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Abstract  

Composites of styrene-butadiene-styrene (SBS) block copolymer with multiwall carbon 

nanotubes (MWCNT) were processed by solution casting in order to investigate the 

influence of filler content, the different ratio of styrene/butadiene in the copolymer and 

the architecture of the SBS matrix on the electrical, mechanical and electro-mechanical 

properties of the composites. It was found that filler content and elastomer matrix 

architecture influence the percolation threshold and consequently the overall composite 

electrical conductivity. The mechanical properties are mainly affected by the styrene 

and filler content. Hopping between nearest fillers is proposed as the main mechanism 

for the composite conduction. The variation of the electrical resistivity is linear with the 

deformation. This fact, together with the gauge factor values in the range of 2 to 18, 

results in appropriate composites to be used as (large) deformation sensors.  

 

Keywords: Functional composites; Polymer-matrix composites; Electrical properties; 

Elastic properties; Piezoresistive Sensors 

mailto:*lanceros@fisica.uminho.pt


2 

 

 

1 Introduction 

Elastomers and thermoplastics are known for their capability to exhibit high 

deformation capability and high electrical and thermal resistances [1]. These properties 

can be significantly modified by the addition of conductive fillers such as carbon 

allotropes [1]. Within this family, carbon nanotubes (CNT) are known to produce 

composites with superior electrical and mechanical properties compared with other 

carbon allotropes such as carbon black (CB) or carbon nanofibers (CNF) [1].  The CNT 

unique electrical and mechanical properties [2] allows that even at low concentrations 

(less than 5 wt%) they can strongly affect the composite’s electrical and mechanical 

properties [3-4].  

Thermoplastic elastomer tri-block copolymer styrene-butadiene-styrene (SBS) 

copolymers can be composed by different ratios of styrene and butadiene, influencing 

strongly their macroscopic properties.  

The application range of SBS, once suitably reinforced with CNT, can be extended to a 

variety of products such as sensors and actuators   [5],  materials with electromagnetic 

shielding properties [6], vapour  and infrared sensors [7] and capacitors [8], among 

others. Previous studies on SBS – carbon nanotube composites indicate that the final 

properties of the composite can change for different ratios of styrene and butadiene [9].  

Despite the intensive use of SBS in industry, the potential of SBS/CNT nanocomposites 

for sensor applications has been scarcely explored and systematic studies on the 

interrelationship of styrene/butadiene ratio and CNT loading on the electrical, 

mechanical and electro-mechanical response, have yet to be done. 

The composites using CNT show higher enhancement in the electrical properties that 

can be interpreted within the framework of percolation theory [10-11]. The percolation 
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theory predicts for fibres with a capped cylinder shape the following bounds for the 

percolation threshold [10], [12]:: 



1e
1.4V

Ve c 1e
2.8V

Ve      (1) 

Equation 1 links the average excluded volume



Ve  ,i.e., the volume around an object in 

which the centre of another similarly shaped object is not allowed to penetrate, averaged 

over the orientation distribution, with the critical concentration (c). Here, 1.4 

corresponds to the lower limit for infinitely thin cylinders and 2.8 correspond to spheres 

(V is the particle volume). For high aspect ratio fillers the percolative network can be 

formed with lower concentrations producing a composite with higher electrical and 

mechanical properties. The percolation threshold found for this type of nanocomposites 

depends on the properties of the materials (matrix and nanoparticles) [13], nanofiller 

dispersion agent and method [14] and can be reduced down to 0.1 % volume using CNT 

[1]. The typical percolation threshold is between 10-25 % volume for CB [1] and 1-5 % 

volume to CNF [1]. 

