LIP6, LIP8, and LIP9, but not the other members was detected in a 

mouse model of C. albicans peritonitis (234). LIP1, LIP3 and LIP9 were found in infected 

gastric tissues, but undetectable in oral mucosa (235). Another study indicated that 

LIP4 preferentially plays a role in superficial infections (236). 

It is likely that these enzymes, like phospholipases, are involved in virulence of C. 

albicans, but their roles and functions during infection remain to be elucidated  (234, 

237).  

 

3.5.3. Secreted aspartyl proteases  

Microbial extracellular proteases are mostly secreted for the producing 

microorganisms to obtain readily available nutrients from complex materials or to 

compete with other environmental microbes (238). However, pathogenic 

microorganisms may also secrete proteases to accomplish other functions during the 

infective process, such as hydrolysing proteins of host cell membranes to facilitate 

adhesion and tissue invasion or damaging cells and molecules of the host defence 

system to evade or resist the host immune response (239-245). Classically, proteases 
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are ordered in four classes: serine, cysteine, metallo and aspartyl proteases. Aspartyl 

proteases are ubiquitous in nature and are involved in numerous biochemical 

processes (246). All secreted C. albicans proteases belong to the same class of enzymes 

– the aspartyl proteases. C. albicans secreted aspartyl proteases (saps) are essential for 

cell growth when proteins are the sole nitrogen source (247). Sap production is also 

involved in C. albicans pathogenicity and has been associated with several C. albicans 

virulence attributes, including hyphal formation, adhesion and phenotypic switching 

(241). 

So far, 10 SAP genes have been identified with open reading frames ranging from 1173 

to 1764 base pairs in length, and located on five different chromosomes.  

 

Processing, activation, and regulation of C. albicans secreted aspartyl proteases  

All 10 SAP genes of C. albicans encode preproprotein forms, which are processed along 

the secretory pathway. The prepropeptide, which includes a signal peptide and a 

propeptide, is approximately 60-200 amino acids longer than the mature enzyme and 

is essential for correct folding and secretion of the protein. The pathway of protease 

synthesis starts in the nucleus, from where the newly synthesized mRNA is transferred 

to the cytoplasm and translated into the preproenzyme on the rough endoplasmic 

reticulum (rER) where the N-terminal signal peptide is removed by the signal peptidase 

complex (248). The ‘pro’ region probably acts as an intramolecular chaperone that is 

required for proper folding in the rER, since Sap1 lacking its propeptide is retained in 

the rER (249). The ‘pro’ region is released and degraded by an exogenous protease 

leaving the folded enzyme in the active state (250). Later in the Trans Golgi Network 

(TGN), the propeptide is removed by a protease after conserved Lysine-Arginine 

sequences (251-253). The mature enzymes contain sequence motifs typical for all 

aspartyl proteases, including two highly conserved regions with reactive aspartyl 

residues of the active site and a third conserved region at the C-terminus of the 

protein (254, 255). Moreover, four cysteine residues, conserved in all aspartyl 

proteases, may form two disulphide bridges and are probably responsible for the 

maintenance of the three-dimensional structure (256). Once activated, mature Saps, 

with molecular weights between 35 and 50 kDa, are packaged into secretory vesicles 

and transported to the plasma membrane. There, Saps are either released into the 
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extracellular space (Sap1–8) or remain attached to the cell membrane or cell wall via a 

GPI anchor (Sap9 and Sap10, also called yapsin-like proteases) (254, 257). 

Since the SAP gene family encode preproenzymes, the regulation of protease 

expression can be controlled either at mRNA or protein levels. Comparisons of Sap 

protein and mRNA levels at identical time points (258) and kinetic studies of protease 

secretion by pulse chase (259) suggested that protease synthesis and secretion were 

tightly coupled, strongly implying that regulation of Sap activity occurred 

predominantly at the mRNA level. Most Sap proteins contain putative N-glycosylation 

sites, and treatment with endoglycosidase EndoH has revealed that Sap4, 6, 7, 8, 9 and 

10 were N-glycosylated (260), confirming previous observations of Albrecht et al (261) 

that the yapsin-like Saps were highly glycosylated.  

 

Purification, activity and biochemical properties of the C. albicans secreted proteases 

C. albicans proteolytic activity was first described by Staib (262) based on cell growth 

in media containing BSA as the sole source of protein, later attributed to an 

extracellular protease (263). Numerous studies of the biochemical properties of Sap 

isoenzymes have been performed afterwards, by using purified culture supernatants 

(264-266)or recombinant proteins obtained by recombinant expression in Pichia 

pastoris (260, 267) or Escherichia coli (268). Sap2 is the most abundantly secreted 

protein in vitro when C. albicans is grown in protease inducing media (247, 258). Thus, 

data from studies using culture supernatants largely correspond to Sap2 proteolytic 

activity. Structural studies of the C. albicans protease family have also concentrated on 

Sap2 (269, 270). The structure of Sap2 corresponds to the classical aspartyl protease 

pepsin.  

Studies on the biochemical properties of recombinant Saps revealed similarities and 

differences in their structures and active sites, pH optima and substrate specificities.  

The majority of the Sap isozymes (Sap1-6) showed highest proteolytic activity at acidic 

pH 3.0-6.0 (260, 264, 266-268, 271) , which is typical for aspartyl proteases. Sap1 to 

Sap3 have highest activity at lower pH values and Sap4 to Sap6 have highest activity at 

higher pH values, (260, 267, 268). Sap8 has the lowest optimum pH (2.5) (260). In 

contrast, Sap7 showed optimal activity at neutral pH, which is an unusual pH for 
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aspartyl protease activity (260). In addition to different pH optima, cleavage site 

specificity of Candida Sap proteins has been suggested (265, 272).  

Sap versatility may contribute to the success of C. albicans as an opportunistic 

pathogen by providing C. albicans with a biological advantage and enhancing the 

pathogenic ability of the fungus in vivo (241). The production of several Sap 

isoenzymes with distinct pH optima may promote C. albicans colonization and 

infection of different tissues and host niches. A family of proteases with different 

substrate specificities would allow C. albicans to make use of an array of host proteins 

at several host sites to provide nitrogen for the yeast. However, C. albicans produce 

Saps with highly similar substrate specificities and similar optimum pH ranges 

simultaneously, which makes it possible that they have similar target proteins and 

overlapped functions. Nevertheless, it is still not clear whether the digestion of 

substrates by Saps in vivo is similar to that shown in vitro.  Although the specific host 

targets of Saps in vivo are not accurately known, some conclusions can be inferred 

from the combination of Sap in vitro proteolytic properties and results from several 

models of infection in which protease inhibitors or sap-deficient mutant strains were 

used.  

The great majority of studies focusing Sap substrate specificity were done in protease-

inducing growth medium, known to favour SAP2 expression (247, 258). Thus, the 

potential targets of the Sap family in vivo determined therein have been mainly based 

on Sap2 activity in vitro. One of the most remarkable properties of Sap2 is the diversity 

of proteins it can cleave. Sap2 is able to degrade many human proteins, like the ones 

that protect mucosal surfaces and cell-surface proteins, such as keratin, collagen, 

vimentin, fibronectin, laminin and mucins (273-278). The secretory immunoglobulin A 

(IgA) is also degraded (272, 279), what is worth mentioning since it is considerably 

more resistant to proteolysis than are monomeric or serum immunoglobulins. Wu and 

Samaranayake (280) suggested that Candida Sap proteins could degrade salivary 

proteins in the oral cavity because a reduction of total salivary protein concentration 

correlated with the degree of Sap expression, and Meiller et al (281) proved that 

histatin-5 was degraded by aspartyl proteases. C. albicans proteases may also evade 

host defenses by directly degrading molecules such as salivary lactoferrin, 

lactoperoxidase, cathepsin D (an intracellular lysosomal enzyme of leukocytes), and 
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complement (274, 282-284). In addition, Sap2 can degrade β2-macroglobulin, a natural 

protease inhibitor in human plasma (285), and cystatin A, a cysteine protease inhibitor 

found in human epidermal tissues and fluids (286). Sap can cleave pro-interleukin-1β 

into the proinflammatory cytokine interleukin-1β (287) and can also activate Hageman 

factor, a serine protease of the kallikrein-kinin system, which may cause increased 

vascular permeability in vivo (288). Similarly, Sap2 may also act on the blood clotting 

system by activating coagulation cofactor X (289), clotting factor XII, or prothrombin, 

which may result in the generation of thrombin and consequently blood clotting (290). 

These substrates have been mainly tested with Sap2, but it is likely that other Saps also 

target part of them, which may result in overlapping functional roles in vivo between 

members of this gene family. Despite Sap2 ability to degrade such a huge set of 

proteins, these can nevertheless be at environments in which pH does not favour SAP2 

expression and Sap2 proteolytic activity. Indeed, Sap2 is almost inactive at neutral pH, 

the pH found in the milieu of most of these proteins.  

Sap9 and Sap10 are regulatory proteases that may play a role in the cell surface 

integrity and shedding of cell-surface proteins (261). Target proteins may be proteins 

of the cell membrane, of the cell wall, or secreted proteins, including other Saps. 

However, Sap2 processing is independent of Sap9 and Sap10, since total proteolytic 

activity of Δsap9 and Δsap10 mutants was not reduced when comparing with the wild-

type strain (261). Processing of Sap9 and Sap10 target proteins is not essential for 

normal growth though it is necessary for normal separation of cells after budding 

(261).  

 

Differential expression and transcriptional regulation of SAP genes  

The existence of 10 SAP genes suggested that different proteases might target distinct 

host cells and tissues during C. albicans infections and might play key roles in the 

pathogenesis of C. albicans infections. In that sense, the different SAP genes would be 

differentially regulated and expressed under a variety of laboratory growth conditions, 

during the experimental C. albicans infections, and also in vivo.  
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In vitro SAP expression and regulation 

The initial SAP expression studies were performed in vitro to comprehend the 

regulation of SAP gene expression induced by changes in growth environment, 

morphological transition from yeast to hypha and phenotypic switching (241, 256, 

291). Under the protease-inducing conditions generally used, the major protease gene 

expressed in the yeast form of C. albicans was SAP2, which is regulated by exogenous 

protein or peptides. The accumulation of proteolytic products of Sap2 and peptides of 

eight or more amino acid residues, resulting from proteolysis of high-molecular weight 

proteins, led to the induction of SAP2 gene expression via a positive-feedback 

mechanism (247, 292). The widely used SC5314 strain possesses two SAP2 alleles, 

which are differentially regulated, either in vitro or in vivo. Under appropriate 

conditions, the SAP2-2 allele may serve as a signal sensor and amplifier to enhance its 

own expression, as well as to induce the SAP2-1 allele to achieve maximal proteolytic 

activity (293). Two other SAP genes, SAP1 and SAP3, are known to be differentially 

expressed in vitro when C. albicans undergoes phenotypic switching (264, 294). Both 

isoenzymes are expressed in the opaque but not in the white form of strain WO-1 

(264, 294).  

Curiously, SAP4–6 were almost exclusively expressed during hyphal formation at 

neutral pH, even in defined protein-free media, albeit most aspartyl proteases are 

usually only active under acidic conditions (247, 258). The SAP4–6 subfamily was 

usually assessed as a group during these early studies, and thus conclusions are to be 

applied to the subfamily as a whole. SAP8 expression is more strongly induced at 25ºC, 

suggesting that its expression is temperature regulated in vitro and, possibly in vivo 

(254). More recently, SAP9 and to a lesser extent SAP10 were found to be expressed in 

YPD preculture growth, and appeared to be independent of environmental conditions 

and morphology (271). It should also be noted that under all the laboratory growth 

conditions tested in these experiments SAP7 expression was never detected. After 

treatment with subinhibitory concentrations of antifungal agents, increased levels of 

mRNA transcripts were reported for several SAP genes. SAP2 and SAP9 expression was 

induced upon exposure to fluconazole and caspofungin in protease-inducing medium 

(295), while in non-inducing conditions, only SAP5 expression was found increased 

when treated with caspofungin. Barelle et al (296) also reported increased expression 
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of SAP4, SAP5 and SAP6 after exposure to subinhibitory concentrations of azole 

antifungal agents in hyphal-inducing growth conditions.  

Protein expression studies have confirmed that the secretion of Sap5 in C. albicans was 

induced during hyphae formation, followed by secretion of Sap4 and Sap6 under acidic 

conditions, which occurred in vitro in parallel to the degradation of BSA (297).  

 

In vivo SAP expression and regulation  

The in vitro studies confirmed the differential expression of SAP gene family, indicating 

that it was a highly regulated process, and suggested that different members of the 

SAP family might also be differentially expressed in vivo, and might play distinct roles 

during different types or stages of infection and during antifungal treatment. This has 

been confirmed, in both mucosal and systemic C. albicans infections, by several studies 

using technologies such as reverse transcription polymerase chain reaction (RT-PCR) 

and in vivo expression technology (IVET) to assess SAP expression in human samples or 

in in vitro and in vivo experimental models. Using C. albicans-infected oral and vaginal 

reconstituted human epithelium (RHE), Naglik et al (173) reported that within 24h of 

infection, SAP9 was highly and constitutively expressed while SAP10 was also 

constitutively expressed though at lower levels. SAP5 was the only SAP gene that was 

clearly up-regulated during the infection period.  The unique up-regulation of SAP5 

during vaginal RHE infection was also reported by Lermann and Morschhaeuser (174). 

These results contrast the previous reported expression of SAP1–3 subfamily in the 

initial stages of epithelial colonization (298, 299).  

Expression of SAP gene family has been also assessed upon interaction with cells of the 

innate immune system. C. albicans SAP4–SAP6 expression was demonstrated during 

interaction with murine macrophages (267) and in cells incubated with human plasma, 

but not in cells which were incubated with whole blood or phagocytosed by 

polymorphonuclear neutrophils (300).  

To determine whether the in vitro models were representative of the in vivo situation, 

SAP expression was analysed in numerous animal infection models and in human 

samples. In a murine model of oropharyngeal candidiasis, SAP9 transcripts were 

detected continuously throughout the course of infection being SAP5 and SAP9 the 

most highly expressed (301). Staib et al (302) have also reported strong activation of 
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SAP5 and SAP6 during invasion of oesophageal mucosa by C. albicans hyphae. In 

contrast, in a mouse model of gastrointestinal infection, SAP4 and SAP6 were 

constitutively expressed, with SAP2, SAP3 and SAP5 mRNA only occasionally being 

detected (303). SAP gene expression was compared during gastric candidiasis in 

immunocompetent and immunodeficient mice by RT-PCR (304). Gene expression 

patterns were similar in both, suggesting that the immune status of the host has only a 

minor or no influence on the expression of SAP genes.  

The SAP expression profile of C. albicans was analysed in the course of murine vaginal 

infection using an in vivo expression technology (IVET) and green fluorescent protein-

expressing C. albicans reporter strains (302). Of the six SAP genes that were analysed 

(SAP1–SAP6) only SAP4 and SAP5 were detectable during infection. This contrasts the 

results of De Bernardis et al (305), in a rat vaginitis model, which reported the 

preferential expression of SAP2 though SAP1 and SAP3 expression was also found in 

this model. Discrepancies between these results may be explained by the fact that 

physiological mouse vaginal pH ranges between 6.2 and 6.5 (306), a pH interval which 

favours hyphal growth and thus expression of the hyphal-associated genes SAP4–6, 

while at the acidic rat pH (4.5) the expression of SAP1 to SAP3 might be preferential 

(307). 

Naglik et al. analysed SAP expression in subjects with oral and vaginal C. albicans 

infection or asymptomatic carriage (308, 309). In these studies, SAP1, SAP3, SAP4, 

SAP7 and SAP8 mRNA transcripts were predominantly expressed in infected patients 

as opposed to asymptomatic Candida carriers. However, more recently, the same 

group has analysed other groups of patients with oral and vaginal candidiasis and 

could not confirm such an association between SAP expression and infection/carriage. 

SAP9 and SAP5 were the most highly expressed genes in both types of infection and 

SAP2, SAP5, SAP9 and SAP10 were the most commonly expressed genes. These 

authors have also confirmed previous findings (308, 309) that SAP1, SAP3, and SAP8 

expression were more commonly found in vaginal rather than in oral disease.  

The differential expression of SAP genes was also observed during systemic infections. 

SAP5 was the first SAP gene induced after intraperitoneal (i.p.) infection or 

haematogenous dissemination (302). SAP5 expression at this stage of the infection did 

not correlate with the presence of germ tubes or hyphae, and SAP6 gene activation 
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was detected only when C. albicans hyphae were observed in the infected tissue. 

These authors also reported SAP2 induction in the late stages of infection (302). Similar 

conclusions can be taken from a similar model of i.p. infection in which expression of 

SAP2, SAP4–6 and SAP9 was reported for cells invading parenchymal organs (172).  

SAP genes are also regulated by biofilm formation, and higher levels of SAP5, SAP6 and 

SAP9 mRNA transcripts were detected in biofilm rather than during planktonic growth 

(310).  

The expression of SAP1–SAP6 was confirmed at the protein level by using 

immunoelectron microscopy and two different antibodies directed against Sap1–3 and 

Sap4–6 (172, 311) and the results largely agree with the studies reported above. Sap1 

to Sap3 antigens were found on yeast and hyphal cells, while Sap4 to Sap6 antigens 

were predominantly found on hyphal cells in close contact with host cells, in particular, 

eosinophilic leukocytes (172). Sap4 to Sap6 were also detected on hyphal cells that 

have been phagocytosed by murine macrophages (267). 

In conclusion, all these studies indicated that SAP gene expression and regulation, and 

consequently protein production, highly depend on the type and stage of C. albicans 

infection and on the pH conditions and substrate availability in the local environment.  

 

Global transcriptional regulators and SAP expression 

Key transcriptional regulators are known to manage C. albicans morphogenesis and 

the expression of several hyphal associated genes (2). The two transcriptional 

activators Cph1 and Efg1, which are controlled via the MAP kinase or cAMP pathways, 

respectively, regulate not only hypha formation (148), but also the expression of 

hyphal-associated genes, such as SAP4–6. Mutants lacking CPH1 clearly had reduced 

expression levels of SAP4-6, even though filamentous growth in infected tissue was not 

visibly impaired (177). Although efg1 and cph1/efg1 mutants did not produce germ 

tubes during infection, expression of the hyphal associated genes SAP4-6 was reduced 

but not completely abolished, demonstrating that in contrast to in vitro conditions, 

SAP4-6 activation during infection does not strictly depend on growth of C. albicans in 

the hyphal form (172, 177, 312). Nevertheless, these data suggest that the two signal 

transduction pathways are important for SAP4-6 expression in vivo (177).  
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Another transcription factor, Tec1, a member of the TEA/ATTS family of transcription 

factors, is predominantly expressed in the hyphal form of C. albicans. The promoters of 

the hyphal-associated SAP4–6 subfamily contain repetitive TEA/ATTS consensus 

sequence motifs, and expression of SAP4–6 was clearly affected in a tec1 null mutant 

(176). An additional transcriptional factor, Nrg1, represses a subset of genes regulated 

by the general repressor Tup1. Inactivation of Nrg1 results in filamentous and invasive 

growth and derepresses hypha-specific genes, such as SAP5 (313). At last, the 

transcription factor Mig1, like Nrg1, targets the Tup1 repressor to specific subsets of 

genes, including SAP9. However, Tup1 can act Mig1- and Nrg1-independently and 

repress the expression of SAP6 and SAP7 (314). In conclusion, it seems that 

synchronized regulation of germ-tube formation and protease production is essential 

for optimal invasive growth, because mutants lacking either the ability to produce 

hyphal cells or the secretion of hyphal associated proteases Sap4–6 have defects in 

parenchymal organ invasion (172).  

 

Sap production and C. albicans virulence 

The role of Saps as C. albicans virulence factors has been intensively investigated 

during the last decades. Proteolytic activity has been found in vitro in most isolates of 

pathogenic Candida species, including C. dubliniensis (315), C. tropicalis (255, 316, 317) 

and C. parapsilosis (318, 319). Sap activity is regarded as a virulence factor for C. 

albicans (256) and C. tropicalis (320), and its role as a virulence factor for C. 

parapsilosis has been recently highlighted (321). The proteolytic activity of other non-

pathogenic Candida species is generally lower, suggesting that virulence is correlated 

with the level of Sap production (322). 

Secreted aspartyl proteases also seem to be important for the establishment of 

mucosal C. dubliniensis infections. Like C. albicans, C. dubliniensis possesses several 

SAP genes (315, 323), but interestingly, C. dubliniensis does not have the orthologue of 

SAP5 and SAP6, genes involved in systemic C. albicans infections, which may account 

for the almost absent involvement of this species in systemic infections (323, 324).  
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C. albicans virulence modulation by aspartyl protease inhibitors  

The contribution of aspartyl proteases to C. albicans infectious process was first 

confirmed by using the classical aspartyl inhibitor pepstatin A. Colina et al. (273) 

showed that digestion of mucin could be inhibited by pepstatin, indicating that 

Candida Sap proteins may degrade mucosal barrier proteins. This may allow C. albicans 

to gain access to the oral and GI mucosa and may consequently indicate a role for 

Candida proteases in dissemination from these colonized sites. The addition of 

pepstatin inhibited the in vitro digestion of soluble and immobilized extracellular 

matrix proteins produced by a human endothelial cell line (277), what suggests that 

Candida Sap proteins contribute to cell damage and invasion of the subendothelial 

extracellular matrix, which in turn could facilitate dissemination via the circulatory 

system. Likewise, adherence of C. albicans to human mucosa (325), human buccal 

epithelial cells (Watts et al 1998), epidermal corneocytes (326), and epidermal 

keratinocytes (327) has been shown to be inhibited by pepstatin A, indicating that 

proteolytic activity of aspartyl proteases is necessary for the adhesion properties of C. 

albicans. In RHE models or epidermis of oral (173, 311), cutaneous (328) and vaginal 

candidiasis (173, 329), pepstatin reduced the tissue damage caused by Saps. But even 

in the presence of pepstatin, epithelial tissue damage was observed in late stages of 

RHE infections (173). This suggested that certain members of the Sap family might not 

be inhibited effectively by pepstatin or other hydrolytic enzymes of C. albicans, such as 

phospholipases and lipases that might also contribute to the development of mucosal 

lesions. On the contrary, Lermann and Morschhaeuser (174) stated that no inhibition 

in RHE damage could be observed upon pepstatin usage, indicating that dependence 

on Sap activity during the C. albicans pathogenesis process is highly variable. Besides, 

the authors also gave the possibility that pepstatin A did not fully inhibit Sap activity 

under the conditions used in the RHE infection experiments (174). In another in vitro  

model of oral epithelium, tissue invasion by C. albicans was reduced in the presence of 

pepstatin. The tissue invasion mechanism proposed was the degradation of E-cadherin 

by Saps, in particular by Sap5, since overexpression of SAP5 rescued the attenuated 

invasive phenotype of a Δrim101 null mutant, in which SAP4 to SAP6 expression is 

diminished (330).   
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Protective effects of pepstatin were also demonstrated in a rat vaginitis model, where 

administration of pepstatin after infection greatly accelerated the clearance of C. 

albicans from the rat vagina (331, 332). In a study of murine peritonitis, the addition of 

pepstatin significantly reduced liver and pancreas damage, as determined by 

decreased levels of alanine aminotransferase (ALT) and α-amylase enzyme activities, 

respectively (333). These findings indicated that pepstatin could attenuate C. albicans 

virulence in a systemic murine intraperitoneal model, probably by inhibiting tissue 

damage and invasion by Sap4 to Sap6, since a sap4-6 null mutant strain caused 

decreased tissue damage that could be no further reduced by the addition of pepstatin 

(333).  

While the evidence supporting a protective role for pepstatin in mucosal animal 

models is convincing, its potential use in acute systemic candidiasis remains 

unpersuasive. No real protective effect was observed after intravenous challenge with 

C. albicans by using pepstatin in vivo (334-337). Fallon et al. (334) showed that 

pretreatment of neutropenic mice with pepstatin A afforded strong dose-dependent 

protection against a subsequent lethal intranasal dose of C. albicans. Inhibition of Sap 

proteins by pepstatin prevented the initial penetration of C. albicans through mucosal 

surfaces, but not the dissemination of C. albicans once the cells had already reached 

the blood vessels, since no protection by pepstatin A was observed in mice challenged 

intravenously, and protection was markedly attenuated in mice given pepstatin A after 

intranasal challenge.   

Thus, one conclusion may be that pepstatin can prevent disseminated infections by 

inhibiting Candida penetration through the mucosal route, but cannot inhibit systemic 

infections when the Candida is administered via the intravenous route. However, 

pepstatin is not selective and is slightly toxic in animals, probably due to its inhibitory 

action on host aspartyl proteases, including cathepsin D and renin (335). Moreover, 

pepstatin accumulates in the liver and not the kidneys, which is a major target organ of 

C. albicans in systemic infections, and is thus likely to be rapidly cleared from the blood 

in vivo. Therefore, while pepstatin is a potent inhibitor of the C. albicans aspartyl 

proteases in vitro, its suitability as an antifungal agent in vivo is not convincing. 

The interest in discovering new compounds that inhibit Sap activity has grown 

considerably as a result of the evolving HIV epidemic. In the last two decades, the 
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treatment of HIV-positive patients with highly active antiretroviral therapy (HAART), 

which includes a cocktail of HIV reverse transcriptase and HIV protease inhibitors, has 

proved successful in delaying the onset of AIDS. Administration of HAART resulted in a 

significant improvement in the immune status of the HIV-positive individual reflected 

by an increase in the CD4+ T cell population. These patients also had a dramatically 

reduced incidence of oropharyngeal candidiasis (338-341). Given that Candida 

proteases and the HIV protease are members of the same aspartyl protease family, 

these findings indicated that HIV protease inhibitors could also inhibit Candida aspartyl 

proteases in vivo and consequently prevent or reduce Candida infections (342-344). In 

fact, several HIV protease inhibitors were able to inhibit Sap activity (343, 345-348), 

and to reduce the adherence of C. albicans to epithelial cells, further giving evidence 

that protease activity is involved in the attachment of Candida cells to host surfaces 

(303, 342, 344), what could explain the reduction of Candida infections in HIV patients 

treated with HAART. Regardless the strong inhibition of Sap expression in the oral 

cavity, these HIV protease inhibitors had a limited effect on C. albicans viability, thus 

having a limited potential as therapeutic agents in the treatment of C. albicans 

infections (349).  

HIV protease inhibitors did not influence the phagocytosis by polymorphonuclear 

neutrophils (348). Sap inhibition with pepstatin did not affect C. albicans cell viability in 

a Candida-neutrophils interaction study, confirming the view that Saps are not 

associated with survival in neutrophils (300).  

 

Role of Saps in C. albicans virulence using sap-deficient mutant strains 

Genetic manipulation of C. albicans has always been complicated by the diploid nature 

of the fungus and the fact that it has an unproven naturally functional sexual stage. As 

a result, for a long time it was very difficult to create mutant strains for the analysis of 

virulence properties. Before the development of modern molecular biology tools, 

many of the early studies investigated the role of proteases in C. albicans virulence 

using less proteolytic or nonproteolytic C. albicans mutants that were induced by 

chemical or UV mutagenesis. Macdonald and Odds (350) and Ross et al. (351) showed 

that proteolysis-deficient mutant strains of C. albicans were less pathogenic in mice 

than was the parental strain. This attenuated virulence for one of the mutants was 
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confirmed for the rat vaginitis model by De Bernardis et al. (352). Also, Kwon-Chung et 

al. (353) demonstrated similar reduced virulence with another proteolysis deficient 

mutant and showed that a spontaneous revertant, that regained half of its original 

proteolytic activity, was almost as virulent as the parental strain. However, all these 

studies have used protease-deficient mutants obtained by chemical or UV mutagenesis 

and, most certainly, these mutants also contained nonspecific mutations at other gene 

loci that may have affected the growth and/or virulence of C. albicans. Thus, the 

results had to be interpreted with extreme caution. 

Targeted gene disruption and the use of expression vectors have enabled the 

construction of null mutants lacking specific SAP genes or strains overexpressing 

determined SAP genes (174, 261, 354-356) . These sap null mutants have highlighted 

the relevance of distinct Saps in different models of Candida infection. Actually, the 

most definitive data regarding the contribution of the SAP family to Candida 

pathogenicity have been obtained, most probably, from the behaviour of the various 

selectively SAP-disrupted strains.  

 

Sap production and mucosal infections  

The role played by C. albicans proteases in mucosal infections has been frequently 

assessed by the ability of mutant strains deficient in one or multiple SAP genes to 

cause tissue damage in RHE models of oral and vaginal candidiasis. The results from 

the first studies have indicated that Sap1, Sap2, and Sap3 enzymes were important in 

both the oral (311, 357) and vaginal (299) models, since mutant strains lacking these 

genes caused less tissue damage than did the parental strain. These results were in 

accordance with previous observations that Sap1 and Sap3 were associated with 

mucosal tissue damage (298). However, more recently, two different groups, using 

independently constructed sap null mutant strains, have shown that even mutants 

lacking all of the SAP1–SAP3 or the SAP4–SAP6 genes displayed the same capacity to 

invade and damage both oral and vaginal RHE as their wild-type parental strain (173, 

174). They have stated that hypha formation was the predominant cause of tissue 

damage in these models, but Albrecht et al (261)proved that Sap9 and Sap10 were 

essential for maximal pathogenicity during interaction with oral epithelial tissue, since 

mutant strains deficient in SAP9 and/or SAP10 genes had altered adhesion properties 
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to oral epithelial cells and induced considerably smaller tissue damage, which was 

restored by reintroducing the genes(261).  

Schaller et al. reported that SAP1–3, but not SAP4–6, contributed to C. albicans 

infections on cutaneous epidermis (328). De Bernardis et al. (358) also showed that 

sap1, sap2, and sap3 mutants, but not the sap4 to sap6 mutant, were less virulent in a 

rat vaginitis model, comparatively to wild-type strain SC5314, in particular the sap2 

mutant. Reintroduction of the SAP2 gene recovered the ability of the sap2 mutant to 

efficiently infect vaginal tissues, showing that Sap2 may play a pathogenic role in rat 

vaginitis. In contrast, although SAP7 is induced after murine vaginal infection, a sap7 

mutant strain was not affected in its virulence in this infection model, highlighting that  

SAP7 expression does not correlate with C. albicans virulence in vaginal infection in 

mice (356).  

In another model of mucosal candidiasis, the murine model of gastrointestinal  

infection, no demonstrable differences between sap1- to sap6-deficient strains and 

the parental strain could be observed in the ability to invade the stomach or to 

disseminate to the brain or in the number of fungi persisting in the faeces (359). It is 

possible that, contrarily to oral or vaginal infections, the infectious process of C. 

albicans gastrointestinal infection does not depend on Sap activity. Similar conclusions 

were taken from the results obtained in the infection model using chick chorioallantoic 

membrane, which has been described as an alternative to evaluate C. albicans 

virulence. In this model, virulence of SAP-disrupted mutants was not attenuated (360).  

