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Identification of the Saccharomyces cerevisiae Target of Cetuximab/Erbitux®, the Anti-

EGFR Antibody Used in the Treatment of Colorectal Cancer 

ABSTRACT 

Colorectal cancer (CRC) is one of the most common malignancies affecting mankind. CRC 

cells over-express epidermal growth factor receptor (EGFR), which usually correlates with disease 

poor prognosis and reduced response to therapy. Hence, several therapeutic agents against EGFR 

were developed, viz. the monoclonal antibody cetuximab/Erbitux®. Such drug competes with EGFR 

ligands for binding to L2/III domain, which results in EGFR internalization and subsequent 

degradation, leading to inhibition of cell growth and angiogenesis, and induction of apoptosis. Yet, 

cancer patients may display or acquire resistance-inducing mutations in EGFR, as well as in its 

downstream effectors. These contribute to a significant degree of ineffectiveness of treatment, being 

one of the most prominent problems in CRC clinical assessment.  

Given the high degree of conservation of eukaryotic cellular processes, yeast has been a 

model of choice for research in many human pathologies. In this line, this work aimed at the 

identification of S. cerevisiae surface target of cetuximab, ultimately seeking for the possible EGFR 

yeast counterpart. Two different strategies were used: (1) in silico sequence and structure homology 

search, and (2) immune recognition in a cetuximab-based Western blot.  

The first approach pointed to proteins from the yeast Sporulation specific family, especially 

Sps2p and Sps22p. These have some structural resemblance with EGFR leucin-rich L-domains, 

along with cell-surface localization. Conversely, the Western blot clearly identified the Pdc1p 

(pyruvate decarboxylase isoform 1) as cetuximab antigen. The subsequent detailed analysis of 

protein features revealed that Pdc1p, as well as its close homologue Pdc5p, present some similarity 

with EGFR epitope sequence. Moreover, Pdc and EGFR also present some functional pathway 

overlapping, more evident in malignantly transformed cells. The recognition of Pdc1/5p as 

cetuximab antigen, combined with its extracellular localization described before, suggests that Pdc1p 

may have distinct functions beyond glycolytic catalysis/regulation. The double deletion of Sps and 

Pdc, and the use of diploid genetic background, will be needed to devise the true existence of growth 

phenotypes induced by cetuximab. However, this work opens a large window as to future research in 

novel pathways in yeast, beyond the continued exploration of yeast for the aim of generating a tool 

for CRC patients’ theranostics. 
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Identificação em Saccharomyces cerevisiae do Alvo do Cetuximab/Erbitux®, o 

Anticorpo Anti-EGFR Utilizado no Tratamento do Cancro Colo-rectal 

RESUMO 

O cancro colo-rectal (CRC) é uma das enfermidades mais comuns no mundo. Células de CRC 

apresentam sobre-expressão do recetor do fator de crescimento epidérmico (EGFR), normalmente 

associada a um pior prognóstico e uma resposta reduzida à terapia. Desta forma, vários agentes 

contra EGFR foram desenvolvidos, tal como o anticorpo monoclonal cetuximab/Erbitux®. Este 

compete com os ligandos do EGFR para o domínio L2/III, resultando na internalização e 

degradação do EGFR. Isto leva à inibição da proliferação celular e angiogénese e, à indução de 

apoptose. No entanto, os pacientes com CRC podem ter ou adquirir mutações no EGFR, ou nos 

efetores da sinalização a jusante, que induzem resistência às opções terapêuticas. Estas situações 

contribuem para uma significativa ineficácia no tratamento do CRC, tornando-se um dos principais 

problemas da assistência médica a estes doentes.  

A elevada conservação de processos celulares eucarióticos tornou a levedura um modelo 

privilegiado no estudo de muitas patologias humanas. Nesse sentido, este trabalho visou a 

identificação do alvo do cetuximab em S. cerevisiae, em última instância, contribuindo para uma 

possível identificação da proteína de levedura correspondente ao EGFR. Foram usadas duas 

estratégias: (1) procura in silico de homologia de sequência e estrutura e, (2) imuno-

reconhecimento pelo cetuximab (Western blot).  

A primeira abordagem apontou para a família de proteínas específicas de esporulação 

(Sporulation specific), nomeadamente as proteínas Sps2p e Sps22p. Estas apresentam alguma 

semelhança estrutural com os domínios do EGFR ricos em leucinas (domínios L), além de também 

serem proteínas da superfície celular. Por outro lado, por Western blot identificou-se a Pdc1p 

(piruvato descarboxilase isoforma 1) como antigénio do cetuximab. Uma análise detalhada 

subsequente da composição aminoacídica revelou que a Pdc1p, bem como a sua homóloga Pdc5p, 

apresentam alguma similaridade com a sequência do epítopo do EGFR. Além disso, Pdc e EGFR 

também apresentam alguma sobreposição funcional, em particular no que diz respeito ao 

metabolismo das células malignas. O reconhecimento da Pdc1/5p como antigénio do cetuximab, 

em combinação com a descrição anterior desta proteína na superfície da célula, sugere que a 

Pdc1p pode ter outras funções para além do seu papel catalítico e regulador no âmbito da glicólise. 

Para aceder ao fenótipo que o cetuximab possa induzir no crescimento e viabilidade da levedura 

serão necessárias deleções duplas dos membros das famílias Sps e Pdc, bem como a utilização de 

estirpes diplóides de levedura. Apesar disso, e para além de permitir a prossecução do objetivo de 

transformar a levedura numa ferramenta para teranóstico, o presente trabalho abre uma grande 

janela na investigação em novas vias de sinalização em levedura. 
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1. Biological Information Processing  

 

 All forms of communication between humans have long been recognized as a condition for 

mutual understanding, transfer of knowledge, and productive development of societies. Similarly 

to humans, cell communication is crucial to coordinate the myriad of activities needed for any 

organism (unicellular or multicellular, prokaryote or eukaryote) to grow, develop and function [1, 

2]. Throughout a set of cell signalling mechanisms, cells communicate by sending and receiving 

signals that may arrive from the environment or from other cells. These signal information is then 

processed in order to appropriate responses within the cellular environment can be made [3, 4]. 

The mechanisms that enable one cell to influence the behaviour of another almost certainly 

existed in the world of unicellular organisms long before multicellular organisms appeared on 

Earth. For instance, bacteria sense and respond to a wide range of physicochemical signals such 

as temperature, light, and oxygen tension from the ever-changing environment [5]. These 

prokaryotes also communicate between them using chemical signal molecules. This involves 

producing, releasing, detecting, and responding to small hormone-like molecules termed 

autoinducers. This process, termed quorum sensing, allows bacteria to coordinate their 

behaviour on a population-wide scale in what concerns mobility, biofilm formation, antibiotic 

production, spore formation and sexual conjugation [6-9]. Yeasts, another unicellular organism, 

evolved autonomous mechanisms for adapting to drastic environmental changes such as 

fluctuations in the types and quantities of available nutrients, temperature, osmolarity and acidity 

of their environment, and the variable presence of noxious agents, such as radiation and toxic 

chemicals [10]. Furthermore, yeasts influence each other’s behaviour in preparation for mating. 

In the budding yeast Saccharomyces cerevisiae, for example, when a haploid individual is ready 

to mate, it secretes a peptide mating factor that signals cells of the opposite mating type to stop 

proliferating and prepare to mate [11]. Yeast colonies, organised multicellular structures, can as 

well communicate at long distance by means of volatile ammonia [12]. Plant cells, as in any 

other multicellular organism, communicate to coordinate their activities in response to changing 

conditions either in the external environment or in the microenvironment surrounding the organ, 

the tissue or the cell [13]. For example, in the human body, pancreatic cells release insulin to 

inform muscle cells to take up sugar from the blood for energy [14]. Identically, cells of the 

immune system instruct other immune cells to attack invaders [15], and cells of the nervous 
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system rapidly fire messages to and from the brain [16]. Cells also exchange information in what 

regards patterning/morphogenesis of a wide variety of tissues in an embryo [17]. Those 

messages elicit the right responses only because they are transmitted accurately far into a 

recipient cell and to the exact molecules able to carry out the directives commanding a pattern of 

differentiation. Globally, exchanges of information between neighbouring cells occurs either 

directly, when cells are compactly packed in a tissue, or through the surrounding extracellular 

matrix that provides support and anchorage and regulates the type and range of diffusion of 

signalling molecules [2, 18]. 

 The ability of cells to perceive and correctly respond to their microenvironment is the basis 

of development, tissue repair, and immunity as well as normal tissue homeostasis. Errors in 

cellular information processing are responsible for diseases such as autoimmunity, diabetes and 

the leading cause of death worldwide – cancer. 

 

1.1. Cancer,  When Cellular Communication Goes Wrong 

 

1.1.1. The Origin and Burden  

 

Human beings have had cancer throughout recorded history, although the word cancer 

was not used. Some of the earliest evidence of cancer was found among fossilized bone tumours, 

human mummies in ancient Egypt, and ancient manuscripts. The oldest description of cancer 

was discovered in Egypt and dates back to about 3000 BC. The origin of the word cancer is 

credited to the Greek physician Hippocrates (460-370 BC), who used the terms carcinos and 

carcinoma to describe non-ulcer forming and ulcer-forming tumours. The Roman physician, 

Celsus (28-50 BC), later translated the Greek term into cancer, the Latin word for crab (the 

finger-like spreading projections reminded a crab). Galen (130-200 AD), another Roman 

physician, used the word oncos (Greek for swelling) to describe tumours. Although the crab 

analogy of Hippocrates and Celsus is still used to describe malignant tumours, Galen’s term is 

now used as a part of the name for cancer specialists - the oncologists. While there were some 

additions to the medicinal understanding of cancer in the Middle Ages, it was not until the 

nineteenth century that microscopic work by German pathologists including Müller and Virchow, 

identified the cellular origins of cancer [19, 20].  
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Cancer is a leading cause of death worldwide [21]. Based on the GLOBOCAN 2008 

estimates, about 12.7 million cancer cases and 7.6 million cancer deaths are estimated to have 

occurred in 2008 [22]. Colorectal cancer (CRC), with over 1.2 million new cancer cases and 

608,700 deaths estimated to have occurred worldwide in 2008, is the third most frequent cancer 

in men, after prostate and lung, and the second most common in women, after breast [21, 23]. 

The burden of cancer is increasing in economically developing countries as a result of population 

growth, and in economically developed countries as a consequence of an increase in population 

life span/age, adding to, increasingly, an adoption of cancer-associated lifestyle choices including 

smoking, physical inactivity, and ‘‘westernized’’ diets [24-28]. It should also be noted that cancer 

tends to be diagnosed at late stages in many developing countries compared with developed 

countries. This, combined with reduced access to appropriate therapeutic facilities and drugs, 

has an adverse effect on survival [23]. Current data on Portuguese cancer patients is limited, and 

there are divergences in methods of data collection and treatment amongst regional cancer 

registries. However, the available data from 2009 help to understand the dimension of CRC, with 

an incidence of 37 per 100,000 and mortality of 31 per 100,000 annually [29]. 

 

1.1.2. Definition and Genetics 

 

It is difficult to define cancer with precision. Still, cancer can be described as an abnormal 

growth of cells caused by multiples changes in gene expression leading to an unregulated 

balance of cell proliferation and cell death. Eventually, this evolves into a population of cells able 

to invade and metastasize to adjacent tissues, resulting in morbidity and even death of the host if 

not treated. Cancer is not one disease but many diseases. There are more than 100 different 

types of cancer, and subtypes of tumours can be found within specific organs [30]. Boveri, in the 

early 1900s, was the first one to propose that malignant tumours would probably arise from a 

defect in the nucleus, at the chromosome level. Therefore cancer would be a genetic disease of 

somatic cells. He also predicted what would be later called oncogenes and tumour-suppressor 

genes [31].  

Normal cells can derive into cancer cells by several steps, a process known as 

carcinogenesis, which comprises a progression of changes on cellular and genetic level that 

ultimately reprograms the cells. To cause the development of a cancer, usually, a single genetic 
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alteration/mutation is not enough. Cancer is a multi-step and multi-gene pathology, involving 

sequential alterations in several oncogenes, tumour-suppressor genes, and microRNA (miRNA) 

genes [32, 33]. Oncogenes result from gain-of-function mutations in proto-oncogenes, the normal 

function of which is to drive cell proliferation and/or apoptosis in the appropriate contexts [34]. 

There are several mechanisms by which proto-oncogenes can be altered, for example: 

amplification, point mutation and chromosomal translocation. Several oncogenes are found in a 

diversity of human solid malignancies, with variations on the mechanism of activation and 

biochemical functions [32]. Tumour-suppressor genes are called like this once their protein 

products normally inhibit cell proliferation and are inactivated through loss-of-function mutations: 

point mutations, microdeletions or insertions, large deletions or even translocations [32, 35]. 

Implication of miRNA in cancer development has been shown to occur through processes of gain 

and loss of function [36, 37]. In what concerns to modifications of miRNA, these can be a 

consequence of amplifications, deletions, or mutations involving miRNA loci, epigenetic silencing 

or deregulation of transcription factors that target specific miRNA [37].  

 Cancer origin can be associated with environmental factors, such as diet or life style as 

mentioned above, but as a genetic disease, cancer can also be hereditary. In 1971, Knudson 

studied cases of retinoblastoma (cancer that develops in the cells of retina), hypothesizing that 

this form of cancer was caused by two mutational events: the two hits model, as it is known, 

postulates that in the hereditary form the first hit (mutation) is inherited from germ-line cells and 

the second hit occur in somatic cells. In non-inherited retinoblastoma both hits take place in 

somatic cells [38, 39].  

 

1.1.3. Cancer Hallmarks 

 

The vast catalogue of cancer cell genotypes is a manifestation of six essential alterations in 

cell physiology that collectively dictate malignant growth and these are: self-sufficiency in growth 

signals, insensitivity to growth-inhibitory (antigrowth) signals, evasion of programmed cell death, 

limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis (Fig. 1) 

[40, 41].  

Normal tissues carefully control the production and release of growth-promoting signals 

that are carried through the cell membrane, binding cell-surface receptors (normally having 
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intracellular tyrosine kinase domains) [42]. These signalling molecules instruct entry into and 

progression through the cell growth and division cycle, thereby ensuring a homeostasis of cell 

number and thus maintenance of normal tissue architecture and function. Malignant cells have 

acquired the capability of maintain a proliferative state. This occurs (i) through the production of 

autocrine growth factor ligands; (ii) by sending signals to make normal cells, within the tumour-

associated environment, produce various growth factors [43]; (iii) by deregulating receptor 

signalling, i.e., elevating levels of receptors proteins displayed at the cancer cell surface, turning 

cells highly responsive to growth factor ligands; and (iv) by changing the structure of receptor 

molecules or constitutively active components of signalling pathways (downstream of receptors) 

[41]. This last case applies to the pathway responding to the Ras signal transducer (for details, 

see section 2.1.1 - Signalling Pathways Downstream of EGFR ahead in this Introduction).  

Another common capacity in tumours cells is the insensitivity to growth-inhibitory signals, 

i.e. evading growth suppressors. Many tumour-suppressor genes that limit cell growth and 

proliferation are inactivated. For example, the p53 and Rb proteins are encoded by tumour-

suppressor genes, and are responsible for cell-cycle progression. Changes in Rb, APC 

(adenomatous polyposis coli) and p53 function allow persistent cell proliferation [41, 44]. 

 Cancer cells have found a variety of strategies to diminish apoptosis and as a result resist 

cell death. The loss of TP53 tumour-suppressor function, which in normal cells induces apoptosis 

in response to DNA damage, is one of the alterations that allow these cells to avoid death [45]. 

Plus, tumour cells can get the same results by (i) increasing the expression of antiapoptotic 

regulators (Bcl-2, Bcl-xL), (ii) by downregulating proapoptotic factors (Bax, Bim, Puma) or (iii) by 

interrupting the extrinsic ligand-induced death pathway [41]. Apoptosis, autophagy and cellular 

homeostasis have been shown to share some regulatory pathways. Thus, the PI3K 

(phosphatidylinositol 3-kinase), Akt (also known as Protein Kinase B - PKB) and mTOR 

(mammalian Target of Rapamycin) kinases, implicated in a signalling pathway stimulated by 

survival signals to block apoptosis, also inhibit the autophagy process. As a result, in a situation 

where survival signals are not sufficient, the PI3K signalling pathway is downregulated and 

therefore autophagy and/or apoptosis may be induced [46, 47]. In the context of neoplasia, cell 

death by necrosis can also occur and can lead to the release of bioactive regulatory factors, 

which can directly stimulate neighbouring viable cells to proliferate, with the potential, once 

again, to facilitate neoplastic progression. Additionally, necrotic cells can recruit immune 
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inflammatory cells that can be actively tumour promoting, given that such cells are capable of 

fostering angiogenesis, cancer cell proliferation, and invasiveness [48]. 

 Malignant cells are also known for their immortality. The immortalization potential has 

been attributed to cells ability to maintain adequate telomeric DNA lengths to avoid senescence 

or apoptosis. This hallmark is a result of an upregulation of the telomerase enzyme expression 

using a recombination-based telomere maintenance mechanism [41, 49]. 

 Tumours, just like normal tissues, need to obtain nutrients and oxygen, and get rid of 

carbon dioxide and waste compounds produced by the metabolic activity. The tumour-associated 

neovasculature, generated by the process of angiogenesis, addresses these needs. During 

tumour progression, angiogenesis is almost always activated and remains on, which make the 

normally quiescent vasculature to continually sprout new vessels that help sustain expanding 

neoplastic growths [50]. 

 Another cancer hallmark is the ability to invade other tissues and metastize which are 

important mechanisms for disease outcome. New blood vessels created by angiogenesis or even 

lymphatic system provide an escape for tumours cells, allowing them to enter into the blood 

stream (intravasion). The following step is extravasation, in which cells quit the blood stream to 

the surrounding tissues, forming small nodules (micrometastases) and growing until macroscopic 

tumours (colonization) [51]. A fundamental process to cells acquire this capacity is the loss of E-

cadherin (cell-to-cell adhesion molecule) that helps to assemble epithelial cell sheets and 

maintain the quiescent state of cells. Furthermore, in aggressive carcinomas, expression genes 

encoding cell-to-cell and cell-to-extracellular matrix molecules is perceptibly altered. For instance, 

E-cadherin, the prototypical adhesion molecule of epithelia, is frequently lost in epithelial 

malignancies, whereas the related N-cadherin, absent in normal epithelia, is upregulated in many 

invasive tumours [52, 53]. The epithelial-mesenchymal transition has also been highly implicated 

as a means by which transformed epithelial cells can acquire the ability to invade, to resist 

apoptosis, and to disseminate [54]. 

 These hallmarks constitute an organizing principle for rationalizing the complexities of 

neoplastic disease. Underlying these hallmarks are genome instability [41, 55, 56], which 

generates the genetic diversity that expedites their acquisition, and inflammation, which fosters 

multiple hallmark functions supplying the tumour microenvironment with bioactive molecules, 
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such as growth factors, which will maintain proliferation, survival factors (limiting cell death) 

among others [57-60].  

 

 

 

 

 

 

 

 

 

 

 

Figure 1 - The hallmarks of cancer. Adapted from [41]. 
 

