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We construct dark solitons in the recently introduced model of the nonlinear dual-core coupler with
the mutually balanced gain and loss applied to the two cores, which is a realization of parity-time
symmetry in nonlinear optics. The main issue is stability of the dark solitons. The modulational
stability of the continuous-wave background, which supports the dark solitons, is studied analytically,
and the full stability is investigated in a numerical form via computation of eigenvalues for modes
of small perturbations. Stability regions are thus identified in the parameter space of the system
and verified in direct simulations. Collisions between stable dark solitons are briefly considered too.
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I. INTRODUCTION

The concept of the parity-time PT symmetry was orig-
inally elaborated in the field theory [1] as a generalization
of the canonical conservative systems, which are based on
Hermitian Hamiltonians, for special cases of dissipative
systems which include exactly balanced and spatially sep-
arated linear gain and loss. Such systems are described
by non-Hermitian Hamiltonians, whose Hermitian and
anti-Hermitian parts are spatially even and odd, respec-
tively. A distinctive feature of the non-Hermitian Hamil-
tonians, which are subject to the condition of the PT
symmetry, is the fact that, up to a certain critical value
of the strength of their anti-Hermitian (dissipative) part,
the spectrum of such Hamiltonians may remain purely
real (physical). When this occurs, a PT -symmetric non-
Hermitian Hamiltonian can be eventually transformed
into a Hermitian one by means of similarity transforma-
tions [2].
In terms of the quantum theory, PT -symmetric sys-

tems are the settings of theoretical interest. For the re-
alization of the PT symmetry in real settings, one can
make use of the fact that the linear propagation equation
derived for optical beams in the paraxial approximation
has essentially the same form as the Schrödinger equa-
tion in quantum mechanics, in one- and two-dimensional
(1D and 2D) cases alike. In other words, the evolution
of the wave function of a quantum particle may be emu-
lated by the transmission of an optical beam, as in both
cases the wave propagation follows the same principles.
This fact makes it possible to simulate many quantum
mechanical phenomena by means of relatively simple set-
tings which can be realized in classical optics [3]. In this
vein, the realization of PT -symmetric settings in optical
systems, which combine spatially symmetric refractive-
index landscapes and mutually balanced spatially sepa-
rated gain and loss, was proposed in Ref. [4] (see also
Ref. [5] for subsequent early development of optical ap-
plications) and experimentally demonstrated in Ref. [6].
Typically, the models amount to the 1D or 2D linear

Schrödinger equations with a complex potential, whose
real and imaginary parts are, respectively, spatially even
and odd. Another possibility for the realization of the
PT -symmetric settings in optics, in the form a dual-core
coupler, with the mutually balanced gain and loss applied
to the two cores, was recently proposed in Refs. [6, 7] for
stationary regime of light propagation and in Refs. [8–10]
for the bright optical solitons which exist when the arms
of the coupler obey Kerr nonlinearity. In this last setting,
the solitons are available in the exact analytical form,
and their stability boundary can be found analytically
too [8, 10].

A natural extension of the analysis of the nonlinear
PT -symmetric systems is to search for stable dark soli-
tons in them, which is subject of the present work. We
notice that the dark solitons in a parabolic potential
with a PT -symmetric non-Hermitian part, where they
can be considered as the nonlinear modes bifurcating
from the first excited state of the linear PT -symmetric
parabolic potential, have recently been addressed in the
literature [11].

An alternative natural setting for the consideration of
dark solitons in PT -symmetric optical systems is pro-
vided by the above-mentioned dual-core system. As well
as a broad class of other solutions, dark solitons in this
system can be easily found in an exact form [8], with
the actual problem being the analysis of their stability
and interactions. The model is introduced in Sec. II.
The modulational stability of the continuous-wave back-
ground, supporting the dark solitons, which is a necessary
condition for their stability, is investigated in an analyti-
cal form in Sec. III. The mathematical framework for the
full analysis of the dark-soliton stability is introduced in
Sec. IV, and numerical results, which can be summarized
in the form of stability diagrams for the PT -symmetric
dark solitons, are reported in Sec. V. Collisions between
dark solitons are briefly considered in Sec. V too. In
Sec. VI we address the scenarios of evolution of dark
solitons in the “near-PT ” case, when the dissipation and
gain almost (but not exactly) compensate for each other.
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The paper is concluded in Sec. VII.