It has become clear that the importance of Saps in general, and of individual Sap 

isoenzymes, for the virulence of C. albicans varies strongly, depending on the infection 

model, with even minor differences in the experimental setup having a significant 

impact on the dependence on protease activity for successful invasion and 

establishment in various host niches.  

 

Sap production and systemic infections  

The use of SAP-deficient strains has also implicated the Sap family in systemic C. 

albicans infections. During invasion of host cell tissue and during escape of host cells 

that have internalized the fungus, hypha-associated factors such as secreted 

hydrolases may be crucial. SAP4–6 were shown to be almost exclusively expressed 
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during hyphal formation at near neutral pH values in vitro (247, 258) and may thus be 

important for the invasive properties of C. albicans hyphal cells. 

 The first real evidence that Sap4–6 may target different tissue compartments and 

substrates in vivo came from animal experiments performed using SAP-disrupted 

mutants, which indicated that the Sap4–6 family contributed to systemic infections 

(355). In guinea pig and murine models of disseminated candidiasis, upon intravenous 

infection with the sap1, sap2, sap3, and sap4 to sap6 mutants, all animals had 

increased survival rates compared with those infected by the parental strain (354, 

355). The sap4 to sap6 mutant displayed the greatest attenuation not only in terms of 

lethality but also in terms of fungal burden in host organs, such as the kidneys and 

liver. However, the authors concluded that although Sap4 to Sap6 appeared to 

contribute more to systemic infections in both animal models than did Sap1 to Sap3, 

none of the C. albicans proteases was a single dominant factor during disseminated 

infections. In murine models of acute systemic candidiasis, sap7 mutant strain had 

partial attenuated virulence (356), and sap9 and sap10 mutant strains exhibited 

virulence phenotypes similar to the parental strain (261). 

In a model of murine peritonitis, the invasive properties of sap1, sap2, or sap3 mutants 

were indistinguishable from those of wild-type cells, but the sap4 to sap6 triple mutant 

showed strongly reduced invasiveness (172) and induced a significantly reduced 

activity of ALT and α-amylase (markers of liver and pancreas damage, respectively) in 

comparison to the parental strain, despite still producing hyphal cells (333). When the 

tissue damage of liver and pancreas caused by single sap4, sap5, and sap6 and double 

sap4 and sap6, sap5 and sap6, and sap4 and sap5 double mutants was compared to 

the damage caused by wild-type cells, all mutants which lacked functional SAP6 

showed significantly reduced tissue damage (172).  

These data indicated that the Sap4 to Sap6 subfamily contribute to tissue damage and 

invasion in systemic infections, probably by aiding penetration of tissue and survival of 

the fungus in phagocytes.  

Differential control and coordination of SAP expression appears to be essential for 

pathogenesis as overexpression of C. albicans Sap2 even reduced virulence. 

Furthermore, heterologous expression of SAP2 did not enhance virulence in the non-
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pathogenic yeast Saccharomyces cerevisiae (361), indicating that SAP expression per se 

does not necessarily correlate with virulence.  

It is clear that the use of sap-deficient strains has significantly advanced our 

understanding of the possible roles and functions of the proteases during Candida 

infections. However, almost the totality of these studies were based on the use of Ura-

blaster sap null mutants, which have not been complemented and thus, the nature of 

these mutants remain to be confirmed. The great majority of these mutant strains 

were generated from auxotrophic laboratory strain CAI4 with the most common 

method used for disrupting genes in C. albicans, the Ura blaster technique (362). The 

use of the URA3 marker for mutant construction in C. albicans can lead to a 

misinterpretation of the results in mutant virulence studies (363-365) . Although this 

can now be overcome by the integration of URA3 at the ENO1 (366) or RPS10 (364) 

locus, the mutant strains used in earlier studies did not share a site of URA3 

integration. Therefore, it is conceivable that the Ura status could have influenced the 

results, and thus, the attenuated nature of these mutants during acute systemic 

candidiasis remains to be confirmed unequivocally (367). More recently, an alternative 

method for constructing null mutants from the prototrophic wild-type strain SC5314, 

the SAT1-flipping strategy, has been published (368), and a new set of single, double 

and triple sap null mutants has been constructed by using this strategy (174), avoiding 

the recognized effect of Ura influence.  

Still, results obtained with disrupted strains should be interpreted with some caution, 

since the disruption of one SAP gene may be compensated for by the up-regulation or 

down-regulation of other SAP genes, or even other unrelated virulence-associated 

genes, which may account for some of the reported observations. These forced 

adaptations that C. albicans may need to undergo as a result of SAP gene disruption 

may introduce undesirable changes that could lead to misinterpretation of the 

obtained results. An example is the loss of heterozigosity for the chromosome R and 

loss of SAP2-2 allele in the Ura-blaster triple mutant Δsap4-6, which has resulted in an 

impaired ability of this mutant strain to utilize proteins as the sole nitrogen source, and 

that may have resulted in other misidentified phenotypic characteristics (369). In 

addition, only a single C. albicans strain has usually been used for all SAP disruption 
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studies and thus it is not known whether this strain is representative of all other C. 

albicans strains that cause clinical infections.  

In summary, the majority of the in vitro, animal model and in vivo studies support the 

view that distinct proteases of the Sap isoenzyme family have distinct functions during 

the different types and stages of infection (172, 311, 333, 355, 358, 359) yet, some of 

the roles and functions of Sap enzymes during C. albicans infections may need 

confirmation.  

 

Sap production and evasion of host immune responses  

C. albicans possesses several mechanisms of evasion of the host immune response and 

Saps have also been implicated in some of those processes.  In macrophage killing 

assays, a sap4-6 triple mutant was killed more efficiently after phagocytosis by murine 

macrophages than was the parent strain (267). As a result of macrophage ingestion, C. 

albicans may germinate inside the phagolysosome and secrete Sap4 to Sap6, which are 

optimally active at the same pH (4.7 to 4.8) as that found in the phagolysosome (267). 

The production of functional Sap4 to Sap6 proteases within the phagolysosome may 

result in the digestion of enzymes associated with Candida killing and might render C. 

albicans more resistant to macrophage attack. The macrophage proteins targeted by 

Sap4 to Sap6 are not yet known, but Sap4 to Sap6 may act either directly on 

phagolysosomal enzymes involved in microbial killing (cathepsin D and/or antifungal 

peptides) or on key enzymes of macrophage metabolism that are essential for optimal 

microbial killing (239). Interestingly, Sap4–6 do not appear to be involved in evasion of 

phagocytosis by human blood polymorphic nuclear (PMN) neutrophils, because 

disruption of the whole subfamily has no effect on C. albicans survival or escape and 

none of the individual members were found to be up-regulated after phagocytosis 

(300, 370). These findings strongly indicated that Sap4 to Sap6 might facilitate C. 

albicans evasion from host innate defences by resisting macrophage attack, but not 

neutrophil control. Interestingly, Sap9 has a major impact on recognition of C. albicans 

by PMN cells (371). Yet, the expression of SAP9 does not constitute an evasion 

mechanism, since killing of sap9 null mutants by PMNs was reduced in comparison to 

wild-type C. albicans and the induced PMN chemotaxis towards Δsap9 filaments, and 
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consequent effective PMN activation, was also reduced (371). In contrast, SAP9 

deletion had no impact on C. albicans phagocytosis and killing by macrophages (271). 

The production of secreted proteases has also been shown to interfere and inactivate 

host innate immune effector components, such as complement proteins and 

antimicrobial peptides. Saps in the culture supernatant of C. albicans cells and also 

recombinant Sap1, Sap2 and Sap3 degrade host complement components C3b, C4b 

and C5 besides inhibiting terminal complement complex formation. A triple knock out 

C. albicans strain Δsap1–3 and also the non-pathogenic yeast S. cerevisiae lack such 

degrading activities. In brief, the secretion of complement degrading proteases 

mediates complement escape and generates a protective microenvironment of 

reduced host complement activity (282).  

Additionally, Saps may impair antimicrobial peptide function. Sap9 was responsible for 

degradation and deactivation of histatin-5, a host antimicrobial peptide involved in the 

protection of the oral mucosa against C. albicans, resulting in loss of its anti-candidal 

potency (281). 

At last, Saps may contribute to evasion of the host humoral immune response by 

degrading immunoglobulins (372), including IgA, which is known to neutralize many 

toxins and enzymes (373) and to inhibit C. albicans attachment to buccal epithelial cells 

(374).  

These findings strongly indicate a functional role for Saps in the evasion and possible 

manipulation of mucosal and systemic immune responses. 

 

Sap production and host immune response 

Since Saps play a role in C. albicans virulence, it is thus expected that the host would 

respond to Sap production by counteracting Saps to prevent local infection and 

damage. In fact, high titres of anti-Sap antibodies have been observed in sera of 

candidiasis patients, indicating the presence of Sap antigens during human systemic 

infections (322, 325). Besides, Sap antigens have been detected in biopsies of oral 

epithelial lesions collected from HIV-infected patients (311) and in almost all autopsied 

organs of immunocompromised patients who had died of systemic C. albicans 

infections (375). In all cases, antigens were found within the cell wall of yeast and 

hyphal cells. By using immunofluorescence with an anti-Sap antibody, amorphous 
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deposits of protease antigen formed a ring surrounding C. albicans micro-abscesses in 

the kidney, which may correspond to pH-mediated denaturation of secreted proteases 

(375). The observation that most Sap antigens were present within the Candida cell 

wall was later confirmed (172, 298, 311, 328, 359, 376). The location of Sap antigen 

during infections, assessed by using specific antibodies against the different Sap 

proteins, showed that Sap1–3 antigens were present in both yeast and hyphal cells, 

while Sap4–6 antigens were mainly found in hyphal cells (172, 267). Expression of 

different isoforms of Saps was also demonstrated by using immunoelectron 

microscopy in samples from patients suffering from oral and cutaneous candidiasis, 

showing abundant Sap1-3 antigen levels and few Sap4-6 antigen levels (311, 377).  

While Sap antibodies were useful in demonstrating the expression and localization of 

the enzymes, the protective effect of Sap antibodies produced by infected hosts is 

more uncertain. Saps are known to be immunogenic and induce potentially protective 

host defences in mucosal and systemic animal models (331, 378-381). However, 

Ghadjari et al (382) attempted to protect mice from lethal C. albicans intravenous 

infection after passive antibody transfer with no success. The antibodies used were 

human recombinant antibodies against two Sap2 B-cell epitopes from a patient who 

had recovered from disseminated candidiasis. It is not yet known whether a strong 

immunological response against individual or multiple members of the Sap family can 

neutralize, inhibit or prevent extracellular protease activity resulting in effective 

protection against C. albicans infections in vivo.  

Finally, although an immunomodulatory role has already been suggested for some of 

these proteases (267, 329, 381, 383), the specific interactions between Candida 

aspartyl proteases and the host immune response remain to be investigated.  

 

3.6. C. albicans pathogenicity beyond virulence factors 

The majority of the studies focusing putative virulence factors support the view that 

secreted hydrolases (SAPs, PLBs and LIPs) contribute to nutrient acquisition and 

promote fungal penetration of host barriers (224), whereas the Als proteins and Hwp1 

promote adhesion to host tissue (196, 366, 384). 

However, the new genome-wide expression profiling studies examine the global 

transcriptional response of C. albicans to the host using ex vivo and in vivo infection 
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models. These studies have revealed that most infection-related changes in C. albicans 

gene expression reflect environmental adaptation and that the initial contacts with the 

host, and also disease progression, are highly associated with metabolic and stress 

adaptation. C. albicans nitrogen metabolism change following exposure to host 

immune defenses or growth in biofilms (300, 310, 385, 386) . Also, amino acid 

biosynthetic genes are induced following neutrophil attack, but not during tissue 

invasion (387). This is consistent with the observation that the inactivation of the 

amino acid starvation response or specific amino acid biosynthetic pathways does not 

attenuate the virulence of C. albicans (364, 388). Therefore, tissues appear to be 

amino acid replete and thus, SAP expression is probably induced in these infection 

models for other purposes other than nitrogen availability (144). Other genes that are 

up-regulated during the development of C. albicans tissue invasion are genes involved 

in iron and phosphate assimilation (387). Also the expression of pH sensing functions 

changes during exposure to human blood and during tissue invasion (300, 370, 387). 

These transcript profiling data are in agreement with previous mutant studies 

indicating that iron assimilation and pH sensing are required for the overall virulence 

of C. albicans (307, 389). Data from these global transcriptional studies further 

supported that stress adaptation is essential for the virulence of C. albicans. These 

global transcript profiling studies support previous observations that several stress 

genes, involved in the detoxification of reactive oxygen and nitrogen species, are 

induced when C. albicans cells are exposed to macrophages, neutrophils, blood or 

epithelial cells, or during oral infections (300, 370, 385, 386, 390) . Genes involved in 

protective functions, such as heat shock proteins, have also been found to be up-

regulated in infected kidneys and liver (387, 391). Stress adaptation is known to be 

essential for overall virulence, since inactivation of catalase, superoxide dismutase, or 

a flavohemoglobin involved in NO detoxification (300, 392-394) attenuates C. albicans 

virulence. Similar results are obtained by disrupting the stress-activated protein kinase, 

Hog1 (395), which is required for oxidative stress resistance (395, 396).  

Therefore, C. albicans appears to activate adaptive stress responses in a niche-specific 

fashion during disease establishment and progression. Genomic studies show that 

diverse changes in C. albicans gene expression occur during infection and that, 
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although virulence factors are important, environmental adaptation appears to be the 

main key to pathogenicity.  

 

4. C. albicans cell wall 

The yeast cell wall is a crucial extracellular organelle that maintains the viability of 

fungal cells by protecting the cell from lysis during environmental stress and 

morphogenesis (257). It corresponds to the primary way in which the organism 

interacts with its host and contributes to pathogenesis by mediating interactions with 

host-cells and eliciting host immune responses (397). Fungal cell walls combine skeletal 

and matrix components. The skeletal component of the C. albicans cell wall is based on 

a core structure of β-(1,3)-glucan covalently linked to β-(1,6)-glucan and chitin (poly-β-

(1,4)-N‑acetylglucosamine (GlcNAc), which are located towards the inside of the cell 

wall. The outer layer is enriched with cell wall proteins that are attached to this 

skeleton. Despite being buried beneath the mannoprotein outer layer, β-glucans and 

chitin can nevertheless become exposed at cell surface in the bud scars (398). C. 

albicans cell wall contains a matrix mainly composed of glycosylated proteins that 

represent 30-40% of the cell wall dry weight (399). Lipids are minor components of the 

cell wall, but still have important functions (400). In fact, phospholipidomannan (PLM), 

is an important glycolipid of C. albicans, with linear β-1,2-oligomannose chains as the 

major component. β-1,2-oligomannosides of PLM have a role in virulence and 

immunomodulation (401) and are thought to be strong immunogens (402). Curiously, 

β-1,2-oligomannosides are expressed only in C. albicans and C. tropicalis, which are the 

most pathogenic Candida species. 

 

Cell wall glucans 

β-glucans are the most abundant polysaccharides of the fungal cell wall and represent 

approximately 60% of the cell wall components (399). Contrarily to other fungal 

species, C. albicans does not contain α-glucans. β-glucans occur as β-(1-3)-linked 

glucose polymers with β-(1-6)-linked side chains of varying length, tertiary structure 

and distribution, characteristics that have been shown to influence host immunity 

modulation (403). In general, large β-glucans lead directly to leukocyte activation, 

triggering phagocytosis, the production of cytokines, chemokines and other 
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inflammatory mediators (404). Intermediate-sized β-glucans (glucan phosphate) do not 

elicit leukocyte response in vitro yet being active in vivo. Small and low molecular 

weight β-glucans, such as the algae β-glucan laminarin, are recognised by glucan 

receptors but do not stimulate downstream signals (404). The ability of β-glucans to 

modulate immune recognition, and consequently the immune response, has caught 

pharmaceutical interest (405). Glucans and mannans are released by C. albicans in 

synthetic medium, as well as in the blood of infected patients, and these molecules can 

induce anaphylactic shock and coronary arthritis in murine models (406). On the other 

hand, treatment with β-glucans reduced fungal burdens and increased survival of 

infected animals. β-glucans have been shown to inhibit tumour growth and increase 

survival times, but the success of this treatment is dependent on a number of factors 

including the type of tumour (407, 408). The use of β-glucans as immune boosters has 

been assessed in clinical trials with promising results, though the mechanism anti-

infective is not completely understood (404, 409). The anti-tumour activity is the best-

examined property of β-glucans. In general, β-glucans are considered as safe but they 

have been implicated in triggering autoimmune diseases such as arthritis and are 

thought to be involved in respiratory burst disorders. Also, intravenous injection of 

particulate β-glucan caused the formation of granulomas, though it can be overcome 

by using active soluble glucans (410). 

 

Chitin 

Chitin is a β-(1,4)-linked homopolymer of GlcNAc that forms antiparallel  hydrogen-

bonded chains called microfibrils (411). Three genes encoding chitin synthases are 

described in C. albicans. CHS2 is preferentially expressed in the hyphal state although 

its lack does not have any effect on chitin levels, the yeast to hyphal transition or 

virulence in a mouse model (412). Chs1 is involved in septum formation and essential 

for cell integrity and virulence (413). Strains defective in Chs3 are less virulent in a 

mouse model than the parental strain. Exposure of C. albicans to cell wall stresses such 

as CaCl2 or Calcofluor White can increase the chitin synthase activity (414). 

Additionally, caspofungin treatment, which targets the β-(1,3)-glucan synthesis 

increases Chs3 levels in the cell (415). A fourth Chs was identified by in silico analysis: 

Chs8, which is similar to Chs2 and is responsible for 25% of the chitin synthase activity 
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but not essential for growth (416). The chitin synthase can be used as a target to 

control fungal infections because of the importance of chitin in the structure of the cell 

wall and its absence in the host. So far, two important inhibitors of chitin synthase 

have been described: polyoxins and nikkomycins. Nevertheless, they show high 

antifungal activity in vitro but they do not present effective activities in in vivo studies 

(417).  

 

Cell wall proteins 

Cell wall proteins can fall into two classes. Class I proteins are not covalently linked to 

the cell wall and are extractable with detergents or chaotropic agents. Class 2 proteins 

can only be solubilized after the destruction of structural polysaccharides or by 

breaking the specific bonds which link them to the polysaccharides (417). Within this 

group is the major class of cell wall proteins, the glycosylphosphatidylinositol (GPI)-

anchored cell wall proteins, attached through a GPI remnant to β-(1,3)-glucan or chitin 

by a highly branched β-(1,6)-glucan linker (418, 419). These proteins are usually highly 

glycosylated with mannose-containing polysaccharides, and carbohydrates can 

account for up to 90% of their molecular mass. Mannoproteins are bound to the β-

glucan/chitin inner layer through lateral chains of β-(1,6)-glucan or to β-(1,3)-glucan via 

alkali-sensitive linkages. The mannan structures are very important for the 

discrimination between fungal species and serotypes and are known to be present in 

C. albicans but absent in S. cerevisiae. Three different types of β-1,2-mannose have 

been found in distinct Candida species (420-422). In C. albicans, phospholipomannan 

reacts with antibodies specific to β-1,2-mannose (423). For phospholipomannan, it has 

been suggested that it may have relevance in adhesion, protection and signaling (424, 

425). Similar to β-glucans, both mannans and mannoproteins from C. albicans cell wall 

have important immunostimulatory activities (426-430) . 

The number of in silico predicted GPI proteins identified in C. albicans is almost twice 

as high as of that identified in S. cerevisiae, though the function for many of them is 

yet to be discovered (431). GPI proteins are located at the cell surface and are thus 

expected to interact with the host cells. In addition, C. albicans is highly adapted to its 

environment compared to other opportunistic fungi suggesting the evolutionary 

development of numerous mechanisms to colonize its host.  
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5. Immunity to C. albicans infections  

The host immune response to fungal infections comprises diverse mechanisms and 

involves both the innate and the adaptive immune system. A complex and continuous 

balance between pro- and anti-inflammatory signals is required to maintain a stable 

host-fungus relationship, the disruption of which can have pathological consequences. 

The relative importance of specific innate and adaptive defence mechanisms in C. 

albicans infections differs, depending on the anatomical site of infection and on 

organism characteristics, such as morphotype (yeast, pseudohyphae and hyphae).  

 

5.1. Recognition of C. albicans by the innate immune system 

Pattern recognition receptors (PRRs) expressed on host innate immune cells recognise 

pathogen-associated molecular patterns (PAMPs) in fungi (432). The receptors that are 

involved in the recognition of C. albicans by leukocytes and the respective fungal 

PAMPs are depicted in Figure 1. PRRs on phagocytes initiate downstream intracellular 

events that promote the activation of the immune system and the clearance of fungi, 

being the specific immune response generated dependent on the PRRs triggered. 

However, PRR-mediated cell activation might as well promote some infections and 

cause tissue damage. Fungi have developed several mechanisms that exploit PRRs in 

order to manipulate host immune responses and survive, or even replicate, within the 

host.  

 
5.1.1. PAMPs 

The fungal cell wall varies in composition depending on the morphotype, growth stage 

and environment of the fungal species, and is the main source of PAMPs that are 

recognised by PRRs on mammalian cells. During the course of C. albicans infection, 

multiple host PRRs are likely to be stimulated by the fungal PAMPs depending on the C. 

albicans morphotype and on the host cell types involved. Therefore, the final immune 

response will depend not only on the relative degree of stimulation of the individual 

receptors, but also on receptors synergy or antagonism and on their cellular 

localization. 

 



 

40 
 

5.1.2. Pattern recognition receptors and their targets 

 

Toll-like receptors (TLRs). The functional role of TLRs in antifungal host defence was 

first reported by Lemaitre et al. (433), who showed that drosophila flies deficient of 

toll were highly susceptible to infection with Aspergillus fumigatus. Of the 13 TLRs 

described in human and mice to date, only TLR2, TLR4, TLR6 and TLR9 have been 

reported to be involved in the defence against C. albicans. 

Fungicidal pathways appear to be dependent on signalling via MyD88, the signalling 

adaptor that is a major component of TLR signalling and an essential component of IL-

1R signalling (434). 

 

TLR2. Although inhibition or deletion of TLR2 resulted in decreased production of pro-

inflammatory cytokines and neutrophil recruitment after stimulation with C. albicans 

(435, 436), TLR2-deficient mice had increased resistance to disseminated candidiasis 

associated with increased production of IL-12 and INF-γ and decreased production of 

the anti-inflammatory cytokine IL-10 (434, 437). Furthermore, TLR2-deficient 

macrophages were able to clear C. albicans infections better than wild type 

counterparts (438). Such an anti-inflammatory role for TLR2 in host defence is 

supported by the demonstration that zymosan can induce immunological tolerance 

through a TLR2-mediated pathway (439). Even though the TLR2 ligand from C. albicans 

remains unidentified, there is evidence that phospholipomannan and β-glucans might 

be recognised by TLR2 and TLR6 (424, 440). 

 

TLR4. There are controversial studies about the role of TLR4 during C. albicans 

disseminated infection. Netea et al (435) have reported that it is important for 

chemokine production, neutrophil recruitment and kidney fungal burden control, even 

if no changes in cytokine production could be found. In contrast, Gil and Gozalbo (441) 

and Murciano (442) stated that TLR4 was not relevant for the survival of mice infected 

with C. albicans. TLR4 is the receptor for bacterial lipopolysaccharide (LPS) (443, 444), 

but the nature of fungal PAMPs recognised by TLR4 is still poorly known. C. albicans 

and S. cerevisiae mannan, especially shorter O-linked mannan (445, 446) might be 

recognised by this receptor.  
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TLR6. The role of these receptors in response to C. albicans is less well studied. 

TLR2/TLR6 heterodimers are involved in zymosan recognition, but cytokine production 

is only moderately reduced in TLR6-deficient macrophages. Also, TLR6 does not seem 

to play a role in disseminated C. albicans infections (440). 

 

TLR9. Blocking TLR9 in human monocytes reduces production of the anti-inflammatory 

cytokine IL-10 after stimulation with C. albicans. This effect is also observed in murine 

TLR9-deficient macrophages (van de Veerdonk et al, 2008). The natural ligands for 

TLR9 are unmethylated CpG sequences. A recent study indicates that TLR9 recognises 

C. albicans DNA driving to IL-12 production by myeloid DCs (447).  However, no 

increased susceptibility of TLR9-deficient mice to disseminated candidiasis has been 

observed (434, 447).  

 

C-type lectin receptors (CLRs) 

The CLRs proved to recognise fungal PAMPs are Dectin-1, Dectin-2, macrophage 

mannose receptor (MR), galectin-3, dendritic cell-specific ICAM3-grabbing nonintegrin 

(DC-SIGN) and mincle.  

 

Dectin-1 is the most extensively studied receptor implicated in fungal recognition. 

Dectin-1 recognises β-1,3 glucans via its extracellular C-type lectin-like domain (CTLD) 

(403). Dectin-1 stimulation with curdlan, a linear β-(1,3)-glucan, stimulates IL-2 and IL-

10 production by DCs. ROS production upon zymosan and C. albicans stimulation 

requires Dectin-1 (398, 448, 449). However, the role of this receptor in C. albicans ROS 

signalling is still unclear because ROS production is not altered in macrophages from 

dectin-1-deficient mice when challenged with C. albicans (450). In addition, Dectin-1 is 

required for phagocytosis (398, 451, 452). Dectin-1-deficient mice are more 

susceptible to infection with C. albicans, resulting in increased fungal burden and 

lower survival (448). However, another study using a different mouse strain of dectin-

1-deficient mice found increased susceptibility to Pneumocystis but not to C. albicans 

(450). Dectin-1 can also cooperate with TLRs to induce pro-inflammatory responses. In 

macrophages, cooperative signalling through Dectin-1 and TLR2 heterodimers is 
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required for the induction of TNF-α in response to C. albicans and zymosan (404, 449). 

Remarkably, Dectin-1 amplifies TLR4-dependent pathways (453). Furthermore, Dectin-

1 can couple with other TLRs, resulting in the synergistic induction of TNF-α and IL-10 

(454). In murine macrophages, a collaboration of Dectin-1 and DC-SIGNR1 for fungal 

binding exists (455), and in human DCs, a co-stimulation of DC-SIGN and Dectin-1 

induces arachidonic acid signalling (456).  

 

Dectin-2 has specificity for high mannose structures (457, 458). The receptor 

preferentially recognises hyphal forms of C. albicans. However, the receptor can also 

weakly recognise yeast forms (457, 459). The cytoplasmic tail of Dectin-2 appears to 

associate with the FcγR chain (459, 460), a signalling adaptor associated with several 

other transmembrane receptors. This induces TNF-α and IL-1ra in response to hyphal 

forms of C. albicans (459, 461). Blocking of Dectin-2 in a C. albicans infection model did 

not affect innate immune resistance but abrogated Th17 response (462), and when 

combined with Dectin-1 loss, the Th1 response decreased (461).  

 

The human dendritic cell-specific ICAM3-grabbing nonintegrin (DC-SIGN) is primarily 

expressed on immature DCs, but has also been found in macrophage populations (463, 

464). DC-SIGN recognises high mannose structures in a calcium dependent way (465). 

Eight orthologues of DC-SIGN exist in mice, although these molecules appear to have 

different expression profiles and several structural differences (466). The role of this 

receptor in response to fungi has not been studied extensively, but DC-SIGN has been 

proposed to mediate fungal uptake (467). Among the murine homologues, only 

SIGNR1 (also termed murine DC-SIGN) and SIGNR3 recognise fungal PAMPs (455, 468). 

DC-SIGN can induce intracellular signalling, modulating TLR-mediated responses (469).  

 

Mannose Receptor (MR) recognises oligosaccharides that terminate in mannose, 

fucose and GlcNAc through several carbohydrate-recognition domains. MR was shown 

to preferentially recognise branched N-linked mannans (445). A recent study indicated 

that IL-17 production was induced by the MR, and that Dectin-1/TLR2 amplified the IL-

17 production (470).  
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Mincle appears to be involved in the recognition of C. albicans by macrophages, 

although it is not essential for phagocytosis. Mincle-deficient mice are susceptible to C. 

albicans, and blocking of Mincle in macrophages leads to reduced TNF-α (471, 472). 

Like other CLRs, Mincle induces inflammatory cytokines and chemokines via the 

association with the Fc gamma (Fcγ) chain (473).  

 

Complement receptor 3 (CR3). The CR3 integrin mediates adhesion, chemotaxis and 

phagocytosis in complement-dependent but also complement-independent ways (474-

477) and recognises β-glucans of unopsonised yeast (477). The recognition of β-

glucans by CR3 promoted phagocytosis but did not trigger protective host responses, 

such as the respiratory burst, and could suppress pro-inflammatory signals (478). In 

agreement with these immunosuppressive effects in vitro, CR3-deficient mice are 

more resistant to disseminated candidiasis. Curiously, a recent study using human 

neutrophils suggested that CR3 but not Dectin-1, was the major receptor for β-glucan 

bearing particles (479).  