Conceptual progress in the last decade has added two emerging hallmarks: 

reprogramming of energy metabolism and evading immune destruction (Fig. 1) [41]. The first 

involves major reprogramming of cellular energy metabolism in order to support continuous cell 

growth and proliferation, replacing the metabolic program that operates in most normal tissues 

and fuels the physiological operations of the associated cells. Some tumours have been found to 

contain two subpopulations of cancer cells that differ in their energy-generating pathways. One 

subpopulation consists of glucose-dependent (Warburg-effect) cells that secrete lactate, whereas 

cells of the second subpopulation preferentially import and utilize the lactate produced by their 

neighbours as their main energy source, establishing what can be a relation of intratumoural 

symbiosis [61, 62]. The second emerging hallmark involves active evasion of the cancer cells 

from the attack and elimination by immune cells, mostly by T and B lymphocytes, macrophages 

and natural killer cells [63, 64]. Both of these capabilities may well prove to facilitate the 

development and progression of many forms of human cancer and therefore can be considered 

to be emerging hallmarks of cancer [41]. In addition to cancer cells, tumours exhibit another 

dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that 

contribute to the acquisition of hallmark traits by creating the “tumour microenvironment”. 
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Recognition of the widespread applicability of these concepts will increasingly affect the 

development of new means to treat human cancer [41]. 

 

1.1.4. Tumour Therapy 

 

Successful accomplishments have been made in tumour therapy strategy by inhibiting 

some oncogenes achieving tumour cell death, differentiation or senescence. Drugs targeting 

protein kinase oncogenes such as BCR-ABL (imatinib/Gleevec®), EGFR (cetuximab/Erbitux®) and 

HER2 (trastuzumab/Herceptin®) have been used in some types of cancer, including CRC [65-67]. 

A multi-kinase inhibitor sorafenib/Nexavar® (BAY 43-9006) prevents tumour growth by inhibiting 

tumour cell proliferation and angiogenesis, and/or pro-apoptotic effects [68]. This agent blocks 

tyrosine kinase receptors signalling (VEGFR, PDGFR, c-Kit and RET) and, consequently, inhibits 

downstream Ras serine/threonine kinase activity [69, 70]. Imatinib, another c-Kit tyrosine kinase 

inhibitor, has a therapeutic effect in CRC cells expressing the c-Kit proto-oncogene by inhibiting 

cell proliferation and inducing apoptosis in vitro [71]. miRNAs appear to have a role in regulation 

of oncogenes and tumour-suppressor genes involved in several pathways in CRC [72, 73], thus 

being a further option for CRC therapy.  

New biological agents acting on receptor kinases, counteracting epigenetic abnormalities, 

tumour vasculature and microenvironment particularities, are also being developed, and could 

help to improve the existent chemotherapy [74]. An up-to-date example relies on exploring 

metabolic specificities of malignant cells, namely in glycolytic flux regulation. Cancer cells activate 

glycolysis to meet their energy demands and use oxygen (O2) to generate excessive levels of the 

reactive oxygen species (ROS) namely hydrogen peroxide (H2O2) [75]. Therefore tumour cells can 

be killed in a selective way by increasing cellular levels of H2O2 and/or diminishing glycolysis, 

using pro-oxidant agents and glycolysis inhibitors [76]. Additionally, solid tumours contain regions 

at very low oxygen concentrations (hypoxia). The cells in these hypoxic regions are resistant to 

both radiotherapy and chemotherapy. The bacterium Clostridium has been considered as an 

alternative strategy to selectively target and destroy cancer cells especially for the treatment of 

solid tumours. Scientific research has shown that various non-pathogenic strains of Clostridium 

are able to infiltrate and selectively replicate within solid tumours, therefore, recombinant 
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anaerobic clostridial spores could in the future be used as highly selective vectors for delivery of 

therapeutic proteins directly and specifically to the solid tumour [77-79]. 

Despite the advances in medical practices and the progress obtained with the introduction 

of new cytotoxic agents, there are still a high number of cancer situations in which treatment is 

not effective. Failure of therapy can be due to the development of resistance to anticancer drugs 

as a result of host factors or a result of genetic and/or epigenetic changes in cancer cells. Thus, 

resistance can be intrinsic to the cancer or it can be acquired. The major mechanism of 

multidrug resistance seems to be associated to an energy-dependent drug efflux pump called P-

glycoprotein, product of the MDR1 gene, belonging to the ABC family of transporters. Proteins 

from the same family like MRP1 (multidrug resistance associated protein 1) are also shown to be 

overexpressed in anticancer resistance drugs situations [80]. Additionally, some points of 

evidence suggested that therapy resistance can also be a consequence of survival pathways 

activation during carcinogenesis by oncogenic transformation. Some examples of oncogenes that 

can activate survival pathways are Ras, Raf, c-Kit, HER2 and EGFR [81].  

 

2. Mechanisms of Cell Communication and the Role of Cell 

Surface Receptors 

 

Even the simplest organisms can detect and respond to events in their ever-changing 

environment [2]. Similarly, within a multicellular organism, cells are surrounded by an 

extracellular environment from which signals are received and responded to. Cell-cell and cell-

matrix interaction are crucial for the development and proper functioning not only for complex 

multicellular organisms as also for of single celled ones [82]. Unlike free-living cells, which 

supposedly compete to survive, the cells of a multicellular organism are committed to 

collaboration. Any mutation that gives rise to selfish behaviour by individual members of the 

community will compromise the future of the whole enterprise. Mutation, competition, and 

natural selection operating within the population of somatic cells are the basic ingredients of 

cancer: it is a disease in which individual mutant cells begin by prospering at the expense of their 

neighbours but in the end destroy the whole cellular society and die [41]. 
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Within multicellular organisms cells may interact with each other directly, requiring cell-cell 

contact, or indirectly, via molecules secreted by one cell, which are then carried away to target 

cells [11]. The extracellular signal molecules include proteins, small peptides, amino acids, 

nucleotides, steroids, retinoids, fatty acid derivatives, and even dissolved gases such as nitric 

oxide and carbon monoxide. Most of these signal molecules are secreted from the signalling cell 

into the extracellular space by exocytosis or by diffusion through the plasma membrane. 

Signalling via secreted signalling molecules can be paracrine (acting on neighbouring cells) 

and/or autocrine (acting on the cell that secretes the signalling molecule) [11, 83]. Cancer cells, 

for example, often use this strategy to stimulate their own survival and proliferation. Intercellular 

communication over large distances is achieved through endocrine signalling (hormones) or 

electrical signalling (between neurons or between a neuron and a target cell). Some signalling 

molecules, however, are exposed to the extracellular space while remaining tightly bound to the 

signalling cell's surface providing a signal to other cells only when they make contact. This type of 

signalling is particularly important between immune cells, where it forms the basis of antigen 

presentation and the initiation of the immune response. Cells may also communicate directly 

with their immediate neighbour through gap junctions that connect the cytoplasm of 

neighbouring cells via protein channels allowing the passage of ions and small molecules 

between them (e.g., gap junctions allow the coordinated contraction of cardiac muscle cells) [11, 

83]. 

Cell signalling requires not only extracellular signal molecules, but also a complementary 

set of receptor proteins in each cell that enable it to bind and respond to the signal molecules in 

a characteristic way. These cell-surface receptor proteins act as signal transducers. They convert 

an extracellular ligand-binding event into intracellular signals that alter the behaviour of the target 

cell [84, 85]. The extracellular signal molecules often act at very low concentrations and the 

receptors that recognize them usually bind them with high affinity. In most cases, the receptors 

are transmembrane proteins on the target cell surface. When these proteins bind an extracellular 

signal molecule (a ligand), they become activated and generate various intracellular signals that 

alter the behaviour of the cell. In other cases, the receptor proteins are inside the target cell, and 

the signal molecule has to enter the cell to bind to them: this requires that the signal molecule be 

sufficiently small and hydrophobic to diffuse across the target cell’s plasma membrane [11, 83]. 
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2.1. The Classes of Cell Surface Receptors 

 

The concept of receptors was first introduced in the context of the mechanisms of action of 

drugs, and the term was used long before the molecular nature of the various receptors was 

known [86]. Most cell-surface receptor proteins are defined by their transduction mechanism [83, 

87]. In ion-channel-coupled receptors, ligand binding changes the conformation of 

the receptor so that specific ions flow through it; the resultant ion movements alter the electric 

potential across the cell membrane. The acetylcholine receptor at the nerve-muscle junction is an 

example [11, 83, 87].  

G-protein-coupled receptors act by indirectly regulating the activity of a separate plasma-

membrane-bound target protein, which is generally either an enzyme or an ion channel. A 

trimeric GTP-binding protein (G protein) mediates the interaction between the activated receptor 

and this target protein. The receptors for epinephrine, serotonin, and glucagon are examples [11, 

83, 87].  

Enzyme-coupled receptors either function directly as enzymes or associate directly with 

enzymes that they activate. They are usually single pass transmembrane proteins that have their 

ligand-binding site outside the cell and their catalytic or enzyme-binding site inside. The great 

majority, however, are either protein kinases or associate with protein kinases, which 

phosphorylate specific sets of proteins in the target cell when activated leading to the activation of 

signal transduction pathways that often terminate in the regulation of transcription and gene 

expression [11, 87]. The receptor tyrosine kinases (RTKs) are a large superfamily of receptors 

that function as the receptors for a wide array of growth factors, including epidermal growth 

factor (EGF), nerve growth factor (NGF), platelet-derived growth factor (PDGF), vascular 

endothelial growth factor (VEGF), fibroblast growth factor (FGF), insulin and the insulin-like growth 

factors (IGF), and the ephrins and angiopoietins [87]. RTKs are essential components of cellular 

signalling pathways that are active during embryonic development and adult homeostasis. 

Because of their roles as growth factor receptors, many RTKs have been implicated in the onset 

or progression of various cancers, either through receptor gain-of-function mutations or through 

receptor/ligand overexpression [88].  

Furthermore, there are also several types of adhesion receptors such as the integrin family 

of adhesion molecules, the selectins, cadherins, and the Ig cell adhesion molecules (CAMs). 
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These receptor molecules play important roles in a number of basic processes including cell 

proliferation, migration, development, and tissue remodelling in adults [87]. 

The varied receptors allow cells to respond to a wide range of stimuli ranging from ions to 

large ECM proteins that lead to activation of specific signalling processes and changes in cellular 

behaviour. Any mutation that leads to unregulated or inactive signalling can lead to pathologies. 

Thus, cell surface receptors are key to the mechanism of many chemical toxicants and serve as 

targets for the development of drugs [87].  

 

2.1.1. EGFR and ERBB/HER Family 

  

The flow of information from the extracellular environment into the cell is at the core of a 

functional biological system. Receptor tyrosine kinases (RTKs) are primary mediators of many of 

these signals and thus determine whether the cell grows, differentiates, migrates, or dies. 

Moreover, carcinogenesis is a multi-step process that requires the accumulation of several 

genetic and functional alterations in a single cell. Among numerous factors, carcinogenesis 

involves the activation of oncogenes such as the epidermal growth factor receptor (EGFR), also 

known as ERBB1/HER1 [89, 90]. This receptor belongs to the ERBB/HER family of ligand-

activated RTKs, which also comprises ERBB2/NEU/HER2, ERBB3/HER3 and ERBB4/HER4 

(Fig. 2). All of them can be alternatively spliced to give rise to various partial protein products [91, 

92]. These receptors are anchored in the cytoplasmic membrane and share a similar structure, 

composed by an extracellular ligand-binding domain, a short transmembrane domain, and an 

intra-cytoplasmic tyrosine kinase domain [89, 93, 94]. The overall amino acid identity between 

these proteins is about 50%, and mammals contain the four members of the family, which 

transduce extracellular signals by EGF family of peptide growth factors [95].  

EGFR has an almost ubiquitous expression in normal epithelial tissues along with an 

important role in directing and coordinating many normal processes, including growth and 

development, normal tissue turnover and wound healing. As a result, null mutations lead to 

embryo lethality [90, 96]. The degree of conservation observed in many other organisms is in 

accordance with the important biologic functions of EGFR. For instance, signalling from the EGFR 

also plays a critical role in the development of the nematode Caenorhabditis elegans and the fruit 

fly Drosophila melanogaster, each of which contain only one gene encoding EGFR orthologues, 
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called LET-23 and DER respectively (Fig. 2) [97, 98]. LET-23 is necessary for the induction of 

vulva [99] and DER fulfils many roles during development, including oogenesis, proliferation and 

differentiation [100].The overall amino acid identity between the human EGFR and LET-23 

proteins is 29% and that between DER and EGFR is 38% [95].  

 

 

Figure 2 - ERBB family of receptors. In the course of evolution, the ERBB family expanded from the nematode’s 

single ligand (LIN-3) and receptor (LET-23) to a group of four receptors and 11 ligands in vertebrates. Similarly, the 

domain structure of all four receptors is well conserved and includes a ligand-binding extracellular domain that is 

linked through a single transmembrane region to the cytoplasmic tyrosine kinase domain. The two insect receptors 

represent splicing isoforms of the D. melanogaster EGF receptor (DER1 and DER2). Unlike LIN-3, the vertebrate 

ligands specifically bind to more than one receptor, but ERBB2 binds no known ligand and ERBB3 cannot signal 

when present alone, because the respective kinase domain is practically inactive. Withdrawn from [101]. 

  

Deregulation of ERBB/HER family members activity stimulates key processes associated 

with tumourigenesis such as tumour growth and progression, including proliferation, 

angiogenesis, invasion, and metastasis [93, 102, 103]. For these reasons, the EGFR are 

amongst the cell-surface markers most frequently implicated in the development of cancer. This 

is the case of many epithelial cancers, including CRC, breast, ovarian, prostate, lung, gastric, 

head and neck in which cases EGFR is over-expressed. Moreover, patients with altered EGFR 

activity tend to have a more aggressive disease, associated with a poor clinical outcome [90, 91, 

104, 105]. Therefore, EGFR has become an attractive target for therapy development with two 

classes of biologic agents, the anti-EGFR monoclonal antibodies and the tyrosine kinase inhibitors 

[106]. 
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The ERBB/HER Growth Factor Ligands 

 

Interactions between receptors, and the existence of a wide group of ligands, underlie the 

enormous potential for diversification of the biological messages mediated by the ERBB family 

(Fig. 3). These peptide ligands are produced as transmembrane precursors, and the 

ectodomains are processed by proteolysis, which leads to the release of soluble growth factors 

[107, 108]. There are several ERBB-specific ligands (Fig. 3), all sharing an EGF-like motif of 45-

55 amino acids and including six cysteine residues that interact covalently. This region of HER 

ligand proteins is probably the most important, conferring the binding specificity that underlies 

their classification in three groups. The first group includes EGF, amphiregulin (AR), and 

transforming growth factor-α (TGF-α), which bind specifically to EGFR/ERBB1/HER1. The second 

group includes betacellulin (BTC), heparin-binding EGF (HB-EGF), and epiregulin (EPR) [109], 

which exhibit dual specificity for EGFR and ERBB4/HER4. The third group is composed of the 

neuregulins (NRG, also called NEU differentiation factors, NDFs, or heregulins, HRG) and 

includes two subgroups based on their capacity to bind ERBB3/HER3 and ERBB4/HER4 (NRG-1 

and NRG-2) or only ERBB4/HER4 (NRG-3 and NRG-4) [110, 111].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 - Epidermal growth factor family of ligands and the ERBB/HER family. The topology of the 

receptor proteins is indicated. The inactive ligand-binding domains of ERBB2 and the inactive kinase domain of 

ERBB3 are denoted with an X. Withdrawn from [92]. 
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Each of these many ligands has a different preference for stabilizing distinct receptor 

dimers. The members of the ERBB/HER family can form four homodimers and six heterodimers 

for a total of 10 distinct states [92]. Each receptor dimer has a different set of tyrosine 

autophosphorylation sites, which serve as docking sites for specific intracellular proteins 

containing Src homology 2 (SH2) or phosphotyrosine binding (PTB) domains, thus recruiting 

different combinations of signalling molecules and initiating a wide variety of signalling cascades 

[109, 112-114].  

EGFR–ERBB2 heterodimers are associated with a more robust signal then EGFR–EGFR 

homodimers [115]. EGFR is overexpressed in bladder, breast, head and neck, kidney, non-small 

cell lung, and prostate cancers [93]. Similar to EGFR, the EGFRvIII (EGFR variant III; a truncated 

form of EGFR) is primarily localized on the cell-surface where it activates several signalling 

modules. However, unlike EGFR, EGFRvIII is constitutively active, independently of ligand 

stimulation, in part due to the loss of a portion of the ligand-binding domain. EGFRvIII is 

predominantly detected in malignant gliomas [116-119].  

Hitherto, there is no evidence that any growth factor binds to ERBB2 homodimers. Rather, 

ERBB2 forms heterodimers with each of the other family members, and such heterodimers can 

bind growth factors [115, 120]. ERBB2 is overexpressed in breast, cervix, colon, endometrial, 

esophageal, lung, and pancreatic cancers [88, 93].  

ERBB3 instead, and although it has a tyrosine kinase domain that is highly homologous to 

those of the other family members, has no kinase activity [120, 121]. ERBB3 can form 

heterodimers with the other three family members. Owing to the lack of protein kinase activity of 

ERBB3, for cell signalling is required the trans-phosphorylation by other members of the EGF 

receptor family. ERBB3 is overexpressed in breast, colon, prostate, and stomach malignancies 

[88, 93].  The last member of the family is ERBB4 [122].  

Regarding the other family members, the identity of ERBB4 transmembrane residues is 

approximately 75%, 70% for the intracellular catalytic domain (276 residues), and 20% for the 

carboxyterminus. ERBB4 is overexpressed in breast cancer and granulosa cell tumours of the 

ovary [88]. 
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EGFR Structure and Regulation of Activity 

 

Human EGFR gene locates at chromosome 7p11-13 and the mature protein is synthesized 

from a 1210-residue polypeptide precursor. This, after cleavage of the N-terminal sequence and 

other post-translational modifications originates a highly glycosylated 170kDa membrane 

spanning protein of a single 1186 amino acids polypeptide chain (Fig. 4) [90, 94, 123, 124].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 - Basic Structure of EGFR displaying the relevant domains. (I) The extracellular domains: (1) 

domain I/L1; (2) domain II/CR1; domain III/L2; domain IV/CR2. (II) Transmembrane domains. (III) The intracellular 

domains (1) juxtamembrane domain; (2) tyrosine kinase domain; (3) regulatory region domain. The phosphorylation 

of several substrates by the tyrosine kinase domain of the EGFR receptor is responsible for activating the various 

signalling cascades. Withdrawn from [124]. 

 

Like all RTKs, as referenced above, EGFR is characterized by three main domains [94]. 

The extracellular domain of the mature receptor contains 621 amino acids, followed by a single 

transmembrane domain (amino acids 622–644), and a juxtamembrane domain (amino acids 

645–682). The tyrosine kinase domain extends from amino acids 683 to 958, whereas all the 

autophosphorylation sites are located between amino acids 992–1186 [123]. The extracellular 

domain of the EGFR can be further divided into four subdomains, I or L1 (L stands for leucine-
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rich) from residues 1–165, II or CR1 (CR stands for cysteine-rich) from residues 166–310, III or 

L2 from residues 311–480, and IV or CR2 from residues 481–621 (Fig. 4). Domain I/L1 shares 

sequence and structural homology with the domain III/L2, both of which are involved in ligand 

binding, based on site directed mutagenesis and deletion mutation studies [125]. Domains 

II/CR1 and IV/CR2 have predisposition to form disulphide bridges, and are important in 

facilitating the overall conformational change induced by the EGFR [124]. ERBB proteins contain 

two cysteine-rich domains, except for their invertebrate counterparts, LET-23 and DER, that have 

an additional CR motif [95].  