II. THE MODEL

We start with the system of equations for scaled field
variables q1,2:

i
∂q1
∂z

= −∂
2q1
∂x2

+
(
χ1|q1|2 + χ|q2|2

)
q1 + iγ1q1 − q2, (1a)

i
∂q2
∂z

= −∂
2q2
∂x2

+
(
χ|q1|2 + χ2|q2|2

)
q2 − iγ2q2 − q1,(1b)

Here the linear-coupling constant is scaled to be one, pos-
itive coefficients γ1 and γ2 account for the gain and loss,
respectively, in the two cores, while χ and χ1,2 are real
coefficients of cross-phase modulation (XPM) and self-
phase modulation (SPM).
Since the subject of the work is the existence and dy-

namics of dark solitons, it is first necessary to address the
existence and modulational stability of the continuous-
wave (CW) background, i.e., solutions in the form of

q1,2 (z, x) = u1,2 exp (−ibz) , (2)

with complex amplitudes u1,2 and real propagation con-
stant b. The substitution of this into Eqs. (1) yields

|uj |2 =
|γ1 − γ2|

√
1− γ1γ2

|γ2(χ1 − χ) + γ1(χ− χ2)|

√
γ3−j

γj
, j = 1, 2,

(3)
while the relative phase, δ ≡ arg u2 − arg u1, is deter-
mined by relation

tan δ = [2Θ(γ1 − γ2)− 1]

√
γ1γ2√

1− γ1γ2
, (4)

where Θ(x) is the Heaviside step function. The propaga-
tion constant of this solution is

b =
cos δ
√
γ1γ2

γ21χ2 − γ22χ1

γ2(χ1 − χ) + γ1(χ− χ2)
. (5)

Note that, according to Eq. (3), the CW amplitudes in
the two components are related by |u2|2/|u1|2 = γ1/γ2,
which implies the balance between the gain and loss
in the CW state. Further, it follows from Eq. (3)
that the background amplitudes have a singularity at
γ2/γ1 = (χ − χ2)/(χ − χ1) ̸= 1, and this solution ex-
ists only at 0 < γ1γ2 < 1. This last condition has simple
physical explanation: It requires the gain (dissipation)
in one arm to be small enough to be compensated by
the energy flow to(from) the other arm with dissipation
(gain), the flow being limited by the strength of linear
coupling (responsible for the power transfer between the
arms), which in our case is normalized to one.
In what follows we concentrate on the case of the PT

symmetry, with γ1 = γ2 = γ. Then, it follows from
Eq. (3) that the nonzero CW background may exist only

with symmetric SPM coefficients, χ1 = χ2, and for γ < 1;
hence it is convenient to define γ ≡ sin δ, with 0 ≤ δ ≤ π,
and rewrite Eqs. (1) as

i
∂q1
∂z

= −∂
2q1
∂x2

+
(
χ1|q1|2 + χ|q2|2

)
q1 + i sin(δ)q1 − q2,

(6a)

i
∂q2
∂z

= −∂
2q2
∂x2

+
(
χ|q1|2 + χ1|q2|2

)
q2 − i sin(δ)q2 − q1.

(6b)

In comparison with the model of the PT -symmetric
dual-core fiber, which was introduced in Refs. [8, 9],
Eqs. (6) include the XPM terms, which implies a
non-negligible overlap between transverse modes sup-
ported by the two cores. Recently, it was demonstrated
that, in comparison with the well-known results for the
SPM-nonlinear dual-core system with the purely linear
coupling [12], the addition of the XPM terms essen-
tially affects the symmetry-breaking transformations of
bright solitons [13] and patterns in the form of domain
walls [14] in the conservative nonlinear coupler, whose
model amounts to Eqs. (6) with δ = 0.

III. MODULATIONAL STABILITY OF THE CW
BACKGROUND

CW solutions of Eqs. (6) with equal amplitudes follow
from expressions (3):

q
(0)
j = ρ exp

[
i(−1)j(δ/2)− ibz

]
, b = ρ2(χ1+χ)−cos δ.