 

Galectin-3 is a receptor mainly expressed by macrophages crucial for the recognition 

of β-1,2 linked oligomannosides (480). Galectin-3 on the surface of murine 

macrophages can discriminate between pathogenic C. albicans, that bears β-1,2 linked 

oligomannosides, and non-pathogenic S. cerevisiae, which lack these residues, in 

collaboration with TLR2 (481). Binding of recombinant Galectin-3 to the specific β-1,2 

linked mannosides of C. albicans directly induces death of C. albicans cells (482).  
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Figure 1. Cell membrane pattern recognition receptors sensing C. albicans. Recognition 
is mediated by TLRs and CLRs. Both TLR4 and TLR2 can induce proinflammatory signals 
in monocytes, macrophages and DCs through the MyD88 and Mal-mediated pathways, 
as well as the TRIF pathway to initiate Th1 responses. A second downstream effect of 
TLR4 signalling involves TRIF and TRAM adapter proteins that activate TBK1 and the 
IRF3 transcription factor required for the expression of type I interferon genes. TLR2 
binding stimulates strong IL-10 and TGF-β and induces proliferation of regulatory T 
cells (Treg) and immunosuppression, but is also able to induce proinflammatory 
cytokines such as TNF-α or IL-6. However, through an Erk and c-Fos-dependent 
pathway, TLR2 is also able to inhibit IL-12 synthesis and Th1 responses. The 
proinflammatory effects of TLR2 can be amplified by dectin-1 and galectin-3. In 
addition to the amplification of TLR2 effects, the lectin-like receptor dectin-1 induces 
IL-2, IL-10 and Th17 responses through a Syk/CARD9 cascade, independent of its 
interaction with TLR2. The MR induces proinflammatory effects in monocytes and 
macrophages, whereas chitin-dependent stimulation induces mainly Th2 responses, 
although the identity of its receptor is unknown. Other less well characterized 
pathways include stimulation of inflammatory cytokine release by dectin-2, Mincle, 
and CD36/SCARF lectin receptors, and of the immunosuppressive cytokine IL-10 by DC-
SIGN in DCs. Adapted from Netea and Maródi 2011 (483) 
 
MAL, MyD88 adapter-like; IRAK, interleukin-1 receptor-associated kinase; TRAF, TNF receptor-
associated factor; TAK, tumour growth factor (TGF) β-activated kinase; TRIF, Toll–interleukin-1 receptor 
domain-containing adapter inducing interferon b; TRAM, TRIF-related adapter molecule; TBK, TRAF 
family member-associated NF-kB activator-binding kinase; IRF, interferon response factor; Syk, T cell 
lineage-specific tyrosine kinase; MR, mannose receptor; DC-SIGN, DC-specific intracellular adhesion 
molecule-grabbing non-integrin.  
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5.2. Innate Immunity 

The so-called innate immunity comprises constitutive mechanisms that are used by the 

host to respond to fungal pathogens in a rapid and conserved manner. Innate immune 

mechanisms are present at sites of continuous interaction with fungi and include the 

barrier function of the skin and mucosal epithelial cell surfaces of the respiratory, GI 

and genitourinary tracts. It is the first line of defence and is a crucial instructor of the 

subsequent adaptive immune response (484, 485). Microbial antagonism, defensins, 

collectins and the complement system also provide constitutive defence mechanisms 

(484). C. albicans activates complement by the classical and alternative pathways with 

deposition of C3 on the cell fungal surface. Complement activation facilitates the 

recruitment of phagocytes to infected tissues and enhances their anti-Candidal 

activity. Mice deficient in C5 production have an increased propensity to develop 

disseminated infection (486-488). 

One of the functions of the innate immune system during fungal infections is the 

destruction of the pathogen through phagocytosis or secretion of microbicidal 

compounds against fungal elements that cannot be ingested. Phagocytosis and direct 

pathogen killing is mainly effected by monocytes, macrophages and neutrophils (485).  

Protection against disseminated candidiasis relies mainly on components of innate 

immunity. The role of phagocytic cells such as macrophages, monocytes and, in 

particular, neutrophils is paramount, since quantitative and qualitative abnormalities 

of these cells are often associated with a lethal outcome (489). Namely, inborn errors 

of reactive oxygen radical production, leading to defective intracellular killing, as is the 

case in patients with chronic granulomatous disease make these hosts more prone to 

Candida infections (37).  

Apart from the phagocytic cells residing in target organs at the time of infection, other 

effector cells, like neutrophils and monocytes, are recruited to sites of infection guided 

by inflammatory mediators such as chemokines and complement fragments.  

Neutrophils and monocytes recognise and engulf opsonised and non-opsonized yeast 

cells via cell-surface PRRs. Binding to individual TLRs and IL-1 receptor (IL-1R) activates 

specialized antifungal effector functions on neutrophils and other phagocytes (434). 

TLR signalling on monocytes/macrophages and DCs also play an important role in the 
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orchestration of neutrophilic inflammation by the indirect regulation of neutrophil 

recruitment, activation and survival (490, 491). 

Killing occurs by oxidative mechanisms, including generation of reactive oxygen and 

nitrogen intermediates, and by non-oxidative mechanisms (485, 492) ). Phagocytosis 

and killing are augmented by opsonization and pro-inflammatory cytokines. Larger 

structures of Candida hyphae and pseudohyphae may prevent phagocytosis and in 

those cases, several phagocytes collaborate to effect extracellular killing. Although 

defective neutrophil function can result in disseminated infection, inappropriate or 

overwhelming neutrophil activation can also be a major cause of disease. 

The interaction of macrophages with fungi is complex and the exact mechanism and 

efficiency of fungal killing are likely to depend on numerous factors, including 

macrophage source and environment, activation state, and fungal pathogenicity and 

morphology (493). Human macrophages, for example, are more efficient in killing C. 

albicans, than mouse macrophages, and C. albicans is able to escape from the latter by 

growing hyphae that break out the cell, releasing fungal cells into the extracellular 

environment. 

Besides their role as professional phagocytes, innate immune cells can initiate the 

adaptive immune response via secretion of pro-inflammatory cytokines and 

chemokines and presentation of antigens. 

 

Dendritic cells (DCs) 

Fungal recognition by DCs is crucial for antigen-processing and presentation to T-cells 

(397, 494, 495) . DCs capture and process antigens, express cell-surface lymphocyte co-

stimulatory molecules, migrate to lymphoid organs and secrete cytokines to initiate 

immune responses (496-499)(. In this way, DCs play an important role in linking innate 

with adaptive immunity (497). The type of response depends in part upon the 

morphotype of Candida encountered and the antigens displayed by the fungus (500). 

DCs can phagocytose both Candida yeast and hyphae, through receptors distinct for 

each morphotype, which lead to DC maturation and activation (500, 501). DCs that 

ingest the yeast form induce differentiation of CD4+ T cells toward a T helper type-1 

(Th1) pathway, whereas CDs that ingest hyphae induce T helper type-1 (Th2) responses 

by inhibiting IL-12 production and inducing IL-4 (500, 502). The multiple, functionally 
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distinct, receptor signalling pathways in DCs, by affecting the balance between CD4+ 

effector T cells and Treg, are likely to be exploited by fungi to facilitate host 

commensalism or invasion (484). 

 

5.3. Adaptive immunity 

Adaptive immune responses comprise two major types, the so-called cell mediated 

and humoral immunity. They are mediated by different machineries of the immune 

system and have distinct roles during infection.  

T cell-mediated responses 

The Th1 and Th2 cell subsets were initially shown to participate and determine the 

outcome of C. albicans infections (503) . However, other T cell subsets such as Th17 or 

Treg cells were subsequently shown to be also involved in the host immune response 

to this pathogen (484, 504, 505). Development of a Th1-type response was initially 

shown to be determinant in the host’s ability to control fungal infections and 

correlated with protection. Development of Th1 responses is influenced by the 

concerted action of several cytokines, prominently IL-12, in the relative absence of Th2 

cytokines, such as IL-4 (505). The immunosuppressive cytokine IL-10 may also 

contribute to impair Th1 protective responses (505, 506). Progression of infection is 

associated with predominance of a Th2-type response (484) and, depending on the 

type of infection, of Treg (437).  

Activation of Th17 cells may also occur in fungal infections, and be involved in what 

was classically defined as Th1- and Th2-type responses. Indeed, a role for Th17 cells in 

supporting Th1 cell responses has been shown in murine models of mucosal 

candidiasis (507, 508). The ability of IL-17A, produced by Th17 cells, to mobilize 

neutrophils and induce the production of defensins greatly contributes to efficient 

control of an infection at different body sites. However, the role of Th17 cells in the 

course of Candida infections remains unequivocally determined, as it may depend on 

the stage and site of infection, and is probably influenced by environmental stimuli 

(484). This cell subset may also be involved in the immunopathogenesis of fungal 

diseases (509). Nevertheless, this subject, or its precise mechanisms remain a matter 

of debate.  
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Although T cells have an acknowledged role in host defence against candidiasis, the 

importance of these cells appears to be rather limited during disseminated Candida 

infections (489, 510).  

CD8+ T cells are believed to exert direct anti-Candida activity, lysing yeast cells as well 

as yeast-containing phagocytes (505). However, in a model of acute systemic 

candidiasis, CD8+ T cells were not necessary for host protection but had a role in 

limiting host’s pathology (511). In contrast, these cells were shown to be important for 

resistance to gastric and disseminated candidiasis of endogenous origin (512).  

 

Regulatory T cells (Treg)  

During a fungal infection, an optimal immune response must eliminate the fungus 

while limiting collateral damage to tissues and restoring a homeostatic environment. 

Secretion of IL-10 represents one of the mechanisms by which Treg mediate 

suppression and control inflammatory responses (513). Several clinical observations 

indicated that an inverse relationship between IFN-γ and IL-10 production might occur 

in patients with fungal infections (514, 515). High levels of IL-10, which negatively 

affect IFN-γ production, are detected in chronic Candida infections, and thus have 

been linked to increased susceptibility to fungal infections (437, 484, 516, 517). TGF-β 

production has also been associated with disease progression (518). Moreover, during 

C. albicans infection the absence of IL-10 is beneficial for the host response (506). 

However, taking into account its major role in the resolution of inflammation, IL-10 

production may be a consequence, rather than a cause of infection. To be so, in the 

case of chronic fungal infections, which are characterized by persistent inflammation, 

IL-10 may act as a homeostatic response aimed at keeping inflammation under control. 

However, as Treg activity may impair the efficacy of protective immunity, fungal persistence 

may be a host detrimental consequence. Thus, Treg may be responsible for different 

infection outcomes, ranging from protective tolerance to increased fungal burden 

(437, 519, 520). Additionally, Treg participate in the development of protective 

memory after yeast priming (520). 
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B cell-mediated responses 

The role of B cells in protection against Candida is not as extensively studied as the one 

played by T cells. Clinically, B cell deficiency is not associated with increased 

susceptibility to infection. Moreover, mice that lack functional T and B cells develop 

ongoing mucosal infection (most certainly due to the lack of T cells) without 

progression to disseminated disease (521). In contrast, susceptibility to acute systemic 

candidiasis was increased in mice deficient in B cells (522). 

 

Antibodies 

The role of antibodies during Candida infections is less clear as earlier studies 

suggested that Candida-specific antibodies do not have a protective role (5, 523). In 

fact, high titre anti-Candida antibodies are regularly found in patients that cannot clear 

Candida (524). Recently there has been renewed interest in antibody-mediated 

protection against fungal infections, with a focus on different Candida antigen targets, 

such as mannans, glucans, heat-shock proteins, Saps, and adhesins, with the aim of 

producing monoclonal or recombinant antibodies as prospective novel treatments 

(525, 526). The understanding of the role played by antibodies in the host response to 

Candida is currently growing. However, in murine models, protective and non-

protective antibodies have been described and monoclonal anti-Candida antibodies 

are currently undergoing clinical trials in humans (527). It has been observed that the 

protective potential of antibodies with enhanced phagocytosis and killing of the fungus 

is dependent upon epitope specificity, serum titre, and ability to rapidly and efficiently 

fix complement to the fungal surface (528).  

 

5.4. Mechanisms of immune evasion in C. albicans 

Candida has developed numerous sophisticated mechanisms aimed at to elude and 

overcome host defences (3, 529, 530) . C. albicans may avoid inflammation, and this 

contributes to fungal adaptation and opportunism (531). This fungus can block 

recognition by masking β-1,3-glucans under the mannose/mannoprotein layer. These 

glucans are exposed in the bud scar of C. albicans yeasts but are masked on hyphae, 

thus favouring fungal escape from recognition by dectin-1 (532, 533). 
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C. albicans may also inhibit opsonisation/complement function by binding negative 

regulators of the complement cascade (534-536). Once detected by the immune 

system, blocking phagocytosis is another potential survival strategy. Cell size is an 

effective restriction to ingestion, and hyphal forms of C. albicans are not efficiently 

internalized (537). Another mechanism employed by C. albicans to avoid phagocyte 

attack is the contact-independent inhibition of NO production (538, 539). Even after 

internalization, C. albicans may affect phagocyte function, by escaping from the 

phagocyte after elongation of the hyphae and causing disruption of the phagocyte. 

Interestingly, this only occurs in certain monocyte/macrophage populations, whereas 

neutrophils can inhibit hyphae formation (371). Alterations of the intracellular fate 

have also been described. Trafficking of phagocytosed C. albicans was aberrant in 

murine macrophages, and a significant fraction of fungal cells ended up in a 

membrane-bound compartment associated with the ER, often at near neutral pH 

(540), although the underlying mechanism is unknown. As reported above, C. albicans 

Saps are able to degrade several proteins involved in the host immune response such 

as histatin-5 and proteins of the complement system (281, 282). In addition to all these 

mechanisms, a soluble factor, yet to be characterized, released by live C. albicans shifts 

tryptophan metabolism and inhibits host Th17 responses (504).  

6. Vaccination  

Because of the rising incidence of life-threatening candidiasis, high treatment failure 

rates, and huge health care costs, more effective prophylactic and therapeutic 

strategies are needed (44, 45). Recently, a renewed interest in the development of 

vaccination strategies against both mucosal and disseminated Candida infections has 

arisen, including induction of cell-mediated immunity by active immunization and also 

passive vaccination with antibodies (541, 542).  

 

6.1. Vaccination against disseminated candidiasis 

For many years the development of fungal vaccines did not receive much attention 

from the pharmaceutical companies. One reason was the general conviction that most 

patients who develop life-threatening fungal infections have profound defects in 
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immunity. One major concern about vaccinating those patients against invasive fungal 

infections was the belief that the immune systems of such patients were unlikely to 

respond protectively to vaccination and might suffer from aggravation of the 

immunological disorder following the immunostimulation by vaccine antigens and 

adjuvants. However, only 10-20% of patients who develop Candida bloodstream 

infection are seriously immunocompromised. Vaccination of high-risk groups of 

patients is a particularly promising strategy to prevent disseminated fungal infections 

because risk factors are clearly identified and correspond to common iatrogenic and/or 

nosocomial conditions that result in a substantial increase in the colonization burden 

of Candida spp. or in the disruption of protective anatomical barriers rather than to 

severe immunosuppression (541, 543, 544). Furthermore, development of these risk 

factors precedes infection, affording a window of opportunity to vaccinate highly at-

risk patients before the establishment of infection. Such patients - including 

thosecandidate to transplants, patients that will undergo gastric or cardiac surgery and 

those affected by tumours - could benefit of advance active immunization against 

Candida, since the therapy or medical proceedings predispose to fungal infection 

(193). Since many of these risk factors are of relatively short duration, normally 4 to 6 

weeks, an immunization approach would need to protect patients just for the short 

period of time during their increased susceptibility. In theory, antibodies can be 

induced by vaccination in at-risk subjects before predisposing therapy or 

immunosuppression (541). Because of the relative longevity of IgG (from weeks to 

months, depending on the IgG isotype), its persistence at a good protective level in the 

circulation even during a relatively prolonged immunosuppression or hospitalization 

period is to be expected (544). Vaccines merely eliciting antifungal CMI will not be 

appropriate for this purpose. 

6.2. Proposed Candida vaccines 

Protection against disease may be actively or passively acquired through vaccination 

and the transfer of preformed antibodies. The nature of immunizing antigen and its 

immunodominant epitopes, interaction with APCs (usually DCs), antigen processing 

through MHC class II or MHC class I pathways, and type of adjuvant, all determine the 

nature of elicited immunity and its outcome in terms of protection. 
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Protection against disseminated candidiasis has been reported following both active 

vaccination and passive transfer of antibodies (Table 1) and it is clear that antigens 

targeted for vaccination need not be restricted to virulence factors, which markedly 

increases the antigen repertoire available for testing.  

 

Table 1.  Proposed C. albicans vaccines 

Antigen Protectiona 

Mucosal; 
Disseminated 

Nature of 
protectionb 

Reference 

Mannan, Mannoproteins +;ND Abs, B cells, CMI – Th1 (331, 379, 545-
547)  

1,3-β-glucan (Laminarin) +;+ Abs (548-552) 

Secreted aspartyl protease 2 +;+c Abs (331, 378-381) 

Agglutin-like sequences 1 and 3 +; + CMI – Th1,Th17 (547, 553-556)  

Phosphoglicerate Kinase +;ND Abs (557) 
Enolase ND;+ Abs, CMI – Th1 (558) 
Low virulent strains -; + CMI (559) 

Candida membrane antigen ND; +d Abs, CMI (560, 561)  

Heat shock proteins +;+  (562, 563)  

Heat killed cells ND;+ Unknown (564, 565)  

Hyr-1 ND;+ Abs (534, 566) 
β-1,2-Mannotriose and 
mannobiose 

ND;+ Abs (567, 568)  

C. albicans ds DNA +e;ND CMI – Th1 (569) 
DCs transfected with fungal RNA ND;+ CMI – Th1 (570, 571) 

a+: protective; -: not protective, may enhance virulence; ND: not determined;  
bAbs- Antibodies; CMI- Cell mediated immunity; c C. albicans peritonitis ; dDisseminated of endogenous 
origin in newborns; 

e 
gastrointestinal 

  

The protective mechanism for most active vaccines against disseminated or mucosal 

candidiasis studied to date, relies on the induction of cell-mediated, pro-inflammatory, 

Th1 or Th17 responses, which improve phagocytic killing of the fungus (541, 544) 

Cutler et al 2007,. However, antibody participation in antifungal protection cannot be 

ruled out when CMI responses are elicited by vaccination. In fact, a type-1 cytokine 

response could be necessary for the formation of some protective antibodies against 

C. albicans proteins and most polysaccharide antigens, which, in murine models, are of 

the IgG2a isotype (572). 

The best protective effects observed to date have been obtained by immunization with 

viable cells from virulent or avirulent C. albicans strains. DNA vaccines are now 
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believed to be the strongest immunization approach for CD8 cytotoxic effector 

generation, due to preferential antigen processing through MHC class I pathway (569). 

Whole cell or DNA vaccines maintain a persistent activation of CMI effectors. While 

positively controlling the infectious agent, they may nonetheless be also inducing 

strong inflammation with potential undesirable effects (544). Moreover, C. albicans is 

a member of the normal microbiota and vaccines against this opportunistic pathogen 

might result in unwanted inflammation, such as allergic manifestations (543, 573).  

Antibodies have long been considered irrelevant in host defense against disseminated 

candidiasis. The existence of inhibitory antibodies, rather than the absence of 

protective ones, has mostly contributed to this assumption. The clinical evidence that 

antibodies are protective against fungal infections is limited to few cases (527, 574, 

575) , but over the last two decades, a number of antibodies directed against C. 

albicans cell wall polysaccharides and glycopeptides, proteins and peptide epitopes, 

have been shown to confer protection in experimental models (Table 1). The 

demonstration of protective anti-Candida antibodies makes possible their use in 

immunoprophylaxy or immunotherapy against disseminated Candida infections 

through passive vaccination, an intervention that would have some advantages. There 

are several examples of recombinant antibodies against fungal infection (576, 577). 

Some protective antibodies can be generated in a human format devoid of Fc 

component, suggesting that they can work without the cooperation of the immune 

system, and thus could be appropriate for use in severely immunocompromised 

patients. Other monoclonal antibodies against Candida do need the Fc component and 

complement activation and deposition on cell surface for protection (572, 573). 

Great efforts have been made in the characterization of the protective immune 

mechanisms against Candida infections and in the vaccination field but still, no 

therapeutic vaccine successfully used to fight Candida infections have been so far 

provided. Nevertheless, the increasing evidence, from clinical observations and animal 

models of candidiasis, that some Candida-specific antibodies can be immunoprotective 

during infection, points to the viability of an immunotherapeutic approach for the 

treatment and management of candidiasis, particularly in severely immunosuppressed 

patients, in combination with antifungal therapy (544, 572) . 
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7. Objectives and outline of the thesis 

The work presented in this dissertation was developed at Centre of Molecular and 

Environmental Biology of Minho University (CBMA-UM) and Instituto de Ciências 

Biomédicas Abel Salazar of Porto University (ICBAS-UP).  

Secreted aspartyl proteases have long been implicated in Candida albicans 

pathogenesis, mostly taking into account the observed attenuated virulence of Δsap 

null mutant strains. However, the exclusive contribution of SAP genes for their 

attenuated phenotype remains to be unequivocally confirmed since the Ura-status of 

these mutant strains could have also contributed for the attenuation. Although Sap2 

has been successfully used in several vaccination assays against mucosal and 

peritoneal candidiasis, the efficacy of Sap2 formulations in immunoprotection against 

hematogenously disseminated candidiasis is yet to be attempted. Moreover, the usage 

of Sap4-6 as antigen targets for vaccination against this type of C. albicans infection 

might be promising. 

Thus, considering the contribution of Saps to C. albicans disseminated candidiasis, and 

the potential usage of these virulence determinants as antigen targets in vaccination 

assays to protect against this infection, the general objectives of this work were: i) to 

characterize the host immune response to systemic candidiasis elicited by different C. 

albicans strains; ii) to evaluate the role and importance of Saps in the course of murine 

disseminated candidiasis, established either by the hematogenous or the 

intraperitoneal routes; iii) to evaluate Sap1-3 contribution to host response evasion by 

degrading and inactivating host galectin-3; iv) to establish immunoprotective protocols 

against hematogenously disseminated candidiasis by using Sap2 and Sap5 as target 

antigens. 

This dissertation is organized in seven chapters: 

Chapter 1 consists of a general introduction presenting a review of the current 

knowledge on Candida infections, with a focus on systemic candidiasis, including data 

on incidence, independent risk factors and groups at risk. Candida albicans virulence 

factors are also addressed here, with a particular emphasis on Saps. Moreover, a 
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description of C. albicans cell wall components and their recognition by host Pattern 

Recognition Receptors is presented. Innate and adaptive immunity to C. albicans 

infections is also reviewed in this chapter. Finally, a review of the usefulness of 

immune-based prevention and therapy of C. albicans infections and a list of published 

proposed vaccines is included. 

Chapter 2 presents data concerning the relative virulence of three C. abicans reference 

strains in a murine model of hematogenously disseminated candidiasis and the elicited 

host immune response. Different studies published on vaccination against Candida 

infections use distinct C. albicans strains. However, this usage appears to be based on 

laboratory strain availability rather than on an appropriate selection. Moreover, 

comparative studies that addressed C. albicans virulence barely focused on the overall 

elicited immune response. The main objective of this chapter is thus to comparatively 

evaluate virulence of three reference C. albicans strains, often used in virulence and 

antifungal drug testing, and characterize several features of the innate and adaptive 

immune response to infection established through the hematogenous challenge with 

each strain. 

Chapter 3 re-addresses the importance of the SAP1-SAP6 genes in a murine model of 

hematogenously disseminated candidiasis. This work aimed at confirming the 

importance of Saps in this infection model, by using single or triple mutant strains 

deficient in these virulence-associated genes, and also at characterizing the elicited 

host immune response. 

Chaper 4 focuses on the role of SAP1-SAP6 genes in a murine model of C. albicans 

peritonitis. Here, the analysis performed in the previous chapter is extended to the 

murine model of Candida peritonitis, with the objective of re-evaluating virulence of 

Δsap null mutant strains in this model as well as the elicited host immune response. 

In Chapter 5 the ability of Sap1-3 to contribute for C. albicans evasion of host 

immunity, by degrading the host PRR galectin-3 is explored. Galectin-3 recognizes C. 

albicans and induces fungal death. Thus, impairing recognition through galectin-3 

would favour pathogen survival. This work aimed at addressing if galectin-3 is a 
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substrate for Sap1, Sap2 or Sap3 and whether degradation of this PRR occurs in vivo in 

C. albicans infected tissues. 

Chapter 6 presents data concerning the development of immunoprotective protocols 

against hematogenously disseminated candidiasis by using Sap2 and Sap5 enzymes as 

target antigens. Several approaches using commercially available adjuvants are tested 

in order to fulfil the main objective which consisted in establishing a vaccination 

strategy that could confer protection to mice against disseminated candidiasis. 

Chapter 7 presents the concluding remarks consisting of an integrated discussion of 

the results achieved in the Chapters 2, 3, 4, 5, and 6 in the context of the initially 

proposed objectives. Future perspectives are also suggested at the end of the chapter.    
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                                                                                                                  CHAPTER 2 

Differential virulence and elicited immune response in mice infected by 
the hematogenous route with Candida albicans strains SC5314, ATCC 
90028 or ATCC 32354 
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ABSTRACT 

 

The murine model of hematogenously disseminated Candida albicans infection is 

widely used to ascertain strain virulence and host-fungus interaction. Here, a 

comparative study assessed survival and kidney fungal burden in mice infected 

intravenously with three different C. albicans strains with different attributed 

virulence, SC5314, ATCC 90028 and ATCC 32354. A comprehensive analysis of the early 

immune response in the spleen of yeast-challenged mice was also done. SC5314 was 

the most virulent strain and elicited a more marked inflammatory response, with 

higher neutrophil recruitment. In contrast, ATCC 32354 presented the lowest virulence 

and stimulated less markedly the innate response than the other strains. These results 

provide additional evidence on the association between C. albicans virulence and the 

host early innate immune response.  
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INTRODUCTION 

The opportunistic human pathogen Candida albicans can cause both mucocutaneous 

and disseminated infections, particularly in debilitated or immuno-compromised hosts, 

being the most common cause of fungal invasive infections (1, 2). The murine model of 

hematogenously disseminated candidiasis closely resembles infection introduced into 

patients directly through catheters, is highly reproducible, and its clinical course is 

similar to untreated clinical disseminated candidiasis (3-5). Therefore, it has been 

widely used for investigating C. albicans virulence, host-fungus interactions, and 

efficacy of antifungal agents (6). Sepsis has been recognized as the major cause of 

death in the murine model of disseminated candidiasis (4), and the kidney is the main 

target organ for infection in this model (3, 5). However, evaluation of virulence only in 

terms of fungal kidney burdens and survival times gives little information of the 

fungus-host interactions and elicited host immune responses.  

The innate immune system is the first line of host defence upon intravenous C. 

albicans challenge (7, 8). This arm of the immune system is mainly comprised of 

phagocytic cells that must recognize and respond to fungi, opposing fungal invasion 

and eliminating fungi from infected tissues and organs (9-11). The nature of the fungus 

is determinant in fungal recognition and drives the production of chemokines and 

directive cytokines, expression of co-stimulatory molecules and presentation of fungal 

antigens to T lymphocytes, affecting polarization of the T helper type of response (8, 

12). The interplay between the host and the fungus is dynamic, and the balance 

between elimination of the fungus and tissue damage at the site of infection will 

depend not only on the host response, but also on the fungus ability to react to host 

effector molecules and cells (10, 12). It is well documented that properties of different 

yeast isolates, such as cell wall composition and morphogenesis, may modify fungal 

recognition and the ensuing immune response (12-16). 

Within C. albicans, clinical isolates were found to differ considerably in virulence for 

mice, as revealed by differences in survival times and organ fungal burden after 

systemic infection (17-20). Nevertheless, the effects on the host response of the 

virulence properties of different Candida strains have been poorly evaluated, and 

focused on C. albicans internalization and killing by phagocytes, rather than on the 
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overall immune response (11, 21-23). In this respect, the study presented here aimed 

at evaluating the virulence of three different isolates of C. albicans, SC5314, ATCC 

90028, and ATCC 32354, in a murine model of hematogenously disseminated infection, 

and comparing both innate and acquired immunity against the intravenous challenge 

with the different strains. 
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MATERIALS AND METHODS 

 

Mice 

Male BALB/c mice, 8-10 weeks old, were purchased from Charles River (Barcelona, 

Spain) and kept under specific pathogen-free conditions at the Animal Facility of 

Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal. All procedures involving 

mice were performed according to the European Convention for the Protection of 

Vertebrate Animals used for Experimental and other Scientific Purposes (ETS 123), 

86/609/EEC Directive and Portuguese rules (DL 129/92). Authorization to perform the 

experiments was issued by the competent national board authority (Direção Geral de 

Veterinária), document number 0420/000/000/2010. 

 

Candida albicans strains and culture conditions 

The C. albicans strains used in this study were the wild-type strains SC5314, ATCC 

90028 and ATCC 32354. All strains were maintained as frozen stocks in 30% glycerol at 

-80ºC. To prepare the inocula for infection, strains were grown in a shaking incubator 

for 14 to 16 hours at 30ºC in Winge medium (0,2% glucose, 0,3% yeast extract). Yeast 

cells were harvested, washed twice with sterile, nonpyrogenic phosphate-buffered 

saline, counted in a haemocytometer and resuspended at the appropriate 

concentrations. Inocula were confirmed by Colony Forming Unit (CFU) counts on 

Sabouraud dextrose agar (Difco, Detroit, MI, USA) for up to 48 h at 37ºC.  

 

Candida albicans hematogenously disseminated  infections 

Mice were injected intravenously (i.v.), in the lateral tail vein, with 1×105 C. albicans 

yeast cells in 0.2 ml PBS. To evaluate the progress of hematogenously disseminated 

candidiasis, mice were weighed and monitored twice daily, for a maximum of 70 days. 

Moribund mice were humanely terminated, and their deaths recorded as occurring the 

following day. 

Alternatively, mice were sacrificed 18 and 72 h post-infection to determine organ 

fungal burden and/or immunological parameters. Control mice were injected i.v. with 

PBS. Kidneys were aseptically removed, homogenized, and quantitatively cultured on 
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Sabouraud dextrose agar (Difco) at 37ºC. Values were expressed as log CFU per gram 

of tissue.  

 

Flow cytometric analysis  

The assessment of cell surface and cytoplasmic lineage or activation markers on 

different splenic leukocyte populations was performed by flow cytometric analysis 

(FACS). Spleens were aseptically removed and homogenized to single cell suspensions 

in Hank’s Balanced Salt Solution (HBSS) (Sigma Aldrich, St Louis, MO, USA). A number 

of 1x106 leucocytes were stained per sample.  

The following monoclonal antibodies (mAbs), along with the respective isotype control 

were used (at previously determined optimal dilutions) for immunofluorescence 

cytometric analysis in FACScan (Becton-Dickinson, San Jose, CA, USA) using CELLQUEST 

software (Becton-Dickinson): 

Phycoerythrin (PE) conjugated rat anti-mouse CD40 (1C10) (Southern Biotechnology 

Associates, Birmingham, ALA, USA); Fluorescein isothiocyanate (FITC) conjugated anti-

mouse/rat Foxp3 (FJK-16s), Phycoerythrin-Cyanin 5 (PE-Cy5) rat anti-mouse CD4 (L3T4) 

(RM4-5), and PE anti-mouse F4/80 antigen (BM8) (eBioscience, San Diego, CA, USA); 

Biotin conjugated anti-mouse PDCA-1(JF05-1C2.4.1) (Miltenyi Biotech, Inc., Auburn, 

CA, USA); FITC hamster anti-mouse CD11c (HL3), FITC anti-mouse Ly-6G and Ly-6C (Gr-

1) (RB6-8C5), PE anti-mouse CD25 (PC61), PerCP-Cy5 anti-mouse CD19 (RA3-6B2), PE 

anti-mouse CD80 (B7-1) (16-10A1), PE anti-mouse CD86 (B7-2) (GL1), PE rat anti-

mouse I-Ad/I-Ed (2G9), PE conjugated rat anti-mouse IL-4 (BVD4-1D11), FITC anti-

mouse IFN-γ (XMG1.2), PE rat anti-mouse IL-17A (TC11-18H10),  and PE rat anti-mouse 

IL-10 (JES5-2A5) (all from BD Pharmingen, San Diego, CA). Biotin conjugated mAbs 

were revealed with Streptavidin-PE-Cy5 (BD Pharmingen). Cells were pre-incubated for 

15 minutes with anti-FcγR (a kind gift of Dr Jocelyne Demengeot, Gulbenkian Institute 

of Science, Oeiras, Portugal) before CD11c and Foxp3 staining. The Foxp3 Staining 

Buffer Set (eBioscience) was used for fixation and permeabilization of splenocytes 

surface stained with CD4 and CD25 mAbs.  