An important property of CNT/polymer composites that can be used for sensor 

applications is the fact that  by the application of uniaxial or hydrostatic stress, the 

composite electrical resistivity changes, due to the so called piezoresistance [15]. It is 

important to note that this change on the composite electrical resistivity due to the 

applied stress is not solely related to changes in the dimension of the solid or to the 

intrinsic piezoresistance of the components. The piezoresistivity in CNT/polymer 

composites can be mainly attributed to the variations of the conductive networks with 

strain, such as loss of contact between the fillers, tunnelling effect in neighbouring 

fillers and conductivity change due to the deformation of CNT [15]. It is also known 

that, even for the same kind of carbon allotrope, the piezoresistance effect is highly 
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dependent on the physical and chemical properties of the filler [16]. The piezoresistance 

effect of CNT/polymer composites makes them particularly interesting materials to be 

used as highly sensitivity strain sensors for structural health monitoring [17], damage 

and fracture detection [18]. In particular, elastomeric based composites are 

exceptionally appropriate for high strain and high compliant deformation sensors, due to 

the difficulties of other materials in achieving high level reversible deformations.  

The piezoresistive effect results from the strain-induced variation of the electrical 

resistance of the material. At low strains, in thermoplastic elastomer/CNT composites, 

the resistance changes linearly with strain. This linearity is sometimes referred as Gauge 

Factor, Gf [19]: 

 


0R

R

Gf


              (2) 

where, 



  is the strain and 



R
R0

 is the factional electrical resistance change with the 

strain. 

In the present work, SBS/MWCNT composites were processed by solution casting for 

different styrene/butadiene ratios and matrix architecture (radial and linear), as well for 

different filler loadings. The influence of these parameters on the mechanical and 

electrical response of the material was studied as well as their electro-mechanical 

performance through the calculation of the Gauge Factor. In this way, the fundamental 

properties concerning the electrical and mechanical performance of the material were 

discussed, as well as its potential for use in large strain sensor applications.   

 

2 Experimental  
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Commercial Calprene C401, C411, C500 and 540 tri-block copolymer of styrene-

butadiene-styrene (SBS) with the properties presented in Table 1 were supplied by 

Dynasol Gestión, S.A (Spain). High purity multi-walled carbon nanotubes (MWCNT, 

Baytubes C 150P; purity > 95%, outer mean diameter = 13–16 nm, and length = 1– > 

10 μm) were supplied by Bayer Materials Science, Germany.  The SBS copolymers 

were employed with tree different ratios of styrene and butadiene and two different 

structures (radial and linear block copolymers).  

 

For the preparation of the nanocomposites, MWCNT were placed in an Erlenmeyer 

with toluene and kept in an ultrasound bath (Bandelin, Model Sonorex Super RK106) 

for 6 h to promote a good dispersion of the MWCNT. After this stage, SBS was added 

to the solution and stirred until complete dissolution was achieved. The relation of SBS 

to toluene is 1 g for 5.5 ml. Thin and highly flexible composites films were obtained by 

spreading the solution on a clean glass substrate. The evaporation of toluene was 

performed at room temperature. MWNT dispersion and distribution in the polymer 

matrix was evaluated by scanning electron microscopy (SEM) with a SEM Phillips 

X230 FEG apparatus. Cross section images were obtained after cutting the samples 

previously immersed in liquid nitrogen and coating the surface gold using a sputter 

coating. 

The variation of the electrical resistance of the samples was calculated from the slope of 

I–V curves measured with an automated Keithley 487 picoammeter/voltage source. I–V 

data points were collected in ~0.3 mm thick samples between 5 mm diameter Au 

contacts previously deposited with a Polaron SC502 sputter coater. The applied voltage 

ranged between − 10 V and + 10 V. The volume resistivity of the samples () was 

calculated by: 
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

 
RA

d
      (3) 

where, R is the measured electrical resistance, A is the electrode area  and d is the 

thickness of composites. The electrical conductivity (σ) in Sm
-1

 was calculated from the 

inverse of ρ as the average of three measurements. 