(7)
Here j = 1, 2, and components have phase mismatch δ
imposed by the gain-loss coefficient.

To analyze the modulational stability of the CW (7),
we use the standard ansatz with arbitrary real perturba-
tion wavenumber k, the corresponding eigenvalue, β, and
infinitesimal perturbation amplitudes, ηj , νj :

qj = ρ
[
ei(−1)jδ/2 + ηje

−i(βz−kx) + ν̄je
i(β̄z−kx)

]
e−ibz.

(8)
Then, two branches β = β1,2(k) of the linear excitations
are readily found as

β1(k) ≡ ±k
√
k2 + 2ρ2(χ1 + χ), (9)

β2(k) ≡ ±
√

[k2 + 2 cos δ] [k2 + 2 cos δ + 2ρ2(χ1 − χ)].

(10)

From relation (9) it follows that, for the stability of the
background, one has to require

χ1 + χ ≥ 0, (11)

the constraint which is also necessary for the modula-
tional stability of the CW background in the conservative
system (δ = 0), and which is imposed in what follows.
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Equation (10) gives rise to two other conditions for the
modulational stability,

cos δ ≥ 0, i.e., 0 ≤ δ ≤ π/2; (12)

(χ1 − χ)ρ2 + cos δ > 0. (13)

FIG. 1: Domains of the modulational stability (dashed) and
instability (white) in the (b, χ1) plane for fixed γ ≡ sin δ =
0.7 (a), and in the (b, γ) plane for fixed χ1 = 0.5 (b), or
χ1 = −0.3 (c). In all the panels χ = 1. In panel (a) the left
edge corresponds to the limit form χ1 + χ = 0 of condition
(11), while the bottom edge is given by b = − cos(δ). The
inset in panel (a) presents the stability domain in the (ρ2, χ1)
plane.

In the case of self-focusing SPM, χ < 0, the stability
domain is determined by Eqs. (11) and (12) [if these two
conditions are met, Eq. (13) is satisfied automatically].
This, in particular, means that the stability of the CW
does not depend on its amplitude ρ, being determined
solely by the interplay between the SPM and XPM coef-
ficients.
The situation is qualitatively different for the defocus-

ing SPM, χ > 0. Now, one can identify the two distinct
cases. First, if χ1 > χ [this domain is located to the
right of the vertical dashed line in Fig. 1(a)], then Eq.
(13) is reduced to Eq. (12), thus giving nothing new, the
background being stable at any amplitude ρ2. If, how-
ever, χ1 < χ [in Fig. 1(a), this is the domain to the left
of the vertical dashed line], then, for the stability of the
background one needs ρ2 < ρ2max = cos δ/(χ − χ1) or,
equivalently, b < 2χ1 cos δ/(χ− χ1).
In this situation (i.e., when χ1 < χ) the increase of the

gain-loss coefficient, (i.e. of δ), results in narrowing the
modulational stability domain, which collapses at δ =
π/2 (γ = 1) as shown in Figs. 1(b) and 1(c). The limit
case of χ1 = −χ deserves special consideration, since in
this case system (6) becomes effectively linear for equal
amplitudes of components |q1| = |q2| = ρ. As a result,
propagation constant b = − cos δ does not depend on ρ.
Here CW is stable when ρ2 < ρ∗2 = (cos δ)/(2χ). At the
same time, value ρ∗ defines a global stability threshold:
If ρ < ρ∗, the CW background is stable at any value of
χ1 > −χ [see the inset in Fig. 1(a)].

IV. STATIONARY DARK SOLITONS AND
THEIR LINEAR STABILITY

Turning to the study of the dark-soliton solutions, we
focus on the situation when both components have the
same intensity profile, i.e.,

qj(x, z) = u(x, z)ei(−1)jδ/2 (j = 1, 2), (14)

and thus reduce Eqs. (6) to the standard nonlinear
Schrödinger equation,

i
∂u

∂z
= −∂

2u

∂x2
+ (χ1 + χ)|u|2u− cos(δ)u, (15)

whose dark-soliton solution is commonly known [15]:

us(x, z) =
iv − w tanh (w(x− vz)/2)√

2(χ1 + χ)
e−ibz. (16)

Here b is given by Eq. (7), and real parameters v and
w, which determine the “velocity” (in fact, the spatial
tilt) and the depth of the soliton, are linked by relation
w2 + v2 = 2(χ1 + χ)ρ2.