The intracellular expression of the cytokines IFN-γ, IL-4, IL-17A and IL-10 was detected 

in splenic CD4+ T lymphocytes. Splenocytes were obtained as described above. Red 

blood cell lysis was performed by incubation with 0,15M ammonium chloride. Cells 
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were washed and resuspended in complete RPMI medium (Sigma) (RPMI 1640 

supplemented with 50U of penicillin/ml, 50 µg of streptomycin/ml, 1% HEPES buffer 

(Sigma), 10% FCS (Invitrogen, Carlsbad, CA, USA), and 5 µM 2-mercaptoethanol). 1x106 

cells were transferred to 96-well tissue culture plates (Nunc, Roskilde, Denmark) and 

stimulated for 4,5 hours with 20 ng/ml phorbol myristate acetate (Sigma) and 200 

ng/ml ionomycin (Sigma) in the presence of 10 µg/ml of brefeldin A (Roche, Penzberg, 

Germany).  

Staining of cell surface markers CD4 was performed as described above, after a pre-

incubation step of 15 minutes with anti-FcγR, followed by fixation with 2% 

formaldehyde. Cells were permeabilized with 0,5% saponin in flow cytometric buffer 

(PBS containing 1% BSA and 0,01M sodium azide) and, subsequently, cells were 

incubated for 15 minutes with anti-FcγR and stained for 30 minutes at room 

temperature with the appropriate antibody. Intracellular staining with the isotypic 

control was performed to confirm the specificity of antibody binding. 

The IFN-γ+/IL-4+ CD4+ T cell ratios were calculated to determine the polarization of the 

immune response towards a Th1- or Th2-type. The immune response in non-infected 

mice was defined as unpolarized. 

 

Statistical Analysis 

Unless otherwise stated, results shown are from one experiment, representative of 

two independent experiments. Statistical significance of results was determined by 

one-way ANOVA and post-hoc Bonferroni’s multiple comparison test, and survival data 

were analysed with the log-rank test, by using the GraphPad Prism 4 Software 

(GraphPad Software, Inc., La Jolla, CA, USA). Results were considered statistically 

significant with P values of less than 0.05.  
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RESULTS 

 

Virulence of C. albicans strains SC5314, ATCC 90028 and ATCC 32354 in intravenously 

infected BALB/c mice 

The widely used Candida albicans strain SC5314 and strains ATCC 90028 and ATCC 

32354 with different reported virulence abilities (17) were compared for their 

virulence in a model of hematogenously disseminated candidiasis. Striking differences 

in survival time were observed after i.v. infection of BALB/c mice with SC5314 and 

ATCC 90028 or ATCC 32354 (P= 0.0013 and P= 0.0066, respectively) (Figure1A).  

 

 

Figure 1. C. albicans virulence in the murine model of hematogenously disseminated 

candidiasis. (A) Survival curves of BALB/c mice injected i.v. with 1×105 cells yeast cells of C. 

albicans WT strains SC5314, ATCC 90028 and ATCC 32354. P=0.0013 SC5314 vs ATCC90028 and 

P=0.0066 SC5314 vs ATCC 32354, as determined by log-rank test (n=5); (B) Kidney fungal 

burden of BALB/c mice 12 and 72 hours after i.v. infection with 1×105 SC5314 (●), ATCC 90028 

(▲) or ATCC 32454 (□) C. albicans cells, as indicated.  Data are from one experiment 

representative of two independent experiments. Each symbol represents an individual mouse, 

horizontal bars are means of CFU numbers in each group (n=4), * P<0.05; *** P<0.001, as 

determined by one-way ANOVA and post-hoc Bonferroni’s multiple comparison test. 
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The median survival time of SC5314- and ATCC 90028-infected infected mice was 9 and 

57 days, respectively.  All mice injected with either SC5314 or ATCC 90028 strains 

succumbed to candidal infection. In contrast, mice infected with ATCC 32354 had an 

extended overall survival time, compared to mice infected with the other C. albicans 

strains. At the end of the experiment (70 days), 60% of the mice infected with ATCC 

32354 survived the infection (Figure 1A). 12 h after i.v. challenge, SC5314-infected 

mice presented significantly lower CFU counts than ATCC 90028-infected mice, and 

similar kidney counts to ATCC 32354-infected mice (Figure 1B), though mice infected 

with the former strain presented a greatly diminished survival time. Nevertheless, as 

depicted in Figure 1B, 72 h after challenge, kidneys from mice infected with strain 

SC5314 presented higher fungal burdens than those of ATCC 90028- and ATCC 32354-

infected mice, which had no different kidney CFU numbers, despite the differences 

observed in survival. No later time points were assessed, since mice inoculated with    

1 × 105 SC5314 cells were frequently moribund by 6 to 7 days after infection.  

 

Early host immune response in C. albicans-challenged mice 

Given the marked differences found in mice survival times, we evaluated the early host 

immune response to an i.v. challenge with the different tested strains. At the earliest 

time point analysed, mice infected with strain ATCC 90028, which presented the 

highest kidney fungal burden, showed the highest proportions and numbers of splenic 

inflammatory monocytes (F4/80+Gr-1+) and reduced frequency and numbers of 

macrophages (F4/80hiGr-1-) whereas neutrophils  (F4/80-Gr-1+) did not vary from 

controls or the other infected groups (Figure 2). This scenario changed completely by 

72 h after infection. SC5314-infected mice, which presented the highest kidney CFU 

counts at this time point, had a significant increase in the proportions and numbers of 

neutrophils, as compared with any of the other groups (Figure 2). Inflammatory 

monocytes were present in higher proportions and numbers in the spleen of mice 

infected with the most virulent strains, SC5312 and ATCC 90028. Curiously, no relevant 

changes were observed in the assessed myeloid spleen cell populations in mice 

infected with ATCC 32354.   
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Figure 2 (A) Representative examples of flow cytometric analysis of F4/80 and Gr-1 expression 

on the surface of mice splenic cells 12 and 72h after i.v. injection with PBS or 1×105 C. albicans 

SC5314, ATCC 90028 or ATCC32354 cells, as indicated. Gated populations correspond to 

macrophages (F4/80highGr-1neg), neutrophils (F4/80neg/lowGr-1high) and inflammatory monocytes 

(F4/80highGr-1high). (B) Scatter plots of the frequencies of macrophages, neutrophils and 

inflammatory monocytes ; (C) Scatter plots of the total numbers of macrophages, neutrophils 

and inflammatory monocytes, as indicated. Each symbol represents an individual mouse. (n=3 

for controls and n=4 for infected mice). *P<0.05;  **P<0.01; ***P<0.001. Statistical comparison 

with non-infected controls was omitted for simplicity. 

 

In general, expression of MHC class II and co-stimulatory molecules CD80, CD86, CD40 

on the surface of spleen conventional and plasmacytoid dendritic cells (cDCs and pDCs, 

respectively) did not markedly change upon infection. Some alterations could however  



 

108 
 

be observed. Mice infected with SC5314 had increased expression of the co-

stimulatory molecule CD86 on the surface of both cDCs and pDCs 72 h after infection, 

indicating a higher activation of these cells as compared to the other infected groups 

(Figure 3).  

 

Figure 3 Representative flow cytometric analysis of CD11c and PDCA-1 on splenic BALB/c mice 

cells. (A) Conventional dendritic cells (cDC) were defined as CD11chigh and plasmacytoid 

dendritic cells (pDC) as CD11clow PDCA-1+, as shown. (B) CD80, CD86, CD40 or MHC class II 

expression on the surface of splenic cDC or pDC, as indicated, 12 and 72 h after C. albicans i.v. 

Infection (n=3 for controls and n=4 for infected mice). * P<0.05; **P<0.01. 

 

An elevated expression of CD86 on the surface of B cells was also observed in SC5314-

infected mice (data not shown). In contrast, SC5314-infected mice presented a 

diminished expression of CD40 on the surface of pDCs at the earliest time point and of 

MHC class II molecules on cDCs 72 h upon challenge. Mice infected with strain ATCC 

90028 had diminished CD80 and elevated MHC class II expression on cDCs at 12 h and 

72 h after infection, respectively (Figure 3).  
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Figure 4 Representative examples of flow cytometric analysis of intracellular IL-12 expression 

in CD11c+-gated spleen cells, 72 h after i.v. injection with PBS or 1×105 C. albicans SC5314, 

ATCC 90028 or ATCC32354 cells. Numbers inside dot-plots correspond to mean percentage ± 

SD of IL-12+ cells (n=3 for controls and n=4 for infected mice). *P<0.05;  ***P<0.001 when 

comparing with either PBS or ATCC 32354 groups. No other significant differences were 

observed. 

 

Mice infected with the most virulent strains had the highest frequencies of spleen cDCs 

expressing the pro-inflammatory molecule IL-12 (Figure 4), yet the frequencies of CD4+ 

T cells expressing IFN-γ were not significantly different from the one found in ATCC 

32354-infected mice (Figure 5A).  

 

 

Figure 5 (A) Expression of intracellular IFN-γ in gated spleen CD4+ T cells, 72 h after C. albicans 

i.v. Infection. (B) IFN-γ/IL-4 ratio normalized by the control mean ratio (n=3 for controls and 

n=4 for infected mice).  

 

Interestingly, the IFN-γ+/IL-4+ cell ratio in these mice was the highest, suggesting a Th1 

bias in the immune response. No significant differences were observed in IL-10 and IL-

17A expression by CD4+ T cells. Expression of the regulatory T cell marker Foxp3 within 

CD4+CD25+ T cells was reduced in SC5314- and ATCC 90028-infected mice groups, but 

not in mice infected with the less virulent ATCC 32354 strain (data not shown).  
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Altogether, these results confirm virulence differences among the tested strains, in this 

infection model, and suggest an association between C. albicans virulence and the 

elicited inflammatory response. 
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DISCUSSION 

 

Distinct C. albicans isolates may show very distinct virulence and infection patterns in 

mice (20, 21, 24, 25) and elicit both qualitatively and quantitatively different host 

responses (18, 21). The virulence of three different C. albicans strains, SC5314, ATCC 

90028 and ATCC 32354 was compared here by determining survival and fungal burden 

in the kidneys of BALB/c mice after intravenous challenge. The evaluation of the ability 

to colonize and invade the kidneys has been usually used to measure virulence of C. 

albicans strains (3, 26). A near-linear relationship has been demonstrated between 

mouse median survival times and C. albicans kidney CFU counts, determined 12 h after 

challenge (3, 27). However, we could not find such an association between kidney CFU 

counts and mice survival time at this early time point. In the infection model used, 

SC5314 was the most virulent C. albicans strain tested, causing lethal infection in a 

relatively short time. This C. albicans strain has already been classified as highly 

virulent in the murine model of hematogenously disseminated candidiasis and causing 

severe infection in the kidney (3, 18, 19). Not surprisingly, strain ATCC 32354 

presented lower virulence than the two other strains tested, since in a previous report 

it has been shown to have intermediate virulence in murine hematogenously 

disseminated candidiasis (17). Accordingly, neutrophilic infiltration and edematous 

corneal stroma were prominent in corneas infected with SC5314, but less severe with 

strain ATCC 32354 (28). Unexpectedly, mice infected with ATCC 90028, which was 

considered a highly virulent strain in the i.v. infection model (17), presented a 

markedly higher survival time than SC5314-infected counterparts.  

Several studies support a direct relationship between colony count in the infected 

kidney and mortality (3, 27, 29). However, although renal failure was long considered 

to be the cause of mice death in the murine model of disseminated candidiasis (29-32), 

the major cause of death was later proved to be progressive sepsis (4). Here, such a 

relationship between kidney fungal burden and mortality was not obvious as mice 

infected with SC5314 or ATCC 32354, which greatly differed in survival times, 

presented similar C. albicans kidney load. This might indicate that survival may be 

instead determined by the host immune response. This hypothesis may be in 

agreement with a previous report showing that the early innate immune response, 



 

112 
 

assessed through cytokine and chemokine measurement in the spleen and kidneys, 

determines and predicts the progression of C. albicans infection (21).  

It is noteworthy that the highest virulent strain, SC5314, induced a more marked 

inflammatory response, as assessed by the high recruitment of neutrophils and 

inflammatory monocytes into the spleen. Also, DCs from mice infected with this strain 

produced the highest levels of the pro-inflammatory cytokine IL-12 and presented the 

highest up-regulation of co-stimulatory molecule CD86 on their surface. The generated 

inflammation may be worsening organ pathology rather than protecting the host, as 

suggested before (12, 21). That would explain the more precocious death of SC5314-

infected mice. Contrastingly, in mice infected with the other strains, a lower splenic 

neutrophil influx could reflect a milder inflammatory response, translated in extended 

survival times. It is intriguing that SC5314 strain, which display a high virulence in the 

model used here, in which immune protection mainly depends on polymorphonuclear 

neutrophils was reported to be much less efficient at infecting the mucosa (18, 33), for 

which cell mediated immunity is essential for host protection (7).  

The ATCC 32354 strain barely elicited a detectable inflammatory response, as assessed 

by leukocyte recruitment or activation in the spleen. Nevertheless, mice infected with 

this strain, were the ones presenting the highest IFN-/IL-4 ratio. This could indicate a 

bias towards a Th1-type immune response, presumably protective (7, 12), without 

aggressive inflammatory pathology. In this regard, it must be noted that mice infected 

with ATCC 32354 strain, contrasting with what was observed in the mice infected with 

the most virulent strains, did not present a decrease in splenic T regulatory cell 

proportions. It is conceivable that this may help in inflammation control as these cells 

have been implicated in limiting inflammatory pathology in the murine model of 

hematogenously disseminated candidiasis (34).  

The vast majority of gene disruption studies have been carried out in a single strain, 

SC5314, background. It is already known that different strains may present distinct 

virulence phenotypes and elicit dissimilar immune responses. In consequence, results 

obtained with one strain cannot be taken as representative of the whole species. This 

must be taken into account when delineating vaccination or immunotherapeutic 

strategies to prevent or manage systemic C. albicans infections.  
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Limited role of secreted aspartyl proteases Sap1-6 in Candida albicans 
virulence and host immune response in murine hematogenously 
disseminated candidiasis 
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ABSTRACT 

 

Candida albicans secreted aspartyl proteinases (Sap) are considered virulence-

associated factors. Several members of the Sap family have been claimed to play a 

significant role in the progression of candidiasis established by the hematogenous 

route. This assumption was based on the observed attenuated virulence of sap null 

mutant strains. However, the exclusive contribution of SAP genes for their attenuated 

phenotype was not unequivocally confirmed as the Ura-status of these mutant strains 

could also have contributed to the attenuation. In this study, we have re-assessed the 

importance of SAP1-SAP6 in a murine model of hematogenously disseminated 

candidiasis, using sap null mutant strains not affected in their URA3 gene expression 

and compared their virulence phenotype with Ura-blaster sap mutants. The median 

survival time of BALB/c mice intravenously infected with a mutant strain lacking SAP1-

3 was equivalent to that of the wild-type SC5314, while those infected with mutant 

strains lacking SAP5 showed slightly extended survival. Nevertheless, no differences 

could be observed between the wild-type and a Δsap456 mutant in their ability to 

invade and colonize mice kidneys. Likewise, deficiency in SAP4-6 had no noticeable 

impact on the immune response elicited in the spleens and kidneys of C. albicans 

infected mice. These results contrast with the behaviour of equivalent Ura-blaster 

mutants, which presented a significant reduction in virulence. Our results suggest that 

Sap1-6 do not play a significant role in C. albicans virulence in a murine model of 

hematogenously disseminated candidiasis and that, in this model, Sap1-3 are not 

necessary for successful C. albicans infection. 
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INTRODUCTION 

 

The polymorphic yeast Candida albicans is an important opportunistic human 

pathogen, causing infections that range from superficial mucosal lesions to life-

threatening systemic disease. It is by far the most common cause of fungal invasive 

infections, which could be attributed to the little immunosuppression required to 

predispose to invasive Candida infections (39). Host physical barriers and immune 

system integrity are crucial factors in controlling the establishment of infection. 

However, the high adaptability of C. albicans to different host niches, by the 

expression of appropriate sets of virulence-related genes, is also determinant (18, 51). 

Several of these virulence attributes may participate in and influence the infective 

process, depending on the site and stage of invasion and on the nature of the host 

response (36). The secretion of hydrolytic enzymes during infection is required as a 

virulence attribute to aid adhesion, invasion, and destruction of host immune factors, 

in addition to nutrient acquisition (20). Within these, secreted aspartyl proteases (Sap), 

encoded by a ten-member gene family (SAP1-SAP10) have been the most extensively 

studied (34). The 10 SAP genes that compose this family can be divided into 

subfamilies based on amino acid sequence homology alignments (SAP1-3, SAP4-6, 

SAP9-10). These genes exhibit differential expression profiles at different stages and 

sites of infection (34, 32, 46, 49) and have been linked with the virulence of the fungus 

since their discovery (10, 26, 48).  

The contribution to virulence of SAP1-3, SAP4-6, SAP7 and SAP9-10 genes in different 

models of infection has been studied by using sap null mutant strains (1; 13; 15; 19; 22; 

24, 25, 28, 33, 43, 54). The subfamily of genes SAP4-6, in particular, were shown to 

contribute significantly to C. albicans virulence in models of acute systemic candidiasis, 

murine peritonitis and Candida gastrointestinal infection (15, 24, 43). These genes are 

mainly expressed during hypha formation (21, 33) and SAP5, in particular, was found 

to be up-regulated at all time-points after either intravenous or intraperitoneal mice 

infection (44, 50, 57). 

Hube et al. (19) reported that Δsap1, Δsap2 and Δsap3 null mutants displayed 

attenuated virulence in models of acute systemic candidiasis. The triple deletion of 

SAP4-6 resulted in a more marked impact on C. albicans virulence, in similar 
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experimental settings, suggesting an important role for these hypha-related genes in 

the establishment of disseminated candidiasis (43). These mutant strains were 

generated from the auxotrophic laboratory strain CAI4 with the most common method 

used for disrupting genes in C. albicans, the Ura-blaster technique (16). The use of the 

URA3 marker for mutant construction in C. albicans can lead to misinterpretation of 

the results in mutant virulence studies (5, 8, 11, 27). Though this can now be overcome 

by integration of URA3 at the ENO1 (52) or RPS10 loci (8), the mutant strains used in 

the referred studies did not share a common site of URA3 integration. Therefore, it is 

conceivable that the Ura-status could have influenced the results and thus, the 

attenuated nature of these mutants during acute systemic candidiasis remains to be 

confirmed unequivocally (37). Therefore, in this study, we have used a set of Δsap null 

mutants constructed by Lermann and Morschhäuser (28) from the prototrophic wild-

type strain SC5314 using the SAT1-flipping stategy (41) to re-address the importance of 

the SAP1-SAP6 genes in a murine model of hematogenously disseminated candidiasis. 

In addition, we analyzed the histopathology of several organs and aspects of the 

immune response elicited in the spleens and kidneys of BALB/c mice infected with the 

wild-type strain and a sap null mutant lacking SAP4 to SAP6. 
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MATERIALS AND METHODS 

 

Mice 

Male BALB/c mice, 8-10 weeks old, were purchased from Charles River (Barcelona, 

Spain) and kept under specific pathogen-free conditions at the Animal Facility of 

Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal. All procedures involving 

mice were performed according to the European Convention for the Protection of 

Vertebrate Animals used for Experimental and other Scientific Purposes (ETS 123), 

86/609/EEC Directive and Portuguese rules (DL 129/92). 

 

Candida albicans and culture conditions 

The C. albicans strains used in this study are listed in TABLE 1.  

 

TABLE 1. Candida albicans strains used in this study 

Strain Genotype Reference 

SC5314 
 
SAP123MS4C and -D 
 
 
 
SAP456MS4A and -B 
 
 
 
SAP4MS4A 
 
SAP5MS4A 
 
SAP6MS4A 
 
CAF2-1  
 
M119  
 
 
 
DSY459 

Prototrophic wild-type strain 
 
sap1Δ::FRT/sap1Δ::FRT 
sap2Δ::FRT/sap2Δ::FRT 
sap3Δ::FRT/sap3Δ::FRT 
 
sap4Δ::FRT/sap4Δ::FRT 
sap5Δ::FRT/sap5Δ::FRT 
sap6Δ::FRT/sap6Δ::FRT 
 
sap4Δ::FRT/sap4Δ::FRT 
 
sap5Δ::FRT/sap5Δ::FRT 
 
sap6Δ::FRT/sap6Δ::FRT 
 
URA3/ura3Δ::imm434 
 
sap1Δ::hisG/sap1Δ::hisG 
sap2Δ::hisG/sap2Δ::hisG  
sap3Δ::hisG/sap3Δ::hisG::URA3::hisG 
 
sap6Δ::hisG/sap6Δ::hisG 
sap4Δ::hisG/sap4Δ::hisG  
sap5Δ::hisG/sap5Δ::hisG::URA3::hisG 

16 
 
27 
 
 
 
27 
 
 
 
27 
 
27 
 
27 
 
15 
 
23 
 
 
 
42 
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All strains were maintained as frozen stocks in 30% glycerol at -80ºC. Yeast growth was 

tested in synthetic glucose minimal (2% glucose, 0.67% Bacto-yeast nitrogen base 

without amino acids) and complex YPD (2% glucose, 1% yeast extract, 2% Bacto-

peptone) liquid media at 30 and 37ºC, in a shaking incubator for 24 h. Growth was 

measured at 60 minute-intervals and the generation times were calculated. Hyphae 

formation was induced by the addition of calf serum (Invitrogen, Carlsbad, CA, USA) 

(10%) or N-acetyl-glucosamine (2.5 mM) (Sigma, St Louis, USA) at 37ºC. To prepare the 

inocula for infection, C. albicans strains were grown in a shaking incubator for 14 h at 

30ºC in Winge medium (0.2% glucose, 0.3% yeast extract). Yeast cells were harvested, 

washed twice with sterile, nonpyrogenic phosphate-buffered saline (PBS), counted in a 

haemocytometer and resuspended at the appropriate concentrations. Inocula were 

confirmed by Colony Forming Unit (CFU) counts on Sabouraud dextrose agar (Difco, 

Detroit, MI, USA) for up to 48 h at 37ºC. 

 

C. albicans hematogenously disseminated infections 

Mice were injected intravenously (i.v.), in the lateral tail vein, with 1x105 or 5x105 C. 

albicans yeast cells in 0.2 ml PBS. To evaluate the progress of hematogenously-

disseminated candidiasis, mice were weighed and monitored twice daily. Moribund 

mice were humanely terminated, and their deaths recorded as occurring the following 

day. 

Other groups of mice were infected with 5x104 yeast cells and sacrificed 3 and 7 days 

post-infection to determine organ fungal burden and/or immunological parameters. 

Control mice were injected i.v. with PBS. Kidneys were aseptically removed, weighted, 

homogenized, and quantitatively cultured on Sabouraud dextrose agar (Difco) at 37ºC. 

Values were expressed as log CFU per gram of tissue. Alternatively, kidneys, liver, lungs 

and brain were fixed in 10% phosphate-buffered formaldehyde, followed by periodic 

acid-Schiff reagent staining and counterstaining with haematoxylin of the paraffin-

embedded tissues, in order to evaluate both fungal morphology and composition and 

distribution of inflammatory infiltrates. 
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Quantitative real-time PCR (qRT-PCR) 

BALB/c mice were i.v. infected with 1x105 C. albicans SC5314, SAP123MS4C and 

SAP456MS4A yeast cells. Total RNA was isolated from the kidneys of three mice per 

group, 3 and 7 days after infection. Briefly, the kidneys were removed, homogenized in 

PBS and centrifuged at 1500 g, 4ºC for 10 min. Pellets were washed twice with ice cold 

RNAse-free water and frozen in liquid nitrogen until RNA extraction which was 

performed by using the hot acidic phenol method (4) Total RNA was incubated with 

Deoxyribonuclease I (DNAse I), Amplification Grade (Invitrogen) for 15 min at room 

temperature to eliminate genomic DNA contamination. DNAse I was inactivated 

according to the manufacturer’s instructions. 

The SuperscriptTM III Platinum® Two-Step qRT-PCR Kit with SYBR® Green was used to 

generate first-strand cDNA from each DNAse I-treated RNA sample. The RT conditions 

were 10 min at 65°C, 60 min at 37°C, and 10 min at 65°C. Quantitative PCR was 

performed with Platinum® SYBR® Green qPCR SuperMix-UDG (Invitrogen). Primers were 

added to the reaction mix at a final concentration of 200 nM. Three microliters of each 

cDNA sample were added to a 25 µl PCR mixture containing 12.5 µl of Platinum® SYBR® 

Green qPCR SuperMix-UDG, 0.5 µl of 10µM specific forward and reverse primers 

(TABLE 2) and 8.5 µl of RNase free water (Invitrogen). Each reaction was performed in 

a Corbett Rotor-Gene 6000 (Quiagen). Thermocycling conditions for SAP and ACT1 

quantification were 2 min at 50ºC (UDG incubation), 5 min at 95°C, followed by 40 

cycles of 95°C for 15 sec, 60°C for 30 sec and 72°C for 30 sec. The specificity of each 

primer pair was verified by the presence of a single melting temperature peak. 

Calibration and efficiency of SAP and ACT1 primers were assessed in titration 

experiments using C. albicans SC5314 genomic DNA (500 ng to 5 pg) in serial dilutions. 

Negative (water) control and a four point curve of SC5314 genomic DNA were included 

in each run. DNAse I-treated RNA was used to exclude genomic DNA contamination. 

SAP1-10 gene expression was normalized to the housekeeping gene ACT1 and 

analysed by using both the standard curve and the comparative Ct (∆∆Ct) methods. 

Data are presented as fold difference in expression relative to the WT gene expression 

from infected mice. Each experimental condition was performed in triplicate and 

reactions were done in duplicate in different days for reproducibility purposes.  
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TABLE 2. SAP and ACT1 primers used in this study and expected fragment length 

Gene Primer 5’-3’ Amplicon (bp) 

Forward Reverse 
ACT1 
SAP1 
SAP2 
SAP3 
SAP4 
SAP5 
SAP6 
SAP7 
SAP8 
SAP9 
SAP10 

TGCTGAACGTATGCAAAAGG 
TGAGGCTGCTGGTGATTATG 
ATCAGCTGGTTTCGTTGCTT 
TGTTACTGGTCCCCAAGGTGAA 
AATGATGTGGGCAAAAGAGG 
ATTTCCCGTCGATGAGACTG 
GTCAACGCTGGTGTCCTCTT 
TTCTCGTGATGCTGTCCAAG 
TTTGGTGGGGTTGATAATGC 
 ACCGGGTCTTCAGATTTGTG 
AACGGAAATGTTGCTTCTGG 

TGAACAATGGATGGACCAGA 
TGCCAACAGCTTTGAGAGAA 
GGGACAGCTTGTCTTTTGGA 
CTTGTCCTTGACCAGCTTGACAT 
ACGGCATTTGAATCTGGAAC 
ACCACGCCATTTTGGAATAC 
GCAGGAACGGAGATCTTGAG 
CCAGCAGGAAGACCATAAGC 
GGCAGCAGCCAATTTATCAG 
TTCCTCGTCGGTTTCTATGG 
TGAATCGCCTATCGAAAACC 

186 
224 
105 
209 
155 
205 
197 
183 
198 
180 
192 

 

Flow cytometric analysis  

The assessment of cell surface and cytoplasmic lineage or activation markers on 

different splenic leukocyte populations was performed by flow cytometric analysis 

(FACS). Spleens were aseptically removed and homogenized to single cell suspensions 

in Hank’s Balanced Salt Solution (HBSS) (Sigma). A number of 1x106 leucocytes were 

stained per sample.  

The following monoclonal antibodies (mAbs), along with the respective isotype 

controls were used (at previously determined optimal dilutions) for 

immunofluorescence cytometric analysis in FACScan (Becton-Dickinson, San Jose, CA, 

USA) using CELLQUEST software (Becton-Dickinson): 

Phycoerythrin (PE) rat anti-mouse CD40 (1C10), biotin rat anti-mouse Major 

Histocompatibility Complex (MHC) class II (NIMR-4) (Southern Biotechnology 

Associates, Birmingham, ALA, USA); fluorescein isothiocyanate (FITC) anti-mouse/rat 

Foxp3 (FJK-16s), PE-Cy5 rat anti-mouse CD4 (L3T4) (RM4-5), and PE anti-mouse F4/80 

antigen (BM8) (eBioscience, San Diego, CA, USA); FITC hamster anti-mouse CD11c 

(HL3), FITC anti-mouse Ly-6G and Ly-6C (Gr-1) (RB6-8C5), PE anti-mouse CD25 (PC61), 

FITC anti-mouse CD45R/B220 (RA3-6B2), PE anti-mouse CD80 (B7-1) (16-10A1), PE 

anti-mouse CD86 (B7-2) (GL1), PE rat anti-mouse IL-4 (BVD4-1D11), FITC anti-mouse 

IFN-  (XMG1.2), and PE rat anti-mouse IL-10 (JES5-2A5) (all from BD Pharmingen, San 

Diego, CA). Biotin conjugated mAbs were revealed with Streptavidin-PE-Cy5 (BD 

Pharmingen). Cells were preincubated for 15 min with anti-

Jocelyne Demengeot, Gulbenkian Institute of Science, Oeiras, Portugal) before CD11c 
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and Foxp3 staining. The Foxp3 Staining Buffer Set (eBioscience) was used for fixation 

and permeabilization of splenocytes previously surface stained with CD4 and CD25 

mAbs.  

The intracellular expression of the cytokines IFN-γ, IL-4 and IL-10 was detected in 

splenic CD4+ T lymphocytes. Intracellular expression of the cytokines IFN-  and IL-4 

was also detected in renal CD4+ T lymphocytes. Splenocytes were obtained as 

described above. Red blood cell lysis was performed by incubation with 0.15M 

ammonium chloride. Cells were washed and resuspended in complete RPMI medium 

(Sigma) (RPMI 1640 supplemented with 50U of penicillin/ml, 50 µg of streptomycin/ml, 

1% HEPES buffer (Sigma), 10% FCS (Invitrogen), and 5 µM 2-mercaptoethanol). The 

kidneys were minced with a razor blade and incubated for 30 min at 37ºC in RPMI 

1640 complete medium containing collagenase (Sigma-Aldrich) at 2 µg/ml. Cells were 

homogenized to single cell suspensions, washed and resuspended in RPMI 1640 

complete medium. Mononuclear cells were separated from the above suspensions by 

layering 5 ml onto 2.5 ml of a polysucrose-sodium ditrizoate solution (Histopaque 

1083®, Sigma) and centrifuged at 800 g for 20 min at room temperature. Mononuclear 

cells collected from the medium-Histopaque interface were washed and resuspended 

in RPMI 1640 complete medium. Spleen and renal 1x106 cells were transferred to 96-

well tissue culture plates (Nunc, Roskilde, Denmark) and stimulated for 4.5 h with 20 

ng/ml phorbol myristate acetate (Sigma) and 200 ng/ml ionomycin (Sigma) in the 

presence of 10 µg/ml of brefeldin A (Roche, Penzberg, Germany).  