Crystallographic studies of the EGFR extracellular domain complexed to its ligands have 

shown that the domains I, II and III form a ligand-binding pocket [126, 127]. In the absence of 

ligand, EGFR exist as monomers on the cell surface. Binding of ligand to EGFR leads to the 

formation of receptor homo- and heterodimers, depending on whether EGFR dimerizes with 

another EGFR or with other ERBB family members, respectively [42, 128]. EGFR dimerization is 

entirely receptor-mediated, with no contacts between the two growth factor molecules in the 

dimeric complex [126]. By binding simultaneously to two sites (within domains I and III) in the 

extracellular region of the receptor, the growth factor alters the special arrangement of the 

domains (as shown schematically in Fig. 5). This domain rearrangement exposes a critical region 

of domain II that is otherwise hidden by an intramolecular interaction (or tether) within domain IV 

(Fig. 5A). The region thus exposed is known as the dimerization arm, and forms the core of the 

dimer interface in Fig. 5D. Growth factors bind preferentially to the extended or untethered forms 

of EGFR (Fig. 5B) and “trap” the receptor in the conformation that can dimerize through the 

exposed dimerization arm (Fig. 5C), thus driving the equilibrium towards the activated complex 

(Fig. 5D)  [127]. 

The transmembrane domain plays an important role in anchoring the receptor to the cell 

membrane, with high affinity for caveolae or lipid rafts [125], resulting in the enrichment of 

defined patches of the membrane in EGFR, and hence allowing a faster receptor dimerization 

following binding of the ligand [129]. Adjacent to the transmembrane domain, and facing the 

interior of the cell, there is the juxtamembrane domain, which is believed to regulate various 

functional aspects of EGFR including control of the tyrosine kinase activity, downregulation of the 

EGFR, ligand internalization, and receptor sorting. Of note, this domain also has binding motifs 

that allow it to interact with second messengers like calmodulin [125].  
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Figure 5 - Mechanism of ligand-induced EGFR dimerization. About 95% of the unliganded EGFR exists in a 

compact autoinhibited or tethered conformation, in which domains II and IV form an intramolecular interaction or 

tether (A). In the remaining 5% of the unliganded molecules, this tether is broken, and the soluble extracellular region 

of EGFR (sEGFR) can adopt a range of untethered conformations (B), some of which will be more extended. Ligand 

binds preferentially to untethered molecules, and interacts simultaneously with domains I and III, stabilizing the 

particular extended form in which domain II is exposed and the receptor can dimerize (C). Dimerization is entirely 

receptor-mediated and dominated by domain II interactions (D). Withdrawn from [127].  

 

Adjacent to the juxtamembrane domain there is the tyrosine kinase domain, a Src 

homology domain 1, SH1. This is the most conserved region among the EGFR protein family, 

except in ERBB3 [95]. Activation of the EGFR tyrosine kinase phosphorylates numerous targets, 

including itself (autophosphorylation), a different EGFR (homodimerization), another member of 

the family (heterodimerization), and non-receptor substrates, which in turn initiate the signalling 

cascades [95, 124]. Tyrosine kinase activity of EGFR is tightly regulated via its own internal 

regulatory region located at the C-terminal tail of the structure, which involves the tyrosine 

residue cluster with the potential of being transphosphorylated during EGFR dimerization [124]. 

The degree of evolutionary conservation is yet significantly reduced in the carboxy-terminal tail, in 

spite of (or because of) their important regulatory functions [95]. EGFR dimerization induces 

phosphorylation of six tyrosine residues creating docking sites for the recruitment of other 

adaptor molecules and signalling proteins with SH2 or PTB domains to the membrane. These 

attributes suggest that the tyrosine-rich C-terminal tail is a phosphorilable, mobile structure 

connected to a relatively stationary TKD [124]. Finally, the carboxy-terminal tail contains motifs 

for internalization and degradation of the receptor [95].  

The binding of the ligands to the ectodomain results in allosteric transitions leading to 

receptor dimerization, protein kinase activation, trans-autophosphorylation, and activation of 

several intracellular signalling pathways downstream of the receptor. Some of the pathways 

downstream of EGFR activation include those mediated by Ras/Raf/MEK, PI3K/Akt/mTOR, PLC-
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γ/PKC and JAK2/STAT3 which upon activation lead to cell proliferation, motility and survival 

[102]. All four members of the ERBB family have the potential to stimulate the Raf/MEK/ERK 

protein kinase cascade [120, 122]. However, phospholipase Cγ binds to specific 

phosphotyrosines of EGFR/ERBB1, but not the other ERBB family members. Furthermore, the 

regulatory subunit of phosphatidylinositol 3-kinase (PI3K) binds to specific phosphotyrosines on 

ERBB3 and ERBB4, which leads to enzyme activation [92]. Although members of the same 

family, each receptor and each kinase has its own distinguishing features [92]. 

Inactivation of the EGFR can be mediated either by receptor dephosphorylation by 

phosphotyrosine phosphatases or receptor downregulation. Receptor downregulation is the most 

prominent regulator of EGFR signal attenuation and involves the internalization by endocytosis 

and subsequent degradation of the ligand-receptor complex in the lysosomes [90, 130, 131]. It 

was determinate that the half-life of the EGFR in the absence of EGF in cell culture is 6.5h, and it 

is 1.5h in the presence of EGF [132]. These findings led to the study of the downregulation of a 

variety of receptors. In cells expressing ERBB2/ERBB3 or ERBB4, in contrast to EGFR, these are 

not downregulated by stimulatory ligands [132].  

 

Signalling Pathways Downstream of EGFR 

 

Depending upon the type of ligand and the EGFR dimerization partner, several different 

signal transduction pathways can be engaged. The best-studied pathways include the 

Ras/Raf/MEK/ERK and PI3K/Akt, but the PLC-γ and JAK/STAT pathways can also be engaged 

by activated EGFR (Fig. 6). 

The Ras/extracellular signal regulated kinase (ERK) pathway is a critically important route 

that regulates cell proliferation and survival [133]. Activation of the EGFR receptor leads to the 

phosphorylation of key tyrosine residues within its COOH-terminal portion and, as a result, 

provides specific docking sites for cytoplasmic proteins containing SH2 or PTB binding domains 

[124]. Growth factor receptor-bound protein 2 (GRB2) is an SH2/SH3 domain-containing protein 

that binds EGFR either directly or through the association with the adaptor molecule Shc, and 

acts as a common adapter protein in a majority of growth factor related signalling events. GRB2 

binding to phosphotyrosine residues changes its conformation and allows it to bind to proline-rich 

sequences in the carboxy terminal tail of Sos, a GDP-GTP exchange protein (Fig. 6) [134, 135]. 
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Figure 6 - EGFR Signalling. Binding of ligand to EGFR leads to receptor dimerization, autophosphorylation and 

activation of several downstream signalling pathways. Withdrawn from [90]. 

 

This binding displaces an inhibitory domain in Sos and allows its activation. It then translocates 

to the plasma membrane where it activates Ras (a family of oncogenes that include KRAS, HRAS, 

and NRAS) through an exchange of GDP for GTP [136]. Ras binds to the N-terminus domain of 

the Raf serine/threonine kinases (RAF1, ARAF and BRAF) [137], and recruits this protein 

complex to the plasma membrane inner surface, where Raf subsequently phosphorylates and 

activates MEK1 and MEK2 dual-specificity protein kinases, which in turn activate a third protein 

kinase called ERK1/2. These are then imported into the nucleus where they phosphorylate 

specific transcription factors promoting the increased transcription of Bcl-2 family members and 

proteins that inhibit apoptosis, thereby increasing cell survival [138-140]. 

The PI3K/Akt signalling pathway affects many cellular processes including cell 

proliferation, apoptosis and invasion [141, 142]. Phosphatidylinositol 3 kinases (PI3Ks) are lipidic 

kinases that usually exist as heterodimers of a p110 catalytic subunit and a p85 regulatory 
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subunit that can be activated by recruitment to the cell membrane. This occurs via the anchorage 

to ERBB receptor specific docking sites or Ras protein [141, 142]. Active PI3Ks phosphorylate 

phosphatidylinositol 4,5-bisphosphate (also known as PtdIns(4,5)P2, or more simply PIP2) to 

phosphatidylinositol triphosphate (PtdIns(3,4,5)P3 or PIP3). PIP3 acts as an anchor for the Akt 

serine/threonine kinase and for 3-phosphoinositide-dependent protein kinase-1 (PDK1). Once at 

the membrane, PDK1 phosphorylates and activates Akt, which then regulates a range of target 

proteins involved in a variety of intracellular processes [141-144]. Akt promotes cell survival 

through the transcription of anti-apoptotic proteins. Intermediate transcription factors involved in 

this process are NF-kB and CREB. Another downstream target of Akt is glycogen synthase kinase 

3 (GSK3). Under basal conditions the constitutive activity of GSK3 leads to the phosphorylation 

and inhibition of a guanine nucleotide exchange factor eIF2B, which regulates the initiation of 

protein translation. Therefore, upon inactivation of GSK3 by Akt, eIF2B is dephosphorylated 

resulting in the promotion of protein synthesis and the storage of amino acids [145]. Akt also 

activates mammalian target of rapamycin (mTOR), which promotes protein synthesis through 

p70 ribosomal S6 kinase (p70s6k) and inhibition of eIF-4E binding protein (4E-BP1) [146]. 

Collectively, these processes all promote cell growth and survival in response to EGF. 

Phospholipase Cγ interacts directly with activated EGFR and cleaves PIP2 at the plasma 

membrane, resulting in the production of the second messengers diacyl glycerol (DAG) and 

inositol 1,4,5-triphosphate (IP3). DAG activates members of the protein kinase C (PKC) family at 

the membrane [147]. These PKC isoforms variously enhance cell polarization, migration and 

invasion by enhancing the activity of MET and integrins, and promoting cell survival throughout 

MAPK and c-Jun NH2-terminal kinase activation [148, 149]. IP3 diffuses through the cytoplasm, 

where one of its more important activities is the binding of an IP3 receptor to trigger Ca2+ ion 

release from intracellular stores in the endoplasmic reticulum. Increased intracellular Ca2+ 

activates calmodulin II kinase (CAMIIK) and calcineurin, and directly binds and induces 

conformational changes in other proteins to regulate their activity. Cumulatively, the perturbed 

Ca2+ signalling that is common in cancer cells also supports the cell cycle progression and survival 

of these cells [150]. 

Another signalling cascade initiated by EGF is the JAK/STAT (Janus kinase/Signal 

transducer and activator of transcription) pathway, which is also implicated in cell survival 

responses [151, 152]. JAK phosphorylates STAT proteins localized at the plasma membrane. 
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STAT proteins also interact with phosphotyrosine residues via their SH2 domains and, on 

dimerization, translocate to the nucleus where they activate the transcription of genes associated 

with cell survival [153]. EGFR-activated STAT3 has been shown to activate the expression of an E-

cadherin transcriptional repressor, TWIST, and thereby, promote epithelial-mesenchymal 

transition [154].  

The interlinked Ras/MAPK and PI3K/Akt signalling pathways play an important role in 

tumourigenesis via phosphorylation of various proteins and transcription factors that directly 

control cell growth, differentiation, and apoptosis [93, 143, 155]. Furthermore, mutation in 

KRAS, BRAF, or PIK3CA results in continuous activation of the downstream Ras/MAPK or PI3K 

pathways, regardless of whether the EGFR is activated or pharmacologically blocked. Such 

activation in turn enhances transcription of various oncogenes, including MYC, CREB, and the 

gene for NF-κB [93, 143, 155].  

 

EGFR Functionality Can Be Dependent of Its Sub-Cellular Location  

 

Recent evidences indicate that EGFR functionality can be dependent on its sub-cellular 

location [102]. In this regard, EGFR undergoes translocation into different organelles, where it 

elicits functions besides its best known activity as a plasma membrane-bound receptor tyrosine 

kinase. At plasma membrane level, it mediates cellular processes dependently and independently 

of its kinase activity. EGFR can also be shuttled into the cell nucleus and mitochondrion upon 

ligand binding, radiation, EGFR-targeted therapy and other stimuli. Nuclear EGFR behaves as 

transcriptional regulator, tyrosine kinase, and mediator of other physiological processes. The role 

of mitochondrial EGFR remains poorly understood but it appears to regulate apoptosis and 

autophagy [156]. Studies using patient tumours have shown nuclear EGFR to be an indicator for 

poor clinical outcomes in cancer patients, however, the impact of mitochondrial EGFR on tumour 

behaviour and patient prognosis remains to be defined.  

 

 The Cell Surface and Cytoplasmic EGFR Signalling  

 

Upon ligand binding, activated EGFR recruits, phosphorylates and activates a number of 

important signalling molecules such as PLC-γ, Ras, PI3K and JAK2, as well as the signal 
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transducer and activator of transcription STAT3, promoting its dimerization, nuclear transport, 

and subsequent gene regulation [157-162]. However, EGFR can also mediate cellular processes 

independent of its kinase activity or ligand activation, mostly through its ability to physically 

interact with other proteins (Fig. 7). 

 

 

Figure 7 - The plasma membrane-bound EGFR/EGFRvIII signalling consists on the kinase-dependent and -

independent modes of actions. A: Kinase-dependent functions. Upon ligand binding, EGFR becomes activated 

and phosphorylated at multiple tyrosine residues including those within its kinase domain. Phosphorylated EGFR 

then recruits and phosphorylates downstream signalling molecules. The major pathways downstream of EGFR 

include those mediated by PLC-γ/PKC, Ras/Raf/MEK, PI3K/Akt/mTOR and JAK2/STAT3. In addition, EGFR can 

directly interact with and phosphorylate STAT3 transcription factor. EGFRvIII is constitutively active independently of 

ligand stimulation. B: Kinase-independent functions. Co-expression of the kinase-dead EGFR mutant with HER2 

rescued the inability of the mutant EGFR to activate Akt and MAPK. Kinase dead EGFR mutant may activate Akt via 

undefined mechanisms. Independent of its kinase activity, EGFR also interacts with and stabilizes plasma 

membrane-bound SGLT1, leading to glucose uptake and increased intracellular glucose levels. EGFR and EGFRvIII 

associates and sequesters the pro-apoptotic protein PUMA in the cytoplasm, independently of EGF stimulation or its 

kinase activity. The EGFR–PUMA and EGFRvIII–PUMA interactions contribute to reduced apoptosis and survival. 

Withdrawn from [102]. 

 

Studies showed that a kinase-dead EGFR mutant retained the ability to stimulate DNA 

synthesis. In addition, co-expression of the kinase-dead EGFR mutant with HER2 rescued the 

inability of the mutant EGFR to activate Akt and MAPK, suggesting that hetero-dimerization with 

other members of the ERBB family of receptors may help support the kinase-independent 
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function of EGFR [163]. Cell-surface EGFR was also found to physically interact with and stabilize 

sodium/glucose co-transporter 1, SGLT1, a plasma membrane-bound protein that mediates 

glucose uptake, contributing to the maintenance of high glucose levels inside the cells. 

Conversely, EGFR expression knockdown, led to SGLT1 degradation, reduction of intracellular 

glucose and subsequent autophagic cell death [164]. In support of these observations, co-

expression of EGFR and SGLT1 was found to be frequent in cell lines and specimens of oral 

squamous cell carcinoma [165].  

Through physical associations, regardless of kinase activity, EGFR can modulate protein 

trafficking. Studies reported that both EGFR and EGFRvIII associate with p53-upregulated 

modulator of apoptosis (PUMA), a proapoptotic member of the Bcl-2 family of proteins primarily 

located on the mitochondria [166]. PUMA is a potent apoptosis inducer that binds to and inhibits 

the anti-apoptotic members of the Bcl-2 family of proteins [167, 168] and also directly binds to 

the apoptotic executor Bax [169, 170] to induce mitochondrial outer membrane 

permeabilization. It was further demonstrated that the EGFR–PUMA and EGFRvIII–PUMA 

interactions are independent of EGF stimulation or kinase activity and that these interactions are 

constitutive and only modestly reduced following apoptotic stress [166]. As a consequence of the 

EGFR–PUMA and EGFRvIII–PUMA interactions, PUMA is sequestered in the cytoplasm and 

unable to translocate onto the mitochondria to initiate apoptosis. This is in agreement with the 

evidence showing that PUMA is highly co-expressed with EGFR/EGFRvIII in cell lines and primary 

specimens of malignant gliomas, but also with the fact that this particular tumour type is highly 

resistant to apoptosis inducing treatments [166].  

Studies showed that EGFR localized within the lipid raft microdomain of the plasma 

membrane could activate Akt without the need for kinase activity [171, 172]. It has also been 

shown that PI3K and c-Src co-localized and associated with EGFR in the lipid rafts [171]. These 

findings suggest that the lipid raft microdomain may serve as a platform for EGFR and other 

signalling molecules to interact with each other to transmit survival signals, independent of EGFR 

kinase function, and that pharmacological inhibitors for cholesterol biosynthesis may be useful in 

targeting some of the kinase-independent activities of cell-surface localized EGFR [102]. 
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 The Nuclear EGFR signalling 

 

Nuclear existence of EGFR as well as EGFR ligands, namely EGF and pro-TGF-α was first 

observed in hepatocytes [173-175]. Nuclear expression of EGFR was further detected in other 

types of normal cells and tissues, such as placenta, thyroid, immortalized epithelial cells of ovary 

and kidney origins, and keratinocytes [176-179]. More recently, nuclear EGFR has been shown to 

be detected in many different types of cancer cells and specimens, including those of breast, 

epidermoid, bladder, ovary, oral cavity, lungs, and pancreas, and also in malignant gliomas 

[102]. 

Evidence to date indicates nuclear EGFR to be the full-length receptor that originates from 

the cell-surface [176, 177, 180]. The mechanisms underlying nuclear transport of EGFR begin 

with endocytosis, which occurs following ligand-induced activation, as the ligand-bound receptors 

are internalized through clathrin-coated pits that pinch off from the plasma membrane in a 

dynamin-dependent manner [181]. After the endocytic vesicle fuses with the early endosome, the 

internalized EGFR can be recycled back to the plasma membrane, or sorted to late endosomes 

and, eventually, to lysosomes for degradation, or further transported into the nucleus. Nuclear 

EGFR can be localized within the nucleoplasm [176, 177] and on the inner nuclear membrane 

[179].  

Nuclear EGFR was defined as a transcriptional co-factor that contains a transactivation 

domain in its C-terminus, similarly to rat Neu [176]. As summarized in Fig. 8, the transcriptional 

targets of nuclear EGFR that have been identified to date include: i) cyclin D1 (important 

regulatory protein responsible for transition through the G1 chekpoint in the cell cycle) [176], ii) 

inducible nitric oxide synthase (iNOS) (key enzyme responsible for cellular production of nitric 

oxide, a potent signalling molecule known to influence metastasis and angiogenisis) [177], iii) B-

Myb (proto-oncogene that plays a role in progression through the G1/S phase of the cell cycle) 

[182], iv) cyclooxygenase-2 (COX-2) (enzyme responsible for formation of important biological 

mediators called prostanoids involved in the process of inflammation and pain) [183], v) Aurora A 

(a serine/threonine kinase that associates with the centrossome during mitotic spindle formation 

to ensure proper spindle formation, chromatid separation, and fidelity of the spindle checkpoint) 

[184], vi) c-Myc (regulator gene that codes for a transcription factor, which activates expression 

of a great number of genes involved in cell proliferation) [185], and vii) breast cancer resistance 
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protein, BCRP (an ATP binding cassette half transporter that forms homo- or heterodimers in the 

plasma membrane of various cell types to actively pump macromolecules out of cells) [186]. 