Below we focus on the fundamental dark soliton with
zero velocity v = 0 (also known as the black soliton),
us(x, z) = u0(x)e

−ibz, where

u0(x) = ρ tanh

(
ρ

√
χ1 + χ

2
x

)
. (17)

To address its stability, we first notice that the CW
background must be modulationally stable; hence the
parameters to be considered are limited by constraints
(11)–(13). Further, to study the linear stability of the
entire dark soliton (17), we adopt the perturbation solu-
tion as

qj(x, z) =
[
u0(x) + u′j(x, z) + iu′′j (x, z)

]
ei(−1)jδ/2−ibz,

(18)
with infinitesimal perturbation amplitudes u′1,2(x, z) and
u′′1,2(x, z)|. Then, substituting expressions (18) into
Eq. (15), we end up with the eigenvalue problem:

∂u

∂z
= Lu, u = col {u′1, u′′1 , u′2, u′′2} , (19)

with operators

L =

 sin δ L− − sin δ − cos δ
−L+ sin δ −L − sin δ
sin δ − cos δ − sin δ L−
−L sin δ −L+ − sin δ

 , (20)

L± ≡ − ∂2

∂x2
− b+ [(2± 1)χ1 + χ]u20, (21)

L ≡ 2χu20 − cos δ. (22)

Let us now prove that the stability analysis can be
reduced to two separate problems,

Ljψ = Λjψ (j = 1, 2), (23)
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where the operators are

L1 ≡ (L+ − L)(L− + cos δ), (24a)

L2 ≡ (L− − cos δ)(L+ + L) (24b)

such that ImΛ1,2 = 0 and ReΛ1,2 > 0 constitute neces-
sary and sufficient conditions for the linear stability of
the soliton.
To this end, we notice that SU(4) rotation

P =
1√
2

 0 −1 0 1
1 0 1 0
0 −1 0 −1

−1 0 1 0

 (25)

provides for a unitary transformation, L0 = PLP−1,
with

L0 =

 0 0 0 L− L+

0 0 cos δ − L− −2 sin δ
2 sin δ L+ + L 0 0

L− + cos δ 0 0 0

 .

(26)
Since the eigenvalues of L and L0 coincide, we can

consider the spectrum of the latter linear operator. Tak-
ing into account that both L and L0 are built of real
coefficients, solutions can be looked for in the form of
u′1,2, u

′′
1,2 ∼ exp(iλz). Moreover, if λ is an eigenvalue,

then λ̄ is an eigenvalue as well (the overbar stands for
the complex conjugate). In other words, the absence of
an imaginary part of λ, which is equivalent to the condi-
tion that Λ = λ2 is real and positive, is a necessary and
sufficient condition for the absence of the instability.
As the next step, we consider the eigenvalue problem,

−L2
0Ψ = ΛΨ, where Ψ ≡ Pu, and we make use of the

block structure of L2
0:

−L2
0 =

 L1 0 0 0
4 sin(δ)L− L2 0 0

0 0 L2 4 sin(δ)L+

0 0 0 L1

 , (27)

where L1,2 were introduced in Eqs. (24). Now, a straight-
forward consideration demonstrates that Λ must coincide
with either Λ1 or Λ2. Thus, the study of the stability of
the dark solitons is reduced to eigenvalue problems (23).
Now, we notice that

L− − cos δ = − ∂2

∂x2
− (χ1 + χ)(ρ2 − u20), (28a)

L+ + L = L0 + 2(χ1 + χ)u20. (28b)

Therefore, taking into account Eq. (11), we conclude
that the eigenvalue problem for operator L2 is nothing
but the standard stability problem for the black soliton
in the defocusing medium, with the effective nonlinear-
ity χ1 + χ. This problem is very well studied [16, 17].
In particular, it is known that L+ + L is positive defi-
nite and L−− cos δ has only one negative eigenvalue and