Staining of cell surface marker CD4 was performed as described above, after a 

preincubation step of 15 min with anti-FcγR, followed by fixation with 2% 

formaldehyde. Cells were permeabilized with 0.5% saponin in flow cytometric buffer 

(PBS containing 1% BSA and 10mM sodium azide) and, subsequently, cells were 

incubated for 15 min with anti-FcγR and stained for 30 min at room temperature with 

the appropriate antibody. Intracellular staining with the isotypic controls was 

performed to confirm the specificity of antibody binding. 

Th1 cells were defined as CD4+IFN-γ+Il-4- and Th2 cells were defined as CD4+IFN-γ-Il-4+. 

Ratios of Th1/Th2 were generated to determine the presence of a polarized immune 

response. The immune response in non-infected mice was defined as unpolarized. 
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Serum IFN-γ, IL-4 and IL-10 measurements 

The concentration of IL-4 in the sera of C. albicans infected mice and non-infected 

controls was quantified with the Quantikine® M Murine IL-4 ELISA kit and serum IFN-γ 

and IL-10 were quantified with the Duo-Set ELISA kits (all from R&D Systems, 

Minneapolis, MN, USA) according to manufacturer’s instructions.   

 

Statistical Analysis 

Unless otherwise stated, results shown are from one experiment, representative of 

three independent experiments. Statistical significance of results was determined by 

unpaired Student t-test and survival data were analyzed with the log-rank test, using 

the GraphPad Prism 4 Software (GraphPad Software, Inc., La Jolla, CA, USA). Results 

were considered statistically significant with P values of less than 0.05.  
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RESULTS 

 

Virulence of C. albicans in a murine model of hematogenously disseminated infection 

Prior to the virulence studies, we have determined the generation time for each strain 

in synthetic defined and complex media at 30º and 37ºC, and the ability to form 

hyphae in serum- or N-acetylglucosamine-containing media. No yeast growth defects 

were observed under the conditions tested (similar generation times) and filamentous 

growth was similar to that of the wild-type (WT) strain SC5314 under the hypha-

inducing conditions analyzed (data not shown).  

To explore the role of aspartyl proteases Sap1-6 as virulence factors in the course of 

hematogenously disseminated candidiasis, BALB/c mice were initially infected i.v. with 

5x105 and 1x105 cells of C. albicans WT strain SC5314 and two independent series of 

homozygous deletion triple mutant strains lacking SAP1-3 (SAP123MS4C and 

SAP123MS4D) or lacking SAP4-6 genes (SAP456MS4A and SAP456MS4B) (28). The 

independent mutant strains behaved indistinctively (data not shown) and therefore 

results presented below correspond to those obtained with strains SAP123MS4C and 

SAP456MS4A.   

Mice infected with the highest inoculum showed 100% mortality for every group by 

day 6 after infection and no differences could be observed (data not shown). 

No differences in survival time were observed after i.v. infection of BALB/c mice with 

1x105 CFU of the WT or Δsap123 mutant SAP123MS4C strains (P= 0.5698 by log rank 

test) (Figure 1A). Mice infected with the Δsap456 mutant strain SAP456MS4A had an 

extended overall survival time, compared to the WT infected counterparts (Fig. 1). The 

median survival time of SAP456MS4A-infected mice were 13 and 16 versus 10 and 12 

days of WT-infected mice, as determined on the independent experiments shown in 

Figure 1 A, and B, respectively.  All mice injected with either the WT or the triple 

mutant strain SAP123MS4C succumbed to candidal infection within 17 days. In 

contrast, at the end of the experimental period (30 days), 15 to 20% of the mice 

infected with the Δsap456 mutant survived infection. Nevertheless, the kidneys of the 

surviving mice had Candida microabscesses and granulomas as revealed by 

histopathological analysis (data not shown). Despite these differences, statistical 

comparisons of the survival curves revealed that survival of mice infected with the WT 
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strain did not differ significantly from those of mice infected with the Δsap456 mutant 

(P=0.1405 and P=0.1331, Figure 1 A and B, respectively).  

 

Figure 1 Influence of SAP1-6 on C. albicans virulence in a murine model of hematogenously 

disseminated candidiasis. Male BALB/c mice were i.v. injected with 1x105 cells of (A) C. 

albicans WT strain SC5314 and the mutant strains SAP123MS4C and SAP456MS4A; (B) C. 

albicans WT strain SC5314 and the mutant strains SAP4MS4A, SAP5MS4A, SAP6MS4A and 

SAP456MS4A; (C) C. albicans WT strain SC5314 and CAF2-1, and the mutant strains 

SAP123MS4C, M119, SAP456MS4A, and DSY459.  Each strain was injected into 7 mice per 

group, per experiment, and survival was monitored twice daily for 30 days (A and B) or for 60 

days (C). Results are representative of two to three independent experiments. 

 

To ascertain the contribution of each of the deleted genes of the triple Δsap456 

mutant to the slightly extended survival observed, Δsap4, Δsap5 and Δsap6 single 

mutant strains were used. As shown in Figure 1B, survival time of mice infected with 

SAP4MS4A, SAP5MS4A and SAP6MS4A strains was statistically equivalent to that of 

WT-infected counterparts (P= 0.6265, P= 0.2121 and P= 0.9465, respectively). The 

observed median survival time was, however, consistently longer in mice infected with 

mutants lacking SAP5, such as with strains SAP5MS4A and SAP456MS4A. The survival 

curves of mice injected with these two strains were similar (P= 0.8621). 
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These results are in apparent contrast with previous studies, in a similar model of 

murine hematogenously disseminated candidiasis, using single mutant strains deficient 

in SAP1, SAP2 or SAP3 (19) and a triple mutant lacking the SAP4 to SAP6 genes (43), 

constructed with the Ura-blaster technique (16). In those studies, mutant strains 

deficient in each of the SAP1 to SAP3 genes and the Δsap456 triple mutant strain 

DSY459, were reported to survive longer than WT-infected mice, and the latter, to 

have significantly decreased mean CFU in the kidneys (43). Therefore, parallel 

experiments with the SAT1-flipping mutants and Ura-blaster triple mutants Δsap123 

M119 (23) and Δsap456 DSY459 (43) were performed using the same batch of BALB/c 

mice and the same experimental conditions. Strain CAF2-1 (16) was also included. As 

shown in Figure 1C, significant differences in survival time were observed between 

mice infected with strains Δsap123 M119 and Δsap456 DSY459, and the respective 

control strain CAF2-1 (P=0.0089 and P=0.0065, respectively). Mice infected with the 

Ura-blaster mutants survived significantly longer than mice infected with the 

equivalent SAT1-flipping mutants. The medium survival time of mice infected with 

mutants lacking SAP1-3 was 21 days for the Ura-blaster constructed Δsap123 M119, 

and 10 days for Δsap123 mutant SAP123MS4C (P=0.0127). Similar results were found 

when comparing the triple mutants lacking SAP4-6 genes. Medium survival time was 

51 days for mice infected with the Ura-blaster mutant and 13 days with the SAT1-

flipping mutant (P=0.0096). Survival of mice infected with the WT strain SC5314 and 

with the URA3 heterozygous strain CAF2-1 was similar (P=0.7005) 

The evaluation of fungal ability to invade the kidneys has been frequently used to 

measure virulence of C. albicans strains (29, 37). The number of C. albicans CFU in the 

kidneys of mice infected, either with the SAT1-flipping or the Ura-blaster mutants, as 

well as with the respective control strains was similar, except for mice infected with 

the Δsap456 DSY459 strain (Figure 2). Seven days after infection, CFU numbers were 

significantly reduced in mice infected with the latter mutant (P=0.0149, CAF2-1 vs 

Δsap456 DSY459). 

The two sets of mutants tested behaved distinctly in the same experimental model, 

suggesting that the observed differences could be due to the effect of ectopic URA3 

insertion, and not caused by disruption of SAP genes. However, the limited impact of 

SAP gene deletion in C. albicans virulence could be due to a compensatory expression 
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of the non-deleted SAP genes, as reported for the Ura-blaster mutants (33; 45). 

Expression of SAP1-10 in SC5314 and in SAT1-flipping triple mutants was evaluated by 

qRT-PCR in kidney samples, 3 and 7 days after infection. Only the results of the latter 

time-point analyzed are presented, since after 3 days the fungal burden was often 

insufficient to obtain reproducible results. The expression levels were always inferior 

or similar to ACT1 expression In the WT strain, except for SAP7. 

 

 

Figure 2 Kidney fungal burden of BALB/c mice 3 and 7 days after i.v. infection with 5x104 CAF2-

1 (), M119 (), DSY459 () SC5314 (),  SAP123MS4C (), and SAP456MS4A () C. 

albicans cells.  Data are representative of two independent experiments. Each symbol 

represent an individual mouse, horizontal bars are means of CFU numbers in each group. 

 

No significant differences in SAP1 to SAP10 expression were observed in either mutant 

compared with SC5314. However, mRNA levels of SAP4 were higher in the Δsap123 

mutant and the expression of SAP1, SAP2 and SAP3 trended higher in the Δsap456 

mutant (Figure 3). Thus, the virulence phenotypes observed do not seem to be due to 

significant compensatory upregulation.  

Although not significant, a reduction in virulence was consistently seen in the mutant 

Δsap456. Therefore, the impact of SAP4 to SAP6 deficiency on C. albicans virulence 

was further evaluated.  
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Figure 3 Compensatory upregulation of SAP1-10 in sap triple mutants SAP123MS4C, and 

SAP456MS4A from kidney homogenates, 7 days after .i.v. infection with 1x105 cells. Results are 

presented as fold difference in expression relative to the WT SC5314 from infected mice. 

 

The ability of WT and Δsap456 triple mutant strains to infect and injure several organs 

was assessed by histopathological analysis of the kidneys, liver, lungs and brain, 3 and 

7 days after infection. As shown in Figure 4, similar C. albicans cell morphology and 

invasive abilities by the WT and mutant strains were observed. The kidneys of both 

mice groups showed moderate multifocal renal medullary interstitial neutrophylic 

infiltration, with small areas of ductular necrosis. Intralesional PAS-positive organisms 

both in yeast and septated, branched hyphal morphology, were detected 3 days after 

C. albicans i.v. infection with strains SC5314 (Figure 4A) and SAP456MS4A (Figure 4B). 

At the later time-point tested, 7 days after infection, analysis of the kidneys of WT (Fig. 

4C) and mutant-infected (Figure 4D) mice showed moderate to severe, focally 

extensive to coalescing, renal medullary interstitial neutrophylic infiltration 

surrounding numerous PAS-positive organisms. These were present mainly as 

septated, branched hyphal structures, which largely effaced the medulla and invaded 

the urothelium. Invasion of liver, lungs and brain was not consistently seen (data not 

shown). Altogether, these results suggest that SAP4 to SAP6 genes are not essential for 

invasion of the kidneys during hematogenously disseminated candidiasis.  
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Figure 4. Representative photomicrographs of histological sections of kidneys from BALB/c 

mice infected with 5x104 SC5314 (A and C) and SAP456MS4A (B and D) C. albicans cells. Three 

days post i.v. infection, PAS-positive hyphae and yeast-like organisms were present in the renal 

medulla, partially effacing the renal tubuli and eliciting moderate neutrophylic infiltration both 

in WT- (A) and mutant-infected mice (B). 7 days post i.v. infection, numerous PAS-positive 

hyphae and yeast-like organisms were present in the renal medulla, extensively effacing the 

renal tubuli, eliciting intense neutrophylic infiltration and invading the urothelium (arrows) 

with no clear differences between WT (C) and mutant (D) strains. P-renal pelvis. Bar=100 μm.  

 

Host immune response to hematogenously disseminated candidiasis  

To determine the effect of SAP4 to SAP6 disruption on the immune response elicited 

by C. albicans systemic infection, BALB/c mice were infected i.v. with 5 × 104 C. 

albicans yeast cells of WT and Δsap456 mutant strains. At days 3 and 7 upon infection, 

absolute numbers and phenotype of different splenic leukocyte populations were 

quantitated by flow cytometric analysis. Macrophages and neutrophils, represent the 

first line of host immune defence when C. albicans cells infect the bloodstream or the 

endothelia (47, 58). Macrophages typically express the F4/80 cell surface marker, 

whereas neutrophils have a Gr-1high surface phenotype. Murine splenic cells expressing 

both antigens with either inflammatory or immunosuppressive function have also 

been described in the context of C. albicans infections (30, 56). According to the 
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expression of these two surface markers, three cell populations were analyzed in this 

study: F4/80highGr-1neg, F4/80highGr-1high and F4/80neg/lowGr-1high.  

 

 

 

Figure 5 (A) Scatter plots of the total numbers of neutrophils (F4/80neg/lowGr-1high), 

inflammatory monocytes (F4/80highGr-1high), macrophages (F4/80highGr-1neg), cDC (CD11chigh), B 

cells (B220+), Treg (CD4+CD25+Foxp3+), and Teffector (CD4+CD25+Foxp3-) as indicated, observed 

3 and 7 days after infection in the spleens of non-infected control mice (open triangles) and 

mice challenged i.v. with 5x104 WT (open squares) and SAP456MS4A (filled circles) C. albicans 

cells. Data are representative of three independent experiments. Each symbol represents an 

individual mouse, horizontal bars are means of cell numbers in each group (n=3 for control and 

n=4 to 5 for infected mice groups). Statistically significant differences between controls and C. 

albicans infected mice are indicated *P<0.05; ** P<0.01; *** P<0.001. (B) Relative proportions 

of splenic Teffector (black bars) and Treg (white bars) in the spleens of non-infected controls 

(PBS) and SC5314 or SAP456MS4A i.v. infected mice, 3 and 7 days after challenge.  
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These were respectively designated as macrophages, inflammatory monocytes and 

neutrophils (55). An extensive recruitment of neutrophils and inflammatory monocytes 

into the spleen could be observed in infected mice compared to non-infected controls, 

3 and, more markedly, 7 days after infection. Higher numbers of spleen macrophages 

were also detected in the infected mice 7 days upon infection. The total numbers of 

these myeloid cell populations in WT-infected mice were equivalent to the ones in 

mice infected with the Δsap456 triple mutant (Figure 5A). 

Dendritic cells were previously shown to play a major role in the induction of the cell-

mediated immune response to C. albicans infection (9, 38) and to directly influence the 

infection outcome (6). Therefore, the numbers and surface maturation markers of 

splenic conventional dendritic cells (cDC), defined as CD11chigh cells, were assessed 

upon C. albicans infection. Higher numbers of splenic cDC, comparatively to non-

infected controls, were observed at the earlier time-point analyzed. The cDC surface 

expression of the co-stimulatory molecules CD40 and CD80, remained practically 

unchanged after C. albicans i.v. infection, as evaluated by flow cytometry and recorded 

as Mean Fluorescence Intensities (MFI). In contrast, the co-stimulatory molecule CD86 

was upregulated on the surface of splenic cDC from C. albicans-infected mice, 3 and 7 

days after infection. The cDC surface expression of MHC class II molecules was slightly 

down-regulated in infected mice 3 days after infection, and upregulated at day 7 post-

infection, as compared to that of non-infected controls. No significant differences on 

cDC numbers (Figure5A) and surface expression of any of the assessed co-stimulatory 

and antigen-presenting molecules was detected between WT and SAP456MS4A-

infected mice at the two tested time-points (Figure 6). 

B cells have been shown to mediate host resistance to i.v. established C. albicans 

systemic infection (60). B cell numbers were significantly increased 7 days after 

infection in either WT or SAP456MS4A challenged mice (Figure 5A). As observed on 

splenic cDC, an up-regulation of the co-stimulatory molecule CD86 was observed 3 and 

7 days post-infection on the surface of B-cells of the infected mice, compared to non-

infected controls. The expression of CD80 and MHC class II molecules on the surface of 

B cells was observed up-regulated only at day 7 after challenge.  
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Figure 6 Expression of CD40, CD80, CD86, and MHC II molecules on the surface of spleen 

conventional dendritic cells (cDC) and B cells of BALB/c mice 3 and 7 days after i.v. injection 

with PBS (controls, grey histograms) or i.v. infection with 5×104 SC5314 (solid line) and 

SAP456MS4A (dashed line) C. albicans yeast cells. Staining with respective isotypic controls 

was omitted for simplicity. Numbers below histograms represent means ± one standard 

deviation of the mean fluorescence intensities of antibody stainings for non-infected controls 

(up) and SC5314 (middle) or SAP456MS4A (down) infected mice. (n=3 for control and n=5 for 

infected mice groups). Statistically significant differences between controls and C. albicans 

infected mice are indicated (* P<0.05; ** P<0.01). Results shown are from one experiment, 

representative of three independent experiments. 

 

Challenge with the SAP4 to SAP6 deficient mutant did not result in any differences to 

the WT strain, regarding either B cell numbers or co-stimulatory molecules expression 

(Figures 5A and 6). 

Although CD4+ T cells have been reported to have little influence on survival and on 

fungal burden during acute systemic candidiasis (3, 23), the CD4+ T cell subset of 
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naturally occurring regulatory T cells (Treg) has been shown to promote host 

susceptibility to C. albicans (35, 53), to limit tissue damage and/or enhance healing, 

but not to directly augment clearance of the organism from infected tissues (31). To 

ascertain the impact of SAP4 to SAP6 deficiency on the immune response mediated by 

CD4+ T lymphocyte cell populations, the numbers of CD4+, CD4+CD25+, 

CD4+CD25+Foxp3+ (Treg) cells and also of CD4+CD25+Foxp3- (Teffector) cells were 

assessed in the spleens of the infected BALB/c mice. The numbers of splenic CD4+ and 

CD4+CD25+ T cells of infected mice were not significantly different from the ones of 

non-infected controls (data not shown). However, as assessed by Foxp3 expression 

within the CD4+CD25+ T cell population, reduced percentages and numbers of Treg 

were observed 7 days after C. albicans infection. This correlated with higher splenic 

percentage and numbers of Teffector cells in these mice (Figure 5A), resulting in higher 

Teffector/Treg ratios compared to non-infected controls (Figure 5B). The percentage 

and numbers of both Teffector and Treg cells were not significantly different between 

the two C. albicans-infected groups.  

To better elucidate the effector function of the CD4+ T cells from WT and 

SAP456MS4A-infected mice, the proportion of splenic CD4+ T cells producing IFN-γ, IL-4 

and IL-10 was determined by intracytoplasmatic cytokine staining analysis. An 

increased frequency of CD4+ T cells expressing IFN-γ or IL-4 was observed in C. 

albicans-infected mice, comparatively to the non-infected controls. Although the 

frequency of cells producing either cytokine increased upon infection in the spleens of 

C. albicans-challenged mice, a bias towards a Th1 type response was observed (high 

IFN-γ/IL-4 ratio). The frequency of CD4+ T cells expressing IL-10 was also increased in 

the spleens of infected mice (Figure 7). The intracellular expression of IFN-γ and IL-4 

was also evaluated in kidneys CD4+ T cells as it associates with the outcome of 

infection (48). As observed in the spleen, the frequency of CD4+ T cells expressing IFN-γ 

and IL-4 cytokines increased in infected mice. Although a trend for extended survival 

was observed in mice infected with the mutant strain SAP456MS4A, the percentage of 

CD4+ T cells producing the cytokines IFN-γ or IL-4 in the kidneys of either group of 

infected mice were similar, resulting in equivalent Th1/Th2 cell ratios (Figure 7). No 

serum IFN-γ, IL-4 and IL-10 were detected by ELISA, 3 and 7 days after infection, either 

in infected or uninfected mice (data not shown).  
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Figure 7 Cytokine production in the spleen and kidneys of BALB/c mice infected i.v. with 5×104 

SC5314 and SAP456MS4A C. albicans cells. (A) Representative examples of flow cytometric 

analysis of intracellular IFN-γ and IL-4 expression on gated splenic and renal CD4+ T cells, as 

indicated. Numbers inside dot plot regions represent means ± one standard deviation of the 

frequency of IFN-γ+ or IL-4+ CD4+ T cells. (B) IFN-γ+/IL-4+ CD4+ T cell ratio, normalized 

considering the ratio of non-infected controls as basal (zero value). (C) Dot plots showing the 

percentage of splenic CD4+ T cells producing IL-10. Numbers inside dot plots represent means 

± one standard deviation of the frequency of IL-10+ CD4+ T cells. Data are representative of two 

independent experiments (n=4 for non-infected control and n=7 for infected mice groups). 

Statistically significant differences between controls and C. albicans infected mice are 

indicated *P<0.05; ** P<0.01.  

 

Overall, these results indicate that SAP4 to SAP6 deficiency do not have a significant 

impact on the immune response elicited in the spleen and kidneys of BALB/c mice 

hematogenously challenged with C. albicans. 
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DISCUSSION 

 

The secretion of aspartyl proteases has long been recognized as a virulence-associated 

trait of Candida albicans (10, 26, 49). The importance of specific Sap isoenzymes for 

the pathogenicity of this fungus has been investigated in different infection models by 

comparing the virulence of mutants deficient in individual or multiple SAP genes with 

that of a WT control strain. In this study, the importance of SAP1 to SAP6 gene 

expression for C. albicans virulence was evaluated by using sap null mutants derived 

from the WT strain SC5314. Virulence of mutant strains lacking SAP1 to SAP3 was 

indistinguishable from that of the WT SC5314 strain, while SAP4 to SAP6 deletion 

caused a slight attenuation in virulence. Previous reports have shown that deficiency in 

SAP4 to SAP6 attenuated virulence to a higher extent than deficiency in SAP1, SAP2 or 

SAP3 (19, 43). Here, an increased median survival time was consistently observed in 

mice infected with mutants lacking the SAP5 gene, such as the single SAP5MS4A or the 

triple SAP456MS4A deletion mutant strains, comparatively to that of animals infected 

with the WT SC5314 strain. However, the differences found were narrow and not 

always significant. Moreover, histopathology analysis did not indicate a reduced ability 

of the SAP456MS4A mutant to invade the kidneys, though sap null mutant strains, 

lacking SAP6 gene, were previously shown to have reduced invasiveness in a model of 

experimental peritonitis (15). Deletion of SAP4 to SAP6 did not result in clear 

differences in hypha formation and similar morphotypes were observed, both in vitro 

and in vivo, for WT and mutant strains. This is not unexpected, as SAP4 to SAP6 

expression is associated with, but not required for hyphal morphology (15). 

Additionally, expression levels of SAP4 to SAP6 may not be directly linked to organ 

invasion, since a C. albicans strain expressing high levels of SAP4 to SAP6 was non-

invasive (57).  

The results obtained with SAT1-flipping mutants contrast with the ones obtained when 

using the Ura-blaster sap null mutants, which survived much longer. When analyzing 

another parameter associated with C. albicans virulence, such as kidneys CFU, no 

differences were observed among mice groups, except for the ones infected with 

strain DSY459, which presented a lower fungal burden. Discrepancy between different 
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methods of evaluating virulence has already been reported in mice intravenously 

infected with C. albicans mutant strains, including sap null mutants, where differences 

in mice survival were not associated with differences in organ fungal burden (19, 54, 

62). The differences found between the two sets of mutants are most likely due to the 

ectopic insertion of URA3, which must have contributed to the reduced virulence of 

the Ura-blaster constructed mutant strains. It is widely known that the Ura-status of C. 

albicans strains influences adherence (5) and virulence (27, 52). Although this can be 

overcome by integration of URA3 at the ENO1 (52) or RPS10 loci (8), the strains used in 

this study and in previous reported studies (19, 43) did not share a common site of 

URA3 integration.  

The disruption of SAP1-3 and SAP4-6 led to an increased expression of SAP4 and SAP1-

3, respectively, suggesting that C. albicans attempts to compensate the functional loss 

of these subfamilies by upregulating alternative SAP genes during hematogenously 

disseminated candidiasis. Therefore, the compensatory upregulation observed could 

be, in some extent, contributing to the lack of phenotype seen in these mutants. 

However, the equivalent Ura-blaster mutants, despite the compensatory upregulation 

reported (33, 45) showed a markedly reduced virulence in this model 

Recently, Lermann and Morschhäuser (28) and Naglik et al. (33) have reevaluated the 

role of SAP1-6 in a model of reconstituted human epithelia (RHE) and reported that 

SAP1-6 were not essential for successful C. albicans RHE infection, in contrast to earlier 

reports (45, 46). The present study thus reports an additional model in which the SAP 

gene subfamilies SAP1-3 and SAP4-6 seem to have little influence on the outcome of 

infection. 

As mice infected with the Δsap456 triple mutant displayed a slightly extended survival 

time, it could be expected that it might result from a more effective host immune 

response. This would be in agreement with a previous report suggesting an 

immunomodulatory role of Sap4-6 upon macrophage phagocytosis (7). However, the 

analysis of diverse features of the innate and acquired immune response elicited in 

BALB/c mice upon infection with either the WT or the Δsap456 triple mutant did not 

show any significant differences between these two yeast strains. The similar ability of 

both strains to recruit inflammatory cells is in accordance with their similar observed 
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virulence, taking into account the prominent role of innate immunity and of 

neutrophils in particular, in host protection against disseminated candidiasis (2, 60).  

The proportion of splenic Teffector and Treg cells was highly similar in the spleens of 

mice infected with either the WT or the Δsap456 mutant. Likewise, the frequencies of 

CD4+ T cells expressing IFN-γ, IL-4 and IL-10, cytokines previously shown to be relevant 

for resistance or susceptibility to systemic candididasis (48), were similar in the two 

infected mice groups. In vivo models indicate that regulatory T cells attenuate Th1-

type antifungal responses and induce tolerance to the fungus (31, 35). As higher IFN-

γ/IL-4 ratios were observed in splenic and renal CD4+ T cells of infected mice than in 

non-infected controls, it can be assumed that even though the kidneys of infected 

mice presented high fungal burden 7 days after challenge, a protective Th1-type 

response of equivalent magnitude might be occurring both in WT and Δsap456 mutant 

infected mice. 

Although our results suggest that B cells may have a role in the activation of T cells 

during experimental disseminated candidiasis, in accordance with the increased 

susceptibility observed in B cell-deficient mice (61), they also indicate that SAP4 to 

SAP6 deficiency does not affect such a role of B cells.  

Differences in C. albicans morphology have been frequently shown to influence both 

type and magnitude of the host immune response in the course of candidiasis. 

Dendritic cells, and also neutrophils, modulate adaptative responses to the fungus 

depending on the Candida morphotype encountered (38, 42, 47). As indistinguishable 

morphotypes were found for WT and Δsap456 mutant both in vitro and in vivo, this is 

also in agreement with the lack of significant differences observed in the immune 

response elicited by these strains. 

A relative independence on aspartyl protease activity for the establishment of 

hematogenously disseminated candidiasis was previously reported (14), as treatment 

with pepstatin A, a potent protease inhibitor, did not protect mice against intravenous 

infection with C. albicans. As previously suggested, an explanation for these 

observations may be the requirement for Sap only where anatomical barriers had to 

be crossed prior to dissemination (14, 25).  When C. albicans cells are delivered directly 

into the bloodstream, low molecular weight peptides are available and yeast growth 

may be protease independent.  
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The relative importance of specific SAP genes for C. albicans pathogenicity is highly 

determined by the type of infection and its dependence on protease activity for 

successful invasion and colonization of various host niches. Treatment with pepstatin A 

resulted in reduced virulence in intranasal (14) and intraperitoneal (25) models, but 

had no protective effect in the intravenous model. The subfamily of SAP genes SAP1 to 

SAP3, SAP2 in particular, was proved important in a model of rat vaginal infection, 

while SAP4 to SAP6 had little impact on this infection model (12). On the opposite, only 

Δsap456 mutants, Δsap6 in particular, showed reduced virulence in a murine model of 

Candida peritonitis and keratitis, while deletion of SAP1, SAP2 or SAP3 genes had no 

significant effect on these infection models (15, 22). Moreover, immunological 

neutralization of Sap2 was shown to have a protective effect in C. albicans infected 

hosts during vaginal and oral infection (12, 40), and also in experimental peritonitis 

(59). 

Though individual processes resulting from the action of a single or small group of 

genes may be important in specific stages of infection, cooperative gene functions are 

essential for the multiple processes of C. albicans infection (37). Thus, although the 

protease family as a whole may contribute to C. albicans virulence in the course of 

acute systemic candidiasis, other factors must be the major contributors to invasion 

and cell damage in this model.  
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                                                                                                                  CHAPTER 4 

T cell function is affected by Candida albicans secreted aspartyl protease 
expression in murine peritonitis 
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ABSTRACT 

 

Candida albicans secreted aspartyl proteases (Saps) have been considered virulence-

associated factors. Here, we assessed the importance of SAP1 to SAP6 expression in 

the immune response induced in mice intraperitoneally infected with the wild-type 

(WT) strain SC5314 and SAT1-flipping mutants ∆sap123 and ∆sap456. WT-infected 

mice presented higher proportions of T regulatory cells (Foxp3+) in the spleen and 

mesenteric lymph nodes than control and sap-null mutant-infected counterparts. In 

addition, CD4+CD25+ T cells of WT-infected mice were the most effective in 

suppressing the proliferative response of CD4+CD25- T cells whereas those of ∆sap456-

infected mice were the least suppressive. Moreover, CD4+ T cells of WT-infected mice 

were the ones producing the highest levels of IL-10. Interestingly, ∆sap456-infected 

mice presented less Foxp3+ cells in kidney lesions and lower kidney C. albicans CFU 

than the other infected mice. Altogether, these results implicate Sap expression in the 

modulation of the host immune response to C. albicans.   
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INTRODUCTION 

 

The opportunistic yeast Candida albicans is an important human pathogen causative of 

superficial to deep-seated infections. It represents the most frequently isolated species 

in Candida peritonitis, an infection with current increasing incidence and high 

associated mortality rates (1, 2).  