Mechanical measurements were performed on rectangular samples with an area of about 

60 mm x 20 mm using an AG-IS universal testing machine from Shimadzu with load 

cell of 1 KN in tensile mode at a test velocity of 1 mm/min and at room (~23 ºC) 

temperature. The mechanical parameters were obtained as the average of three 

measurements. The piezoresistive effect was calculated by mechanical stress-strain tests 

and measuring in real-time the electrical resistance of the sample in a digital multimeter 

(6½ digit), Agilent 34401A. The surface electrical resistance was measured by placing 

electrodes in the clamps of the tensile machine. In this case, the electrodes do not suffer 

any deformation, therefore maintaining a constant area. The distance between electrodes 

is equal to the grip distance, measured by the tensile machine.  

 

3 Results and Discussion 

 

3.1 MWCNT dispersion 

SEM images of SBS/MWCNT composites for the C540 matrix with 1% and 4% of 

MWCNT are presented in figure 1 for two magnifications. Similar images are observed 

for the different polymer matrices. The samples are characterized by small MWCNT 

clusters well dispersed in the different SBS matrix.  Therefore, composites with some 

degree of agglomeration of the nanotubes are obtained, but with a relatively good 

cluster distribution. This fact is independent of the polymer matrix. 
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3.2 Mechanical Properties 

Representative quasi-static stress/strain curves for the different SBS matrices are 

presented in figure 2. The materials undergo yielding and strain hardening as the strain 

increases. A first maximum stress is observed for all samples followed by a post-

yielding plateau and a strain hardening stage before the rupture of the material. The 

stress-strain curves of figure 2 reveal that the SBS with radial morphology has lower 

tensile strength and presents a strain at rupture of approximately 1100 %. On the other 

hand, the SBS with linear morphology shows higher tensile strength. The highest strain 

at rupture (~ 1400%) is found for the sample C540, which has a linear structure and the 

higher amount of the styrene in its composition (40%). The linear morphology SBS 

leads to higher strain-hardening modulus. It is also observed for both types of SBS 

architectures that the maximum sustained stress level of the SBS increases with 

increasing styrene content in the copolymer. 

 

It has been reported that the deformation induced in the SBS block copolymer depends 

strongly on the morphology and microdomain orientation [20]. In principle, the solution 

cast films do not have any preferable molecular orientation. During stretching, the 

orientation of the macromolecular chains and individual phases along the draw direction 

plays an important role in the material deformation. A linear architecture of the block 

copolymer allows also a higher material stretchability rather than a radial one.  In figure 

2, the initial moduli of the neat SBS matrices are substantially higher for linear 

architecture and for a high amount of styrene. The amount of styrene present in the 

copolymer increases the sustained stress level of the material, especially for the samples 

with linear structure (C500 and C540). The measured stress at 300 % of strain (300) and 
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at 900 % of strain (900) reveal that 300 and 900 increases with the increasing amount 

of PS present in the sample and it is also higher for the material with linear morphology 

(figure 2). 

Figure 3a) shows the stress-strain curves for C540 SBS (the matrix showing the highest 

elastic modulus and deformation at break) / MWCNT composites with filler volume 

fractions up to 3.83x10
-2

. For low filler volume fractions (up to 9.87x10
-3

) increasing 

MWCNT content increases slightly the strain hardening response of the material 

without compromising its deformation capabilities (figure 3a). However, for higher 

MWCNT contents the strain hardening is substantially reduced, still without reducing 

the maximum strain at break. Table 2 presents the main mechanical properties of the 

C540 SBS/ MWCNT composites. It is also observed that the initial modulus increases 

with increasing MWCNT content, suggesting a good adhesion between the SBS and the 

MWCNT. The 300 values are quite similar for all samples, suggesting that the 

MWCNTs are homogeneous and uniformly dispersed into the polymer matrix. This is 

further corroborated by the small variation of the strain at break with increasing 

MWCNT content. Finally, the ultimate tensile strength increases for small amounts of 

nanofiller added to the SBS until 1.95x10
-2

 volume fraction, decreasing slightly for 

higher filler concentrations.  