FIG. 2: Regions of stability and instability of the dark soliton
(domains covered by dashed patterns and white ones, respec-
tively) in the (b, χ1) plane for fixed γ = 0.7 and χ = 1 (a), and
in the (b, γ) plane for fixed χ1 = 2.5, χ = 1 (b), or χ = −1
(c). In panel (a) the inset presents the same regions as the
main panel, but in the (ρ2, χ1) plane; χ∗

1 coincides with the
left edge of the inset.

one zero eigenvalue [16]. Moreover, it is known too [17]
that the minimal eigenvalue of L2 is positive. Thus, the
eigenvalue problem for L2 does not give instability, and
our subsequent analysis is performed below for operator
L1, which may give rise to instability.

V. NUMERICAL RESULTS

The results of the numerical analysis of the linear sta-
bility are depicted in Fig. 2. For the defocusing XPM, in
the subdomain −χ ≤ χ1 ≤ χ∗

1 (where χ∗
1 is the critical

value, denoted in Fig. 2(a) by the blue vertical line), the
dark-soliton stability region coincides with that for the
CW background, which is − cos δ ≤ b ≤ 2χ1 (cos δ) /(χ−
χ1) [or, equivalently, ρ2 ≤ (cos δ) /(χ − χ1)] for χ1 < χ
and b ≥ − cos δ for χ ≤ χ1 ≤ χ∗

1; see Fig.1(a). At the
same time, in subdomain χ1 ≥ χ∗

1 a dark-soliton instabil-
ity “wedge” is present: As seen from Fig. 2(a), the dark
soliton is stable when − cos δ ≤ b ≤ b1 or b2 ≤ b < ∞.
The value of the propagation constant, b1, at the lower
edge of the “wedge” [the green (gray) line in Fig. 2(a)] is
almost independent of SPM coefficient χ1 (except for a
small region in a vicinity of the critical value χ∗

1), while
the upper edge, b = b2 [the red (gray) line in Fig. 2(a)],
is a quasilinear function of χ1. With the increase of
γ = sin δ the dark-soliton instability “wedge” gradually
shrinks [see Fig. 2(b)], disappearing at γ = 1. For the
focusing or zero XPM, with χ = −1 or χ = 0, the dark
soliton is stable at − cos δ ≤ b ≤ b1 and unstable at
b > b1; see Fig. 2(c). It is relevant to note that b1 does
not depend on χ1, and almost coincides with b1, corre-
sponding to the defocusing XPM [cf. Figs. 2(b) and
2(c)], while b2 coincides with the vertical line, χ1 = −χ.

The linear stability analysis was completed by the di-
rect simulations of Eqs. (6). Typical examples of the per-
turbed evolution of stable and unstable dark solitons are
presented in Fig. 3. The predicted stability of the dark
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FIG. 3: The evolution of field components |q1(x, z)|2 (left
column) and |q2(x, z)|2 (right column) of dark soliton (17)
with γ = 0.7, χ1 = 2.5, χ = 1, and b = 0.5, ρ2 ≈ 0.347 (a),
b = 3.5, ρ2 ≈ 1.2 (b), or b = 8.5, ρ2 ≈ 2.633 (c). Panels
(a), (b), and (c) correspond to points A, B, and C in Fig. 2,
respectively.

soliton below the lower edge of the instability wedge, i.e.,
at b < b1, is confirmed by the simulations. For the dark-
soliton parameters corresponding to point A in Figs. 2(a)
and 2(b), the evolution of field component q1,2(x, z) is
shown in Fig. 3(a). Similarly, the evolution of the dark
soliton with parameters corresponding to point B, as well
as the stability of the dark soliton with the parameters
corresponding to point C in Figs. 2(a) and 2(b), are
demonstrated in Figs. 3(b) and 3(c), respectively.
For the focusing XPM, the stability and instability of

the dark solitons [points A′ and B′ in Fig. 2(c)] are also
confirmed by direct simulations; see Figs. 4(a) and 4(b),
respectively.
The robustness of the dark solitons can be also be

tested against interactions of two such solitons (kink-
antikink pairs). Thus, in this case we use the initial
condition at z = 0 in the form of

u(x) = ρ

[
tanh

{
ρ

√
χ1 + χ

2

(
x+

ℓ

2

)}
−

tanh

{
ρ

√
χ1 + χ

2

(
x− ℓ

2

)}
− 1

]
, (29)

where ℓ is the spatial separation between the two dark
solitons. As can be seen from Fig. 5, in the PT -
symmetric system the two dark solitons always (for both