Different T helper (Th) cell subsets, which include Th1, Th2, Th17, and T regulatory cells 

(Treg) have been shown to influence the outcome of C. albicans infections (3-7). Treg 

play an important role in controlling local and systemic immune responses during 

fungal infections (4, 8, 9). These cells, classically defined as CD4+CD25+Foxp3+ T cells 

(10), can respond to self-antigens and control autoimmunity (11). Yet, they may also 

recognize antigens expressed by different pathogens (12-16), playing either a host 

protective or detrimental role in the immune response to infectious agents (16). This 

differential role depends on the pathogen and on the nature of the infection (16). A 

host protective role of Treg was shown in murine gastrointestinal (4) and oral (7) 

models of candidiasis. Conversely, a host deleterious role of Treg was shown in murine 

hematogenously disseminated candidiasis, in which depletion of this T cell subset 

resulted in extended survival and lower fungal burden (5).  

C. albicans displays a number of virulence factors, among which the ten-member 

family of secreted aspartyl proteases (Saps) has been included (17, 18). Sap 

isoenzymes are differentially expressed during infection (19, 20) and may affect its 

outcome (21-24). The hypha-associated Sap4-6 were considered important for 

effective organ invasion and damage in experimental Candida peritonitis, while Sap1-3 

did not seem to have such a determinant role (21, 23). Several functions have been 

attributed to Saps, from adhesion to nutrient acquisition, tissue degradation and 

immune evasion (25). Although not yet demonstrated, an immunomodulatory role has 

also been suggested for some of these proteases (26-29). In this study, the effect of 

SAP1 to SAP6 expression on the host immune response to experimental C. albicans 

peritonitis, was examined after intraperitoneal infection with wild-type (WT) strain 

SC5314 or with SAT-1 flipping constructed mutant strains lacking SAP1 to SAP3 or SAP4 

to SAP6 (30).  
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MATERIALS AND METHODS 

 

Mice 

Male BALB/c mice, 8-10 weeks old (Charles River, Barcelona, Spain) were kept under 

specific pathogen-free conditions at the animal facilities of Instituto de Ciências 

Biomédicas Abel Salazar, Porto, Portugal. Procedures were performed according to the 

European Convention for the Protection of Vertebrate Animals used for Experimental 

and other Scientific Purposes (ETS 123), 86/609/EEC Directive and Portuguese law (DL 

129/92). Authorization to perform the experiments was issued by the competent 

national board authority, Direcção Geral de Veterinária (0420/000/000/2010). 

 

Candida albicans and culture conditions 

The C. albicans strains used in this study were the WT strain SC5314 (31) and its SAT1-

flipping-derived triple mutants lacking SAP1-3 genes, SAP123MS4C and SAP123MS4D 

(sap1 Δ : : FRT/sap1 Δ : : FRT; sap2-1 Δ : : FRT/sap2-2 Δ : : FRT;sap3 Δ : : FRT/sap3 Δ : : 

FRT) or lacking SAP4-6 genes, SAP456MS4A and SAP456MS4B (sap4-1Δ : : FRT/sap4-2 Δ 

: : FRT; sap5-1 Δ : : FRT/sap5-2 Δ : : FRT; sap6-1 Δ : : FRT/sap6-2 Δ : : FRT) (30). Inocula 

were prepared at the appropriate concentrations as previously described (32).  

 

C. albicans infections 

Mice were injected intraperitoneally (i.p.) with 1×107 C. albicans yeast cells and 

sacrificed 2, 6, 12 and 72 h or 7 days after infection. Peritoneal exudates were 

collected upon injection of 2 or 5 mL of PBS for chemokine or inflammatory cell counts, 

respectively. Control mice were injected with PBS alone. Kidneys and liver were 

aseptically removed, weighted, homogenized, and quantitatively cultured on 

Sabouraud dextrose agar at 37ºC. Values were expressed as log colony-forming units 

(cfu) per gram of tissue. Alternatively, histopathology of kidneys, liver, lungs, heart and 

brain was evaluated as described (32). 

 

Immunohistochemistry 

Immunohistochemistry was used to assess the number and frequency of Foxp3+ cells in 

kidneys and liver formalin-fixed, paraffin-embedded 4 µm sections mounted on amino-



 

154 
 

propyl-tri-ethoxy-silane (Sigma-Aldrich) coated slides. Immunostaining was performed 

as previously described (33) with modifications. Namely, antigen retrieval was done by 

incubating the slides in 10mM citrate buffer (pH 6) for 3 min in a pressure cooker 

before endogenous peroxidase blocking. Normal rabbit serum (Dako) (1:5), unlabeled 

rat anti mouse/rat Foxp3 mAb (FJK-16s, eBioscience) (1:100), and biotin-labelled rabbit 

anti-rat antibody (Dako) (1:200) were used. Slides were evaluated under light 

microscopy. Numbers of Foxp3+ T cells were registered and the frequency was 

calculated relatively to the respective lesion area. 

 

Flow cytometric analysis  

Spleens and mesenteric lymph nodes (MLN) were aseptically removed and 

homogenized in Hank’s Balanced Salt Solution (Sigma). Anti-mouse mAb of the 

indicated specificities and fluorophore conjugates and clones (within brackets), or 

respective isotype controls were used for immunofluorescence cytometric  analysis in 

a FACScan (Becton-Dickinson) using CELLQUEST software (Becton-Dickinson): CD40 

(PE; 1C10), Major Histocompatibility Complex (MHC) class II (Biotin; NIMR-4) (Southern 

Biotechnology Associates); Foxp3 (FITC; FJK-16s), CD4 (PE-Cy5; RM4-5), and F4/80 (PE; 

BM8) (eBioscience); CD11c (FITC; HL3), Ly-6G and Ly-6C (Gr-1) (FITC; RB6-8C5), CD25 

(PE; PC61), CD45R/B220 (FITC; RA3-6B2), CD80 (PE; 16-10A1), CD86 (PE; GL1), IL-4 (PE; 

BVD4-1D11), IFN-γ (FITC; XMG1.2), IL-17A (PE; TC11-18H10) and IL-10 (PE; JES5-2A5). 

Biotin conjugated mAb were revealed with Streptavidin-PE-Cy5 (all from BD 

Pharmingen). Staining for CD11c, Foxp3 or cytokines IFN-γ, IL-4, IL-17A and IL-10 was 

performed as described elsewhere (32). 

  

Cell cultures and suppression assays 

Mononuclear spleen cells to be used as antigen presenting cells (APC) were prepared 

from naïve mice as previously described (32). Collected cells were irradiated at 3000 

rad in a Gammacell 1000 Elite irradiator (Nordion International). CD4+, CD4+CD25- and 

CD4+CD25+ cells from control and 3-day-infected mice were isolated from pooled 

spleen cells of four mice per group, by using a magnetic cell sorting CD4+CD25+ T-cell 

isolation kit (Miltenyi Biotech) following manufacturer’s instructions. Sorted cells were 
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plated at 2.5 × 104/well in U-shape 96-well plates together with 105 APC without 

stimulus or stimulated with 1 µg/mL anti-CD3 mAb (145.2C11, BD Pharmingen). 

Cultures were set in sextuplicates and maintained for 72 h at 37ºC and 5% CO2. The 

CellTraceTM CFSE Cell Proliferation Kit (Molecular Probes, Invitrogen) was used for 

naive CD4+CD25- T cell (responder cells) labelling, at a final concentration of 5 µM CFSE 

(5-(and-6)-carboxyfluorescein diacetate succinimidyl ester), according to 

manufacturer’s instructions. Responder cells were plated at 2.5 × 104/well in U-shape 

96-well plates together with 105 APC and 1µg/mL anti-CD3 mAb. To evaluate Treg 

suppressive function, CD4+CD25+ T cells from the different groups were added at 

different CD4+CD25+:responder T cell ratios (1:1, 0.5:1, 0.25:1 and 0.1:1). Responder 

cells without anti-CD3 stimulus were used as negative controls. Stimulated responder 

cells with no suppressor populations added were used as positive controls. Unlabelled 

stimulated responder cells were used to define cell auto-fluorescence. Stimulated 

responder cells co-cultured with variable ratios of CD4+CD25- T cells were used to 

exclude suppression due to cell number/well. Cultures were set in 

sextuplicates/condition and maintained for 72h at 37ºC and 5% CO2. 

Proliferation/suppression was determined based on CFSE fluorescence by flow 

cytometric analysis.  

 

Cytokine measurements 

The concentration of IL-4 in culture supernatants of CD4+, CD4+CD25- and CD4+CD25+ T 

lymphocytes from infected mice and controls was quantified with the Quantikine® M 

Murine IL-4 ELISA kit (R&D Systems) and IFN-γ, IL-10 and IL-17A were quantified with 

the Mouse IFN-γ, IL-10 and IL-17A (homodimer) ELISA Ready-Set-Go!® kits (all from 

eBioscience), according to manufacturer’s instructions. The concentration of IL-10 in 

liver and kidney homogenates was similarly determined. Liver and kidneys were 

homogenized in 4 mL and 2 mL of PBS, respectively, and the homogenates were 

centrifuged and 0.45 mm pore-size filtered before use. The concentration of KC, MIP-2 

and MCP-1 chemokines in peritoneal cavity lavage fluids was evaluated by using the 

respective ELISA Duo-Set® kits (R&D Systems), according to manufacturer’s 

instructions. 
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Statistical Analysis 

Statistical significance of results was determined by one-way ANOVA and post-hoc 

Bonferroni’s multiple comparison test, by using the GraphPad Prism 4 Software 

(GraphPad Software). Results were considered statistically significant with  P values of 

less than 0.05.  
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RESULTS 

 

Limited effect of SAP expression on the inflammatory response to C. albicans i.p. 

infection  

Expression of SAP4-6, has been implicated in the success of C. albicans experimental 

peritonitis (21, 23). However, how these genes affect the host immune response in this 

model is not known. Recruitment of the different leukocyte populations into the 

peritoneal cavity was assessed in BALB/c mice challenged i.p. with C. albicans WT or 

mutant strains lacking SAP1 to SAP3, or SAP4 to SAP6. Two independently generated 

mutant strains for each SAP subset were used to exclude unspecific effects resultant 

from gene disruption. The independent mutant strains behaved indistinctively (data 

not shown) and therefore, results presented below correspond to those obtained with 

Δsap123, and Δsap456 strains SAP123MS4C and SAP456MS4A, respectively. Among all 

infected mice groups, similar frequencies and numbers of neutrophils, eosinophils, 

macrophages and inflammatory monocytes, respectively defined by the Gr-1hi, 

F4/80+Gr-1intSSChi, F4/80hi and Gr-1+F4/80+ phenotypic characteristics (34), as well as 

of dendritic cells (CD11chi), were observed 6 h after fungal challenge (Supplementary 

Table 1). In agreement, among infected mice groups, no significant differences were 

observed in KC, MIP-2 and MCP-1 chemokine levels in the peritoneal lavage fluids 

collected 2 h upon infection that remained not different 12 h upon challenge 

(Supplementary Table 2). In contrast, 72 h upon infection, strains lacking SAP4 to SAP6 

induced a significantly higher recruitment of inflammatory monocytes (Figure 1). No 

other significant differences were observed among the other analysed cell populations 

at this time point (Supplementary Table 1). These results, by showing that lack of SAP4 

to SAP6 expression allows a higher recruitment of inflammatory monocytes, suggest 

that Sap4-6 impair the early inflammatory response to C. albicans.  
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Figure 1 (A) Flow cytometry analysis of F4/80 and GR-1 expression on the surface of BALB/c 

mice peritoneal exsudate cells 72h upon i.p. challenge with PBS or WT, Δsap123 or Δsap456 C. 

albicans strains, as indicated. Numbers within dot plots correspond to the mean ± one 

standard deviation of the frequency of the gated population, corresponding to inflammatory 

monocytes. Statistically significant difference between WT and Δsap456 infected mice is 

indicated (* P<0.05) (B) Number of inflammatory monocytes recruited into the peritoneal 

cavity 72 h post infection with WT, Δsap123 or Δsap456 or treatment with PBS alone, as 

indicated (n=4). Statistically significant differences among C. albicans infected mice are 

indicated (* P<0.05; *** P<0.001). Results shown are from one experiment representative of 

three independent experiments. 

 

Higher frequency and numbers of effector T cells in sap456-infected mice  

Given the reported importance of CD4+ T cells in host defense against candidiasis, 

splenic and MLN CD4+ T cells were analysed in mice infected i.p. with the WT or 

mutant strains. Interestingly, Treg (Foxp3+) frequency, in both CD4+CD25+ and 

CD4+CD25- T cell subsets, was found reduced in the spleen and MLN of sap456-

infected mice, as compared with the WT-infected counterparts, 3 days after infection 

(Figure 2). Moreover, the mean fluorescence intensity (MFI) of Foxp3 staining in both 

cell subsets was also lower in sap456- than in WT-infected mice (Figure 2). Similar 

frequencies of CD25-expressing CD4+ T cells were found among the infected groups.  
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Figure 2 (A) Flow cytometry analysis of intracellular Foxp3 expression in splenic and MLN 

CD4+CD25+ and CD4+CD25- T cells from BALB/c mice, 3 days after i.p. challenge with PBS or 1 × 

107 C. albicans WT, Δsap123 and Δ sap456 yeast cells, as indicated. Dot plots are a 

representative example of each group. (B) Number of T effector (CD4+CD25+Foxp3-) cells 

observed in the spleens and MLN of i.p. injected mice, 3 days after challenge. (C) Mean 

fluorescence intensity of Foxp3 staining within splenic and MLN CD4+CD25+ T cells. Results are 

of a representative experiment out of five independent experiments  (n=4 in each group). 

Statistically significant difference between WT and Δ sap456 infected mice is indicated 

(*P<0.05; **P<0.01). 

 

The lower proportion of Treg within the CD4+CD25+ subset implied an increased 

frequency of T effector (CD4+CD25+Foxp3-) cells (Teff) in the sap456-infected mice, 

which was accompanied by an increase in total splenic and MLN Teff numbers. 

Conversely, no significant differences in Treg numbers were observed in these organs 

among infected groups (data not shown). No noticeable differences were detected 7 

days after infection in the assessed CD4+ T cell subsets frequency and numbers among 

the infected groups. Frequencies and numbers of B lymphocytes, myeloid cells and 
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DCs, as well as co-stimulatory and MHC class II molecules expression on B cells and 

DCs, also did not vary significantly among the different infected groups (data not 

shown). The above results indicate that SAP4 to SAP6 expression influences Treg/Teff 

ratio in the course of murine C. albicans peritonitis.      

 

CD4+CD25+ T cells from WT-infected mice suppress more efficiently the proliferation 

of responder cells 

Although Foxp3 is the best available marker to identify Treg, it does not allow their 

isolation for functional tests. Therefore, as CD25 is a good marker for murine Treg (35), 

the immunosuppressive ability of splenic CD4+CD25+ T cells isolated from non-infected 

or infected mice groups, was comparatively evaluated by measuring their ability to 

inhibit the in vitro proliferation of CFSE- labelled responder cells upon anti-CD3 mAb 

stimulation. CD4+CD25+ T cells sorted from WT- or Δsap456-infected mice presented 

the highest and lowest suppressive abilities, respectively, whereas CD4+CD25+ T cells 

from Δsap123-infected mice presented intermediate suppressive activity (Figure 3).  

 

 

 

Figure 3 Flow cytometric evaluation of anti-CD3 mAb (1 µg/ml) induced proliferative response 

of 2,5 x 104 CFSE-labelled naive CD4+CD25- T cells cultured for 3 days with 105 irradiated 

APC/well, in the absence (A- negative control, no mAb added; B-positive control) or presence 

of CD4+CD25+ T cells obtained from: C- control mice or mice infected with D- WT, E- Δsap123, 

F- Δsap456 strains. Histograms correspond to the optimal determined ratio 0.5 CD4+CD25+:1 
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responder cells. Indicated percentages correspond to cells that divided at least once. The 

proliferation indexes for each condition were: A: 1.01; B: 9.06; C: 3.64; D: 2.05; E: 2,91; F: 5,16. 

CD4+CD25+ cells added in each condition were sorted from pooled splenic cells of 4 mice per 

group. Results are a representative example out of five independent experiments.  

 

The proliferative response was not inhibited following co-culture with CD4+CD25- T 

cells from the different groups, confirming that suppression was due to CD4+CD25+ T 

cell activity and not to cell density per se  (proliferation index of 17.6, 17.1, 16.4, and 

16.8 in co-cultures using cells from non-infected, WT-, Δsap123-, and Δsap456-

infected mice, respectively). These results show that C. albicans SAP expression affects 

the suppressive activity of host Treg. 

 

CD4+ T cells from WT-infected mice produce higher levels of IL-10 

Previous studies associated IFN-g and IL-17 with resistance to C. albicans infection, 

whereas IL-4 and IL-10 were associated with host susceptibility to this fungus (36). 

Therefore, cytokine expression was evaluated in splenic CD4+ T cells through 

intracellular cytokine staining for IFN-γ, IL-4, IL-10 and IL-17A. No significant 

differences were detected in the frequencies of CD4+ T cells expressing any of the 

analysed cytokines, among the different mice groups, 3 and 7 days upon infection 

(data not shown). Nevertheless, increased levels of IL-10 were detected in culture 

supernatants of splenic CD4+, CD4+CD25- and CD4+CD25+ T cells sorted from WT-

infected mice, as compared with the ones from Δsap456-infected counterparts (Figure 

4). Conversely, the different sorted subsets of CD4+ T cells from infected mice groups 

produced similar levels of IFN-γ, IL-4 and IL-17A (data not shown). Cytokine levels in 

control cultures were always the lowest (Figure 4 and data not shown) and those in 

unstimulated cultures were below or near detection threshold. IL-10 levels were also 

evaluated in parenchymal organs presenting C. albicans induced lesions, the liver and 

kidneys. Interestingly, liver homogenates from WT-infected mice had the highest IL-10 

levels (Figure 4D). No such difference could be observed in the kidneys (data not 

shown). These results show that lack of SAP expression reduced the production of IL-

10 elicited in the host upon C. albicans i.p. infection.  
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Figure 4 IL-10 cytokine concentration in the supernatants of anti-CD3 mAb-stimulated (1 

µg/ml) 72 h cultures of 2,5 x 104 (A) CD4+ , (B) CD4+CD25- and (C) CD4+CD25+ T cells from 

control or i.p.-infected mice, as indicated. Bars represent the mean + one SD of six wells per 

group. Results are a representative example out of five independent experiments (D) IL-10 

concentration in liver homogenates of mice infected 72 h before with the indicated strains or 

sham –infected controls (PBS). Data represent means + one SD (n=4) and are representative 

examples of three independent experiments.   

 

Treg cells accumulate in liver and kidneys lesions in C. albicans infected mice 

The extent to which Foxp3+ T cells were recruited into C. albicans induced lesions and 

their distribution therein was evaluated in infected mice. Foxp3+ cells accumulated at 

low frequency at the periphery of liver and kidney microabscesses and no differences 

in their frequency or distribution were observed among the infected groups. In 

contrast, Foxp3+ cells were more abundant and found within the infiltrate area in 

kidney lesions with smaller inflammatory infiltrates, like interstitial nephritis. 

Interestingly, Foxp3+ cells were 2 to 3-fold less frequent within these lesions in 
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Δsap456-infected mice, though no differences could be observed in cell distribution 

(Figure 5). No accumulation of these cells was observed in non-infected mice organs or 

in non-lesioned areas of infected organs.  

 

 

 

Figure 5 Detection of Foxp3+ cells in C. albicans induced kidney lesions, 3 days after i.p. 

infection with WT, Δsap123 and Δsap456 strains, as indicated. Foxp3+ cells (brown, denoted by 

arrows) accumulated in small number at the periphery of C. albicans microabscesses (A). In 

contrast, a larger number of Foxp3+ cells were found within the infiltrates of interstitial 

nephritis (B). Recruitment of Foxp3+ cells to interstitial nephritis lesions of mice infected with 

Δsap456 was smaller than the observed in WT and Δsap123 infected mice. Microscopic images 

of the slides viewed at 200× magnification. These results are representative of data from three 

independent experiments (n=4 per group, per experiment).  

 

 

Lower fungal burden in the kidneys of Δsap456-infected mice 

As shown in Figure 6, higher cfu numbers were found in the kidneys of WT-infected 

mice, as compared with Δsap456-infected mice, whereas in Dsap123-infected mice 

renal cfu numbers were not different from the ones of the other infected groups. 
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Moreover, 58% and 51% of Δsap456- and Δsap123-infected mice, respectively, 

completely eliminated the fungus from the kidneys and liver by day 7 after infection,  

while this was observed in only 35% of WT-infected mice. Liver fungal burden was not 

different among the infected mice groups (Figure 6).  

 

Figure 6 Kidney and liver fungal burden of BALB/c mice 3 days after i.p. infection with 1×107 

WT (□), sap123 (▼) or Δsap456 (○) C. albicans cells, as indicated.  Data are representative 

examples of six independent experiments, (n=8 per group). Each symbol represents an 

individual mouse; horizontal bars correspond to medians of CFU numbers in each group.  

 

The above data shows that, in this peritonitis model used here, lack of SAP4 to SAP6 

expression impairs the ability of C. albicans to infect the kidneys, though no clear 

differences could be observed in C. albicans-induced lesions either in the kidneys or in 

the liver (Supplementary Figure 1). 
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DISCUSSION 

 

Impaired organ colonization and tissue damage was reported for the sap4-6 mutant 

DSY459 in murine models of peritonitis (21, 37). Additionally, it was shown that SAP5 

was immediately induced after C. albicans i.p. inoculation (19) and SAP4-6 were found 

upregulated during liver invasion (38). All these data implicate SAP4-6 as virulence 

determinants in C. albicans-induced peritonitis. One explanation for the lower 

virulence of those mutants would be an impaired capacity to invade the host from the 

peritoneal cavity and ultimately infect parenchymal organs. Here, however, no clear 

differences were observed concerning organ invasion, among the used C. albicans 

strains, either in the morphology of the fungi or in the depth and extension of the 

lesions. Nevertheless, a higher fungal load was found in the kidneys of WT-infected 

mice comparatively to that of Δsap456-infected mice. The observed variability in size 

and number of fungal-induced lesions, particularly in the kidneys, could result from 

SC5314 strain intrinsic characteristics. Indeed, a C. albicans clinical isolate previously 

used to induce peritonitis (27) infected more evenly the liver and kidneys of BALB/c 

mice and yielded higher cfu numbers than did SC5314 (our unpublished results). A 

reduced ability in colonizing mucosal surfaces has also been reported for this strain 

(39). By using the SAT-1 flipping constructed Δsap456 mutants we did not observe an 

attenuated invasiveness, as reported for the DSY459 strain (37, 40). Nevertheless, the 

experimental conditions used here differ from those used in the referred studies and 

the disparity of results may not be directly attributable to the strains themselves. 

An alternative explanation for the lower fungal burden found in Δsap456-infected 

mice could be that, as already suggested (21, 26), Sap4-6 have an immunomodulatory 

role, either direct or indirect, which would be deleterious to the host. We hypothesize 

that lack of SAP4-6 expression may allow the host to mount a more effective immune 

response against an i.p. challenge with C. albicans. The higher recruitment of 

inflammatory monocytes to the peritoneal cavity of Δsap456-infected mice could 

represent a first step in this response, as these cells are considered important effectors 

in protective immunity to several pathogens (41-44). Interestingly, in a model of 

respiratory aspergillosis, inflammatory monocytes facilitated the adaptive CD4+ T cell 

response (41). Assessing their role in C. albicans-infected mice would be worth to 
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investigate since Δsap456-infected mice, which presented higher numbers of these 

cells in the peritoneal cavity, had a higher Teff/Treg ratio than WT-infected 

counterparts. 

 In the WT-infected mice, the higher recruitment of Treg into the kidneys early after 

challenge might delay the arrival or activation of effector cells, therefore hindering 

fungal clearance. A similar early local recruitment of Treg was reported in invasive 

aspergillosis, having a detrimental effect in recruited neutrophils (45).  

The effect of SAP4-6 expression seems to occur mainly at the regulatory level of the 

immune response. Our results, by showing a much lower in vitro suppression of T cell 

proliferation by CD4+CD25+ T cells sorted from Δsap456- than WT-infected mice, 

support this hypothesis. Moreover, the detection of lower levels of the 

immunosuppressive cytokine IL-10 in Δsap456-infected mice liver homogenates and 

splenic CD4+ T cell culture supernatants, than in WT counterparts, further agrees with 

a role for Sap4-6 in the impairment of the host immune response to Candida 

peritonitis. Several studies recognized the role of fungal secreted proteases on T cell 

stimulation and overall immune response (46-49). Different fungal proteases, including 

aspartyl proteases, were shown to impact on T cell function either directly or indirectly 

via DC modulation. However, as surface expression of maturation markers on splenic 

and MLN DCs, assessed 12 h upon infection, was not affected by SAP deficiency (our 

unpublished results), a DC-dependent mechanism seems unlikely.  

Fungal aspartyl proteases have been successfully used in experimental vaccination 

assays that often resulted in the production of host protective cytokines, longer 

median survival rates, reduction of fungal burden, and amelioration of inflammatory 

pathology (27, 46, 47). Moreover, T cells from mice immunized with an aspartyl 

protease of Coccidioides posadasii produced IL-10 upon in vitro antigen restimulation 

(49). Interestingly, treatment of live C. albicans with the aspartyl protease inhibitor 

pepstatin significantly reduced IL-10 levels detected in peritoneal exudates of i.p.-

infected mice (50).  

Mice infected with strains lacking SAP1 to SAP3 frequently presented an intermediate 

effect between WT and Δsap456 mutants. Although we cannot exclude a 

compensatory effect by other SAP genes, which could have diluted the impact of the 
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missing genes in virulence, evidence from this and other studies referred herein 

support a relatively less important role of Sap1-3 in this infection model. The 

importance of Saps for the course of candidiasis is known to highly depend on the 

infection model. In fact, a role for Saps in a murine model of hematogenously 

disseminated candidiasis was not evident, since the outcome of infection and ensuing 

host immune response were not different in mice infected with the WT or the ∆sap 

null mutant strains used in the present study (32).  

Globally, results presented herein implicate Sap4-6 in the modulation of the host 

immune response to C. albicans peritonitis, providing additional evidence for the role 

of these enzymes as virulence determinants in this infection model. 

These enzymes may constitute one of the mechanisms used by the fungus to dampen 

host immune response and therefore, their usage as target antigens in C. albicans 

vaccination could be worth to investigate.  
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Supplementary Table 1. Frequencies and counts of inflamammatory cells recruited into the peritoneal cavity of BALB/c mice 6 and 

72h upon i.p. infection. 

Cell Type Marker 

                                                                                     6h 

PBS SC5314 Δsap123 Δsap456 

Freq. (%) Cells (× 10
-5

) Freq. (%) Cells (× 10
-5

) Freq. (%) Cells (× 10
-5

) Freq. (%) Cells (× 10
-5

) 

Resident macrophage F4/80
hi 39,66 ± 9,14 16,52 ± 4,44 13,8 ± 1,66

a
 9,58 ± 1,44 13,16 ± 0,31

a
 11,54 ± 0,75 15,8 ± 1,09

a
 11,11 ± 6,77 

Neutrophils Gr-1
hi 0,4 ± 0,09 0,17 ± 0,07 71,5 ± 2,32

a
 49,72 ± 6,12

a
 70,29 ± 3,74

a
 61,51 ± 1,2

a
 68,07 ± 0,51

a
 48,50 ± 11,62

a
 

Inflammatory monocytes F4/80
+
Gr-1

+ 0,01 ± 0,00 0,01 ± 0,00 0,12 ± 0,01
b
 0,83 ± 0,19

c
 0,15 ± 0,02

a
 0,11 ± 0,02

a
 0,13 ± 0,03

b
 0,87 ± 0,01

a
 

Eosinophils F4/80
+
Gr-1

int
SSC

hi
 2,03 ± 0,20 0,87 ± 0,25 1,88 ± 0,41 1,28 ± 0,17 1,44 ± 0,22 1,26 ± 0,20 2,34 ± 0,48 1,62 ± 0,47 

Dendritic cells CD11c
hi
 1,08 ± 0,11 0,46 ± 0,1 3,75 ± 1,79 2,52 ± 1,09

c
 2,86 ± 0,36

b
 2,51 ± 0,41

c
 4,48 ± 1,3

a
 2,95 ± 0,62

c
 

                                                                     72h 

Resident macrophages F4/80
hi 36,49 ± 3,48 15,40 ± 3,4 41,31 ± 5,59 27,83 ± 10,66 39,99 ± 4,79 25,50 ± 4,73 39,74 ± 2,49 35,92 ± 10,07

c
 

Neutrophils Gr1
hi 0,28 ± 0,08 0,11 ± 0,08 21,82 ± 7,44

b
 14,67 ± 7,21

c
 18,79 ± 3,55

b
 11,89 ± 1,97

b
 21,94 ± 6,77

b
 19,48 ± 7,14

b
 

Inflammatory monocytes F4/80
+
Gr-1

+
 0,01 ± 0,00 0,02 ± 0,00   4,45 ±1,68

c
* 2,70 ± 0,56

c
*** 7,24 ± 2,38

b
 4,71 ±1,86

b
* 8,73 ± 1,87

a
 7,58 ± 0,83

a
 

Eosinophils F4/80
+
Gr-1

int
SSC

hi
 1,91 ± 0,46 0,83 ± 0,34 6,89 ± 1,21 3,80 ± 0,97 6,54 ± 3,71 3,02 ± 1,63 6,89 ± 0,52 5,52 ± 1,27 

Dendritic cells CD11c
hi
 1,03 ± 0,18 0,44 ± 0,14  1,88 ± 0,22

c
 1,24 ± 0,36

c
 1,70 ± 0,28 1,10 ± 0,30 1,63 ± 0,35 1,44 ± 0,29

b
 

 

Different cell types were identified with markers and flow cytometry. Data represent means ± SD; n=4. Data are from one experiment representative of three 

independent experiments. 
a
 P<0,001; 

b
 P<0,01; 

c
 P<0,05, when compared with PBS. * P<0,05; ***P<0,001, when compared with Δsap456;  
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Supplementary Table 2. Chemokine levels in the peritoneal cavity lavage 

fluids of BALB/c mice 2 and 12h upon i.p. infection (pg/peritoneal cavity)  

 

ND – not detectable; 
a
 P<0,001; 

b
 P<0,01; 

c
 P<0,05, when compared with PBS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Chemokine 

                                                                  2h 

 

PBS 
 

SC5314 
 

Δsap123 
 

Δsap456 

KC 79,31 ± 70,76 3727,30 ± 322,32
a
 3221,44 ± 88,44

a
 3719,39 ± 783,94

a
 

MIP-2 ND   894,41 ± 351,81
c
 1196,63 ± 94,78

b
 1307,11 ± 351,88

a
 

MCP-1  63,47 ± 67,21
a
   691,80 ± 202,05

a
    689,14 ± 146,87

a
   933,30 ± 386,03

a
 

                                                                                        12h 
 

KC 11,01 ± 11,46 631,55 ± 427,71 392,98 ± 453,64 180,85 ± 74,92 

MIP-2 ND ND ND ND 

MCP-1 3,30 ± 1,46  810,33 ± 152,97
b
 499,43 ± 214,67  364,41 ± 245,64 
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Supplementary Figure 1 Lack of SAP expression did not significantly affect C. albicans-

induced organ pathology. Representative photomicrographs of PAS-stained 

histological sections of liver and kidneys from BALB/c mice infected with C. albicans 

WT, Dsap123 and Dsap456, at the indicated time points upon i.p. infection. Structures 

containing filamentous C. albicans and inflammatory cells whithin fibrin deposits could 

be observed in close contact with the liver serosa, without detectable organ invasion 

(12 h). Lesions in the liver comprised superficial microabscesses, often detached, 

showing healing by fibrosis (72 h). Microabscesses with moderate to intense 

neutrophylic infiltration, as well as interstitial nephritis, were observed mostly in the 

kidneys cortical area in addition to the organ surface, and interstitial nephritis was 

often observed (72 h). Most of the times, multiple lesions of variable size and type 

were present in each organ. Hyphal fungal elements were visible inside the larger 

lesions (arrows on magnified insets). Localization and size of the C. albicans induced 

lesions as well as composition of the inflammatory infiltrates was mostly similar in all 

infected groups. PAS-positive hyphae organisms within lesions are denoted by arrows. 

