Computational tools for strain optimization by
tuning the optimal level of gene expression
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Abstract In this work, a plug-in for the OptFlux Metabolic Engineering platform
is presented, implementing methods that allow the identification of sets of genes to
over/under express, relatively to their wild type levels. The optimization methods
used are Simulated Annealing and Evolutionary Algorithms, working with a novel
representation and operators. This overcomes the limitations of previous approaches
based solely on gene knockouts, bringing new avenues for Biotechnology, fostering
the discovery of genetic manipulations able to increase the production of certain
compounds using a host microbe. The plug-in is made freely available together with
appropriate documentation.

1 Introduction

To reach biological ways of production for compounds of industrial interest, the
metabolism of the selected host microbe usually needs to be modified. Metabolic
Engineering (ME) is an essential field addressing these issues [1], being one of its
main tasks to identify gene manipulations that increase production yields. To attain
this goal, there is the need to develop accurate and efficient computational methods
at three different levels: reconstruction of genome-scale metabolic models (GSMs),
phenotype simulation and strain optimization. Currently, several GSMs containing
information regarding the microbes’ metabolism and the transcriptional information
are available, for several microbes (e.g. Escherichia coli [2]).
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One popular method to simulate the phenotype of cells, assuming a pseudo-
steady state, is Flux Balance Analysis (FBA) [3]. FBA aims to maximize cell
growth, by solving a linear programming problem, subject to stoichiometric and
reversibility constraints. Other approaches have been suggested, such as parsimo-
nious enzyme usage FBA [4].

A bi-level strain optimization problem can be formulated assuming an inner-
layer, the phenotype simulation method, and an outer-layer, optimization algorithms
that search for the best set of genetic modifications to apply to a microbe. Several
methods based on this structure were suggested, such as OptKnock [5] which aims
to identify a set of reactions to be deleted from the metabolic model. Evolutionary
Algorithms (EA) have been proposed as an alternative, providing methods such as
OptGene [6], identifying near optimal solutions for large problems in a reasonable
amount of time. Recent work by the authors’ research group proposed alternatives
based on Simulated Annealing (SA) and a variable size set-based solution represen-
tation enabling the identification of the optimal number of reaction deletions [7].
Also, they proposed methods that use the transcriptional/translational information
available in some GSMs, allowing the prediction of a set of gene knockouts, instead
of reaction deletions [8].

Another approach was suggested in OptReg [9] that aims to overcome one of the
major limitations of previous methods, which restrict modifications to gene knock-
outs. OptReg works with reaction under/overexpression, where a reaction is over
(under) expressed if it has a flux considerably higher (lower) when compared to the
wild type fluxes. OptKnock and OptReg have some limitations, mainly due to the
computational burden imposed by the mixed integer linear programming formula-
tion, as well as the restriction that imposes the linearity of the objective functions.
EAs and SA have proven to address well these issues in previous work [7].

In this work, the focus is in the development of computational tools for ME that
allow to work with sets of over/under expressed genes. These tools provide the im-
plementation of (i) methods for phenotype simulation of under and overexpression
mutant strains and (i) strain optimization algorithms based on SA and EA allowing
to reach sets of genes to over/underexpress optimizing the production of a specific
target compound. These tools are integrated as a plug-in within the OptFlux plat-
form [10], being validated with a simple model for consistency check and a real
case with E. coli as a host for the production of succinic and lactic acid.

2 Methods

2.1 Phenotype simulation with over/under expressed genes

Flux Balance Analysis (FBA) [3] depicts the mass balance of all internal metabolites
as linear equations. It assumes that the sum of all consumptions and productions
is null. Therefore, for M metabolites and N reactions we have the following con-
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straints: ley: 18ijvj=0,i=1,...,M. Other restrictions (reversibility, thermodynam-
ics, capacity constraints) are represented as inequalities: o; <v; < B;,j=1,...,N.
Using linear programming, FBA maximizes a specific optimization function, usu-
ally the biomass formation, subject to the previous restrictions.