FIG. 4: The same as in Fig. 3 but for γ = 0.5, χ1 = 2.5,
χ = −1, and b = 0.5, ρ2 ≈ 0.910 (a) or b = 3.5, ρ2 ≈ 2.910
(b). Panels (a) and (b) correspond to points A′ and B′ in Fig.
2, respectively.

FIG. 5: The evolution of field components |q1(x, z)|2 (left
column) and |q2(x, z)|2 (right column) of dark-soliton pair
(29) with χ1 = 2.5, ℓ = π/2 and χ = −1, γ = 0.5, b = 0.5,
ρ2 ≈ 0.910 (a), χ = 1, γ = 0.7, b = 0.5, ρ2 ≈ 0.347 (b), or
χ = 1, γ = 0.7, b = 8.5, ρ2 ≈ 2.633 (c). Panels (a), (b), and
(c) correspond to points A′, A, and C in Fig. 2, respectively.

the focusing [Fig. 5(a)] and defocusing [Figs. 5(b) and
5(c)] signs of the XPM) repel each other and start moving
in opposite directions without self-destruction. The re-
pulsion from the boundaries of the x domain in Fig. 5
happens due to the implied periodic boundary condi-
tions, and is equivalent to the repulsion between the dark
solitons. As can be seen from the comparison of Figs. 5(b)
and 5(c), the increase of b (while separation ℓ between
the dark solitons is kept unchanged) results in reduction
of the repulsion between the solitons and, consequently,
decrease of the solitons’ “velocities.” The reason for this
phenomenon is that larger b corresponds to a smaller soli-
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FIG. 6: The evolution of field components |q1(x, z)|2 (left
column) and |q2(x, z)|2 (right column) of the dark soliton with
initially separated components (30), for D = π/50. Other
parameters are the same as in Fig. 5.

ton width and, as a result, a larger ratio of separation ℓ
to the soliton’s width.
Another possibility to set dark solitons in motion is to

separate components in the initial condition, i.e., take

qj(x, 0) = u(x+ (−1)jD/2)ei(−1)jδ/2, (30)

where u(x) is borrowed from Eq. (17) and D is the ini-
tially imposed separation between the components. The
results of the corresponding simulations are represented
in Fig. 6. Here, for the defocusing XPM the “velocity”
of the dark soliton does not strongly depend upon prop-
agation constant b [cf. Figs. 6(b) and Fig. 6(c)]. The
situation is completely different from the previous case
[cf. Figs. 5(b) and 5(c)]. It should be noted that, in both
Figs. 5 and 6, the simulations were run for dark solitons
with the propagation constants far enough from the sta-
bility margins b1,2 [points A′, A, and C in Fig. 2]. In the
opposite situation, for the dark solitons with propagation
constants close to stability margins b1,2, their motion may
result in destruction under certain conditions.

VI. A COMMENT ON THE “NEAR-PT ”
MODEL

The PT symmetry requires the exact balance between
the loss and gain in the system, which in practical set-
tings can be achieved only with some accuracy. This
naturally raises a question about structural stability of
the solitons—in particular, the ones found above.
To briefly address this issue, we return to the original

model (1) with χ2 = χ1 (as in the rest of this paper), but
now we do not impose the exact equality of the gain and
loss but instead assume a weak mismatch between them.
Thus, we define γ = (γ1+γ2)/2 and ϵ = (γ1−γ2)/2 with

FIG. 7: The evolution of field components |q1(x, z)|2 (left
column) and |q2(x, z)|2 (right column) of the dark soliton (31)
with gain-dissipation mismatch ϵ = −0.005 (a) or ϵ = 0.005
(b). The other parameters are the same as in Fig. 4(a).