Through increasing the expression of these target genes, nuclear EGFR has been linked to 

several malignant phenotypes of human cancers, including proliferation, inflammation and 

tumour drug resistance [187, 188].  

Extensive efforts have been focused on finding EGFR transcriptional co-regulators with 

DNA-binding capability since EGFR lacks a DNA-binding domain [177]. It was found that nuclear 

EGFR is able to associate with STAT3 oncogenic transcription factor to enhance expression of 

iNOS, a protein involved in inflammation, tumour progression and metastasis. It was further 

reported that nuclear EGFR interacted with E2F1 to activate human B-Myb gene expression, 

leading to uncontrolled proliferation [182]. Nuclear EGFR has also been shown to also interact 

with STAT5 in order to enhance human Aurora A gene expression, leading to chromosome 

instability [184]. Another mechanism for nuclear EGFR-associated transcriptional regulation was 

also suggested [189] - RNA helicase A serves as a DNA-binding partner for nuclear EGFR. 

Interestingly, a recent study showed that EGFR, Src and STAT3 form a heteromeric complex in 

the nucleus [185]. This nuclear complex is bound to the c-Myc gene, which may contribute to c-

Myc gene overexpression in pancreatic cancer cells. Also of note and indicative of a possible 

mechanism underlying the ability of nuclear EGFR to regulate gene transcription, is the ability of 

nuclear EGFR to interact with MUC1. This interaction may promote both the accumulation of 

chromatin bound EGFR and the significant co-localization of EGFR with phosphorylated RNA 

polymerase II [190]. 

HER2 can also be detected in the cell nucleus and activates COX-2 gene expression, as 

well as upregulates cyclin D1 gene expression [191, 192]. Nuclear HER2 enhanced translation 

by activating transcription of ribosomal RNA genes [193]. Taken together, these findings indicate 

that nuclear EGFR and EGFRvIII function as transcriptional regulators, which cooperate with their 

transcriptional co-factors to mediate the expression of a number of important cancer-related 

genes and thereby, regulate many physiological and pathological processes [102]. 

Nuclear EGFR phosphorylates proliferating cell nuclear antigen (PCNA) to promote cell 

proliferation and DNA repair and that indicates nuclear EGFR retains its tyrosine kinase activity 

[194]. Furthermore, nuclear EGFR also plays an essential role in DNA repair following radiation 

therapy [195, 196], which was the inducer for EGFR nuclear entry. Then, nuclear EGFR interacts 
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with DNA-dependent protein kinase (DNA-PK), leading to repair of radiation-induced DNA double-

strand breaks in bronchial carcinoma cells. Similar to EGFR, HER2 nuclear transport can be 

induced by radiation [197]. 

 

Figure 8 - The nuclear mode of EGFR/EGFRvIII signalling network. EGFR nuclear transport can be induced 

by EGF, Akt phosphorylation, radiation and cisplatin, and conversely, inhibited by lapatinib, dasatinib and celecoxib. 

Nuclear EGFR has three major functions: (i) gene regulation, (ii) kinase function, and (iii) protein–protein interactions. 

Via these actions, nuclear EGFR is implicated in a number of physiological and pathological processes, such as 

proliferation, inflammation, metastasis, DNA repair, and resistance to DNA-damaging radiation and alkylating anti-

cancer agents. Nuclear EGFRvIII activates COX-2 gene expression. Withdrawn from [102]. 

 

 The Mitochondrial EGFR Signalling 

 

In 2004 it was demonstrated that EGFR translocated to the mitochondria after EGF 

stimulation (Fig. 9) [198]. While localized in the mitochondria, EGFR interacts with cytochrome c 

oxidase subunit II (CoxII), a mitochondrion-encoded protein and a critical component of the 

oxidative phosphorylation pathway [199]. EGFR translocation to the mitochondria has been 

reported to occur through clathrin-mediated endocytosis, suggesting that the origin of 

mitochondrial EGFR may be plasma membrane-bound EGFR [199]. However, another study 

reported that EGFR mitochondrial transport is independent of endocytosis [200]. In addition, a 

potential mitochondrial localization signal contained in the juxtamembrane region of EGFR was 
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identified (residues 645–666) [199]. However, the nuclear localization signal of EGFR is also 

found in the same juxtamembrane region (residues 645–657), overlapping with the potential 

mitochondrial localization signal (residues 645–666) [177, 183, 201]. Another work reported 

that EGFR mitochondrial translocation could be increased by a mTOR inhibitor, rapamycin [202].  

Both EGFR and EGFRvIII are constitutively present in the mitochondria. Importantly, the 

degrees of EGFR and EGFRvIII mitochondrial import were greatly enhanced following treatments 

with the apoptosis inducers, staurosporine and anisomycin, and with an EGFR kinase inhibitor, 

Iressa (Fig. 7) [102]. Additionally, the mitochondrial transport of EGFR and/or EGFRvIII can be 

constitutive and further enhanced by EGF, rapamycin, apoptosis inducers, c-Src and EGFR 

inhibition (Fig. 7). Conversely, the receptor mitochondrial import can be suppressed by 3-

methyladenine and by etoposide. The origin of mitochondrial EGFR and EGFRvIII remains to be 

defined given the mixed results. While localized to the mitochondria, EGFR interacts with and 

phosphorylates CoxII, but its impact on CoxII and CoxII-mediated ATP biosynthesis is still not 

known. Accumulation of EGFR and EGFRvIII in the tumour mitochondria could contribute to 

tumour resistance to apoptosis although the underlying mechanisms have yet to be defined. 

Overall, the nature and consequences of the mitochondrial mode of EGFR signalling are still 

elusive. 

 

 

Figure 9 - The mitochondrial mode of EGFR/EGFRvIII signalling pathway. (A) EGFR mitochondrial import 

can be constitutive and the extent can be enhanced by apoptosis inducers (staurosporine and anisomycin), EGF, c-

Src, Iressa, cetuximab and rapamycin. Conversely, EGFR mitochondrial transport can be blocked by 3-methyadenine 

(inhibitor of autophagy and PI3K) and etoposide. Mitochondrial EGFR retains its tyrosine kinase activity and 
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phosphorylates CoxII; however, the consequence of the phosphorylation is not yet defined. The mitochondrial EGFR–

CoxII complex can include c-Src; however, the effects of this interaction are still unknown. Furthermore, 

mitochondrial accumulation of EGFR led to compromised apoptotic response and resistance to Iressa treatments, 

while the underlying mechanisms are still undetermined. (B) EGFRvIII mitochondrial import is constitutive and can be 

further enhanced by apoptosis inducers (staurosporine and anisomycin) and by Iressa. Mitochondrial accumulation 

of EGFRvIII rendered tumour cells highly resistant to apoptotic death and to Iressa treatments, though the process 

remains to be elucidated. Withdrawn from [102]. 

 

EGFR Signalling System Is Unbalanced in Human Malignancies  

 

Being EGFR involved in the regulation of cell proliferation, motility and survival; an 

imbalance in the EGFR-ligand system giving rise to increased EGFR signalling can lead to 

neoplastic transformation [203, 204]. There are quite a few mechanisms by which the tight 

regulation of the EGFR-ligand system can be abrogated (Fig. 10). These include: 1) increased 

production of ligands, 2) increased levels of EGFR protein, 3) EGFR mutations giving rise to 

constitutively active variants, 4) defective downregulation of EGFR and 5) cross-talk with 

heterologous receptor systems [90].  

TGF-α and EGF are frequently found co-expressed with EGFR in various types of cancer, 

and they are considered to act in an autocrine/paracrine manner, leading to deregulated EGFR 

activation and uncontrolled tumour growth (Fig. 10) [205, 206]. Deregulated EGFR activation is 

often associated with overexpression of EGFR (Fig. 10). This transforming ability of overexpressed 

EGFR is likely due to constitutive receptor activation caused by spontaneous dimerization, which 

in turn is a result of high EGFR levels on the cell surface. This leads to a continuous activation of 

downstream signalling pathways, conducing to a more malignant phenotype [207, 208]. 

Amplification of the EGFR gene is a way to increase EGFR levels. This has been observed in 

several cancer types [209, 210]. EGFR might also be overexpressed in the absence of gene 

amplification owing to a variety of mechanisms, which include increased activity of the EGFR 

promoter or deregulation at the translational and post-translational levels. For instance, wild type 

and mutant p53 proteins have been shown to directly activate EGFR transcription by binding to 

specific response sites in the promoter [211, 212]. As the level of mutant p53 proteins are 

usually high in tumour cells, it may lead to strong and continuous activation of the EGFR 

promoter and thus receptor expression [213]. 
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Figure 10 - Mechanisms leading to EGFR oncogenic signalling. There are several mechanisms by which 

EGFR becomes oncogenic including: 1) increased EGFR levels, 2) autocrine and/or paracrine growth factor loops 3) 

heterodimerization with other EGFR family members and cross-talk with heterologous receptor systems 4) defective 

receptor downregulation and 5) activating mutations. Withdrawn from [90]. 

 

Mutations in the EGFR gene are frequent in human cancers. These mutations can lead to 

changes in the extracellular domain, in the intracellular domain and in the intracellular tyrosine 

kinase domain [90]. Several mutations have been reported in the extracellular domain, usually 

due to large deletions or duplications of specific exons, encoding all or parts of the extracellular 

domain [118, 214]. These mutated genes give rise to truncated receptors (EGFRvI, EGFRvII, 

EGFRvIII, EGFRvIII/D12-13, EGFR.TDM/2-7), which are constitutively activated and escape 

regulation [90]. However, the molecular mechanism(s), which lead to these changes, remain 

elusive. The mutations in the intracellular portion of the receptor consist of either large deletions 

and/or duplications of exons. Both EGFRvIV and EGFRvV carry deletions in the C-terminal part of 

the receptor [214]. EGFR.TDM/18-25 and EGFR.TDM/18-26 contain duplications of exons which 

code for most of the C-terminal part of the receptor including the tyrosine kinase [90]. The last 
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group of the EGFR mutations lead to changes in the intracellular tyrosine kinase domain, these 

include deletions, missense mutations and small duplications or insertions [215, 216]. 

Aberrant EGFR signalling due to defective receptor down-regulation has also been linked to 

neoplastic cell transformation. As mentioned above, EGFR downregulation is a mechanism by 

which EGFR signalling is attenuated and it involves the internalization and subsequent lysosomal 

degradation, mediated by tagging with ubiquitin, of the activated receptor [130, 131]. Proper 

downregulation of EGFR does not only seem to be dependent on a functional intracellular EGFR 

domain, but also on a functional c-Cbl protein that binds to the EGFR but fails to ubiquitinate the 

receptor [90]. Unlike ligand-activated EGFR, activated ERBB2 is not downregulated, and when 

expressed together with EGFR at high levels, ERBB2 also inhibits the downregulation of EGFR 

[217]. The ligand bound to EGFR can also have a strong influence on receptor degradation. EGFR 

is efficiently degraded upon EGF stimulation but not upon incubation with TGF-α. When TGF-α 

bound EGFR reaches the endosomes, the ligand is largely dissociated from the receptor and the 

receptor is recycled back to the cell surface [218-220]. Another mechanism by which EGFR 

signalling is prolonged without subsequent receptor downregulation occurs when EGFR is 

exposed to oxidative stress in the form of hydrogen peroxide (H2O2) [221, 222]. H2O2 is a 

ubiquitous molecule, present in several air pollutants, including the cigarette smoke, and can 

cross cell membranes freely. Like EGF, H2O2 induces EGFR phosphorylation but to a lower extent 

than EGF [222]. Thus, H2O2 seems to induce tumour formation by activating EGFR and 

uncoupling the activated receptor from normal downregulation, thereby leading to continuous 

downstream signalling and hence cell proliferation [90].  

The functional role of EGFR in cancer cells is widely affected by other cell-surface 

receptors. A cross-talk has been described between EGFR and other members of the ERBB 

family, as well as other receptor tyrosine kinases, cell adhesion molecules, cytokine receptors, 

ion channels, and G-protein coupled receptors (GPCR). Activation of certain integrin molecules by 

extracellular matrix proteins has been demonstrated to induce EGFR tyrosine phosphorylation 

independent of EGFR ligands [223, 224]. The mechanism by which integrins activate EGFR is 

uncertain, but they seem to associate with EGFR on the cell membrane in macromolecular 

complexes involving adaptor and signalling molecules (Fig. 10) [90]. Integrin induced EGFR 

activation could be involved in cell survival through pathways that engage PI3K activation [224, 

225] and in cell proliferation through activation of MAPK [225, 226]. In cancer cells, EGFR 
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transactivation has been shown to induce DNA synthesis, cell cycle progression and cell 

migration, suggesting that EGFR transactivation by GPCR ligands may play an important role in 

tumour onset [227]. A proposed ligand-independent mechanism involves GPCR-mediated 

recruitment of EGFR to a complex with intracellular tyrosine kinases leading to EGFR 

phosphorylation (Fig. 10) [228]. Moreover, a suggested ligand-dependent mechanism of EGFR 

transactivation involves GPCR-dependent stimulation of membrane bound matrix 

metalloproteinases (MMPs), which subsequently cleave membrane-tethered EGFR precursor 

ligands. This include the precursors to heparin-binding EGF-like growth factor (HB-EGF), 

amphiregulin (AR), or the transforming growth factor-α (TGF-α), thereby releasing the ligand to 

bind EGFR (Fig. 5) [90, 229].  

 

EGFR as a Therapeutic Target: Cetuximab 

 

To date, five EGFR-targeted agents have been approved by the FDA for treating cancer 

patients. Among them, three are small molecule inhibitors of the EGFR tyrosine kinase enzymatic 

activity, directed against the intracellular kinase domain. The other two of these are monoclonal 

antibodies directed against the extracellular domain of the EGFR, to block ligand binding and 

receptor activation [102]. Gefitinib (ZD1839, Iressa®) [230] and Erlotinib (OSI-774, Tarceva®) 

[231], are small molecular weight EGFR kinase inhibitors and are being used for locally advanced 

and metastatic non-small cell lung cancer (NSCLC). Lapatinib (GW572016, Tykerb/Tyverb®) 

[232] is an EGFR/HER2-dual targeting small molecule inhibitor and has been used in the 

treatment of breast cancer. Cetuximab (C225, Erbitux®) and panitumumab (ABX-EGF, Vectibix®), 

are humanized monoclonal antibodies used to treat metastatic colorectal cancer upon 

chemotherapy [233] or other therapies [234] failure.  

As mentioned above, cetuximab was approved by the FDA in 2004 for squamous cell 

carcinoma of the head and neck, and advanced-stage EGFR-expressing colorectal cancer [235]. It 

is a chimeric mouse/human monoclonal antibody of the immunoglobulin G1 (IgG1) class that 

recognizes the extracellular domain of both EGFR [127] and EGFRvIII [236]. It is composed of 

four polypeptide chains: two identical heavy (lambda) chains, each consisting of 449 amino acids 

and two identical light (kappa) chains, each consisting of 214 amino acids. The four chains are 

held together by a combination of covalent and non-covalent bonds. The Fv/Fab (fragment 
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variable, antigen-binding), of cetuximab is composed of regions of the 225 murine EGFR 

monoclonal antibody, specific for the N-terminal portion of human EGFR, combined with human 

IgG1 heavy and light chain constant regions (Fig. 11). Furthermore, cetuximab has two N-linked 

carbohydrates on both heavy chains and its molecular weight is approximately 152 kDa including 

carbohydrates [237-240]. Glycosylation, generally talking, plays a critical role in the biological 

and physiochemical properties of an antibody, influencing resistance to proteases, binding to 

monocyte Fc receptors, complement-dependent cytotoxicity (CDC), antibody-dependent cellular 

cytotoxicity (ADCC), and circulatory half-life in vivo [241-243].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 - Structure of cetuximab. Cetuximab is a chimeric IgG1 monoclonal antibody that targets the ligand-

binding domain of the epidermal growth factor receptor (EGFR). Cetuximab is composed of the Fv regions of a 

murine anti-EGFR antibody with human IgG1 heavy and kappa light chain constant regions and has an approximate 

molecular weight of 152kDa. The sugars on the Fab portion include galactose-α-1,3-galactose and the sialic acid N-

glycolylneuraminic acid and glycosylation of the Fc portion of the heavy chain includes only oligosaccharides that are 

commonly present on human proteins. S–S denotes a disulphide bond. Withdrawn from [244]. 

 

Cetuximab binds specifically to EGFR on both normal and tumour cells with an affinity that 

is approximately 5- to 10-fold higher than that of endogenous ligands, therefore competitively 

inhibiting binding of endogenous ligands, such as EGF and TGF-α Ultimately, cetuximab inhibits 

EGFR activation and the associated downstream intracellular signalling [245, 246]. The crystal 

structure of the cetuximab Fab fragment bound to the EGFR extracellular region shows that the 
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antibody binds to a site on domain III of the receptor that overlaps the EGF binding site (Fig. 12). 

Both the heavy and the light chains of cetuximab participate in the interaction with domain III. In 

addition, cetuximab steric binding prevents the EGFR extracellular region from adopting the 

dimerization-competent extended configuration [127]. 

 

 

Figure 12 - Model for inhibition of ligand-induced dimerization by cetuximab. In addition to blocking the  

domain III ligand binding site, FabC225 prevents the receptor from adopting the extended conformation required for 

high-affinity ligand binding and dimerization. Withdrawn from [127]. 

 

The direct mechanism of action of cetuximab is therefore the blockade of ligand-receptor 

binding and consequent inhibition of ligand-mediated activation of the EGFR tyrosine kinase 

[127]. As result, a variety of processes regulated by the EGFR-signalling pathways relevant for 

tumour development or onset are disrupted [247]. These include EGFR downregulation [248, 

249], inhibition of cell cycle progression [250-254], induction of apoptosis [254-256], inhibition 

of DNA repair [254, 257], inhibition of angiogenesis [258-260], and inhibition of tumour cell 

motility, invasion and metastasis [260-262]. Stimulation of antibody-dependent cellular 

cytotoxicity (ADCC) has also been described [263].  

Cetuximab blocks cell-cycle progression by inducing G1 arrest. This occurs through an 

increase in the levels of the p27kip1 inhibitor of cyclin-dependent kinases [251, 264, 265]. 

Cetuximab’s potentiation of apoptosis is correlated with the induction of Bax and the increase in 

expression of caspases [254-256]. The inhibition of tumour induced angiogenesis is probably due 

to reduced tumour production of angiogenic factors, including TGF-α, vascular endothelial growth 

factor (VEGF), interleukin-8 and basic fibroblast growth factor, leading to reduced tumour 

microvessel density, and inhibition of invasion and metastases by inhibiting matrix 

metalloproteinases [260, 261, 266, 267]. 
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As an IgG1 monoclonal antibody, cetuximab also has the potential to kill tumour cells 

through antibody-dependent cell-mediated cytotoxicity (ADCC). As mentioned above, the 

specificity of cetuximab for the EGFR is determined by its antigen-binding region, whereas its Fc 

region is characteristic of other IgG1 immunoglobulins. After binding to EGFR, the Fc region of 

cetuximab remains exposed, and may be recognized by specific Fc receptors for IgG (FcγR) 

located on the surface of monocytes, natural killer cells, and other immune effectors leading to 

activation of effector cell functions. For antibody-opsonized tumour cells, activation of ADCC 

provides a mechanism for tumouricidal action [268, 269]. A synergistic enhancement of anti-

tumour effects has been observed in cell lines, and patients treated with cetuximab in 

combination with different cytotoxic drugs [102, 233, 237, 260, 270, 271]. 