 

The inclusion of MWCNT into the polymer matrix leads to an increase in the elastic 

modulus, which is a common behaviour of this kind of polymeric systems [16].  It 

should be noted that the strength is almost similar for all samples until  ~ 700%, but for 

the sample with 3.83x10
-2

 filler volume fraction, the tensile stress is smaller than the 

ones found for the composite samples with lower filler contents. The formation of 

MWCNT aggregates in the polymer composite [14] represent a common defect that for 
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higher strains explains  the decrease of the tensile tress for the sample with highest filler 

content. The retaining of the tensile strength observed in the samples suggests the 

presence of just small extent of agglomerates (table 2). 

In order to understand the effect of the MWCNTs into the different SBS morphologies, 

several samples were processed with 1.95-3.68x10
-2

 filler volume fractions. Figure 3b) 

shows the stress-strain curves indicating that all SBS nanocomposites show the same 

deformation trends. The C540 matrix (with linear SBS architecture and high styrene 

content) filled with 1.95x10
-2

 volume fraction of MWCNT shows the best mechanical 

performance, namely the highest sustained stresses. The C500 matrix (with linear SBS 

architecture and low styrene content) presents the lowest stress levels. The C411 matrix 

(with radial SBS architecture and high styrene content) shows the highest strain 

hardening slope. The architecture type and the styrene content in the SBS matrix have 

distinct effects on the mechanical response of the SBS/MWCNT composites.  

Comparing with the neat SBS stress-strain curves (Figure 3a) the incorporation of 

MWCNT improves the mechanical response of the SBS matrices. In general, the initial 

modulus increases significantly, showing linear SBS nanocomposites lower initial 

modulus when compared to the radial ones. Increasing styrene content leads to higher 

initial modulus of the nanocomposites. For the radial SBS morphologies, the ultimate 

stress increases significantly with the incorporation of the fillers, but for the linear SBS, 

adding the nanofillers reduces the maximum stress level. As already mentioned, the 

initial modulus of the SBS nanocomposites dependen upon the copolymer morphology 

(radial vs. linear) and the styrene content on the SBS.  

Figure 4 shows the variation of the initial modulus of the SBS systems with the 

MWCNT content. For a given SBS matrix, E increases with increasing filler content. 

The elastic modulus are higher for the C540 samples due to the larger styrene (40%) 
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content , leading to a stiffer material. Conversely the C401 sample shows the lowest E 

values. Finally, comparing similar styrene/butadiene ratios, C411 and C500, the initial 

modulus is larger for the SBS with a radial structure, C411, than that with a linear 

structure, C500, and this behaviour is correlated to the distribution and uniformity of the 

styrene phase among the copolymer.  

 

3.3 Electrical Properties 

The electrical response of the SBS/MWCNT composites was evaluated by measuring 

the bulk electrical resistivity (figure 5a).  

 

Figure 5a) shows the electrical conductivity of the SBS nanocomposites as a function of 

the volume fraction of MWCNT. For C401, C411 and C500 nanocomposites there is a 

critical volume fraction were a change of several orders of magnitude in the electrical 

conductivity is observed. For the C540, the position of the critical volume fraction is not 

clear, but a sharp increase in the electrical conductivity is observed, leading to a quasi-

plateau for the highest volume fractions. The electrical conductivity seems to be also 

dependent on the morphology and styrene content of the SBS block copolymers. 

Interestingly, the variations of the electrical conductivity for the SBS nanocomposites 

are similar to those of the initial modulus. The C540 shows the highest values of the 

initial modulus and electrical conductivity, followed by C411, C500; the C401 showing 

the lowest values. In this way, the electrical conductivity of the nanocomposites, such as 

the modulus, is also dependent upon the copolymer morphology (radial vs. linear) and 

the styrene content. 

In fact, as the same type of MWCNT are used for all composites, the matrix 

characteristics should also be used to explain the observed differences in the electrical 
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behaviour. Together with the fibre characteristics (e.g., size, aspect ratio), typically 

taken into account by different theoretical models, the range of the matrix-mediated 

interactions between the fillers has also to be considered [21]. The percolation 

threshold, c, depends also upon the type of matrix [21]:  



c 
D2

2Lmax
      (4) 

where, D is the MWCNT outer diameter, L their length and max is related to the 

maximum interaction range between two adjacent MWCNT (matrix dependent) [22]. 

