Antitumour Heterocycles. Part 16.1 The Synthesis of 7,10-Dimethoxyellipticine and its Pyrrolo[2,3-*f***]carbazole and Pyrrolo[3,2-***f***] Analogues**

Pryanthi Dharmasena,*^a* **Ana M. F. Oliveira-Campos,***^b* **Maria J. R. P. Queiroz,***^b* **M. Manuela M. Raposo,***^b* **Patrick V. R. Shannon****^a* **and Christine M. Webb***^a*

a Department of Chemistry, University of Wales, Cardiff, P.O. Box 912, Cardiff, UK b Department of Chemistry, University of Minho, Campus de Gualtar, 4700 Braga, Portugal

The final examples in our ellipticine/pyrrolocarbazole synthesis programme are 7,10-dimethoxyellipticine **1a** and the corresponding pyrrolocarbazoles **2a** and **3a** which have been synthesised from 4,6-dimethoxyindole.

This paper describes an efficient synthesis of the novel 7,10-dimethoxyellipticine **1a** and of the pyrrolocarbazole analogues **2a** and **3a**.

Earlier work³ had shown that formylation of the carbazole **4** gave, predictably, the aldehyde **5** but experience suggested that its isomer **7c** would prove a successful precursor to the new ellipticine **1a**. Following the use of a carbazole nitrile in our synthesis of 8,10-dimethoxyellipticine,⁴ Goldberg⁶ coup-

ling of the nitrile **12** with the bromide **11c** gave the amide **13c** (70%) which on alkaline hydrolysis afforded the diphenylamine **14c** (71%). Palladium acetate oxidation of the latter, however, gave only a very poor yield of the desired cyanocarbazole **15c**, together with a major by-product **16** (*ca.* 9%) (Scheme 1) and other acetoxylated products.

The carbazole 4 , prepared either as previously³ or by the route shown in Scheme 2, was brominated with pyridinium hydrobromide perbromide in dichloromethane to give almost exclusively the required 6-bromo derivative **21**. In order to investigate the possibility of a rearrangement from an initially formed 3-bromo intermediate **27** (Scheme 4) we first carried out the bromination in [²H₅] pyridine with step-wise addition of an excess of brominating agent, and ¹H NMR analysis of the reaction mixture. Both the bromides **27** and **21**, which were formed simultaneously, were identified from their ¹H NMR spectra in the ratio 2:1 as intermediates to the 3,6-dibromide **28** (Scheme 5), these being the only compounds observed. Chromatography afforded pure samples of the carbazoles **21**, **27** and **28**. When the reaction was repeated in dichloro^{[2}H₂]methane (the synthetic intermediate was prepared in dichloromethane), the predominant intermediate to the dibromocarbazole **28** was the bromocarbazole **21** with only a minute trace of the 3-bromocarbazole **27**. When a 1:1 mixture of carbazoles 4 and 27 was kept in dichloro^{[2}H₂]methane in the presence of an excess of HBr, no change was evident during the first 5 h. However, on standing for 4 days the 3-bromocarbazole **27** had completely rearranged to the 5-bromo isomer **21**. This rearrangement was much too slow to implicate the bromo derivative **27** as a significant intermediate in the rapid bromination of carbazole **4** to **21** in

Scheme 2 and 4

dichloromethane. We conclude that bromination of carbazole **4** to **21** is rapid and direct in dichloromethane in contrast to the reaction in pyridine in which the predominant monobromocarbazole is **27**; presumably rearrangement is precluded by the absence of free HBr.

Treatment of the bromide 21 with copper (i) cyanide in refluxing dimethylformamide (*cf.* ref. 7) gave the carbazole nitrile **22** (52%) instead of the 6-cyanocarbazole. This solid (mp 289–291 °C) was clearly in the conformation with the two carbazole systems in orthogonal planes; two OMe singlets, the 4- and 1'-signals, were at abnormally high field and *To receive any correspondence. the 8[']-methyl singlet, similarly, was at δ 1.88. The bromo-

J. Chem. Research (S), 1997, 398–399 *J. Chem. Research (M)*, 1997, 2501–2532

 CMA

Ĥ

 21

Pyridinium hydrobromide perbromide $[{}^2H_5]$ pyridine

 \mathbf{H} $\overline{27}$ Ĥ

 28

Techniques used: ¹H-NMR, mass spectrometry

References: 13

Schemes: 6

Received, 1st July 1997; Accepted, 12th August 1997 Paper E/7/04615D

References cited in this synopsis

- 1 Part 15, L. Chunchatprasert, W. Cocker and P. V. R. Shannon, J. Chem. Res., 1997, (S) 2; (M) 0101.
- $\overline{3}$ R. J. Hall, P. Dharmasena, J. Marchant, A. M.-F. Oliveira-Campos, M. J. R. P. Queiroz, M. M. Raposo and P. V. R. Shannon, J. Chem. Soc., Perkin Trans. 1, 1993, 1879.
- 4 L. Chunchatprasert, P. Dharmasena, A. M. F. Oliveira-Campos, M. J. R. P. Queiroz, M. M. M. Raposo and P. V. R. Shannon, J. Chem. Res., 1996, (S) 84; (M) 630.
- 6 (a) P. E. Weston and H. Adkins, J. Am. Chem. Soc., 1928, 50, 859. (b) P. M. Dharmasena, A. M. F. Oliveira-Campos, M. M. M. Raposo and P. V. R. Shannon, J. Chem. Res., 1994, (S) 296; (M) $1601.$
-
- 7 L. Friedman and H. Shechter, J. Org. Chem., 1961, 26, 2522.
12 R. E. Bolton, C. J. Moody, C. W. Rees and G. Tojo, J. Chem.
Soc., Perkin Trans. 1, 1987, 931.

carbazole 21 was, however, converted directly into the aldehyde 7c (74%) with tert-butyllithium and dimethylformamide (cf. ref. 12). The aldehyde was condensed with aminoacetaldehyde diethyl acetal to the Schiff's base 23 (97%) which was converted into the amine $24(94%)$ and the sulfonamide 25 (37%) before cyclisation in hydrochloric acid-dimethyl sulfoxide to give a mixture of the N -tosyldihydroellipticine 26 (27.6%) and ellipticine 1c (63%) (Scheme 3). Chromatography and crystallisation gave the ellipticine 1c (mp $235 - 237$ °C). Considerable losses of the ellipticine occurred on chromatography.

Scheme 5

Condensation of 4,7-dimethoxyindole with the pyrrole 29 in the presence of K-10 montmorillonite clay was expected to give a complex range of products.

After extensive chromatography and fractional crystallisation, pure samples of the expected pyrrolocarbazoles 3a and 2a were isolated. The structures of these isomers and the by-products 30, 31, 32 and 33 (Scheme 6) followed unambiguously from their spectroscopic properties.