 

Treatment of CRC patients with cetuximab, improves overall survival and progression-free 

survival and preserves the quality of life when the disease did not respond to chemotherapy 

[272]. Although, patients may acquire resistance-mediating mutations within the extracellular 

EGFR domain, consequently the exact binding sites of EGFR targeting antibodies may help 

predict treatment responses [273]. Additionally, mutations in downstream effectors of the EGFR 

signalling pathways also affect negatively the response to anti-EGFR antibodies [274-276]. A 

population-based study of 586 patients with colon adenocarcinomas found mutations in KRAS, 

BRAF, and/or PIK3CA in 316 (56%) of the 586 tumours studied [277]. These mutations result in 

continuous activation of the downstream Ras/MAPK or PI3K pathways, regardless of whether the 

EGFR is activated or pharmacologically blocked. Such activation in turn enhances transcription of 

various oncogenes, including MYC, CREB, and NF-κB [93, 143, 155].  

KRAS mutation is thought to be an early event in tumourigenesis [278-280], plus it is the 

most commonly mutated gene, with mutations in 35%-45% of colorectal adenocarcinomas; 

mutations in PIK3CA (≤ 20%) and BRAF (<15%) are less common [277, 281-285].  

The Ras oncoproteins, namely H-, N- and KRAS are very important in carcinogenesis 

controlling cellular proliferation and differentiation [286, 287]. Mutations in codon 12 (82%), 13 

(17%) and 61 (4%) of KRAS protein have been implicated in resistance to treatment in CRC 

patients [288]. Thus, the mutation status of the KRAS gene in the tumour may affect the 

response to cetuximab and have treatment-independent prognostic value. Patients with a 

colorectal tumour bearing mutated KRAS did not benefit from cetuximab, contrarily to patients 
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with a tumour bearing wild-type KRAS [289]. In contrast to the widely accepted predictive role 

of KRAS  mutation in identifying resistance to anti-EGFR therapy, the prognostic role 

of KRAS mutation in CRC remains uncertain. Several studies have compared the prognostic 

roles of KRAS  codon 12 mutations with those of codon 13. Nonetheless, there is a lack of 

agreement as to the prognostic difference between KRAS  codon 12 and codon 13 mutations in 

colorectal cancer [276, 290-294].  

Although the KRAS wild-type state seems to be a condition for response, most patients 

with KRAS codon 12 and 13 wild type tumours do not respond to anti-EGFR monoclonal 

antibodies [289, 295, 296]. Consequently mutations in other downstream effectors of the EGFR 

signalling pathway, such as BRAF, NRAS, and PI3KCA, might also have a negative effect on 

response to anti-EGFR antibodies [274-276]. Raf proteins are components of a conserved 

signalling pathway that regulates cellular responses to extracellular signals. Over 40 different 

missense mutations in BRAF, involving 24 different codons, have been identified. Most mutations 

are extremely rare, accounting for 0.1%-2% of all cases. However, the mutation V600E within the 

kinase activation domain of BRAF predominates [297]. This mutation impairs the therapeutic 

potential of cetuximab and panitumumab in CRC cells. Nevertheless, BRAF-mutated CRC cells 

can potentially respond to EGFR-targeted monoclonal antibodies if the BRAF inhibitor sorafenib is 

administered concomitantly with cetuximab or panitumumab [298]. The histology and clinical 

characteristics of BRAF-mutant tumours are different from KRAS-mutant tumours [299], which 

also suggests specificity of the mutation for tumour subtypes.  

In CRC, PIK3CA activating mutations have been described at frequencies of 10%-20% 

[285, 300, 301], and prevalence of PTEN mutations has been reported to vary between 1% and 

29% [302-307]. The loss of the tumour suppressor PTEN, which dephosphorylates the lipid 

product of PI3Ks results in high levels of PIP3 and constitutive activation of the PI3K pathway 

[141-144]. PIK3CA mutations and PTEN protein deregulation are mutually exclusive [283]. 

Additionally, loss of expression of the PTEN protein has been reported to confer tumour 

resistance to EGFR tyrosine kinase inhibitors in vitro [308]. 

Mutations in PIK3CA and KRAS or BRAF may coexist within the same tumour [277, 284, 

285, 309], but KRAS and BRAF mutations appear to be mutually exclusive [281, 282, 298, 

310], as were KRAS and NRAS mutations, and BRAF and NRAS mutations [292].  
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The identification of each patient KRAS mutation status allows to make a prognostic as to 

the patients who are likely to benefit from cetuximab and avoid a costly and potentially toxic 

administration of this treatment in non-responder patients [282]. The toxicity profile of EGFR-

targeted mAbs excludes many of the severe side effects commonly observed with cytotoxic 

chemotherapy. Still, as a class of EGFR inhibitors are characterized by cutaneous adverse effects 

such as skin rash [311]. The condition can negatively affect treatment compliance and quality of 

life. In addition to leaving skin vulnerable to bacterial overgrowth and serious infection, skin rash 

can lead to dose modification or treatment discontinuation, thus potentially affecting the overall 

clinical benefits of this form of therapy [311]. Additionally, also BRAF mutation analysis could be 

used as an additional tool for the selection of mCRC patients who might benefit from EGFR 

targeted mAb therapies [298]. All taken, the genetic profiling of individual tumours can lead to 

personalized medicine with improved therapeutical results. 

 

3. Yeast as a Model Organism for Cancer Study 

 

3.1. Yeast as a Model Organism 

 

The budding yeast Saccharomyces cerevisiae is being widely used as a model for 

investigating fundamental processes affected by genetic and epigenetic alterations in cancer, 

such as cell cycle progression, DNA replication and segregation, maintenance of genomic 

integrity and stress responses. S. cerevisiae is one of the simplest eukaryotic organisms. It has a 

life cycle of ±90 minutes, it is quite inexpensive to maintain and grow, and it is stable in both 

haploid and diploid forms [312]. Its haploid genome fully sequenced and annotated since more 

than 10 years, has a small size and relatively low complexity as compared to higher Eukaryotes, 

and it is packaged into 16 well characterised chromosomes [313].  

Yeasts reproduce young and die old, or by apoptosis caused by several possible stimulus 

[314]. They live as individual cells or in colonies, in which case they behave heterogeneously, 

forming a tissue-like structure [315]. Cells can differentiate in response to environmental cues 

into pseudo or true hyphae, which formation is related to the invasion and adhesion of natural or 

artificial surfaces [316]. Yeast has become over the years a prominent model for human 
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diseases and pathways. There are  several reasons for this success, one of which is that at least 

31% of the proteins encoded in the yeast genome have a human orthologue, and nearly 50% of 

human disease genes exhibit yeast orthologues [317]. Therefore, yeasts have also been widely 

used to unveil the basic molecular mechanisms derived from these proteins and their mutations. 

This organism has been used to study human pathologies, like neurological diseases [318, 319], 

mitochondrial diseases [320], as well as insulin signalling [321], cell cycle regulation and ageing 

[321, 322]. More recently it is being tentatively used to approach obesity and dyslipidemia [323, 

324]. Yeast has been used to express successfully human proteins like β-catenin [325], 

dimerized EGFR [326], as well as other RTKs [327], and the PKC isoforms [314]. Furthermore, 

yeast has been the testing ground of new genomic technologies: gene expression profiling of drug 

action [328], synthetic lethal screens [329], drug-induced haploinsufficiency [330], and drug-

induced phenotypic responses [331].  

Moreover, yeasts harbour well conserved pathways, like TOR, PKC and, Calcineurin, stress 

responsive, secretory and protein sorting pathways, as well as the Ras/cAMP/PKA [332]. 

Prominent among yeast signalling pathways are the mitogen-activated protein kinase cascades, 

allowing a quickly responding/adaptation to a changing environment [333, 334]. The MAPK 

cascades, found in animals [335, 336], plants [337], and fungi [333, 338], regulate transcription 

factors by MAPK-mediated phosphorylation. Presently, the budding yeast S. cerevisiae has five 

recognized MAPK pathways [339, 340] (Fig. 13): the mating-pheromone response [341], the 

filamentation-invasion pathway [342], the high osmolarity glycerol (HOG) stress response [343], 

and the cell integrity pathway [344]. All of them are active in vegetative cells. The spore wall 

assembly pathway [345] operates during sporulation and regulates the correspondent 

developmental process [340]. 

When establishing disease (cancer or other) related protein models, different approaches 

are adopted depending on the degree of conservation of the protein under study. If the gene 

codifying for the protein is conserved in yeast, it is possible to directly study its function [346]. If 

the gene has no orthologue in yeast, the heterologous expression of the human gene in this 

organism (the so called “humanized yeast”) can still be highly informative because yeast may 

conserve protein interactions that can indicate its function and pathobiology [346]. An example of 

this strategy is the expression in yeast of the tumour suppressor p53 [346, 347]. Moreover the 

introduction of the human gene into yeast cells often leads to disease-relevant phenotypes 



- INTRODUCTION - 

 

- 41 - 

because yeast and mammalian cells may respond similarly to the appearance of such mutant 

genes [319]. In addition, the lack of endogenous proteins or an entire pathway, S. cerevisiae can 

provide an ideal heterologous system to study the function of these proteins in a null background 

environment. The protein can be studied in a simpler eukaryotic environment, without the 

interference of other proteins with similar or overlapping functions, as well as its endogenous 

regulators. For example, yeast has been used for the independent analysis of each isoform of the 

protein kinase C (PKC) family [314, 346, 347]. 

 

 

Figure 13 - MAPK pathways in yeast S. cerevisiae. The four MAPK pathways present in vegetative cells are 

the mating-pheromone response pathway, filamentation-invasion pathway, high osmolarity growth, and cell integrity 

pathway. The fifth one plays a role in spore wall assembly. Withdrawn from [348]. 
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3.2. Yeast and Cancer-Related Signalling 

 

As a cell model for human diseases, yeast has provided insights into the basic processes 

underlying pathogenesis. However, as a unicellular organism, the analysis of the disease aspects 

that rely on multicellularity and cell-cell interactions has been seen as a limitation of this cell 

system, in particular because yeasts’ multicellularity is mostly unstudied [349]. Also, as a less 

complex system, some relevant genes involved in the pathology might not be present in the yeast 

genome. Even so, yeast cell system has already proved its value as a first-line tool in the 

discovery of mechanistic processes involved in the disease due to the molecular interaction 

networks that are largely conserved from yeast to humans [350]. 

Dozens of different cancer-causing mutations have been identified up to date. Most of 

these mutations occur in genes that have some role in regulating the cell cycle, or in the series of 

events that undergo as DNA is replicated and cell divides. The majority of these mutations were 

discovered in other species, like yeast, before their role in human cancer was realized. Leland H. 

Hartwell won 2001 Nobel Prize in Physiology or Medicine for his contributions to the 

understanding of the cell cycle regulation in particular the identification of cyclins and cyclin-

dependent kinases that act as cell cycle checkpoints, using S. cerevisiae as biological model 

[351]. Hartwell L.H. identified in yeast more than 100 genes involved in cell cycle control, 

generally known as the cell division cycle genes (CDC). As it turns out, the same genes that 

control the cell cycle in baker's yeast, exist and identically control cell cycle progression in human 

cells, and malfunction in tumour cells [351-353]. Hartwell L.H. shared his Nobel Prize with Paul 

Nurse, who is credited for discovering the first human equivalent of yeast's CDC genes: cyclin-

dependent kinase 1, or the CDK1 gene [354]. CDC genes and the molecular pathways they 

control are actually highly conserved through evolution [264, 355-358].  

CDCs are shown to regulate the cell cycle by either stimulating or inhibiting cell division in 

response to the signals that cells constantly receive from their environment. In cancer cells, these 

are designated as proto-oncogenes and tumour suppressor genes, respectively. Importantly, their 

malfunction implicates the malfunction of e.g. cell cycle checkpoints. The checkpoint molecular 

machinery detects serious anomalies, like damage in DNA or chromosomes, and promotes the 

arrest of the cell cycle until the damage is repaired, opening the way for cell self-destruction 

through programmed cell death events, like anoikis and apoptosis [359, 360], if repair is not 
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possible. Therefore, mutation on a checkpoint protein (e.g. p53) is often associated with cancer 

ontology and progression [351-353]. 

Many of the genes that are frequently altered in tumours have structural or functional 

orthologues in model genetic systems, including the yeast S. cerevisiae [361]. As mentioned 

above, yeast presents a considerable degree of homology to the human proteome, including two 

onco-Ras genes RAS1 and RAS2 [362, 363]. Yeast Ras1p and Ras2p proteins (small GTPases) 

are highly homologous and phenotyipically partially redundant. The N-terminal portions of these 

proteins have significant homology to the mammalian Ras, including some short sequences of 

amino acids that are involved in the recognition of guanine nucleotide and phosphate [364]. On 

the other hand, yeast Ras proteins C-terminal diverges significantly with the mammalian Ras, 

especially in the 4 terminal amino acids that are important for post-translational modifications 

that facilitate their membrane association [365]. Mammalian HRAS can suppress the loss of 

either yeast counterparts supporting the functional similarity observed between the yeast and 

mammalian genes [366, 367]. On the other hand, a modified yeast RAS1 gene can be 

biologically active in mammalian cells since it induces morphologic transformation of mouse 

NIH3T3 cells [366].  

Ras1p and Ras2p have similar functions, but their expressions differ. RAS1, but not RAS2, 

is repressed when cells are grown on non-fermentable carbon sources such as glycerol or 

pyruvate [368]. Therefore, a strain deleted in RAS2 will behave in this situation as a double 

deleted mutant, since both Ras1p and Ras2p proteins are absent. Otherwise, the actual 

ras1Δras2Δ double mutant is nonviable [369, 370]. Cells with a temperature-sensitive RAS2 

mutation or ras1Δ deletion are blocked in the G1 phase of the cell cycle and do not bud at non-

permissive temperatures [365]. Mutations of the RAS2 gene cause accumulation of storage 

carbohydrates and concomitant sporulation increase, even on rich media [365]. Conversely, 

yeast cells expressing an activating mutant of Ras2p, Ras2val19, exhibit (i) reduced sporulation and 

decreased glycogen storage level, (ii) sensitivity to heat shock, and (iii) sensitivity to nutrient 

starvation [369]. Also, the amount of cAMP inside the cell is decreased in the ras mutants, and 

increased in the mutant expressing Ras2val19 [369]. 

The Ras/cAMP pathway in S. cerevisiae (Fig. 14) plays a major role in the control of 

growth, proliferation, metabolism, stress resistance, aging, morphogenesis and development 

according to nutrients availability, specially the glucose that can act as a signalling molecule to 
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regulate multiple aspects of yeast physiology [371]. In response to nutrients, the guanine 

nucleotide exchange factors (GEF) Cdc25p and Sdc25p activate the redundant Ras1p and Ras2p 

GTPases. The GTPase activating proteins (GAPs), encoded by the IRA1 and IRA2 genes, 

downregulate Ras proteins by promoting GTP hydrolysis, resulting in the accumulation of Ras 

1/2-GDP, the inactive form of Ras 1/2p. On the other hand, GEFs encoded by CDC25 and 

SDC25 promote Ras 1/2p activation by facilitating GTP charging of Ras [372]. When in an active 

state both Ras1p and Ras2p function to activate adenylate cyclase (Cyr1p) which is associated 

with a protein called CAP [370], resulting in the production of cAMP from ATP and activation of 

protein kinase A (PKA). Binding of the secondary messenger cAMP to the regulatory PKA subunit 

Bcy1p induces its dissociation from the PKA catalytic subunits (redundantly encoded by the 

TPK1, TPK2, and TPK3 genes) resulting in their activation [371, 372]. Subsequently, the 

phosphorylation of several substrates leads to the regulation of a variety of functions including 

cell cycle progression [371, 372]. Recently, the complexity of Ras/cAMP signalling has increased 

as a result of the discovery of a G-protein-coupled receptor system, consisting of Gpr1p-Gpa2p 

complex, that appears to act upstream of adenylate cyclase to stimulate cAMP production, 

probably in response to glucose [371, 372].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 - The cAMP-PKA pathway in S. cerevisiae. Addition of glucose to glucose-starved, respiring cells 

triggers the rapid synthesis of cAMP and, subsequently, the activation of PKA. Glucose-induced cAMP synthesis 
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requires two sensing systems: (i) extracellular detection of glucose via the Gpr1p–Gpa2p system and (ii) intracellular 

detection of glucose, which requires uptake and phosphorylation of the sugar. The intracellular sensing system most 

probably transduces signals via the guanine nucleotide exchange factor (GEF) protein Cdc25p and the Ras proteins. 

Activated PKA (Tpk1p, Tpk2p, Tpk3p) mediates the fast transition from respiratory to fermentative growth via the 

modulation of numerous downstream targets, thereby allowing cells to make the necessary adaptations for 

fermentative growth. These include the upregulation of glycolysis, the stimulation of cell growth and cell cycle 

progression, the downregulation of stress resistance and gluconeogenesis, and the mobilization of the reserve 

carbohydrate glycogen and the stress protectant trehalose. Arrows and bars represent positive and negative 

interactions, respectively. Dashed lines represent putative or indirect interactions. Withdrawn from [372]. 

 

The Ras/cAMP pathway regulates a variety of processes including cell cycle progression 

and life span [369, 370, 373]. Recent studies identified a number of other cellular processes 

regulated by the Ras/cAMP pathway. For example, this signalling pathway is reported to regulate 

the polarity of actin cytoskeleton through the stress response pathway [374]. It also controls 

spore morphogenesis [375], and the activity of the amino acid transporter Gap1p permease 

[376] which has a crucial role in nitrogen regulation in yeast (for a review see [377]). Ras/cAMP 

signalling has also been implicated in the nutrient-mediated control of ribosome biogenesis 

[378]. Conversely, when the reported phosphorylation of Ras proteins is repressed [379] that 

results in enhanced sensitivity to heat shock, reduced glycogen, and increased cAMP. This may 

suggest that phosphorylation is involved in the feedback regulation of the Ras/cAMP pathway 

[365]. Importantly, Ras signalling deregulation compromises DNA damage checkpoint recovery 

[380].  

In addition to the Ras/cAMP/PKA signalling cascade, the other major nutrient-responsive, 

growth-controlling pathway in yeast is the TOR network (Fig. 15) [371, 372]. Tor (Target of 

Rapamycin - a macrolide drug that binds to TOR suppressing its interaction with target 

substrates) serine/threonine kinases, Tor1p and Tor2p, belong to the phosphatidylinositol-3 

kinase (PI3K) family and exert their functions in two distinct multiproteic complexes: TOR 

Complex 1 (TORC1) which control various aspects of yeast growth and cell proliferation, and 

TORC2 which regulates cell polarity and organization of the actin cytoskeleton [371, 372]. The 

two complexes are structurally and functionally conserved in all the eukaryotes [381]. TORC1 

activity responds to the nutritional status, primarily the quality of the nitrogen source, and to a 

wide variety of stress conditions, apparently relaying amino acid concentrations, glucose, and 

perhaps other nutrient signals to the cellular machinery, including growth factors (insulin/IGF) in 

mammals [371, 381]. Its major function appears to be the regulation of translation capacity in 
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response to environmental signals by promoting ribosome biogenesis, amino acid availability, 

and translation efficiency [371, 372]. The specific inhibition of TORC1 by rapamycin mimics 

nutrient starvation and causes G1 arrest, inhibition of protein synthesis, glycogen accumulation, 

induction of autophagy and entry into quiescence [371, 372]. 