Usually, the length of the MWCNT is not uniform,  exhibiting a length distribution. 

Assuming that this distribution can be described by a Gaussian distribution with an 

average length Lav and a variance 
2
, the effect of the MWCNT length distribution in 

the percolation threshold can be studied by substituting the length by an weighted 

average length 



L
w
 in Equation (4) [22], leading to: 



c 
D2

2 L
w
max

     (5) 

with 



L
w
 Lav 

2

Lav
, where Lav is the average MWCNT length. Usually the electrical 

conductivity of the composites is understood within the percolation theory, which 

predicts a power law dependence for the electrical conductivity, , upon the volume 

fraction of conductive particles, valid for 



c, and expressed by: 



  c 
t

      (6) 

where, t is a universal critical exponent depending only on the system dimension, Φ is 

the volume fraction and Φc is the critical concentration at which an infinite cluster 

appears in the composite [21]. Using equation (6), the percolation threshold and the 

critical exponent were calculated for all composites, with the exception of the C540, 



12 

 

were the fits were inconclusive. Further, the maximum interaction range (max) was 

established using Equation 5 with the average values for the MWCNT diameter and 

length presented in the Experimental section and assuming that 



 
Lav
2  is equal for all 

composites. It was also assumed that the value for the standard deviation is the same for 

all composites due to the fact that all MWCNT came from the same batch and that the 

processing conditions for the preparation of the nanocomposites were the same. It is 

also important to note that MWCNT aggregate into clusters and, therefore, MWCNT 

clusters must be considered as conductivity units, comprised of several individual 

MWCNT with a given effective length. The latter reasoning leads to choose large values 

for the length standard deviation (table 3).  

 

It can be concluded from Table 3 that the percolation threshold, c, decreases with the 

addition of styrene (C401 and C411). Furthermore, for composites with the same ratio 

of styrene/butadiene (C411, C500) the percolation threshold is lower for SBS with a 

linear structure (C500) as compared to those  with a radial one (C411).  It is also 

observed that the lower percolation threshold implies that max is higher, this meaning a 

higher interaction range between two MWCNT for a specific matrix. The high 

percolation threshold observed for the radial SBS structure can be attributed to 

electrostatic screening by the radial structures, lowering the maximum effective 

interaction distance between two MWCNT and therefore increasing the percolation 

threshold.  

In Table 3, the critical exponents, t, for the power law described by Equation 6 are also 

shown. A wide range of values for the critical exponents were found: the C401 

composites have a value typical of a Bethe lattice [21], the C411 has the electrical mean 

field approximation value [11] and the critical exponent for the C500 has the typical 
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value of a 3D system [21].The fact that the expected power law value predicted by the 

percolation theory was found within a wide range of values leads to consider that, 

indeed,  there exists a giant component that spans the system, but that the conduction 

mechanism can be attributed to a matrix mediated hopping leading to a weak disorder 

regime [19-20]. This weak disorder regime can be described by:  



Geff Gcut exp
lopt

Nmax 
1/ 3














     (7)

 

were, lopt is the length of the optimal path. When most of the links of the path contribute 

to the sum, the system is said to be in the ”weak disorder” regime [23]. Conversely, the 

case where a single link dominates the sum along the path is called the “strong disorder” 

limit [23]. In Equation 7, Nmax is the maximum number of fillers in the domain and Gcut 

is the effective electrical conductance of the system before a bond with maximum 

conductance is added to (or removed from) the system [23]. The lopt parameter is related 

to the disorder strength when the system is in the weak disorder regime. The disorder 

strength is just the inverse of the scale over which the wave function decays in the 

polymer (x0), as expressed by the hopping conductivity expression at room temperature 

[24-25]: 



ij 0 exp 
xij

x0      (8) 

where  0 is the dimension coefficient and xij is the distance between two fillers. As 

described in [26], applying Equation 8 to the gap between the fillers (described as the 

minimum distance between two rods) and thus defining the electrical conductivity by 

hopping between adjacent fillers, leads to Equation 7. This agrees well with recent 

results [26], which demonstrate that hopping between adjacent fillers gives rise to the 

expression 



l og 
 1
3 , as given by Equation (7), which corresponds to a weak 
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disorder regime. This relation is also found in fluctuation-induction tunnelling [27] for 

the DC conductivity. In order to prove the latter assumptions, the 



log  1/3

 

dependence was tested for all composites (Figure 5b). 