In this work, we use the parsimonious enzyme consumption FBA (pFBA) method
[4]. The pFBA firstly runs a FBA simulation optimizing the biomass flux value.
Afterwards, it adds a constraint which forces the biomass flux value to be equal to
the optimal value found in the previous step. Finally, a new optimization problem is
formulated minimizing the sum of all fluxes and it is solved. This method tends to
predict better the phenotype of the microbe [4].

The simulation of the mutant has as input a list of genes and associated expres-
sion values, relating the gene expression to its level in the wild type. If the expression
value is 0, it encodes a gene deletion, if it is less than 1, it deems a gene underex-
pression; a value higher than 1 is an overexpression. Since these are gene expression
values, they need to be propagated to reaction flux values. The simulation process
is made in two steps: (i) using the transcriptional/translational information, the gene
expression values are decoded into constraints over reactions fluxes (the process of
decoding is depicted in Figure 1b); (ii) these constraints are then added to the pFBA
optimization problem and solved as usual (Figure 1c).

Regarding (i), transcriptional/translational information is given in the form of
gene-reaction rules represented as Boolean expressions. Since we are working with
numerical values of expression, a strategy to convert the Boolean operators to nu-
merical values is needed. The AND operator is transformed into the minimum func-
tion and the OR operator is the average. To generate the constraints to add to the
linear programming problem in pFBA, a reference set of flux values is provided by
the simulation of the wild type strain (also with pFBA). If the relative value of a
given reaction is equal to one, no constraints are added. On the other hand, if the
value is larger (smaller) than 1, a constraint is added forcing the flux to be higher
(lower) than the wild type reference value (see Figure 1 c).

2.2 Strain optimization

In the representation adopted, each solution is composed by a list of pairs, each
made by a gene index and the respective expression level (two integers). The ex-
pression level encodes a series of possible expression values. A discrete represen-
tation is used, greatly reducing the solution space and, therefore, the complexity of
the optimization task.

To fairly distribute the discrete values of expression between under and overex-
pression and not disregarding knockouts, we defined a logarithmic scale containing
the values: 0,277,277+ .. 2=1 222 27=1 2" The parameter n will define the
maximum (minimum) range of overexpression (underexpression). As depicted in
Figure 1, after decoding the gene expression values to reaction flux levels and ap-
plying the constraints to the model, a pFBA simulation is run and returns the fluxes
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Fig. 1: Global scheme of the solution’s decoding and evaluation: a) shows the de-
coding of the expression index to real values; b) shows the transformation of gene
expression values to reaction flux values, using the transcriptional information avail-
able in the model; c) the under and overexpression constraints are calculated based
on the reference values, and then applied as override constraints to the model; the
simulation of the mutant is run and the reaction fluxes are sent to the BPCY evalua-
tion function to measure the quality of the solution.
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of the reactions in the model. To measure the quality of the solution, we use an
objective function termed as Biomass-Product Coupled Yield (BPCY) [6].

In this work, EAs and SA were used as the optimization methods. These are
similar to the ones previously proposed by the authors research group for knockout
optimization [7]. The major change in these algorithms was the novel representa-
tion presented above. Six reproduction operators were used: (i) an operator based
on the uniform crossover, which works as follows: the genes regulated on both par-
ent genomes are sent to one of the offspring; the others are randomly sent to the
offspring; (ii) two random mutation operators that randomly modify the gene and
the expression value indexes; (iii) a mutation operator which changes the expres-
sion value index of a pair by the next or previous value; (iv) to generate solutions
with different sizes two mutations operators: the shrink mutation operator removes
a selected pair and the grow mutation operator adds a new pair.

3 Implementation

The framework proposed in this work was developed in JAVA within the OptFlux
platform (http://www.optflux.org) [10]. OptFlux is an open source ME
platform with an user-friendly interface. It has a modular structure, enabling the pos-
sibility to easily develop plug-ins adding new features to the application. OptFlux
includes operations to run in silico phenotype simulations of the wild type or mutant
strains using several methods. Users can also perform strain optimization selecting
gene knockouts or reaction deletions. The software supports importing/exporting
GSMs in several file formats, such as flat files and standard SBML.