 

 

Figure 15 - The TORC1 pathway in S. cerevisiae. Nutrients activate TORC1, resulting in the stimulation of 

protein synthesis and the inhibition of stress response genes, autophagy and several pathways that allow growth on 

poor nitrogen sources. A major part of these processes is regulated by the rapamycin-sensitive TORC1 complex 

either via the Tap42p-Sit4p/PPA2c or by the recently identified Sch9p branches. The activity of Sch9p is additionally 

regulated by Pkh1p and Pkh2p. Note that Sch9p functions both in the cytoplasm and the nucleus. Withdrawn 

from [372]. 

 

In the literature, several functional interactions between TOR and the Ras/cAMP pathway 

have been described [371]. For example, the activation of the Ras/cAMP signalling pathway 

confers pronounced resistance to rapamycin. Additionally, the constitutive activation of the 

Ras/cAMP pathway prevents several rapamycin-induced responses, such as the induction of 
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stress genes, the accumulation of glycogen, the induction of autophagy, the downregulation of 

ribosome biogenesis, and the downregulation of some glucose transporters. Finally, and 

importantly, TOR controls the subcellular localization of both the PKA catalytic subunit Tpk1p and 

the Ras/cAMP signalling-related kinase Yak1p [371, 372, 382]. Overall, the exact relationship 

between the TOR and Ras/cAMP/PKA networks is still not fully understood. It has been 

suggested that the TOR and PKA signalling cascades independently coordinate the expression of 

several genes. As an alternative model, it has been proposed that TOR may act upstream of Ras 

to regulate PKA activity, thus the Ras/cAMP pathway may actually be a novel TOR effector 

branch [371, 372, 382]. 

The mammalian TOR (mTOR) is a critical target of EGFR signalling, linking growth factor 

abundance to cell growth and proliferation. Generally, it is the PI3K/Akt pathway [383] (see Fig. 

7), but also the PLC-γ/PKC pathway [384], that connects EGFR and mTOR. In addition, signalling 

through mTOR is stimulated by defects in the pathway components upstream of mTOR, such as 

growth factor receptors, PI3K, Akt, PTEN, or by stimulation of PI3K by effectors of the mutant 

Ras/Raf/MAPK pathway [385]. Overall, mTOR is a key intracellular kinase integrating 

proliferation, survival and angiogenic pathways and has been implicated in the resistance to 

EGFR inhibitors. Thus, mTOR blockade is pursued to interfere at multiple levels with tumour 

growth [383].  

The true dimension and conservation degree of the PI3K signalling is still not well 

perceived in yeasts [386]. The only detectable PI3K from S. cerevisiae is Vps34p (Vacuolar 

Protein-Sorting-34) that is present in two different complexes to carry out autophagy - Complex I - 

and Carboxypeptidase-Y sorting - Complex II. Vps34p is involved with trafficking of proteins from 

Golgi to vacuole in yeast and also catalyses the conversion of PtdIns to PtdIns(3)P [387, 388]. 

The Vps34p-mediated PtdIns(3)P production recruits effector proteins that function in budding 

[389, 390]. Nonetheless, in higher eukaryotes, the PI3K and PTEN are major positive and 

negative regulators, respectively, of the PI3K/Akt pathway, controlling growth, survival, and 

proliferation [391, 392]. In S. cerevisiae, Tep1p [393, 394] (orthologue of human tumour 

suppressor gene PTEN) inhibits the downstream functions mediated by the Vps34p pathway, 

such as cell survival, cell proliferation and activation of Sch9p (serine/threonine protein kinase 

and an Akt/PKB orthologue), which is activated by cAMP, and regulates longevity and stress 

resistance in yeast [388, 389]. 
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There are several lines of evidence that Sch9p plays a central role in nutrient-mediated 

signaling in the budding yeast [372, 395]. It acts in parallel with the PKA pathway and is directly 

phosphorylated by TORC1, mediating many of the TORC1-regulated processes. Nevertheless, 

Sch9p also acts independently of TORC1, and can even exert opposite effects to TORC1 in the 

adaptation to stressful conditions (Fig. 15 and 16) [372]. Sch9p integrates nutrient signals with 

cell size regulation [396], along with being an activator of ribosomal proteins and ribosomal 

biogenesis [396]. Sch9p is also a negative regulator of both chronological and replicative aging 

[397, 398] and has recently been shown to similarly regulate mitochondrial respiration [399]. It 

was demonstrated that the sch9Δ mutation upregulates electron transport chain gene expression 

and that this is associated with an increase in mitochondrial respiration [399], further 

strengthening the fact that yeast orthologues of oncogenes play a role in the regulation of cell 

metabolism [400]. It has recently been shown that yeast Sch9p is a central component of a 

network that controls a common set of genes implicated in a metabolic switch from the TCA 

cycle and respiration to glycolysis and glycerol biosynthesis. During chronological survival, 

mutants lacking SCH9 depleted extracellular ethanol and reduced stored lipids, but synthesized 

and released glycerol, suggesting that glycerol production, in addition to the regulation of stress 

resistance systems, optimizes life span extension [401]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16 - PKA responds to extracellular and intracellular glucose signals. Putative upstream regulators 

of the Ras/PKA pathway deriving from glycolysis. Withdrawn from [402]. 
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3.3. Metabolic Similarities Between Cancer Cells and Yeast  

 

In order to proliferate, cells must comply with the energy demand imposed by vital 

processes such as macromolecule biosynthesis, DNA replication, ion gradients generation and 

cell structure maintenance. Hence, mitochondria play an important role in energy metabolism as 

they synthesize most of the cellular ATP through oxidative phosphorylation. However, it was 

suggested that cancer cells suppress mitochondrial metabolism [400, 403, 404]. Otto Warburg 

back in 1920s registered that the metabolism of cancer cells is shifted from the oxidation of 

glucose to carbon dioxide and respiration-driven ATP production to fermentative reduction of 

pyruvate to lactate. Under these conditions, ATP is mainly derived from cytosolic glycolysis, 

which, however, is a much less efficient pathway to generate energy compared to mitochondrial 

respiration [400, 403, 404]. In spite of the decrease in energy yield, as a consequence of the 

“glycolytic phenotype”, this seems to allow an increase in cell proliferation rate and be applicable 

to other fast growing cells [405]. Because the repression of oxidative metabolism occurs even in 

the presence of oxygen, this metabolic phenomenon is known as “aerobic glycolysis” or the 

“Warburg effect” [400]. The specific advantages that cancer cells acquire by undergoing this 

metabolic switch are unknown. Moreover, it is unclear whether “aerobic glycolysis” is a 

prerequisite for a cell to become neoplastic or if this dramatic switch in metabolism occurs 

concomitantly to, or after malignant transformation, although a correlation between the glycolytic 

phenotype and tumour invasiveness has also been suggested [406]. It has also been suggested 

that “aerobic glycolysis”, which is accompanied by high glucose uptake rates and acidification of 

the extracellular environment, may actually be a response to hypoxic conditions, providing growth 

advantage. Similarly, aerobically fermenting yeasts, also display Warburg effect, converting 

glucose to ethanol and acetic acid at high rates in the presence of oxygen [407]. The 

concomitant reduced mitochondrial activity might contribute to the ability of cancer cells to evade 

apoptosis [408-410].  

The exact molecular mechanisms underlying the “Warburg effect” are unknown. 

Nonetheless, it is possible that the enhanced expression of glycolysis enzymes and glucose 

transporters, along with a downregulation of mitochondrial metabolism could be at the basis of 

the glycolytic phenotype of tumour cells [403]. In these cells, the HIF-1 transcription factor 

regulates hypoxia-induced metabolic reprogramming through the expression of glycolysis 
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enzymes, glucose transporters and several other tumour-related genes [411]. Although aerobic 

glycolysis generates only 2 molecules of ATP per molecule of glucose, the overall rate of ATP 

production might indeed be higher in aerobic glycolysis than in mitochondrial respiration due to 

lower costs for enzyme production or higher activities of the fermenting enzymes compared to 

TCA cycle and respiratory chain enzymes and cofactors [412, 413]. Nonetheless, some glioma, 

hepatoma and breast cancer cell lines possess functional mitochondria and obtain their ATP 

mainly from oxidative phosphorylation [414, 415], posing questions as to the actual biological 

role of this metabolic behaviour. Moreover, some cancer cells can reversibly switch between 

fermentation and oxidative metabolism, depending on the absence or the presence of glucose 

and the environmental conditions [416, 417]. 

Herbert G. Crabtree back in 1929 showed that mitochondrial respiration in neoplastic 

tissue is repressed at physiological glucose concentrations [418]. Interestingly, a recent model 

proposed that “glycolytic” cells could establish a metabolic symbiosis with the “oxidative” ones 

through lactate shuttling [419]. Regarding this, a well-defined feature of some cancer cells is the 

glucose-induced suppression of respiration and oxidative phosphorylation [404]. This is a short-

term and reversible event and is referred to as the “Crabtree effect”. Crabtree effect is long and 

well known to yeast biotechnologists who deal with industrial fermentations since S. cerevisiae, 

as Crabtree positive yeast, ferments glucose aerobically in the presence of extremely high 

extracellular glucose concentrations instead of producing biomass via the TCA cycle [420, 421]. 

Increasing concentrations of glucose accelerate glycolysis. This provokes an increase in the ATP 

yield through substrate phosphorylation, decreasing the need for oxidative phosphorylation 

through the TCA cycle, and therefore oxygen consumption, and ultimately leading to the 

repression of respiratory enzymes [422, 423]  

The reversible switch between fermentation and oxidative metabolism might represent an 

advantage of cancer cells in vivo, as it would allow them to adapt their metabolism to the rather 

heterogeneous microenvironments in malignant solid overgrowths. It is therefore crucial to clearly 

understand the long-term metabolic reprogramming of cancer cells (the Warburg effect) and the 

short-term adaptation mechanisms (the Crabtree effect) as the targeting of both would lead to 

much more effective therapeutic strategies [400].  

Yeast cells when grown in the presence of oxidative carbon sources (e.g. lactate, acetate or 

glycerol) contain competent and well differentiated mitochondria [424]. In contrast, when glucose 
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is present, as mentioned above, mitochondrial morphology changes and oxidative, catabolite 

repression or glucose repression [425]. From the metabolic point of view it is very similar to the 

Warburg effect. Glucose repression acts on an enormous variety of genes, which expression only 

occurs when the amounts of extracellular glucose reduce to levels below ±0.3% (w/v) [426]. 

Therefore, when yeasts are proliferating in a glucose rich medium, a considerable part of the 

genome is shut down, especially genes related to metabolism of alternative substrates, 

respiration, mitochondrial activities, and gluconeogenesis [427]. When the glucose concentration 

on the growth medium decreases below the referred threshold, repression on transcription 

alleviates and many genes become induced, including transporters for respirable carbon sources, 

and enzymes from catabolism that allow the consumption of other carbon sources [428]. The 

transition period between a high glucose, fermentative metabolism to a low or no glucose 

respiratory metabolism is called “diauxic shift” [429]. This nomenclature derives from the 

intermediate growth arrest of a microbial culture that is observed after glucose is exhausted and 

while cells re-programme their proteome for the consumption of a respirable carbon source, 

allowing a second fast growth period, thus producing a microbial culture diauxic growth curve 

[371, 372]. The same mechanisms that could explain the Crabtree effect induction in tumour 

cells may equally apply to the yeast model: limitations in ADP and Pi levels [106], Ca2+-induced 

decrease in respiration [107], reduced permeability of the mitochondrial outer membrane [108] 

and fructose 1,6-biphosphate mediated inhibition of the respiratory chain [404].  

For a summary of the parallels/similarities between the glucose-induced repression of 

oxidative metabolism of yeast and the “aerobic glycolysis” of tumour cells see Fig. 17: 

• In both cell types, the downregulation of oxidative metabolism is observed along with 

an enhanced fermentation despite the presence of oxygen [404]. 

• Yeast shares with cancer cells the metabolic features that are identified as the 

underlying causes of the Warburg effect [404]. 

• As cancer cells, fermenting yeast over-express all glycolytic enzymes in response to 

high glucose, and regardless to the presence of oxygen - Crabtree effect [430, 431]. 

 

 Therefore, S. cerevisiae presently emerges as a suitable model for the screening of 

metabolism-targeted drugs employed for anti-tumour therapy [400, 404], in spite of the debate 

originated from yeast not possessing the genetic defects identified in cancer cells that ultimately 
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implicate changes in metabolism regulation [361]. Yet, the genome and proteome similarities 

between S. cerevisiae and human cells, in particular at the level of fundamental/conserved 

cellular and molecular processes allied to the huge knowledge on S. cerevisiae metabolism and 

regulation, derived from biotechnology, will most certainly contribute to faster understanding of 

similar intricate circumstances in human cells. 

 

Figure 17 - Metabolic similarities between cancer cells and yeast. Hexokinase (HK) isoforms insensitive to 

glucose 6-phosphate-mediated inhibition are overexpressed. Phosphofructokinase (PFK) is activated by higher levels 

of one of its allosteric activators: fructose 2,6-biphosphate (F26bP). The enzymes that metabolize pyruvate in the cell 

cytoplasm are overexpressed: Lactate dehydrogenase (LDH) in the case of cancer cells and pyruvate decarboxylase 

in yeast (PDC). Pyruvate dehydrogenase complex (PDH) is inhibited through phosphorylation by an overexpressed 

pyruvate dehydrogenase kinase (PDHK). Succinate dehydrogenase (SDH) has mutations in different subunits in 

cancer cells and its expression is downregulated in yeast. In both cases, a decreased expression of mitochondrial 

complex IV is observed as well as a downregulation of the ATP synthase. Withdrawn from [400]. 
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3.4. Using Yeast to Study Cell Communication Through RTKs 

 

Yeasts, as all cells, display plenty of surface proteins involved in sensing and signalling. 

These include GTP-binding proteins and protein kinases with close relatives among the receptors 

and intracellular signalling proteins in animal cells [11]. The human genome contains more than 

1,500 genes that encode receptor proteins, and the number of different receptor proteins is 

further increased by alternative RNA splicing and posttranslational modifications. The large 

numbers of signal proteins, receptors, and intracellular signalling proteins used by animals can 

be grouped into a much smaller number of protein families, most of which have been highly 

conserved in evolution. Flies, worms, fungi and mammals all use essentially similar machinery 

for cell communication [11, 83].  

Deregulated RTK signalling is critically involved in the development and progression of 

human cancer. Also in this case, S. cerevisiae represents an inexpensive and rapid alternative for 

measuring the activity of RTKs in a heterologous, yet eukaryotic environment [326, 346, 432]. 

The fact that yeast genome apparently does not display any RTK-like protein, offers the advantage 

of a null background for the expression of mammalian RTKs and for the measurement of the 

effects of compounds on the specific target [326].  

S. cerevisiae has been used to study several features of EGFR and its inhibitors after EGFR 

expression and incorporation into the cell surface [433-436]. In one of these studies, large 

fragments, some encompassing multiple domains of EGFR, were expressed and properly folded 

on the surface of yeast due to the protein folding and quality control machinery in the 

endoplasmic reticulum. These fragments were used to localize antibody binding to particular 

domains of EGFR [433]. In another study, a yeast-displayed library of single point mutants of an 

EGFR ectodomain fragment (residues 273-621) was constructed by random mutagenesis and 

was screened for reduced binding to EGFR mAbs. If an EGFR mutant showed loss of binding to a 

mAb, this suggested that the mutated residue was potentially a contact residue [434]. A 

subsequent study used directed evolution by random mutagenesis and recombination followed by 

yeast surface display to isolate mutants that exhibit proper protein folding for the soluble 

expression of EGFR’s ectodomain in S. cerevisiae. As screening probes, several conformationally-

specific mAbs against EGFR’s ectodomain were employed [435]. Monoclonal antibody 225 (the 

predecessor of the chimeric human/murine antibody IMC-C225 or cetuximab/Erbitux®) binds to 
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domain III of the receptor, between 294 and 475, and it is reactive towards conformational or 

discontinuous epitopes of the receptor [433, 435]. Moreover, the amino acids Lys465 and Ile467 

were identified as important residues for mAb 225 binding to EGFR. These residues are adjacent 

to the EGFR ligand-binding site, which is consistent with the ability of mAb 225 to block binding 

of EGF and TGF-α ligands [434]. 

Alternatively, Gunde and co-workers have reconstituted aspects of the EGFR signalling 

pathway in yeast S. cerevisiae [326]. The temperature sensitive cdc25-2 yeast strain does not 

grow at 37°C, because the mutant Cdc25p protein (the yeast orthologue of mammalian son of 

sevenless (Sos) and a Ras guanyl nucleotide exchange factor (Ras-GEF) functioning upstream of 

the Ras proteins in S. cerevisiae) is unable to activate the endogenous Ras protein at the 

restrictive temperature. The co-expression of dimerizing mammalian EGFR and EGFR derivatives, 

together with a cytoplasmic GRB2 adaptor fused to the membrane-localized and constitutively 

active human Ras rescues growth of the cdc25-2 mutant yeast strain at the nonpermissive 

temperature. Using kinase-defective RTK mutants and selective EGFR kinase inhibitors, it is 

demonstrated that growth rate of this yeast strain correlates with kinase activity of the EGFR 

derivatives [326].  

Busti and co-workers [432] showed that the EGFR module (constitutively activated EGFR 

which activation is independent of ligand stimulation, GRB2 and hSos1) can be functionally linked 

to the Ras/cAMP/PKA pathway (see above) in a S. cerevisiae cdc25ts (temperature sensitive) 

strain. Several independent biological readouts showed a significant delay in inactivation of the 

Ras/cAMP/PKA pathway, including drop of budding index, decrease of cAMP level, acquisition of 

thermotolerance and arrest of cell division [432]. Auto-phosphorylation of the EGFR is a 

necessary step in coupling RTK expression to yeast Ras activation. In fact, no significant effect 

was observed in cells transformed with a kinase defective version of the receptor or treated with a 

drug specifically inhibiting the kinase activity of the receptor. Although significant, the 

physiological coupling of the EGFR module to the Ras/cAMP pathway is short-lived. This could be 

due to EGFR being expressed in yeast in a partially misfolded state [435] that in turn could limit 

receptor autophosphorylation [432]. Therefore, appropriately engineered yeast can serve as 

screening tool for identifying RTK inhibitors by combining advantages of in vitro (target-specific 

read-out) with those of cell-based assays (physiological environment).  
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Drugs and molecular effectors used against the most frequent cancers have a statistically 

significant degree of ineffectiveness in patient’s population, being this one of the most prominent 

problems identified in clinical practice. Thus, it is imperative the adjustment of therapeutic 

strategies to the individual cancer patient in a clinically manageable period of time. Yeasts are 

being extensively used worldwide as tools for drug discovery, drug target identification, and drug 

mode of action study. This is due to the high degree of conservation between yeast cellular 

processes and those of human cells, as well as their versatile genetic malleability, becoming the 

model of choice for research in molecular and cell biology. In this context, the present work is 

included in a broader aim of establishing Saccharomyces cerevisiae as a tool for theranostics.  

In view of the high percentage of colorectal cancer (CRC) patients insensitive to routine 

treatment with cetuximab/Erbitux®, a monoclonal antibody against epidermal growth factor 

receptor (EGFR) from Merck Serono, this EGFR antagonist was chosen as a first case study. 