Figure 5b shows that there is a linear relation between the logarithm of the electrical 

conductivity and the volume fraction of MWCNT (with a R
2
 > 0.9). It is important to 

note that for the SBS C401, C411 and C500 matrices there is a deviation from the linear 

relation for the lower MWCNT volume fractions, indicating that the conductive 

network is not yet formed, and implying that 



Geff Gcut  [26], i.e., the effective 

electrical conductance is controlled by the matrix conductance. On the other hand, for 

the C540 nanocomposite there are also deviations from the linear relationship  for the 

higher volume fractions, which may be explained by the earlier formation of a spanning 

cluster [21]. For the C540 composite the spanning cluster is established at lower filler 

volume fractions (Figure 5b), which implies that increasing MWCNT content does not 

further contribute to the overall composite electrical conductivity. Hopping between 

nearest fillers leads to the deviation from the percolation theory and the overall 

nanocomposite electrical conductivity is explained by the existence of a weak disorder 

regime. 

 

3.4 Electro-mechanical Properties 

The piezoresistive effect was assessed for the SBS/MWCNT nanocomposites in the 

strain range between 5 to 20% in order to test the suitability of these materials for strain 

sensor applications. The measurements were performed in composites with volume 

fractions just above the percolation threshold  in order to maintain suitable resistance 

values to be measured as large stretching is applied (i.e., at volume fractions of 1.95x10
-
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2
). The obtained GF ranges from 2 to 18, the highest values being obtained for the 

composite C540 at 20% strain (Figure 6b).          

In Figure 6a) are presented the variations of the electrical resistance with a reversible 

strain loading (loading and unloading cycles). The relationship is linear and the 

electrical resistance increases with the deformation. This fact, together with the large 

values obtained for the GF, indicates the suitability of these nanocomposites for high 

strain deformation sensors. 

 

Figure 6b) shows the variation of GF with strain for the C540 matrix. GF increases with 

increasing strain. There are still no consolidated theories explaining piezoresistivity in 

conducting particle-reinforced insulating matrix composites. Theories for the GF based 

on elastic heterogeneity, where the conducting phase is stiffer than the insulating one, 

indicate that the local strains within the latter are higher with respect to the averaged 

macroscopic strains, thus inducing higher GF values [28]. In this case, the increase of 

the GF with increasing strain is ascribed to larger induced variations in the conductive 

network due to larger induced local strains on the matrix. 

 

Conclusions 

SBS/MWCNT composites were processed by solution casting with different MWCNT 

contents. It was found that both the architecture of the block copolymer elastomer (i.e., 

radial vs linear) and the styrene/butadiene ratio influence the electrical conductivity of 

the SBS/MWCNT composites. Conversely, regarding the mechanical properties, the 

influence of the SBS architecture was not observed, with the mechanical response being 

dominated by the styrene/butadiene ratio. Hopping between nearest fillers is the main 

mechanism for the composite electrical conduction; the overall composite conductivity 
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is explained by the existence of a weak disorder regime. Finally, the obtained values for 

the Gauge Factor reveal the potential of these materials for large strain sensor 

applications. 
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Figure 1 – SEM images for MWCNT/SBS composites (C540 with 1% -above, and 4% 

wt -below) with two different magnification where is possible to observe both clusters 

dispersed in the polymer matrix and individual CNT. The small MWCNT clusters are 

observed for all composites, well distributed within the different polymer matrices. 

 

Figure 2- Stress-Strain curves for different pure SBS. 

  

Figure 3 – a) Stress-strain curves of SBS C540 filled with different contents of 

MWCNT and b) stress-strain curves for SBS/MWCNT composites with 1.95-3.68x10-2 

volume fraction of MWCNT. 