|ϵ| ≪ γ. Then, one can search for solutions as [cf. Eq.
(14)]

qj = u exp

[
i(−1)j

δ

2
+
iρ2ξ(z)

2ϵ
+ i cos δ + ϵz

]
, (31)

j = 1, 2, where ρ is the background amplitude, and
ξ(z) ≡ (χ1 + χ)

(
1− e2ϵz

)
. Substitution of Eq. (31)

reduces Eq. (6) to the following equation [cf. Eq. (15)]

i
∂u

∂z
= −∂

2u

∂x2
+ (χ1 + χ)

(
|u|2 − ρ2

)
u−

ξ(z)
(
|u|2 − ρ2

)
u. (32)

Clearly, for small ϵ the term proportional to ε(z) remains
small over propagation distances z ≪ ϵ−1, and it can be
accounted for by means of the perturbation theory for
dark solitons [18]. In particular, it was shown in Ref. [18]
that the perturbation produced by term ε(z)

(
|u|2 − ρ2

)
u

in Eq. (32) in the leading (adiabatic) approximation
amounts to the change of the soliton’s velocity and phase.

Thus, in the absence of the exact equality between the
dissipation and gain, the dark solitons found above will
persist over a finite propagation distance without signif-
icant distortions, as confirmed by numerical calculation,
depicted in Fig. 7. Such dark modes are supported by
the family of CW backgrounds parameterized by ampli-
tude ρ; see Eq. (7). If ϵ < 0, then losses dominate in
the system, which results in the gradual decrease of both
components [Fig. 7(a)]. In opposite situation ϵ > 0,
when gain dominates, amplitudes of both components in-
crease monotonically [Fig. 7(b)]. At the same time, the
above increase (decrease) will not be indefinite – when
the deviation from the exact profile becomes significant,
the dark soliton will be destroyed.

On the other hand, the system with imbalanced gain
and loss has the true stationary background solution
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given by Eq. (3), which can now be approximated by

|uj |2 =

√
1− γ2

|χ1 − χ|

[
1 + (−1)j

ϵ

γ

]
+O(ϵ2) (33)

(j = 1, 2), instead of the continuous family (7) with ar-
bitrary amplitude ρ. Further, a single two-component
dark soliton, supported by this single background, may
be found as a permanent solution, unlike the above-
mentioned transients. This true dark soliton will be simi-
lar to the well-known “hole” solution of the cubic-quintic
complex Ginzburg-Landau (CGL) equation [19]. If the
dark soliton is stable, it represents an attractor, and the
entire family of approximate dark solitons, corresponding
to the PT -balanced setting, will eventually relax to this
attractor. Note, however, that the above-mentioned hole
solution of the CGL equation has a very small stability
region in the respective parameter space [20].
A detailed analysis of this situation goes beyond the

scope of the present work. If, however, the input beam
has |q1| = |q2| (the case studied in the present work),
one may expect a spatially uniform increase (decrease)
of the background’s amplitude at ϵ > 0 (ϵ < 0), which
is suggested by a simple balance equation for the power
(i.e., the first of the above scenarios). Indeed, if we define
Q± = (|q1|2 − |u1|2) ± (|q2|2 − |u2|2) it follows from Eq.
(1)

d

dz

∫ +∞

−∞
Q+dx = 2γ

∫ +∞

−∞
Q−dx+2ϵ

∫ +∞

−∞
Q+dx, (34)

which for |q1| = |q2| means an exponential evolution of

the total power,
∫ +∞
−∞ Q+dx ∼ e2ϵz, in agreement with

what is assumed in ansatz (31) and is confirmed by nu-
merical simulations shown in Fig. 7.

VII. CONCLUSIONS

To conclude we have reported the existence of stable
vector solitons in the PT -symmetric coupled nonlinear
Schrödinger equations, one of which has gain and an-
other dissipation, whose strengths are equal. The found
solitons have identical amplitude profiles but the phase
difference imposed by the gain-loss coefficients ensures
the balance between gain and loss. The stability of either
backgrounds against which solitons propagate or of the
solitons themselves is modified by dissipation and gain,
which was confirmed by direct numerical simulations of
the soliton propagation and interactions, as well as by
the linear stability analysis.
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