Previous preliminary results from our team showed that yeast is sensitive to the presence of 

cetuximab/Erbitux®. Therefore, the work primarily dedicated to the identification of this antibody 

S. cerevisiae surface target, ultimately seeking the possible EGFR counterpart in yeast, the 

downstream effectors and therein regulated genes.  
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1. In Silico Survey to Discover the EGFR Counterpart in Yeast 

 

1.1. Yeast Cell Surface Proteins Identification 

 

The Saccharomyces Genome Database SGD (www.yeastgenome.org) was used to collect 

the sub set of yeast genes corresponding to annotated proteins known to localize at the cell wall 

and at the plasma membrane. For this purpose, the search was performed using several key 

words, such as “cell wall”, “plasma membrane”, “permease”, “pump”, “channel”, 

“transporter”, “receptor”, “cell periphery”, “extracellular region”, “periplasm”, 

“transmembrane”, “integral to membrane”, “extrinsic to membrane”, “plasma membrane 

enriched fraction”, “internal side of plasma membrane”, “extrinsic to internal site of plasma 

membrane”, “kinase”, “ras”, “raft”, “antigen”, “actin cortical patch”, “GPI”, “manoprotein”, 

“glycoprotein” and “PIR” (CD-ROM at the back cover of the final printed version - Supplementary 

Material - Table I). To check the hydrophobicity of putative plasma membrane integral proteins, it 

was used the net-available servers, based on Kite and Doolittle method for the prediction of 

transmembrane helices in proteins: TMHMM Server v.2.0 (www.cbs.dtu.dk/services/ TMHMM/), 

PredictProtein server (www.predictprotein.org). Additionally, also the Transporter Classification 

Database (www.tcdb.org) was used. 

Protein BLAST was performed on SGD database using as bait (i) the EGFR total protein 

sequence (epidermal growth factor receptor isoform a precursor; accession: NP_005219.2 GI: 

29725609), as well as the (ii) extracellular domain (residues 25-645), (iii) domain I/L1 (residues 

25-189), (iv) domain II/CR1 (residues 190-334), (v) domain III/L2 (residues 335-504), (vi) 

domain IV/CR2 (residues 505-645), (vii) cytoplasmic domain (residues 669-1210), (viii) domain 

tyrosine kinase (residues 707-982), all sequences from EGFR protein. The SGD protein sequence 

dataset was the yeast “gene: protein encoding (strains)”, among these are BY4741, W303, 

CEN.PK and other well-known laboratory strains. Occasionally, the Génolévures dataset, which 

includes other S. cerevisiae genetic backgrounds, was also used (cbi.labri.fr/Genolevures/). All 

searches were performed with the BLOSUM 62 scoring matrix, coupled with default parameters 

(Oct, 2011; for more information see also Table I from supplementary materials).  
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1.2. Search for Similar EGFR Domain Architectures in Yeast Proteins 

 

EGFR conserved domain architecture was explored in the whole yeast proteome using all 

the available data on S. cerevisiae strains at NCBI Conserved Domain Architecture Retrieval Tool 

(www.ncbi.nlm.nih.gov/Structure/lexington/lexington.cgi) and InterPro database 

(www.ebi.ac.uk/interpro/). To investigate yeast proteins that have L domains, a database of 

structural and functional annotation for all proteins and genomes - SUPERFAMILY database 

v.1.75 (supfam.org/SUPERFAMILY/ index.html) was used. Multiple sequence alignments were 

performed using ClustalW2 (www.ebi.ac.uk/Tools/msa/clustalw2/). Proteins’ tri-dimensional 

structure was obtained using Swiss-PdbViewer v.4.01. 

 

2. Yeast Strains and Culture Media  

 

S. cerevisiae strains used for the experiments were wild type (wt) BY4741 (MATa his3∆1, 

leu2∆0, met15∆0, ura3∆0) obtained from EUROSCARF (Frankfurt, Germany) and W303-1A 

(MATa leu2-3/112, ura3-1, trp1-1, his3-11/15, ade2-1, can1-100) [437]. The mutants used 

throughout the work were obtained from the S. cerevisiae single deletion strains collection 

(EUROSCARF), in the BY4741 background [438]. Strains were routinely kept at 4ºC in YPD 

medium (1% yeast extract, 2% peptone, 2% glucose, 2% agar). 

 

3. Cetuximab 

 

The monoclonal antibody cetuximab/Erbitux® was supplied by Merk (Germany) in its 

clinical presentation of 5mg/mL (32.89µM), and stored at 4ºC. Besides the cetuximab (active 

ingredient) the other components of the Erbitux® solution are sodium chloride (isotonicity agent), 

sodium dihydrogen phosphate dehydrate (buffer), disodium phosphate dehydrate (buffer) and 

water. This solution was diluted in medium to the desired concentrations for the drug assays 

performed. 

 



- MATERIAL AND METHODS - 

 

- 63 - 

4. Cetuximab Susceptibility Assays 

 

4.1. Yeast Growth Curves  

 

The susceptibility of the parental strains, BY4741 and W303-1A, to cetuximab was 

assessed by comparing the growth in liquid cultures supplemented with a range of 

concentrations of cetuximab. Yeasts were grown at 30ºC in YNB medium (0.5% ammonium 

sulphate, 0.17% YNB, 2% glucose) supplemented with the appropriate auxotrophic requirements 

(10g/L leucine, 10g/L methionine, 10g/L histidine, 2g/L uracil for BY4741 or 10g/L leucine, 

10g/L histidine, 2g/L uracil, 2g/L adenine, 5g/L tryptophan for W303-1A). Cells were allowed to 

grow until exponential phase of growth (OD600nm 0.4-0.8), and then diluted to an OD of ±0.1 for 

further incubation in the same media containing several concentrations of cetuximab, 30nM, 

150nM, 300nM, 900nM and a blank culture without cetuximab. Incubation was performed in an 

orbital shaker (200rpm), with an air/liquid ratio of 2:1. Growth was monitored 

spectrophotometrically (OD600nm) during 24h. 

 

4.2. Measurement of Intracellular Concentration of Ethanol by HPLC 

 

Cell cultures were grown at 30ºC in YNB medium without cetuximab and in the same 

medium supplemented with 30nM, 150nM and 900nM of the monoclonal antibody. Ethanol 

production was assessed by HPLC (High Performance Liquid Chromatography) at 0, 6, 12 and 

24h of culture growth. At the times indicated, the samples from the growth assays (see 4.1 from 

Material & Methods) were used for biomass quantification, by spectrophotometry (OD600nm), and 

for the ethanol quantification. This last was obtained centrifuging the samples for 2min at 

7,000rpm for separation of the suspended cells, and incubating the supernatant at 4ºC for 

30min with perchloric acid 2% (v/v) for removal of proteins and/or cellular contaminants. The 

mixture was then centrifuged for 10min at 12,000rpm at 4ºC and the supernatant was filtrated 

with sterile filters of 0.22µm. The samples were stored at -20ºC until use. Quantification was 

performed in a Gilson HPLC with a column Merck Polyspher OA KC Cat. 51270, maintained at 

50ºC, and using 2.5mM sulphuric acid in ultra-pure water as a mobile phase at a flow rate of 

0.5mL/min. As internal standard, to allow integration of the peaks, a solution of 5g/L of 
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arabinose was used. As initial pattern solutions, for recognition of the retention times of the 

compounds, 3g/L of arabinose and 3g/L of ethanol were also used. Prior to a 25µL injection, 

both the initial pattern and the experimental samples were diluted in a 1:1 ratio with the internal 

standard solution. The data acquisition program used was Gilson System Controller 712. 

 

5. Western Blot Analysis 

 

5.1. Whole Yeast Protein Extraction 

 

For immunoblot analysis, total proteins from S. cerevisiae BY4741 were extracted using 

the trichloroacetic acid (TCA) method. Briefly, cells were grown in YNB media, at 30ºC and 

200rpm until exponential phase. Cell culture at an OD of ±1 (OD600), which corresponds to 

approximately 0.4mg cell dry mass and 1.4 x 107 cells/ml, was collected, and cells were 

harvested by centrifugation at 4,000g for 5min. The pellet was resuspended in 200µL of NaOH 

0.2M and 2% of β-mercaptoethanol, incubated on ice for 10min and centrifuged at 13,000rpm 

for 5 min. The pellet obtained was washed with 500µL of acetone and centrifuged at 13,000rpm 

for 5min. The new precipitate was allowed to dry for 10min at 4ºC, and the proteins were 

resuspended in Laemmli sample buffer [439] with modifications according to the group’s routine 

protocols: 4% SDS, 2% 2-mercaptoehtanol, 20% glycerol, 0.01% bromophenol blue, 0.125 M Tris 

HCl, pH 6.8. The samples were stored at -20ºC until use. 

 

5.2. Cellular Fractioning: Cell Wall, Plasma Membrane and Cytosol 

Extraction 

 

Cell wall and plasma membrane were obtained as described in the literature [440-442], 

with modifications. S. cerevisiae was grown in YNB at 30ºC, 200 rpm and collected, at 

exponential phase, by centrifugation at 4,000rpm for 5min at 4ºC. The supernatant was 

discarded and the cell pellet was washed three times with cold deionized water. The supernatant 

was discarded and the cells were resuspended in 50mM Tris-HCl buffer (pH 8.5) containing 

150mM NaCl and the appropriate inhibitors, added just before use (5mM EDTA, 1mM PMSF, 
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50µg/mL aprotinin, 10µg/mL leupeptin, 6µg/mL pepstatin A). A volume of 200µL of the cell 

suspension was transferred to screw-capped 2mL eppendorf tubes compatible with a mini-bead 

beater. Equal volume of 0.425mm diameter acid-washed glass beads was added to the cells that 

were disrupted mechanically in a Kaiser homogenizer (B. Braun) set at 6,800rpm for 30sec, six 

times alternating these with 30sec periods on ice. The beads were spun down by a short 

centrifugation at 500g for 5min. The supernatant was saved and the glass beads were washed at 

least 5 times with the same buffer by vortexing the cell suspension briefly and then spinning 

down the beads (500g for 1min) after each wash. Occasionally, it was performed one or two 

additional washings of the beads until the washing solution became limpid, meaning that there 

was no longer cell debris bound to the beads. The collected supernatants were centrifuged at 

500g for 5min to precipitate unwanted and unbroken cells. After that the cell walls were 

harvested by centrifugation for 20min at 9,600g, and resuspended in the modified Laemmli 

sample buffer (above), while the supernatant was centrifuged for 45min at 18,000g to obtain the 

membranes that were resuspended in the same buffer.  

The supernatant proteins of the remaining cell debris were precipitated according to the 

method described in [443]. Briefly, the supernatant was mixed with equal volume of a TCA (20% 

w/v), acetone (90% v/v) and DTT (20mM) mixture, vortexed thoroughly and allowed to precipitate 

overnight at -20ºC. This was followed by a centrifugation at 15,000rpm for 4ºC during 30min. 

The supernatant was decanted and the pellet was washed twice, first with cold acetone (90% v/v) 

containing 20mM DTT and the second wash with cold acetone (80% v/v) containing 10mM DTT. 

For each wash, the pellet was sonicated until the whole pellet was fully broken. The pellet 

suspension was then placed at -20ºC for 20min and subsequently centrifuged at 4ºC for 5min at 

15,000rpm. The pellet was allowed to dry and it was resuspended in modified Laemmli sample 

buffer (above), and stored at -20ºC until Western blot analysis. 

 

5.3. Western Blot Assay 

 

The protein extracts were denatured for 5min at 95ºC before application on 10.5% SDS-

PAGE gels. The gels were made in duplicate. To each, it was loaded 3-10µL of total protein 

extract per well. The gels were submerged in migration buffer (25mM Tris; 192mM glycine; 0,1% 

SDS, pH 8.3) and the electrophoresis allowed to run for over 2h at 100 volts or until the 



- MATERIAL AND METHODS - 

  

- 66 - 

“migration front” reaches the bottom of the gel, in a Bio-Rad system (MiniProtean). After 

electrophoresis, one of the SDS-PAGE gels was stained with Coomassie Brilliant Blue (50% 

ethanol, 10% acetic acid and 0.25% Coomassie R258), while the other one was electro blotted 

onto PVDF membrane (Roche), in a protein transfer system (BIORAD). The transfer was 

performed in wet conditions, where the gel and membrane are sandwiched between sponge and 

paper. The sandwich was submerged in transfer buffer (192mM glycine, 25mM Tris, pH 8.3, 

20% ethanol), for 2h at 4ºC and 10V. The nonspecific sites of the membrane were saturated for 

2h at room temperature in blocking solution (5% non-fat milk in Tris Buffer Saline Tween20 

(TBST)) to prevent non-specific background binding of the primary and/or secondary antibodies 

to the membrane. Subsequently, the membrane was washed two times with TBST for 10min and 

then incubated with primary antibody (cetuximab at 1:1000) overnight, at 4ºC, with agitation. The 

first antibody was removed by briefly washing the membrane twice with TBST and incubated at 

room temperature in TBST for 15min. Two more successive washes with TBS (Tris Buffer Saline) 

were performed for 15min each at room temperature before incubating the membrane with the 

secondary antibody coupled with horseradish peroxidase (rabbit anti-mouse antibody at 1:5000). 

This was done for 1-2h at room temperature with agitation. Expired that period, the membrane 

was briefly washed two times with TBST, and incubated at room temperature in TBST for 15min. 

Then, the membrane was washed twice with TBS for 15min at room temperature, to remove 

residual antibodies. The immunoreactive bands were detected using ECL Plus Western blotting 

Detection System (Amersham Biosciences) in an Image Analysis System ChemiDoc XRS (Bio-

Rad, Laboratories Inc.) bearing Quantity-One 4.5.0 Software (Bio-Rad, Laboratories Inc.). For the 

identification and sequencing of the immunoreactive proteins, the interest bands from the SDS-

PAGE gel were excised and shipped to Alphalyse, Denmark (www.alphalyse.com). 

 

5.4. Dot Blot Assay 

 

A volume of 5µL of the cetuximab stock solution of 5mg/mL and the same solution diluted 

5, 20, 50 and 100 times in ultra-pure water were placed on PVDF membrane (Roche). This 

membrane was transferred to a block solution and further incubated with HRP-conjugated anti-

mouse antibody, following the same procedure described above.  
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1. An In Silico Approach to Discover the EGFR Counterpart in 

Yeast 

 

1.1. The Search and Collection of Yeast Cell’s Surface Proteins 

 

The S. cerevisiae genome is the most well-characterized eukaryotic genome and one of the 

simplest for identifying open reading frames (ORFs), being its annotation continually updated 

since its initial release in 1996 [444]. The Saccharomyces Genome Database 

(www.yeastgenome.org), integrates functional information about budding yeast genes and their 

products with a set of analysis tools that facilitate exploring their biological details [445]. 

According to the degree of certainty that each ORF encodes a functional protein, SGD classifies 

all S. cerevisiae ORFs into one of three groups: i) “dubious” (785 ORFs, 11.88%), referring to 

those ORFs that are unlikely to encode a protein; ii) “uncharacterized” (845 ORFs, 12.79%), 

those that are likely, but not yet fully established, to encode a protein; and iii) “verified” (4977 

ORFs, 75.33%), those for which there is clear experimental evidence for the presence of a 

protein-encoding gene (Oct 18, 2012) [445, 446]. It should be noted that these ORF 

classifications are a working hypothesis, and the designations change based on published 

experimental results [445, 447]. Overall, the SGD’s goal is to provide its users with detailed 

information about the roles of gene products in the cell (including protein localization, 

phenotypes, and structural specificities), and their relationship to other gene products in yeast 

and other organisms, namely through physical and non-physical interactions. To this end, SGD is 

annotating genes to the Gene Ontology (GO), a structured representation of biological knowledge 

that can be shared across species [448, 449]. The GO consists of three separate ontologies 

describing molecular function, biological process and cellular component. Thus, the purpose is to 

use published information to associate each characterized S. cerevisiae gene product with one or 

more GO terms from each of the three ontologies [445, 447, 450].  

The mammalian EGFR, as well the C. elegans and D. melanogaster orthologues localise at 

the cell plasma membrane [101]. In analogy, it was thought that the potential counterpart in 

yeast could be located somewhere on the yeast cell surface. This comprises the plasma 

membrane, but also and importantly, the cell wall. The SGD was used to list the yeast gene 

products annotated to the cell wall and plasma membrane (Table I - Supplementary Material - 
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CD-ROM at the back cover of the final printed version). As mentioned in the Materials & Methods, 

membrane-associated proteins were identified, and once one was not present on the 

Transporters Database (www.tcdb.org), the protein amino acid sequence was evaluated as to the 

putative existence of putative transmembrane domains (hydrophobic portions of the polypeptide 

sequence), as well as to the protein predicted localization. 

There are a total of 6607 ORFs in SGD, 5584 of which are currently annotated to the GO 

term cellular component (Oct 19, 2012) [445, 446]. We identified around 1,000 gene products 

associated with yeast cell's surface (Oct and Nov, 2011; Table I - Supplementary Material). This 

number reflects the importance of cell wall and plasma membrane in yeast physiology [451]. The 

cell wall is needed for maintenance of shape, protection against osmotic and physical stress, 

therefore, for the interaction with the environment and other cells, as well as reproductive 

processes. Many cell wall proteins are known. Some of them are soluble cell wall proteins, 

however, most of them are covalently attached to the wall glucan layer [440]. These include the 

two major classes of cell surface glycoproteins that comprise the outer cell wall layer: GPI 

(glycosylphosphatidylinositolI) proteins [452] and the PIR proteins (proteins with internal repeats) 

[453]. GPI anchored proteins allow physical interaction between the plasma membrane and the 

wall, possibly contributing to an open highway of signalling throughout the cell surface into the 

intracellular space cytoskeleton. This is suggested by the fact that many GPI anchored proteins 

localize in specific areas of the membrane rich in ceramides, phosphoinositol-based sphingolipids 

and ergosterol, known as rafts [454, 455]. Rafts in yeast were quite controversial for some time, 

in particular due to their small size and difficult assessment [456]. Presently, indirect evidence 

suggests they have a role in signalling mediation in yeast, as well in protein sorting, secretion, 

endocytosis, and cell polarity [455, 457, 458]. On the other hand, in association with plasma 

membrane, there is a set of membrane proteins that enables the membrane to carry out its 

distinctive activities. Some proteins are bound only to the membrane surface, whereas others are 

partly buried within the membrane [459]. Protein domains on the extracellular membrane 

surface are generally involved in cell-cell signalling or interactions with other proteins or 

substrates of many different chemical families [460]. Domains within the membrane are 

hydrophobic, since the plasma membrane forms a lipid bilayer which is a relatively impermeable 

barrier for hydrophilic molecules, and mediate the selective uptake and/or secretion of solutes 

across the membrane [459]. Examples of these specialized proteins are the transporter 
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molecules, such as (1) carriers mediating uniport - facilitated diffusion, symport – co-transport 

and antiport - exchange diffusion, (2) channels, mostly mediating water and ions translocation, 

and (3) pumps, like the ATP-dependent ion pumps and the ABC (ATP binding cassette) 

transporters. In general transporters are the main constituents of the yeast plasma membrane. In 

particular the plasma membrane ATPase accounts for almost 50% of the total plasma membrane 

associated protein [459]. Finally, the domains on the cytosolic face of the membrane have a wide 

range of functions, from anchoring cytoskeletal proteins to the membrane to trigger intracellular 

signalling pathways [459]. Other plasma membrane proteins are involved in cell wall synthesis 

[459]. In many cases, the function of a membrane protein and the topology of its polypeptide 

chain in the membrane can be predicted based on its homology with other such well-

characterized protein [460]. Besides, the prediction of the hydrophobicity of large parts of the 

protein can suggest imbibing in the lipid bilayer. Both cell wall and plasma membrane undergo 

profound changes according to growth phase, nutrient availability, temperature, pH and oxygen 

levels, which implies a temporal and spatial control of its composition, especially for the 

expression and incorporation of proteins [451, 459].  