 

Figure 4 - Initial modulus for the different matrix as a function of the MWCNT 

contents. See also table 2 for the C540/MWCNT samples. 

 

Figure 5 – a) Log-Linear plot of the electrical conductivity versus volume fraction of 

MWCNT for the SBS matrices and b) volume electrical conductivity of SBS/MWCNT 

nanocomposites versus volume fraction. The linear relations indicate that the electrical 

conductivity is due to hopping between the fillers. 

  

Figure 6 – 0 0) for the 

SBS/MWCNT composite (for 10 loading-unloading cycles. b) Gauge Factor, GF, as a 

function of strain for the C540 matrix with 1.95x10
-2

 volume fraction MWCNT.  
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Tables  

 

Table 1 – Characteristics and denomination of the SBS used in this work. 

SBS reference C401 C411 C500 C540 

Block copolymer structure radial radial linear linear 

Styrene/Butadiene ratio 20/80 30/70 30/70 40/60 
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Table 2 – Mechanical properties of SBS C540/MWCNTs composites. 

Sample E 300 900 break break 

 MPa MPa MPa MPa % 

0 43.9 ± 2.21 3.47 ± 0.17 8.55 ± 0.35 22.1 ± 1.13 1350 ± 75 

1.24x10
-3

 43.2 ± 2.20 3.31 ± 0.16 8.94 ± 0.39 23.6 ± 1.16 1344 ± 77 

4.96x10
-3

 54.4 ± 2.51 1.90 ± 0.10 10.19 ± 0.52 11.8 ± 0.61 970 ± 48 

9.87x10
-3

 50.2 ± 2.42 3.17 ± 0.16 10.39 ± 0.54 27.6 ± 1.36 1330 ± 75 

1.95x10
-2

 60.4 ± 3.11 3.47 ± 0.17 10.9 ± 0.57 16.96 ± 0.75 1157 ± 71 

3.83x10
-2 

114.0 ± 5.51 3.17 ± 0.16 6.63 ± 0.32 10.9 ± 0.53 1370 ± 76 
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Table 3. Percolation threshold and critical exponents calculated for the different SBS 

nanocomposites (R
2
 is the coefficient of linear correlation). 

C401 C411 C500 

c t R
2
 

max 

(nm) 

c t R
2
 

max 

(nm) 

c t R
2 max 

(nm) 

9.18x10
-

3
 

3 0.999 1.67 
2.22x10

-

3
 

1 0.843 6.89 
1.47x10

-

3
 

2 0.998 10.4 
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Figures 

 

  

  

Figure 1 – SEM images for MWCNT/SBS composites (C540 with 1% -above, and 4% wt -

below) with two different magnification where is possible to observe both clusters dispersed in 

the polymer matrix and individual CNT. The small MWCNT clusters are observed for all 

composites, well distributed within the different polymer matrices. 
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Figure 2- Stress-Strain curves for different pure SBS. 
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Figure 3 – a) Stress-strain curves of SBS C540 filled with different contents of 

MWCNT and b) stress-strain curves for SBS/MWCNT composites with 1.95-3.68x10-2 

volume fraction of MWCNT. 
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Figure 4 - Figure 4 - Initial modulus for the different matrix as a function of the 

MWCNT contents. See also table 2 for the C540/MWCNT samples. 
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Figure 5 – a) Log-Linear plot of the electrical conductivity versus volume fraction of 

MWCNT for the SBS matrices and b) volume electrical conductivity of SBS/MWCNT 

nanocomposites versus volume fraction. The linear relations indicate that the electrical 

conductivity is due to hopping between the fillers. 
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Figure 6 – a) Variation of the electrical resistance (R/R0) with strain (L/L0) for the 

SBS/MWCNT composite (for 10 loading-unloading cycles. b) Gauge Factor, GF, as a 

function of strain for the C540 matrix with 1.95x10
-2

 volume fraction MWCNT.  

 

 

 