Seven days after infection. 
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                                                                                                          CHAPTER 5 

Pathogen recognition receptor Galectin-3 is cleaved by Candida albicans 
secreted aspartyl proteases 
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ABSTRACT 

 

The mammalian pattern recognition receptor galectin-3 was shown to specifically bind 

beta-1,2 mannosides on the cell wall of the pathogenic yeast Candida albicans. This 

interaction directly induces fungal cell death and also promotes pro-inflammatory 

cytokine TNF-alpha production by the host cells. To circumvent host immune defenses, 

C. albicans developed multiple evasion mechanisms. Among these, production of 

secreted aspartyl proteases (Saps) has been particularly highlighted due to their ability 

to degrade and/or inactivate diverse host immune effector molecules. Although C. 

albicans possesses a 10 member Sap family, Sap2, belonging to the Sap1-3 subfamily, 

is the most extensively characterized. In this study, we assessed the pattern of 

galectin-3 expression in the kidneys of mice i.v.-infected with C. albicans and 

investigated whether this lectin could be degraded by Sap1 to Sap3 isoenzymes. 
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INTRODUCTION 

 

Galectins are a family of β-galactoside-binding animal lectins that are involved in 

several biological processes and are expressed in a wide variety of cell types, including 

macrophages, dendritic cells and epithelial cells (1, 2). Initially thought to bind only 

endogenous glycans and mediate development processes and regulation of immune 

homeostasis (1-3), it has now become clear that galectins can also bind glycans on the 

surface of several microorganisms and parasitic worms, and mediate recognition and 

effector functions in innate immunity (4). Within this family, galectin-3 (Gal-3) is the 

best characterized and has been linked to modulation of immune and inflammatory 

responses (5, 6). Gal-3 recognizes and binds β-1,2-linked oligomannosides on the cell 

wall of Candida albicans and, in consequence, has been considered to function as a 

macrophage receptor for this fungal pathogen (7). Gal-3 can differently sense C. 

albicans and the non-pathogenic yeast Saccharomyces cerevisiae through a mechanism 

involving TLR2 and Gal-3, leading to increased production of the inflammatory cytokine 

TNF-α upon C. albicans recognition (8). In a mouse model of experimental colitis, C. 

albicans colonization is promoted by pre-existing inflammatory conditions, which in 

turn augmented the inflammatory process through Gal-3 with up-regulation of TLR2 

expression and TNF-α (9). Accordingly, synthetic analogues of β-1,2 oligomannosides 

administered orally prevented yeast colonization in the gut (10). This supports the 

roles of Gal-3 in both inflammation and the regulation of host immune responses to C. 

albicans. Interestingly, the selective binding of Gal-3 to the C. albicans cell wall glycans 

is fungicidal (11), an observation that gives emphasis to the direct effector functions of 

galectins in innate immunity. 

C. albicans has developed efficient strategies to evade the host recognition and 

immune attack (12, 13). C. albicans secreted aspartyl protease (Sap) family comprises 

10 different members (14, 15) which are differentially expressed (16-20) and that have 

been implicated in C. albicans pathogenesis (14, 21). Saps are able to degrade many 

human proteins, like the ones that protect mucosal surfaces and cell-surface proteins, 

such as keratin, collagen, vimentin, fibronectin, laminin, secretory immunoglobulin A 

(IgA), histatin-5 and mucins (22-30). Degradation of complement proteins and histatin-

5 by Saps is included in the multiple immune evasion mechanisms explored by this 
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opportunistic pathogen (23, 24). Furthermore, these proteases damage host epithelial 

and endothelial barriers and thus facilitate tissue penetration by hyphae and infection 

of host cells (22, 27).  

Given the central role of Saps for infection and pathogenicity of C. albicans and as Gal-

3 specifically recognizes and directly kills bound yeast, besides augmenting pro-

inflammatory response by the innate immune system, the ability of three secreted 

aspartyl proteases - Sap1, Sap2 and Sap3- to degrade Gal-3 is explored here.  
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MATERIAL AND METHODS 

 

Secreted aspartyl proteases 

Recombinant Sap1 (rSap1), rSap2 and rSap3 were produced in Pichia pastoris and were 

kindly provided by Dr Bernhard Hube (Jena University, Germany). All purified 

recombinant proteins exhibited protease activity in vitro, as assessed by using a 

standard fluorescence-based casein assay (Molecular Probes). Reactions were also 

performed in the presence of the general aspartic protease inhibitor pepstatin A 

(Sigma Aldrich). C. albicans SC5314 cells were grown in inducing medium (yeast carbon 

base (Difco) supplemented with 0.5% BSA (Sigma) ph 4.0) for 72 h at 30ºC. Culture 

supernatants containing native Sap2 (nSap2) were filtered and concentrated in Amicon 

Ultra-15 devices (Millipore Corporation, Billerica, USA). 

 

Galectin-3 

Recombinant human Gal-3 was obtained as previously described (Stowell et al 2008). 

Recombinant Gal-3 was purified by affinity chromatography on lactosyl-Sepharose, and 

bound lectin was eluted with 100 mm lactose in PBS, 14 mm βME. Prior to 

derivatisation, βME was removed from galectin samples by using a PD-10 gel filtration 

column (GE Healthcare), followed by the addition of lactose (100 mm final 

concentration) to help maintain the stability of each galectin and reduce the likelihood 

of adduct formation at or near the carbohydrate recognition domain. 

 

Cleavage activity 

The proteolytic activity of recombinant Sap1, Sap2, Sap3 (0.5 µg each) or of 

supernatants derived from wild type C. albicans, containing nSap2 was assayed by 

incubation for 24 h with purified Gal-3 protein in 0.1M citrate buffer at 37 ◦C (pH 5.2 

and 6.8). Aliquots were taken at different time points, the reaction was stopped, and 

samples were frozen at -80º C until use. Reactions were also performed in presence of 

15 µM pepstatin A (Sigma), the general aspartyl protease inhibitor. 
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Immunoblotting 

The reactivity of anti-Gal-3 immunoglobulins was visualized by Western blot analysis. 

For that purpose, 1 µg of Gal-3 incubated with rSap1, rSap2 and rSap3, as well as with 

native Sap2, in the presence and absence of pepstatin A, were separated by sodium 

dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) on 15% 

polyacrylamide gels and then blotted overnight onto nitrocellulose membranes 

(Sigma). Nonspecific binding was prevented by blocking with 2% BSA in Tris buffered 

saline (TBS) for 1 h at room temperature. After washing, membranes were incubated 

for 2 h with polyclonal IgY anti-Gal-3 (1 µg/ml) diluted in TBST 0.1% BSA. Alternatively, 

membranes were incubated with supernatant from the rat hybridoma producing 

monoclonal anti-mouse/human Gal-3 (M3/38) (diluted 1:20 in TBST 0.1% BSA). Bound 

antibodies were detected with alkaline phosphatise (AP)-conjugate anti-chicken IgY 

(diluted at 1:10000 in TBST 0.1% BSA) or AP-conjugated goat anti-rat IgG (Southern 

Biotechnology Associates, Birmingham), and revealed by using NBT/BCIP solution 

(Roche, Penzberg, Germany) as substrate. The reaction was stopped in distilled water.  

 

Mice 

Male BALB/c mice, 8-10 weeks old, were purchased from Charles River (Barcelona, 

Spain) and kept under specific pathogen-free conditions at the Animal Facility of 

Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal. All procedures involving 

mice were performed according to the European Convention for the Protection of 

Vertebrate Animals used for Experimental and other Scientific Purposes (ETS 123), 

86/609/EEC Directive and Portuguese rules (DL 129/92). Authorization to perform the 

experiments was issued by the competent national board authority (Direcção Geral de 

Veterinária), document number 0420/000/000/2010. 

 

Candida albicans and culture conditions 

C. albicans wild-type strain SC5314 (31) was used in this study. To prepare the inocula 

for infection, C. albicans was grown in a shaking incubator for 14 hours at 30ºC in 

Winge medium (0,2% glucose, 0,3% yeast extract). Yeast cells were harvested, washed 

twice with sterile, nonpyrogenic phosphate-buffered saline (PBS) (Gibco®, Grand Island, 
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NY, USA), counted in a haemocytometer and resuspended at the appropriate 

concentrations. The inoculum was confirmed by Colony Forming Unit (CFU) counts on 

Sabouraud dextrose agar (Difco, Detroit, MI, USA) for up to 48 h at 37ºC. 

 

C. albicans hematogenously disseminated infections 

Mice were injected intravenously (i.v.), in the lateral tail vein, with 5x10 4 C. albicans 

yeast cells in 0.2 ml PBS. Control mice were injected with PBS. Mice were sacrificed 7 

days after infection and the kidneys were removed and fixed in 10% Phosphate-

buffered formaldehyde, followed by dehydration and paraffin wax embedment.  

Sections of 4 µm were cut from each representative paraffin blocks for staining with 

haematoxilin-eosin and with periodic acid-Schiff reagent followed by counterstaining 

with haematoxylin, in order to evaluate both fungal morphology and composition and 

distribution of inflammatory infiltrates.   

 

Immunohistochemistry 

The presence of Gal-3 in kidney C. albicans induced lesions were assessed by 

immunohistochemistry in formalin-fixed, paraffin-embedded 4 µm sections of C. 

albicans i.v. infected mice mounted on amino-propyl-tri-ethoxy-silane (Sigma-Aldrich, 

St Louis, MO, USA) coated slides. 

Immuno-staining was performed by using the modified avidin-biotin-peroxidase 

complex (ABC) method (32). Unlabeled monoclonal antibodies rat anti mouse/human 

Gal-3 (clone M3/38) (eBioscience, San Diego, CA, USA) was used. 

Tissue sections were deparaffinised in xylene, rehydrated by graded washes of ethanol 

in water, ending in a final rinse in deionized water. Antigen retrieval was performed by 

incubating the slides in 10 mM citrate buffer (pH = 6) for 3 min in a pressure cooker. 

The slides were cooled and rinsed three times in Tris-buffered saline (TBS; 50 mM Tris, 

150mM NaCl, pH=7,6) for 5 min. Endogenous peroxidase activity was blocked by 

immersing slides in methanol containing 3% hydrogen peroxide for 10 min, followed by 

TBS washing. To reduce non-specific antibody binding, slides were incubated with 

normal rabbit serum (Dako, Glostrup, Denmark) diluted at 1:5 in TBS containing 10% 

bovine serum albumin (BSA), in a humidified chamber for 20 min at room 
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temperature. Excess normal serum was removed and replaced by the hybridoma 

supernatant containing anti-Gal-3 mAb (diluted at 1:10). After overnight incubation at 

4ºC, slides were washed with TBS and incubated for 30 min with a 1:200 dilution of 

biotin-labelled rabbit anti-rat secondary antibody (Dako). Slides were then washed 

with TBS and incubated for 30 min with the avidin-biotin complex (Dako) diluted at 

1:100. Detection was performed for 3 to 5 min with 0.05% 3,3 

diaminobenzidinetetrahydrochloride (DAB) freshly prepared in 0.05 M 

Tris/hydroxymethylaminomethane buffer, pH 7.6, containing 0.1% hydrogen peroxide 

(Dako). Finally, sections were lightly counterstained with Mayer’s haematoxylin and 

mounted in Entellan® mounting medium (Merck, Darmstadt, Germany). Dilution of 

primary antibody, biotin-labelled secondary antibody, and avidin-biotin complex were 

made with TBS containing 5% BSA. Negative controls were performed by substitution 

of the primary antibody with irrelevant immunoglobulins of the same subclass and 

concentration as the monoclonal antibodies. Slides were evaluated under light 

microscopy. 
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RESULTS 

 

C. albicans secreted aspartyl proteases cleave murine galectin-3 

The ability of C. albicans secreted proteases to cleave galectin-3 was assessed by 

incubating different Sap proteins with this lectin. The proteolytic activity of C. albicans 

wild-type SC5314 culture supernatant grown in Sap inducing medium (containing 

mostly native Sap2) and the recombinant Sap proteins rSap1, rSap2 and rSap3 were 

incubated with galectin at 37ºC, pH 5.2 or 6.8, and aliquots were collected after 1, 3, 6, 

12 and 24 h incubation. The reaction mixtures were separated by SDS-Page and Gal-3 

cleavage was evaluated by Western blotting. Gal-3 cleavage could be detected already 

at the first assessed time point at pH 5.2, and was more evident along the other time 

points. The results, obtained with protein mixtures collected after 3 h incubation, are 

shown as representative examples (Figure 1A). Assessment of Gal-3 degradation was 

based on the disappearance of the protein bands of higher molecular weight as well as 

by the appearance of novel fragments of lower molecular weights. Native Sap2 and 

recombinant Sap2 and Sap3 were the most effective in cleaving Gal-3. This lectin was 

also cleaved, to a lesser extent, by rSap1.  

 

 

 

Figure 1 Culture supernatants derived from wild-type C. albicans containing nSap2 and rSap1, 

rSap2 and rSap3 have proteolytic activity and cleave Gal-3. Saps were added to Gal-3 and 

incubated for 3 h at 37ºC, pH5.2. The mixtures were then separated by SDS-Page, transferred 

to a nylon membrane. (A) Gal-3 and the resulting degradation fragments were identified by 

using a polyclonal anti-Gal-3 Ig-Y; cleavage products are indicated by the arrows; (B) Gal-3 

integrity was evaluated by using a monoclonal anti-Gal-3 antibody (M3/38) that reacts with 

the N-terminal nonlectin domain of the protein. Arrow indicate full-length Gal-3. Gal-3 (lane 1); 

Gal-3 incubated with: nSap2 (lane 2), rSap1 (lane 3), rSap2 (lane 4), and rSap3 (lane 5). A 

representative example out of three independent assays is shown.  
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Gal-3 integrity was evaluated by using a monoclonal anti-Gal-3 antibody (M3/38) that 

reacts with the N-terminal nonlectin domain of the protein. The N-terminal non-lectin 

tandem repeated domain of Gal-3, necessary for its oligomerization and 

immunomodulatory activity, was removed during Sap-mediated cleavage (Figure 1B). 

Protein mixtures incubated at pH 6.8 did not exhibit detectable Gal-3 degradation 

(data not shown). Pepstatin A, an inhibitor of aspartyl proteases, largely blocked Gal-3 

degradation (Figure 2), confirming that the proteolytic activity observed was 

specifically due to this class of proteases.  

 

 
Figure 2 Inhibition of aspartyl protease activity. Gal-3 was incubated with nSap2 and rSap2 for 

3 h in citrate buffer at pH 5.2 alone or in the presence of pepstatin-A. Degradation of Gal-3 was 

largely blocked by pepstatin A, an inhibitor of aspartyl proteases. The mixtures were separated 

by SDS-Page, transferred to a nylon membrane and Gal-3 and the resulting degradation 

fragments were identified by using a polyclonal anti-Gal-3 Ig-Y. A representative example out 

of three independent assays is shown.  

 

Gal-3 accumulates in inflammatory infiltrates observed in the kidneys of C. albicans 

i.v.-infected mice  

Gal-3, with intact N-terminal non-lectin tandem repeated domain, accumulated in the 

inflammatory infiltrates recruited into the kidneys of BALB/c mice upon i.v. infection 

with C. albicans. The presence of this lectin was however detected in lower amounts in 

lesions where C. albicans, mainly in the hyphal form, was present in higher numbers, 

suggesting that C. albicans was able to regulate and/or degrade Gal-3.  
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Figure 3 Representative photomicrographs of PAS-stained histological sections of kidneys from 

BALB/c control mice (A) or mice i.v.-infected with 5x104 C. albicans SC5314 cells (B and C). At 7 

days after i.v. infection, moderate to intense neutrophilic infiltration was observed, without 

visible fungal cells (B) or with numerous PAS-positive organisms with hyphal morphology 

(arrowheads), extensively effacing the renal tubuli and invading the urothelium (C); 

Immunohistochemistry of kidney sections from control (D) and infected mice (E and F), using a 

monoclonal antibody anti-N-terminal domain of Gal-3 (M3/38) and revealed with DAB, 

showing higher expression of Gal-3 in the inflammatory infiltrates with low fungal burden (E). 

Gal-3 is expressed at high levels in the collecting ducts of both control and infected mice. 
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DISCUSSION 

 

Here we show that C. albicans secreted aspartyl proteases Sap1, Sap2 and Sap3 can 

degrade and inactivate the host receptor Gal-3. This activity might generate a 

microenvironment of impaired host innate immune function. Taking into account the 

concomitant decrease of intact Gal-3 and increase of Gal-3 cleavage products, the 

proteolytic activity of Sap2 and Sap3 seems stronger than that of Sap1. This result 

emphasizes that, even presenting high homology, different Saps may have a different 

enzymatic activity on specific substrates, (22, 33). In this regard, Sap1 and Sap2 have 

been reported to cleave proteins of the complement system more effectively than 

Sap3 (23). Here, Sap3 was as efficient as Sap2 in cleaving Gal-3, whereas Sap1 cleaved 

Gal-3 to a lesser extent. Each recombinant Saps and C. albicans culture supernatants 

showed comparable cleavage patterns suggesting that all Saps tested, native or 

recombinant, cleave Gal-3 at the same sites. Though Sap2 is the mainly secreted Sap 

when C. albicans is grown in media containing proteins as sole nitrogen sources, all 

three Saps tested here may be present in C. albicans supernatants (20). Sap proteins 

may participate in innate immune evasion by affecting diverse effectors with 

antifungal activity. These fungal proteins cleave the central host complement 

components and degrade other host innate immune components such as lactoferrin 

and histatin-5 of the saliva, the protease inhibitor α-macroglobulin, enzymes which 

mediate the respiratory burst of macrophages and several immunoglobulins, including 

secretory IgA, which normally is rather resistant to bacterial proteases (14, 34). 

Secretion of host Gal-3-degrading proteases, which could impair Gal-3-mediated C. 

albicans recognition and/or affect immune regulatory effects dependent on this lectin, 

may represent an alternative immune evasion mechanism. The cleavage of Gal-3 upon 

binding Leishmania major promastigotes, presumably by a membrane-bound zinc 

metalloprotease was previously shown (35).  

Sap expression is induced in C. albicans cells upon infection (14) suggesting that these 

proteases may also contribute to in vivo Gal-3 inactivation and immune evasion. Here, 

an accumulation of Gal-3 was observed in C. albicans-induced kidney lesions. However, 

Gal-3 was detected in significantly lower amounts inside lesions containing numerous 

fungal cells. It would be interesting to evaluate whether this may result from Gal-3 
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cleavage by Saps. Interestingly, Gal-3 was previously shown to promote neutrophil 

recruitment into bacterial infection sites (36, 37). As neutrophils play a major role in 

controlling C. albicans infections, C. albicans-mediated Gal-3 inactivation could 

additionally result in reduced neutrophil recruitment into the kidneys, the preferential 

infected organ during invasive Candida infections (38).  

In summary, C. albicans may use Gal-3 degradation as a strategy to control and evade 

host immune Gal-3-mediated recognition, and the ensuing inflammatory response, or 

even avoid Gal-3-mediated C. albicans killing. Here we show that the three Sap 

proteins Sap1, Sap2 and Sap3 degrade and inactivate the pattern recognition receptor 

Gal-3. This may compromise Gal-3 function, for which an intact N-terminal non-lectin 

domain was shown to be essential (39-41). Degradation of host Gal-3 might thus 

generate a protective microenvironment of reduced Gal-3 activity which may facilitate 

C. albicans survival in the host. 
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                                                                                                                  CHAPTER 6 

Immunization with Candida albicans secreted aspartyl proteases does 
not protect BALB/c mice against hematogenously disseminated 
candidiasis 
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ABSTRACT 

 

The usefulness of Candida albicans recombinant secreted aspartyl protease (rSap2) as 

an immunogen for vaccination against invasive candidiasis was evaluated in a murine 

model of hematogenously disseminated candidiasis. Four different active 

immunization protocols were assayed, with four different adjuvants tested: (i) Alum; 

(ii) topical Imiquimod; (iii) Freund’s; (iv) CpG plus Alum. Moreover, as the hypha-

associated isoenzyme Sap5 is preferentially expressed during systemic candidiasis, it 

was also evaluated as target antigen for Candida vaccination, together with Alum or 

Imiquimod. Results showed that all these approaches failed to have a relevant and 

statistically significant effect on the infection course, determined by survival curves 

and kidney fungal burden. This suggests that the C. albicans Sap2 and Sap5 

isoenzymes, despite their potential role in virulence, do not appear to be suitable 

target proteins for the development of immunopreventive strategies against acute 

disseminated candidiasis.  
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INTRODUCTION 

 

Invasive candidiasis ranks among the third or fourth most frequent nosocomial 

bloodstream infections both in the United States and in many European countries,  and 

Candida albicans accounts for approximately 50% of the cases of candidemia (1-3). 

Disseminated candidiasis typically occurs after multiple weeks of hospitalization and is 

associated with a mortality of 40 to 50% and a high morbidity in those who survive, 

even after treatment with modern antifungal agents (4-6). Furthermore, development 

of Candida spp resistance to conventional antifungal therapies is of serious concern. 

Given the high morbidity and mortality rates, associated with high health care costs 

(7), the development of more effective prophylactic and therapeutic strategies is 

needed. The predominant risk factors for disseminated candidiasis are the disruption 

of protective anatomical barriers or situations leading to substantial increase in the 

colonization burden of Candida spp., such as indwelling catheters and parenteral 

nutrition, abdominal or cardiac surgery, prolonged hospital stay or stay in an intensive 

care unit, and receipt of broad-spectrum antibiotics (2). Because the risk factors for 

disseminated candidiasis precede the development of infection and are often easily 

identifiable, vaccination of at-risk patients to prevent the onset of disseminated 

candidiasis is promising. Furthermore, these patients are usually not profoundly 

immunosuppressed and would be expected to respond favorably to vaccination (8). 

Moreover, an immunization approach would need to protect patients just for the short 

period of time of increased susceptibility (9).  

The protective role of antibodies against invasive candidiasis has been controversial. 

For some effective vaccines against invasive fungal infections, the key to protection 

has been reported to be the induction of cell-mediated, pro-inflammatory, Th1 or Th17 

responses, which improve phagocytic killing of the fungus (10, 11). Nevertheless, over 

the last two decades, strong evidence has accumulated that some Candida-specific 

antibodies or their engineered derivatives can be immunoprotective against C. albicans 

infections, following both active vaccination and passive transfer of immune serum or 

antibodies (12-19).  

In addition to the host status, the pathogenicity of C. albicans also depends on a 

complex set of fungal attributes that are considered as putative virulence factors for 
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their involvement in the infectious process. Often, these consist of secreted or 

membrane bound proteins, which are among the first targets encountered by host 

defense mechanisms (20), making them attractive vaccine candidates. The secreted 

aspartyl proteases (Sap) have long been considered putative virulence factors (21, 22).  

The isoenzyme preferentially expressed following induction in vitro, Sap2 (23), has 

already been used in vaccination strategies against oral, vaginal, and intraperitoneal C. 

albicans infections (15, 24-26). Intra-dermical (i.d.) immunization with native Sap2 plus 

Alum adjuvant conferred protection to BALB/c mice, against C. albicans peritonitis. The 

mechanism of protection was not completely elucidated, but antibodies by themselves 

were at least partially responsible for the protective effect (15). For the achievement 

of a candidate vaccine against acute systemic candidiasis, the availability of 

recombinant antigen would greatly overcome the well-known difficulties in producing, 

purifying and standardizing a native antigen.  

The present studies were performed to evaluate the efficacy of alternative vaccine 

presentation strategies, using recombinant Sap2 (rSap2) in protecting 

immunocompetent BALB/c mice against hematogenously disseminated candidiasis. 

Moreover, as the hypha-associated isoenzyme Sap5 was preferentially expressed 

during systemic candidiasis (27), it was also evaluated as target antigen for Candida 

vaccination.     
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MATERIAL AND METHODS 

 

Mice 

Male BALB/c mice, 8-10 weeks old, were purchased from Charles River (Barcelona, 

Spain) and kept under specific pathogen-free conditions at the Animal Facility of 

Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal. All procedures involving 

mice were performed according to the European Convention for the Protection of 

Vertebrate Animals used for Experimental and other Scientific Purposes (ETS 123), 

86/609/EEC Directive and Portuguese rules (DL 129/92). Authorization to perform the 

experiments was issued by the competent national board authority (Direção Geral de 

Veterinária), document number 0420/000/000/2010. 

 

Secreted aspartyl proteases 

Recombinant Sap1 (rSap1), rSap2, rSap3 and rSap5 were produced in Pichia pastoris 

and were kindly provided by Dr Bernhard Hube (Jena University, Germany). All purified 

recombinant proteins exhibited protease activity in vitro, as assessed by using a 

standard fluorescence-based casein assay (Molecular Probes, Invitrogen, Eugene, OR, 

USA). Reactions were also performed in the presence of the general aspartyl protease 

inhibitor pepstatin A (Sigma Aldrich, St Louis, MO, USA). Native Sap2 (nSap2) was 

purified as previously described (15). Contaminant endotoxin was removed from all 

Sap samples by passage through a polymixin B column (Pierce, Thermo Fisher 

Scientific, Rockford, IL, USA). Samples used were confirmed to be endotoxin-free, as 

assessed by the limulus test (E-toxate, Sigma).  

 

In vitro splenocyte cell cultures and flow cytometric analysis 

Spleen cells from BALB/c naive mice were obtained by gently teasing the organ in 

RPMI-1640 supplemented with penicillin (100 IU/mL), streptomycin (50 µg/mL), 

polymixin B (50 µg/mL), 2-mercaptoethanol (0.05 M) and 10% fetal bovine serum (all 

from Sigma). Cell suspensions were washed with RPMI, distributed in 96-well plates 

(1 × 106 cells/well) and cultured for 6 and 12 h at 37ºC in a humidified atmosphere 

containing 5% CO2 in air. Plated cells were stimulated with medium alone or with 

different concentrations (6 to 100 µg per mL of culture medium) of recombinant or 
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native Sap2. rSap2 and nSap2 denatured by heat treatment for 2 min at 100ºC at the 

highest concentration were used to determine if Sap2-mediated biological effects 

were dependent on protein structure and function. Medium containing 2.5 µg/mL LPS 

or 2.5 µg/mL Concanavalin A were used as a positive controls. Polymixin B was added 

to each condition at a final concentration of 50 µg/mL to exclude contribution of 

endotoxin contamination to the measured Sap2-mediated biological effects. Each 

condition was set in triplicate. The cultured cells were washed and resuspended in PBS 

supplemented with 1% BSA and 10 mM sodium azide. The following monoclonal 

antibodies (mAbs) were used for immunofluorescence cytometric analysis in a 

FACScan (Becton-Dickinson, San Jose, CA, USA) using CELLQUEST software (Becton-

Dickinson): FITC-conjugated rat anti-mouse B220 (clone), PE-conjugated hamster anti-

mouse CD69 (clone), and FITC-conjugated rat anti-mouse CD4 (clone) (all from BD 

PharMingen, San Diego, CA, USA). Dead cells were excluded by propidium iodide (PI) 

incorporation.  

 

In vivo treatments with Sap2  

Mice were i.p. injected with 250 µg of Sap2 in 0.5 mL of PBS. Control animals were 

injected with 0.5 mL of PBS alone. 

 

ELISPOT assays  

The numbers of splenic Ig-secreting cells were assessed by an ELISA-spot assay as 

described (28). Briefly, polystyrene microtitre plates (Nunc, Roskilde, Denmark) were 

coated overnight at 4ºC with 5 µg/mL goat anti-mouse Ig (Southern Biotechnology 

Associates, Birmingham, AL, USA) or with 10 µg/mL rSap2. The wells were then 

saturated for 90 min with 2% BSA in PBS at 37ºC. Appropriate serial suspensions of 

spleen cells in RPMI 1640 supplemented with 2% fetal calf serum (Invitrogen Life 

Technologies, Carlsbad, CA, USA) and 0.05% Tween 20 were incubated in the plates for 

6 h at 37°C in a humidified atmosphere of 5% CO2 in air. The plates were then rinsed 

with 0.075% Tween 20 in water (Sigma) and washed four times with PBS containing 

0.075% Tween 20. Ag-specific or total Ab-secreting cells were revealed by the addition 

of alkaline phosphatase-coupled monoclonal goat anti-mouse-Ig (Southern 

Biotechnology Associates) overnight at 4ºC. After washing, 5-bromo 4-chloro 3-indolyl 
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phosphate (Sigma) in 2-amino 2-methyl 1-propanol (Sigma) buffer was used as 

substrate for 2 h at 37ºC. After washing four times with distilled water, the number of 

spots was quantified in triplicate wells with a dissecting microscope. 

 

Immunization protocols 

Alum adjuvant. Mice were injected intra-dermically (i.d.) three times, with a 3-week 

intervening period, with 10 µg of rSap2 in 100µL of a 1:1 PBS/Alum suspension 

(Aluminium hydroxide gel; Brenntag, Frederikssund, Denmark, a kind gift of Dr Erik 

Lindblad, Biosector, Frederikssund, Denmark). The respective control animals received 

100 µL of 1:1 PBS/Alum. Mice were also immunized by using 5 µg of rSap5 plus Alum 

adjuvant, twice at a 3-week interval.  

Imiquimod adjuvant. Mice were injected subcutaneously (s.c.) four times, with a 1-

week intervening period, with 20 µg of rSap2 in 100µL PBS, followed by topical 

application of Imiquimod (AldaraTM cream, 5% Imiquimod, Laboratoires 3M Santé, 

Cergy Pontoise, France). The respective control animals received 100µL of PBS, 

followed by topical application of Imiquimod. The equivalent to 1.25 mg of Imiquimod 

was applied to each mouse in the site of injection. A similar immunogenic procedure 

was performed by using 5 µg of rSap5 as target antigen. 