OptFlux interface is built on top of AlBench (http://www.aibench.org)
[11], using it to help producing GUI components such as the clipboard, the panels
and views. AlBench is a Java framework that eases the development of applications
based in the Input-Processing-Ouput paradigm, being developed according to the
MVC (Model-View-Controller) strategy.

The plug-in proposed enables OptFlux users to perform operations involving mu-
tants with a set of genes that are over/underexpressed. The user can perform the
phenotype simulation of mutant strains specifying a set of genes and their relative
expression levels or a set of reactions with relative flux levels. The methods avail-
able for the simulation are the same provided for knockouts, including the FBA and
pFBA described above, among others.

Users have the possibility to perform strain optimization to find both sets of genes
or reactions and their relative levels of expression. Both EA and SA are available
to be selected as optimization methods and the user can configure the objective
function, the termination criterion (e.g. maximum number of solutions evaluated)
and other parameters. Also, the target compound and the biomass reaction need to
be defined.

The plug-in is available for download through the OptFlux web site. Documen-
tation is also available regarding the plug-in, with a detailed How-to where the main
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steps to configure and perform the operations are depicted. Figure 2 shows the con-
figuration panels of the simulation and optimization operations, providing also an
example of the views used to present the output solutions.

Model

=

Optimization /\ Simulation

Fig. 2: A summary of the panels and menus of the proposed plug-in. Panel 1 shows
the model loaded on OptFlux; through the menu bar in 2 the user can chose to
simulate the mutant phenotype or to run strain optimization; 3 depicts the menu
for configuration of the optimization, while 5 shows the results; simulation is made
through the menu in 4, where the user can choose each gene and the expression
level (the framework previews the constraints to be applied); the simulation results
appear in a panel shown in 6.
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4 Case studies

The validation process for this software, in a first step, has been done using a small
model containing transcriptional/translational information [12]. The model is por-
trayed in Figure 3 a), showing the fluxes of the wild type with an FBA simulation,
where it produces P2 and does not produce P1. Therefore, in order to validate our
framework we defined as objective function the maximization of the production of
P1. Regarding this problem, it is easily perceptible that two solutions may be found:
the knockout of G3 and G4 and therefore the deletion of R3 and R4; or the deletion
of G5 and G6 that leads to the deletion of RS (both gene deletions are needed since
they regulate RS by an OR operator). The drain reactions (R_P1, R_P2, R_Biomass
and R_Substrate) were set to be critical and by that means impossible to be regu-
lated. We ran the framework for this problem with a number of function evaluations
enough to assure that a good solution was found. Easily, the framework found a so-
lution producing the maximum level of P1, as desired, suggesting the first solution
mentioned: the deletion of G3 and G4 (Figure 3 b).
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Fig. 3: Toy model from [12] showing the wild type flux distribution (flux of P2 =
10 and biomass flux = 1.2), a). The second picture, b), shows the mutant simulation
with the best solution suggested by the framework optimizing the production of P1.
R1 and R2 are now active leading to the maximum production of P1 (10) and to a
flux 0.8 in biomass.

This framework was tested with a larger case study, involving the production
of succinic and lactic acid in Escherichia coli. The model used is from [2] and it
contains 1075 reactions, 761 metabolites and 904 genes. The obtained results are
presented elsewhere [13] and are considerably better when compared to the strain
optimization based on gene knockouts, being the difference substantially larger with
lactic acid production. Another important result is the fact of the under and over-
expression solutions are, in general, quite small, increasing the feasibility of the
genetic manipulations suggested.
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5 Conclusion

Strain optimization based on gene knockouts is widely used in Biotechnology, since
it can greatly reduce production costs. Here, a framework is proposed based on
gene/reaction under/overexpression that overcomes the knockout optimization lim-
itations. Thus, this work expands the available set of computational tools available
for ME experts, being well integrated within a broad platform such as OptFlux.

Future work will focus on further validation of the framework with other case
studies. An improvement to the handling of constraints regarding reactions with
zero flux in the wild type will be considered. Also, existing tools to analyse the
solutions in silico will be improved.
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