Freund’s adjuvant. Mice were injected intra-dermically (i.d.) with 10 µg of rSap2 in a 

1:1 PBS/Complete Freund suspension (Sigma). After a 3-week intervening period, mice 

were boosted with 10 µg of rSap2 in a 1:1 PBS/Incomplete Freund suspension (Sigma). 

The respective control animals received 100 µL of 1:1 PBS/Complete Freund followed 

by PBS/Incomplete Freund. 

CpG adjuvant. Mice were immunized by an intramuscular administration of a single 

dose of a mixture containing 10 µg of rSap2, 10 µg of oligodeoxynucleotide (ODN) CpG 

(Invivogen, San Diego, CA, USA) and 0,3% Alum in a 30 µL final volume. Control mice 

were similarly immunized with PBS, CpG ODN and Alum. Mice immunized with 10 µg 

of rSap2,10 µg of non-CpG ODN (Invivogen) and Alum or PBS, non-CpG ODN and Alum 

were included as another control group. 
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Antibody detection 

Specific anti-Sap2 immunoglobulin in mice sera, collected by submandibular bleeding, 

was quantified by enzyme-linked immunosorbent assay (ELISA). Briefly, polystyrene 

microtitre plates (Nunc) were coated with 5 µg/mL of rSap2, nSap2, rSap1, rSap3 or 

rSap5, and incubated overnight at 4ºC. Wells were then saturated for 1 h at room 

temperature with 2% BSA in 0.05% Tween 20-Tris buffered saline (TBST). Serial 

dilutions of the serum samples were then plated and incubated for 2 h at room 

temperature.  After washing, alkaline phosphatase-conjugate goat anti-mouse IgG, 

IgG1 or IgG2a (all from Southern Biotechnology Associates) antibodies were added and 

incubation was kept for an additional 30 min at room temperature. After washing, the 

bound antibodies were detected by development with substrate solution containing p-

nitrophenyl phosphate (Sigma) and the reaction was stopped by the addition of 0.1M 

EDTA, pH 8.0. The absorbance was measured at 405 nm. The ELISA antibody titres 

were expressed as the reciprocal of the highest dilution giving an absorvance of 0.1 

above that of the control (no serum added).     

 

Purification of serum IgG antibodies 

Sera from mice inoculated i.d. with a 3-week intervening interval, with a 1:1 PBS/Alum 

suspension or 1:1 PBS/Alum suspensions containing 10 µg of rSap2, as described above 

in immunization protocol section, were collected and pooled 21 days after the second 

inoculation. Purification of IgG from these pooled sera was then performed as follows: 

pooled serum samples were equilibrated in binding buffer (20mM sodium phosphate, 

pH 7.0) by using Amicon Ultra-15 centrifugal devices (Millipore, Billerica, MA, USA). 3 

ml of these preparations were applied to a Protein G HP affinity column (HiTrap; 

Amersham Biosciences, Bucks, UK) for each separation, according to manufacturer’s 

instructions. 

 

Immunoblotting 

The reactivities of anti-Sap2 and anti-Sap5 immunoglobulins were visualized by 

Western blot analysis. For that purpose, 1 µg of rSap1, rSap2, rSap3, and rSap5, as well 

as native Sap2 were separated by sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) on 10% polyacrylamide gels and then blotted overnight 
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onto nitrocellulose membranes (Sigma). Nonspecific binding was prevented by 

blocking with 3% BSA in Tris buffered saline (TBS) for 2 h at room temperature. After 

washing, membranes were incubated for 4 h with mouse polyclonal antibodies anti-

rSap2 (5 µg/mL) or with nSap2 antiserum (1:200) diluted in TBST. Alternatively, 

membranes were incubated with rSap5 antiserum (1:200). Bound antibodies were 

detected with alkaline phosphatase-conjugate goat anti-mouse IgG (Southern 

Biotechnology Associates), using NBT/BCIP solution (Roche, Penzberg, Germany) as 

substrate. The reaction was stopped in distilled water.  

Reactivity of the purified anti-rSap2 IgG were also tested by ELISA, as described above, 

in polystyrene microplates (Nunc) coated with 5 µg/mL of rSap1, rSap2, rSap3, rSap5, 

rSap6, and nSap2.  

 

Candida albicans and culture conditions 

The C. albicans wild-type strain SC5314 was used in this study (29) and maintained as 

frozen stocks in 30% glycerol at -80ºC. To prepare the inoculum for infection, C. 

albicans was grown in a shaking incubator for 14 hours at 30ºC in Winge medium (0,2% 

glucose, 0,3% yeast extract). Yeast cells were harvested, washed twice with sterile, 

nonpyrogenic phosphate-buffered saline (PBS) (Gibco®, Grand Island, NY, USA), 

counted in a haemocytometer and resuspended at the appropriate concentrations. 

Inocula were confirmed by Colony Forming Unit (CFU) counts on Sabouraud dextrose 

agar (Difco, Detroit, MI, USA) for up to 48 h at 37ºC. 

 

C. albicans hematogenously disseminated infections 

Mice were injected intravenously (i.v.), in the lateral tail vein with 2 × 105 C. albicans 

yeast cells in 0.2 mL PBS. To evaluate the progress of hematogenously disseminated 

candidiasis, mice were weighed and monitored twice daily, for a maximum of 30 days. 

Moribund mice were humanely terminated, and their deaths recorded as occurring the 

following day. 

In some immunization protocols, a second group of similarly injected mice were 

infected with 1 × 105 and sacrificed 7 days post-infection to determine organ fungal 

burden. Kidneys were aseptically removed, homogenized, and quantitatively cultured 
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on Sabouraud dextrose agar (Difco) at 37ºC. Values were expressed as log CFU per 

gram of tissue.  

 

Statistical Analysis 

Unless otherwise stated, results shown are from one experiment, representative of at 

least three independent experiments. Statistical significance of results was determined 

by unpaired Student t-test, using the GraphPad Prism 4 Software (GraphPad Software, 

Inc., La Jolla, CA, USA). Results were considered statistically significant with P values of 

less than 0.05.  
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RESULTS 

 

Sap2 has been shown to be an effective target antigen in immunoprotective protocols 

against systemic C. albicans infection established i.p. in BALB/c mice (15). Here, the 

same immunization protocol was extended to the murine model of hematogenously 

disseminated candidiasis by using rSap2 and rSap5, to evaluate their host protective 

effect in mice infected with C. albicans strain SC5314. 

 

Immunomodulatory effects of rSap2 

The ability of rSap2 to induce B- and T-lymphocyte activation was tested in vitro. 

Moreover, rSap2-mediated B-lymphocyte activation was also tested in vivo. rSap2 

added to splenocyte cultures failed to induce the expression of the early activation  

marker CD69 on B and T lymphocytes (Figure 1).  

 

Figure 1 In vitro lymphocyte stimulatory effect of recombinant secreted aspartyl protease 2 

(rSap2). Flow cytometric analysis of CD69 expression on the surface of BALB/c mice B (B220+) 

and CD4+ T cells in spleen mononuclear cell cultures after 12 hours of incubation with rSap2 or 

medium alone. LPS and ConA were used as positive controls for B and T cells, respectively. 

Numbers represent the mean values ± standard deviation (SD) of three samples per group. 

This is a representative result of four independent experiments.  
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Similarly, BALB/c mice that received 250 µg of rSap2 i.p. showed no significant increase 

in the number of splenic immunoglobulin-secreting cells when compared with control 

animals (Figure 2A). Moreover, rSap2 injection did not induce DC maturation, as no 

altered expression of the activation markers CD80, CD86 and MHC class II was 

observed on the surface of CD11chi cells (Figure 2B). In summary, an 

immunomodulatory role of rSap2 could not be observed either in vitro or in vivo. 

 

 

Figure 2 In vivo stimulatory effect of rSap2 in BALB/c mice, 5 days after i.p. treatment with 

phosphate-buffered saline (PBS) (black bars) or with 250 µg of rSap2 (white bars). (A) Numbers 

of spleen immunoglobulin-secreting cells. (B) Expression of CD80, CD86, and MHC class II 

molecules on the surface of spleen conventional dendritic cells, as assessed by the mean 

fluorescence intensities of antibody staining. The values represent the mean + 1 SD of four 

mice per group and are a representative result of two independent experiments.  

 

Elevated anti-Sap2 and anti-Sap5 immmunoglobulins in the serum of immunized 

mice 

To determine the immunogenic efficiency of the different rSap2 and rSap5 

preparations, sera from mice immunized with different adjuvants were tested for the 

presence of antibodies specific for this protein. ELISAs were performed for the 

quantitative measurement of anti-Sap immunoglobulins in the sera collected before 

infection. The titres of anti-Sap2 and anti-Sap5 IgG were significantly higher in mice 

immunized with rSap2 and rSap5, respectively, than in the controls, regardless of the 

adjuvant or immunization protocol used. In mice immunized with rSap2 alone or rSap2 

plus Alum, IgG1 was the main IgG isotype found in serum antibodies whereas IgG2a 

antibodies were mostly absent. In rSap5 plus Alum or imiquimod-immunized mice, 

only production of antigen-specific IgG1 was observed. Conversely, in mice immunized 
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with rSap2 using Imiquimod, Freund or CpG plus Alum as adjuvants, mixed IgG1 and 

IgG2a production was detected, although with IgG1 predominance (Figure 3).  

 

 

Figure 3 Serum IgG1- and IgG2a rSap2- or rSap5-specific antibody titres in mice sera, as 

indicated. Sera were collected 15 days after the last immunization for all groups except for the 

CpG group in which sera were collected 21 days after the single immunization. Bars represent 

mean antibody titres ± SD. n=4 to 8 mice per group.  *P < 0.05; ** P < 0.01; ***P < 0.001.   

 

Western blot analysis was used to reveal purified IgG reactivity against blotted Sap 

isoenzymes. Specific reactivity was readily detectable in mice immunized with rSap2 

against rSap2 and nSap2. Anti-rSap2 IgG also reacted with rSap1 and rSap3. In 

contrast, these immunoglobulins did not react with rSap5. The reaction was always 

stronger with sera from rSap2-immunized mice against rSap1, rSap2, rSap3 and nSap2 

than the background anti-Sap2 reactivity detected in sera from control mice (Figure 

4A). Sera from rSap5-immunized mice reacted only with rSap5 (Figure 4B). These 
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results were confirmed by ELISA. Unexpectedly, rSap2-specific antibodies recognized 

nSap2 with lower intensity than rSap2 (IgG titers of 77500 ± 26299 and 12750 ± 12473, 

specific for rSap2 and nSap2, respectively).   

 

 

 

Figure 4 Western blot analysis of (A) anti-rSap2 IgG or (B) anti-rSap5 sera reactivities against 

the indicated antigens. Purified IgG antibodies and sera were obtained,15 days after the last 

immunization, from rSap2-immunized or rSap5-immunized mice, using Alum adjuvant.  

 

 

Immunization with rSap2 did not confer protection against acute systemic 

candidiasis 

Having ascertained that all immunization procedures assessed raised Sap-specific 

serum antibody levels, confirming the immunogenicity of the immunizing preparations, 

the protective effect of rSap2 immunization against hematogenously disseminated 

candidiasis was evaluated in the different groups of immunized mice.  

 

Immunization with rSap2 in the absence of adjuvant 

Mice immunized with rSap2 alone and sham-immunized controls had no detectable 

differences in the number of C. albicans CFU in the kidneys, on day 7 after inoculation 

i.v. with C. albicans (Figure 5A).  

 

Immunization with Alum adjuvant 

As observed by using rSap2 alone, no significantly different CFU counts were found in 

the kidneys of mice immunized with rSap2 plus Alum and controls, 7 days upon C. 

albicans infection (Figure 5B). In accordance, this immunization procedure did not 

protect mice against infection with a lethal C. albicans inoculum (Figure 5C). Both 
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sham-immunized and rSap2-immunized mice showed similar median survival times 

and all mice in these groups were dead by day 8 and day 10, respectively.  

 

 

Figure 5 (A) CFU recovered from the kidneys of BALB/c mice immunized i.d. with rSap2 in PBS, 

rSap2 in alum adjuvant, or respective sham-immunized controls, and infected i.v. with 1 × 105 

C. albicans SC5314 cells three weeks after the last i.d. immunization. Data are representative 

of two independent experiments. Each symbol represents an individual mouse, and horizontal 

bars are means of CFU numbers for each group; n=5. (B) Survival rates in mice immunized i.d. 

with rSap2 in alum adjuvant or sham-immunized controls and infected i.v. with 2×105 C. 

albicans cells, three weeks after the last i.d. immunization. The median survival rates of mice 

immunized with rSap2 plus alum and adjuvant inoculated mice, as determined using the Log 

rank test, were not different (P= 0.60); n=8; results are one representative experiment out of 

two independent experiments. (C) CFU recovered from the kidneys of BALB/c mice immunized 

s.c. with rSap2 plus topical Imiquimod application or sham-immunized controls and infected 

i.v. with 1 × 105 C. albicans cells 20 days after the last immunization. Each symbol represents an 

individual mouse, and horizontal bars are means of CFU numbers for each group; n=8;  (D) 

Survival rates in mice immunized i.d. with rSap2 in Freund’s adjuvant or sham-immunized 

controls and infected i.v. with 2×105 C. albicans cells, three weeks after the last i.d. 

immunization. The median survival rates of mice immunized with rSap2 plus Freund’s and 

adjuvant inoculated mice, as determined using the Log rank test, were not different (P= 0.77); 

n=5; (E) CFU recovered from the kidneys of BALB/c mice immunized i.m. with rSap2 in CpG plus 

Alum adjuvant or sham-immunized controls and infected i.v. with1 × 105 C. albicans cells 30 

days after the last immunization. Bars represent means  ± SD; n=4. 
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Immunization with imiquimod adjuvant 

Mice were immunized by subcutaneous (s.c.) injection with rSap2 followed by topical 

application of imiquimod. Sham-immunized animals were s.c. injected with PBS 

followed by similar imiquimod application. As shown in Figure 5D, no significant 

reduction in fungal kidney burden was observed in the immunized mice, comparatively 

to controls. Two out of eight immunized mice died before the experiment was 

terminated. Moreover, two other immunized mice were moribund by the time kidney 

CFU counts were assessed. Interestingly, these mice were the ones presenting the 

highest IgG levels (data not shown).   

 

Immunization with Freund’s adjuvant 

As shown in Figure 5E, C. albicans infected mice immunized with rSap2 plus Freund’s 

adjuvant showed survival rates equivalent to those of sham-immunized controls 

injected with PBS and adjuvant alone. Sham-immunized mice showed a median 

survival time of 12 days, while the median survival time of rSap2-immunized mice was 

9 days, and all mice in these groups were dead by day 16 and day 17, respectively.  

 

Immunization with CpG plus Alum adjuvant 

Similarly to the other immunization approaches tested, immunization with rSap2 plus 

CpG/Alum adjuvant also failed to protect mice from an i.v. C. albicans challenge, as the 

number of kidney CFU was not significantly different between the immunized mice and 

controls (Figure 5F). A mouse of the rSap2 plus CpG/Alum-immunized group died prior 

to the termination of the experiment. 

 

Altogether, these results showed that no protection against systemic C. albicans 

infection established by the hematogenous route was obtained by immunizing mice 

with rSap2, independently of the used adjuvant.  

 

Immunization with rSap5 failed to protect mice against acute systemic candidiasis  

As observed by using rSap2 as target antigen, immunization with rSap5 with Alum or 

imiquimod adjuvants did not protect mice from a hematogenous challenge with C. 

albicans cells. No significantly different CFU counts were found in the kidneys of mice 
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immunized with rSap5 plus either adjuvant and controls, 7 days upon C. albicans 

infection (Figure 6A). Also no extended survival was observed in rSap5 plus Alum-

immunized mice, as compared to sham-immunized controls (Figure 6B). 

Immunization with rSap5 using imiquimod as adjuvant, also failed to reduce kidney 

fungal burden, comparative to that of controls (Figure 6C). 

 

 

Figure 6 (A) Numbers of C. albicans CFU recovered from the kidneys of BALB/c mice 

immunized twice i.d. with rSap5 in Alum adjuvant, or respective sham-immunized controls, 

and infected i.v. with 1 × 105 C. albicans cells 3 weeks after the last i.d. immunization. Bars 

represent means ± SD; n=6. (B) Survival rates in mice immunized i.d. with rSap5 in Alum 

adjuvant or sham-immunized controls and infected i.v. with 2×105 C. albicans cells, three 

weeks after the last i.d. immunization. The median survival rates of mice immunized with 

rSap5 plus Alum and adjuvant inoculated mice, as determined using the Log rank test, were 

not different (P=0.91); n=8 for rSap5 plus Alum group and n=6 for sham-immunized group.  
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DISCUSSION 

 

Previous reports have shown that mice immunized with Sap2 were protected against 

mucosal or peritoneal C. albicans infection (15, 24, 25, 30). Here immunization with 

Sap antigens was done, using different adjuvants and immunization schedules, to 

attempt protect mice against acute systemic candidiasis. 

Alum is a licensed adjuvant used in human vaccine formulations (31). It was previously 

employed to successfully immunize mice against C. albicans peritonitis (Vilanova et al., 

2004). Therefore, it was used here as a first choice adjuvant in order to assess the 

protective effect of rSap2 and rSap5 as target antigens in a murine model of 

hematogenously disseminated candidiasis. Nevertheless, as this adjuvant usually 

favors an antibody-mediated immune response, other adjuvants that promote a 

cellular-mediated Th1-type immune response, such as imiquimod, CpG or Freund’s 

(32), were alternatively used for immunization with Sap proteins. Imiquimod was 

approved to be used for topical skin treatment in humans. It binds to TLR7 in mice and 

TLR7 and 8 in humans and stimulates the production of a characteristic cytokine 

profile, promoting a Th1 bias (33). The adjuvant effects of imidazoquinolines, including 

imiquimod, specifically increase IgG2a responses (34, 35). Although not yet licensed for 

human usage, the TLR 9 agonist CpG (oligodeoxynucleotides (ODNs) containing 

unmethylated CpG motifs) has been safely used in human clinical trials (36, 37). It 

directly stimulates human B lymphocytes and plasmacytoid dendritic cells to produce 

pro-inflammatory cytokines, leading to the induction of Th1 responses and triggering 

the activation of APCs (38-40). Moreover, it was shown to be more effective than Alum 

and imidazoquinolines in augmenting both humoral and cell mediated immune 

responses (40, 41). Furthermore, when used in combination with Alum, it had greater 

potential to augment immune responses and provided higher antibody titres than 

Freund’s complete adjuvant, with only minimal tissue damage (40).  

Despite the powerful properties of the used adjuvants, the lack of observed immune 

protection in mice infected i.v. with C. albicans may nevertheless indicate that those 

adjuvants were inadequate for the generation of a protective immune response. Anti-

sap2 IgG antibodies were previously shown to be host protective against Candida 

peritonitis (15), oral (24) and vaginal Candida infection (24, 25, 30). Thus, it could be 
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hypothesized that the magnitude of the immune response elicited by the 

immunization procedures assayed here was below effective levels. However, the anti-

rSap2 titres were similar or even higher than the ones reported for mice immunized 

with native Sap2 and Alum (15). Nevertheless, mice presenting higher rSap2-specific 

antibody titres, upon immunization with rSap2 plus Imiquimod, became more 

susceptible to the i.v. infection. The immune response elicited by immunization could 

actually be deleterious to the host. Although with IgG1 preponderance, a mixed 

IgG1/IgG2a isotypic profile was observed in these mice, which presented antibody 

titres below those detected by using the other adjuvants. Other immune mechanisms 

than antibody production could have been elicited by the Imiquimod adjuvanted 

immunization, resulting in uncontrolled inflammation. Alternatively, the lack of 

protection in the immunized mice may indicate that rSap2 was an inadequate target 

antigen. We actually observed that sera collected from rSap2-immunized mice reacted 

more intensely with the recombinant protein than with nSap2. This differential 

reactivity was only observed in ELISA assays, in which no denaturation of the antigen 

was expected. This might indicate that structural differences may exist between 

recombinant and native Sap2 that might affect the protein epitopes recognized by the 

antibodies. The usage of rSap5 as target antigen was also ineffective in inducing 

protection. However, it must be noted that rSap5-specific antibody titres raised by 

immunization were lower than the ones reached by using rSap2. It could have been 

expected that rSap5 was more promising as a target antigen in systemic candidiasis 

than rSap2, as Sap5 expression has been associated with invasive candidiasis (27, 42). 

Nevertheless, C. albicans could be less dependent on Sap2 activity to successfully 

infect the host in the acute model of systemic candidiasis than in other infection 

models, in which vaccination with Sap2 was found to be protective. The reported 

observation that Sap inhibitor pepstatin A was ineffective in protecting mice against 

hematogenously disseminated candidiasis supports this hypothesis (43). Moreover, in 

this infection model, Sap1 to Sap3 proved to be unnecessary for C. albicans infection 

establishment, as mutant stains deficient in SAP1 to SAP3 were equivalent in virulence 

to the wild-type strain. Furthermore, mutant strains lacking SAP4 to SAP6 presented 

only a marginal virulence attenuation (44). It is widely recognized that the relative 

importance of specific SAP genes for C. albicans pathogenicity is greatly determined by 
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the type of infection and its dependence on protease activity for the successful 

invasion and colonization of various host niches (44-47). Thus, immunization strategies 

targeting Sap2 would be more effective in controlling C. albicans infections dependent 

on protease activity than in the murine model of acute systemic candidiasis which is 

relatively protease independent. In addition, in the present work we have used C. 

albicans SC5314 strain to infect mice. This strain was not used in any of the previous 

reports where immunization with Sap2 was assessed (15, 24, 25, 30). Thus, we cannot 

exclude that protection conferred by this immunization strategy might be strain 

dependent and that the C. albicans strain used here to infect the immunized mice 

could not strictly depend on Sap2 and Sap5 activities to successfully colonize the host.  

Overall the results presented herein indicate that immunization with C. albicans Sap 

proteins may have no effect in protecting the host against candidiasis established by 

the hematogenous route. Nevertheless, they do not completely rule out the possibility 

that using Sap antigens combined with other adjuvants might result in host protection 

in this infectious condition. 
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CONCLUDING REMARKS 

 

The increasing incidence of invasive candidiasis, associated to a high treatment failure 

rate, fully justify the search for more effective prophylactic and therapeutic strategies. 

To fulfil this goal, a more comprehensive understanding is needed of C. albicans 

virulence mechanisms and of the host immune response to this fungus, in the different 

types of candidiasis. Moreover, several studies have underlined that distinct C. 

albicans isolates may show very distinct virulence phenotypes and elicit dissimilar 

immune responses, compromising the generalization of results obtained with a single 

isolate to the whole species. In addition, the majority of those studies gave little 

information of the fungus-host interactions and elicited host immune responses, since 

they focused on phagocytosis and intracellular killing assays. The studies presented 

here comparatively evaluating the virulence of three reference C. albicans strains in 

the murine model of hematogenously disseminated candidiasis show remarkable 

differences among them. Interestingly, the highest virulent strain studied here, 

SC5314, induced a more marked inflammatory response with a high recruitment of 

neutrophils and inflammatory monocytes into the spleen and kidney tissues. In 

general, the most virulent strains tested here generated higher inflammation, which 

may be worsening organ pathology rather than protecting the host. These results 

might explain why SC5314 strain, well known to be highly virulent in this infection 

model, in which immune protection mainly depends on neutrophils, is much less 

efficient at infecting the mucosa, where cell mediated immunity is essential for host 

protection. In future studies concerning C. albicans virulence, it would be advisable to 

assess pathology together with an analysis of local immune response in affected 

organs. Also, it would be interesting to compare the cell wall composition and cell 

surface associated proteins, such as Sap9 that modulates the interaction of C. albicans 

with human neutrophils. 

The vast majority of gene disruption studies have been carried out in the SC5314 

background. As this strain elicits an uncontrolled host inflammatory response that 

results in sepsis and host death soon after intravenous challenge, this may negatively 

affect mutant virulence assessment. Other factors affecting C. albicans mutants 
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virulence assessment are undesired effects that may result from their construction. 

The majority of C. albicans mutant strains were constructed by using the Ura-blaster 

technique, which has been shown to generate mutant strains with altered URA3 

expression, influencing C. albicans virulence. Although this can now be overcome by 

the directed integration of URA3, mutant strains used in earlier studies did not share a 

site of URA3 integration and virulence phenotypes of all these mutants should thus be 

confirmed. Therefore, the importance of SAP1 to SAP6 was re-evaluated in a model of 

acute systemic candidiasis by using mutant strains constructed with the SAT1-fliping 

strategy. The obtained results show that Δsap123 and Δsap456 are as virulent as the 

WT strain contrasting the reduced virulence of equivalent Ura-blaster generated 

mutants, for which the Ura-status must have thus contributed to their attenuated 

virulence. Altogether, these results suggest that Sap1 to Sap6 do not play a significant 

role in C. albicans virulence in hematogenously disseminated candidiasis. Nevertheless, 

as shown in this thesis, Sap4 to Sap6 play a role in the infectious process of C. albicans 

peritonitis. In Δsap456-infected mice, the lower recruitment of Treg into the kidneys 

early after challenge might facilitate the arrival or activation of effector cells, therefore 

enhancing fungal clearance. Also, CD4+CD25+ T cells sorted from these mice presented 

a much lower ability for in vitro suppression of T cell proliferation and production of 

the immunosuppressive cytokine IL-10 than WT-infected mice. These observations are 

in agreement with, and support, the hypothesis that Sap4 to Sap6 play a role in the 

impairment of the host immune response to Candida peritonitis. Further studies are 

needed to determine the mechanism by which Sap4-6 interfere with the host immune 

response. As no differences were observed between the used WT and sap-null strains 

in their ability to activate DCs, other cell targets, such as monocytes or macrophages 

should be studied in more detail. Indeed, inflammatory monocytes were differentially 

recruited into the peritoneal cavity of mice infected with the WT or Δsap456 strains. 

Another mechanism needing to be clarified concerns Treg function in WT or sap-null 

infected mice. It would be important to ascertain the role of IL-10 in the suppressive 

activity of these cells. Antibody-mediated neutralization of this cytokine or cell transfer 

experiments using IL-10-deficient mice as recipients may be useful in that regard. 

Altogether, the results obtained with the sap-null mutant strains, in two different 

infection models, further highlight that the importance of specific SAP genes for C. 
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albicans pathogenicity is greatly determined by the type of infection and its 

dependence on protease activity for the successful invasion and colonization of various 

host niches. These Saps may be necessary to degrade human proteins, enabling 

nutrient acquisition, host tissue invasion, and immune evasion. The pattern 

recognition receptor Gal-3 selectively binds to C. albicans β-1,2-oligomannosides 

leading to fungal death and increased production of the inflammatory cytokine TNF-α 

upon C. albicans recognition. In this study, C. albicans Sap1, Sap2 and Sap3 isoenzymes 

were shown to degrade and inactivate Gal-3 in vitro. These results suggest that host 

Gal-3 might be also cleaved in vivo by Saps. Hence, C. albicans may degradate Gal-3 to 

control and evade host immune Gal-3-mediated recognition, and the ensuing 

inflammatory response, or even avoid Gal-3-mediated C. albicans killing. In future 

studies, co-localization of Sap1-3 or Sap4-6 and Gal-3 in the infected tissues would 

provide a more compelling evidence of the Gal-3 degradation in vivo. It would be also 

important to use other infection models, such as experimental vaginal or oral 

candidiasis, where a prominent role of Sap2 in infection was already demonstrated, to 

determine the importance of Sap-mediated Gal-3 degradation in the establishment of 

candidiasis.  

The above-mentioned results suggest that C. albicans Sap isoenzymes may be one of 

the mechanisms used by this fungus to dampen host immune response, making these 

proteins natural target antigen candidates in C. albicans vaccination. Previous reports 

have shown that mice immunized with Sap2 were protected against mucosal or 

peritoneal C. albicans infection. Here, a similar approach was attempted to protect 

mice against hematogenously disseminated candidiasis. Mice were immunized with 

rSap2 and rSap5 as target antigens, using different adjuvants and immunization 

schedules. All the tested approaches failed to protect against this type of candidiasis. 

In some occasions, the immune response elicited by immunization could actually have 

been deleterious to the host, resulting in uncontrolled inflammation. Although in this 

infection model Sap1 to Sap3 proved unnecessary for C. albicans infection 

establishment, as mutant stains deficient in SAP1 to SAP3 were equivalent in virulence 

to the WT strain, immunization with Sap2 could nevertheless result in host protection. 

It would be expected that rSap5 was more promising as a target antigen in systemic 
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candidiasis than rSap2, since Sap5 expression has been associated with invasive 

candidiasis. Nevertheless mutant strains lacking SAP4 to SAP6 presented only marginal 

virulence attenuation in this infection model. The results described here indicate that 

C. albicans is less dependent on Sap activity to successfully infect the host in 

hematogenously disseminated candidiasis than in C. albicans peritonitis, for which 

vaccination with Sap2 was protective. The observation reported by others that Sap 

inhibitor pepstatin A was ineffective in protecting mice against hematogenously 

disseminated candidiasis supports this hypothesis. Thus, immunization strategies 

targeting Sap2 would be more effective in controlling C. albicans infections more 

dependent on protease activity than in the murine model of hematogenously 

disseminated candidiasis, which is relatively protease independent. Nevertheless, it 

cannot be excluded that protection conferred by this immunization strategy might be 

strain dependent. In fact, it is shown here that strain SC5314 elicits a host immune 

response with a high inflammatory character, which might have contributed to the lack 

of protection. It would be interesting to determine whether vaccination with Saps may 

nevertheless be protective in this infection model, when using strains causing a less 

marked inflammatory response to establish infection. As the cell surface associated 

Sap9 was shown by others to have a major impact on recognition of C. albicans by 

neutrophils, promoting the activation and chemotaxis of these leukocytes, it would be 

interesting to use this antigen to attempt vaccination against yeast strains inducing an 

exacerbated neutrophilic inflammation, such as SC5314.      

Overall, the results presented herein provide additional evidence for the differential 

involvement of Saps in distinct C. albicans infection models and, by showing that host 

immune response to C. albicans is affected by lack of SAP expression, support a 

previously hypothesized immunomodulatory role for Saps. They also indicate that 

immunization with C. albicans Sap proteins may have no effect in protecting the host 

against candidiasis established by the hematogenous route, reinforcing the limited role 

of these proteins in this type of infection. Nevertheless, they do not completely rule 

out the possibility that Sap antigens, the ones used here or other, with different 

adjuvant combinations, might result in host protection in this type of disseminated 

infection.  
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