 

1.2. Sequence Similarity Search 

 

In order to narrow the number of the candidates for EGFR counterparts in relation to the 

proteins identified in the previous approach (Table I from Supplementary Material (1.1.)) a 

protein sequence similarity search was performed using (i) the full amino acid sequence of EGFR 

protein, (ii) the extracellular domain, (iii) the sub-domains responsible for binding of the ligand 

(I/L1 and III/L2) [125] and cetuximab (III/L2) [127], and (iv) the EGFR’s intracellular domain 

(Table I). The protein BLASTs were performed using the BLOSUM 62 matrix that is calculated 

from comparisons of sequences with no less than 62% divergence. Though it also performs well 

in detecting closer relationships, it is tailored for comparisons of moderately distant proteins. 

BLOSUM matrices with low numbers are designated for comparisons of distantly related proteins 

[461]. Additionally, the E Value (Expect Value) describes the likelihood that a sequence with a 

similar score will occur in the database by chance - the smaller the E Value, the more significant 

the alignment. For example, an alignment with a very low E value means that a sequence with a 

similar score is very unlikely to occur simply by chance [462]. 
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Table I - Sequence similarity searching between EGFR and S. cerevisiae. Protein BLASTs were 

performed in SGD using as query sequences the amino acid sequence of EGFR, the EGFR’s extracellular 

domain, the ligand binding domains (I/L1 and III/L2) and the cetuximab binding domain (III/L2), as well 

as the EGFR’s intracellular domain against the S. cerevisiae BY4741 protein database. All searches were 

performed with the BLOSUM 62 scoring matrix, coupled with default parameters (October 2011). Some of 

the best alignments are shown (top 10 for each BLASTP performed), and the genes listed in bold refer to 

proteins that are located on the yeast’s cell surface as were found in the keyword search previously 

performed (see Table I from Supplementary Material).  

EGFR 

E 

value 

Standard 

Name 

Systematic 

Name 
Description 

4.8e-17 SKM1 YOL113W 

Member of the PAK family of serine/threonine protein 

kinases with similarity to Ste20p and Cla4p; involved 

in downregulation of sterol uptake; proposed to be a 

downstream effector of Cdc42p during polarized 

growth 

5.0e-17 KIN1 YDR122W 

Serine/threonine protein kinase involved in regulation 

of exocytosis; localizes to the cytoplasmic face of the 

plasma membrane; closely related to Kin2p 

3.3e-16 CLA4 YNL298W 

Cdc42p-activated signal transducing kinase of the PAK (p21-

activated kinase) family, along with Ste20p and Skm1p; 

involved in septin ring assembly, vacuole inheritance, 

cytokinesis, sterol uptake regulation; phosphorylates Cdc3p 

and Cdc10p 

4.6e-16 KIN2 YLR096W 

Serine/threonine protein kinase involved in regulation 

of exocytosis; localizes to the cytoplasmic face of the 

plasma membrane; closely related to Kin1p 

7.9e-15 KIC1 YHR102W 

Protein kinase of the PAK/Ste20 family, required for cell 

integrity; physically interacts with Cdc31p (centrin), which is a 

component of the spindle pole body; part of the RAM network 

that regulates cellular polarity and morphogenesis 

2.5e-14 CDC28 YBR160W 

Catalytic subunit of the main cell cycle cyclin-dependent 

kinase (CDK); alternately associates with G1 cyclins (CLNs) 

and G2/M cyclins (CLBs) which direct the CDK to specific 

substrates 
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3.3e-14 STE20 YHL007C 

Cdc42p-activated signal transducing kinase of the 

PAK (p21-activated kinase) family; involved in 

pheromone response, pseudohyphal/invasive growth, 

vacuole inheritance, downregulation of sterol uptake; 

GBB motif binds Ste4p 

3.5e-14 CDC15 YAR019C 

Protein kinase of the Mitotic Exit Network that is localized to 

the spindle pole bodies at late anaphase; promotes mitotic 

exit by directly switching on the kinase activity of Dbf2p; 

required for spindle disassembly after meiosis II 

6.7e-14 TPK2 YPL203W 

cAMP-dependent protein kinase catalytic subunit; promotes 

vegetative growth in response to nutrients via the Ras-cAMP 

signalling pathway; partially redundant with Tpk1p and Tpk3p; 

localizes to P-bodies during stationary phase 

2.2e-13 IPL1 YPL209C 

Aurora kinase subunit of the conserved chromosomal 

passenger complex (CPC; Ipl1p-Sli15p-Bir1p-Nbl1p), involved 

in regulating kinetochore-microtubule attachments; helps 

maintain condensed chromosomes during anaphase and early 

telophase; required for SPB cohesion and prevention of 

multipolar spindle formation 

EGFR Extracellular Domain 

0.23 CRS5 YOR031W 
Copper-binding metallothionein, required for wild-type copper 

resistance 

0.23 CUP1-1 YHR053C 

Metallothionein, binds copper and mediates resistance to high 

concentrations of copper and cadmium; locus is variably 

amplified in different strains, with two copies, CUP1-1 and 

CUP1-2, in the genomic sequence reference strain S288C 

0.23 CUP1-2 YHR055C 

Metallothionein, binds copper and mediates resistance to high 

concentrations of copper and cadmium; locus is variably 

amplified in different strains, with two copies, CUP1-1 and 

CUP1-2, in the genomic sequence reference strain S288C 

0.24 NCS2 YNL119W 

Protein required for thiolation of the uridine at the wobble 

position of Lys(UUU) and Glu(UUC) tRNAs; has a role in 

urmylation and in invasive and pseudohyphal growth; inhibits 

replication of Brome mosaic virus in S. cerevisiae 

0.93 LIP5 YOR196C 
Protein involved in biosynthesis of the coenzyme lipoic acid, 

has similarity to E. coli lipoic acid synthase 
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0.98 HRT1 YOL133W 

RING finger containing subunit of Skp1-Cullin-F-box ubiquitin 

protein ligases (SCF); required for Gic2p, Far1p, Sic1p and 

Cln2p degradation; may tether Cdc34p (a ubiquitin 

conjugating enzyme or E2) and Cdc53p (a cullin) subunits of 

SCF 

0.98  
YLR286W-A 

(Dubious) 

Dubious open reading frame unlikely to encode a protein, 

based on available experimental and comparative sequence 

data; overlaps the verified gene CTS1 

0.99 PGM2 YMR105C 

Phosphoglucomutase, catalyzes the conversion from glucose-

1-phosphate to glucose-6-phosphate, which is a key step in 

hexose metabolism; functions as the acceptor for a Glc-

phosphotransferase 

1 COA3 YJL062W-A 

Mitochondrial inner membrane protein that participates in 

regulation of COX1 translation, Cox1p stabilization, and 

cytochrome oxidase assembly 

1 CDD1 YLR245C 

Cytidine deaminase; catalyzes the modification of cytidine to 

uridine in vitro but native RNA substrates have not been 

identified, localizes to both the nucleus and cytoplasm 

Domain I (L1 domain) 

0.028 NCS2 YNL119W 

Protein required for thiolation of the uridine at the wobble 

position of Lys(UUU) and Glu(UUC) tRNAs; has a role in 

urmylation and in invasive and pseudohyphal growth; inhibits 

replication of Brome mosaic virus in S. cerevisiae 

0.58 DYN1 YKR054C 

Cytoplasmic heavy chain dynein, microtubule motor protein, 

required for anaphase spindle elongation; involved in spindle 

assembly, chromosome movement, and spindle orientation 

during cell division, targeted to microtubule tips by Pac1p 

0.77 SPS22 YCL048W 

Protein of unknown function, redundant with Sps2p 

for the organization of the beta-glucan layer of the 

spore wall 

0.82  

YKL133C 

(Uncharacterize

d) 

Putative protein of unknown function; has similarity to Mgr3p, 

but unlike MGR3, is not required for growth of cells lacking the 

mitochondrial genome (null mutation does not confer a petite-

negative phenotype) 
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0.82 FRT2 YAL028W 

Tail-anchored ER membrane protein, interacts with 

homologue Frt1p; promotes growth in conditions of high Na+, 

alkaline pH, or cell wall stress, possibly via a role in 

posttranslational translocation; potential Cdc28p substrate 

0.96 SPE1 YKL184W 

Ornithine decarboxylase, catalyzes the first step in polyamine 

biosynthesis; degraded in a proteasome-dependent manner in 

the presence of excess polyamines; deletion decreases 

lifespan, and increases necrotic cell death and ROS 

generation 

0.96 GAD1 YMR250W 

Glutamate decarboxylase, converts glutamate into gamma-

aminobutyric acid (GABA) during glutamate catabolism; 

involved in response to oxidative stress 

0.97 SPS2 YDR522C 

Protein expressed during sporulation, redundant with 

Sps22p for organization of the beta-glucan layer of 

the spore wall; Schizosaccharomyces pombe 

orthologue  is a spore wall component 

1 NIP100 YPL174C 

Large subunit of the dynactin complex, which is involved in 

partitioning the mitotic spindle between mother and daughter 

cells; putative orthologue of mammalian p150(glued) 

1 MAD1 YGL086W 

Coiled-coil protein involved in the spindle-assembly 

checkpoint; phosphorylated by Mps1p upon checkpoint 

activation which leads to inhibition of the activity of the 

anaphase promoting complex; forms a complex with Mad2p 

Domain III (L2 domain) 

0.42  PGM2 YMR105C 

Phosphoglucomutase, catalyzes the conversion from glucose-

1-phosphate to glucose-6-phosphate, which is a key step in 

hexose metabolism; functions as the acceptor for a Glc-

phosphotransferase 

0.62 POL4 YCR014C 

DNA polymerase IV, undergoes pair-wise interactions with 

Dnl4p-Lif1p and Rad27p to mediate repair of DNA double-

strand breaks by non-homologous end joining (NHEJ); 

homologous to mammalian DNA polymerase beta 

0.74  COA3 YJL062W-A 

Mitochondrial inner membrane protein that participates in 

regulation of COX1 translation, Cox1p stabilization, and 

cytochrome oxidase assembly 
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0.97  
YLR286W-A 

(Dubious) 

Dubious open reading frame unlikely to encode a protein, 

based on available experimental and comparative sequence 

data; overlaps the verified gene CTS1 

1  
YLR434C 

(Dubious) 

Dubious open reading frame unlikely to encode a protein, 

based on available experimental and comparative sequence 

data; partially overlaps the verified ORF TSR2/YLR435W 

1 QNS1 YHR074W 
Glutamine-dependent NAD(+) synthetase, essential for the 

formation of NAD(+) from nicotinic acid adenine dinucleotide 

1  HBT1 YDL223C 

Substrate of the Hub1p ubiquitin-like protein that localizes to 

the shmoo tip (mating projection); mutants are defective for 

mating projection formation, thereby implicating Hbt1p in 

polarized cell morphogenesis 

1 CTR9 YOL145C 

Component of the Paf1p complex involved in transcription 

elongation; binds to and modulates the activity of RNA 

polymerases I and II; required for expression of a sub-set of 

genes, including cyclin genes; involved in SER3 repression by 

helping to maintain SRG1 transcription-dependent 

nucleosome occupancy; contains TPR repeats 

EGFR Intracellular Domain 

1.0e-17 SKM1 YOL113W 

Member of the PAK family of serine/threonine protein 

kinases with similarity to Ste20p and Cla4p; involved 

in downregulation of sterol uptake; proposed to be a 

downstream effector of Cdc42p during polarized 

growth 

1.0e-17 KIN1 YDR122W 

Serine/threonine protein kinase involved in regulation 

of exocytosis; localizes to the cytoplasmic face of the 

plasma membrane; closely related to Kin2p 

2.1e-17 KIN2 YLR096W 

Serine/threonine protein kinase involved in regulation 

of exocytosis; localizes to the cytoplasmic face of the 

plasma membrane; closely related to Kin1p 

7.1e-17 CLA4 YNL298W 

Cdc42p-activated signal transducing kinase of the PAK (p21-

activated kinase) family, along with Ste20p and Skm1p; 

involved in septin ring assembly, vacuole inheritance, 

cytokinesis, sterol uptake regulation; phosphorylates Cdc3p 

and Cdc10p 
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4.6e-16 KIC1 YHR102W 

Protein kinase of the PAK/Ste20 family, required for cell 

integrity; physically interacts with Cdc31p (centrin), which is a 

component of the spindle pole body; part of the RAM network 

that regulates cellular polarity and morphogenesis 

6.5e-15 CDC28 YBR160W 

Catalytic subunit of the main cell cycle cyclin-dependent 

kinase (CDK); alternately associates with G1 cyclins (CLNs) 

and G2/M cyclins (CLBs) which direct the CDK to specific 

substrates 

8.0e-15 STE20 YHL007C 

Cdc42p-activated signal transducing kinase of the 

PAK (p21-activated kinase) family; involved in 

pheromone response, pseudohyphal/invasive growth, 

vacuole inheritance, downregulation of sterol uptake; 

GBB motif binds Ste4p 

8.4e-15 CDC15 YAR019C 

Protein kinase of the Mitotic Exit Network that is localized to 

the spindle pole bodies at late anaphase; promotes mitotic 

exit by directly switching on the kinase activity of Dbf2p; 

required for spindle disassembly after meiosis II 

1.7e-14 TPK2 YPL203W 

cAMP-dependent protein kinase catalytic subunit; promotes 

vegetative growth in response to nutrients via the Ras-cAMP 

signalling pathway; partially redundant with Tpk1p and Tpk3p; 

localizes to P-bodies during stationary phase 

5.7e-14 IPL1 YPL209C 

Aurora kinase subunit of the conserved chromosomal 

passenger complex (CPC; Ipl1p-Sli15p-Bir1p-Nbl1p), involved 

in regulating kinetochore-microtubule attachments; helps 

maintain condensed chromosomes during anaphase and early 

telophase; required for SPB cohesion and prevention of 

multipolar spindle formation 

 

The result of the protein BLAST using as query sequence the EGFR membrane spanning 

protein of 1210 amino acids, revealed that among the top ten best alignments were four yeast 

proteins located at the cell’s surface (Skm1p, Kin1p, Kin2p, Ste20p - showed in bold in the Table 

I). All the four proteins are kinases, as well as most of the remaining peptides in the result. As 

protein kinases, these peptides have a certain degree of similarity to the tyrosine kinase domain 

of the EGFR, which is confirmed by the very similar alignment results obtained when using as 

query sequence the intracellular domain of EGFR (see Table I), as well as the residues of the 
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tyrosine kinase domain of EGFR (data not shown). These two last alignments showed a smaller E 

Value, then a more significant alignment, than the ones using the full protein. 

In the results obtained with the extracellular domain of EGFR, the E Value is quite high 

(Table I), suggesting the alignment is not very significant and constituting low evidence for 

homology. Plus, none of the top ten results is a protein putatively localized at the cell’s surface. 

Confining the query sequence used for the BLASTP to the domain I/L1 of EGFR, between the top 

of the best alignments came up proteins Sps22p and Sps2p (Table I), which have a putative 

location at the cell’s surface, in spite of the high E value obtained in the BLASTP. The protein 

BLAST using domain III/L2 sequence did not show any significant result. 

 

1.3. Motifs Are Conserved Regions of a Protein That Usually Share 

Similar Structure and Function 

 

The protein domains, usually segments of continuous amino acids within a protein, are the 

structural, functional and evolutionary units of the protein [463, 464]. They can occur on their 

own in single-domain proteins or in combination with different partner domains making 

multidomain proteins. In this case, they can fold independently into a stable core structure. The 

domains within a protein are often also structurally and functionally independent. The ones that 

are related to each other by descent from a common ancestor are members of the same 

superfamily [463, 464]. Alternatively, the protein domain architecture is the pattern of linear and 

sequential domains in a given protein. Usually, proteins with the same or similar architectures 

are close homologues, while different proteins possess distinct domain architectures [465]. Yet, 

domain recurrences among tri-dimensional structures consistently reveal that protein structure is 

more conserved than sequence. There are many examples of domains adopting highly similar tri-

dimensional structures despite no apparent similarity in sequence. For many of these examples, 

proteins have diverged beyond the limits of sequence similarity detection methods but have 

nevertheless retained a common structure and similar function [464].  

EGFR architecture (Fig. 4), contemplates the EGFR extracellular portion (or ectodomain), 

which consists of four domains that are known as the I/L1, II/CR1, III/L2, and IV/CR2 domains 

[124-127, 466, 467]. The structure determinations of ectodomain fragments of the EGFR show 

the L1 and L2 domains (rich in leucine, therefore designated L domains) to consist of a single-
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stranded right hand β-helix, which resembles the corresponding domains of the insulin-like 

growth factor-1 (IGF-1) receptor [126, 466]. The CR1 and CR2 domains (rich in cysteine, hence 

the designation of CR) consist of a number of small modules, each appearing to be held together 

by disulphide bonds [126]. In spite of the low sequence identity between the ectodomains of 

IGF1R and the EGFR, the tri-dimensional structure of the first three domains of the IGF1R was 

used to build a comparative (or homology) model of the four domains of the EGFR ectodomain 

[466]. Additionally, the EGFR transmembrane domain and the beginning of the cytoplasmic 

domain (known as juxtamembrane domain) are α-helical [468], and the tri-dimensional structure 

of the EGFR kinase domain is similar to other tyrosine kinases [469]. By analogy with protein 

kinase structures, the ATP sits between the N-terminal lobe (dominated by a β-sheet) and the 

larger C-terminal lobe (mainly α-helical) [470].  

Hence, we searched for similar domain architectures between EGFR and all the S. 

cerevisiae strains available at NCBI Conserved Domain Architecture Retrieval Tool. Our search 

showed that none of the proteins belonging to the available yeast strains are predicted to present 

domain architecture similar to EGFR’s. As happened in the protein BLAST above mentioned, 

most of the results of the domain architecture recognised were of proteins with kinase domains, 

due to the percentage of identity of these proteins to the tyrosine kinase domain of EGFR. 

However, we were particularly interested in the extracellular portion of EGFR, due to binding of 

ligands, including cetuximab to this region, and because we were looking for a molecule in yeast 

able to be recognized by cetuximab that can be functionally orthologous to EGFR. No yeast 

proteins having similar domain architecture to ectodomain of EGFR were found. The same 

happened with the CR domains (II and IV). Nevertheless, regarding the L domains (I and III), nine 

yeast strains presented one protein with an L domain - Sps2p already identified on Table I. 

Additionally, it was also used InterPro (www.ebi.ac.uk/interpro/) which provides functional 

analysis of proteins by classifying them into families and predicting domains and important sites, 

to access whether the CR and L domains were present in any other S. cerevisiae protein besides 

the Sps2p identified using NCBI tool. The protein Sps2p was again identified, and so was its 

paralogue Sps22p (Table I). No further proteins with L domains were found. Similarly to the 

search operated at NCBI, no proteins harbouring CR domains were found. On the contrary, both 

NCBI and InterPro databases show CR regions and L domains in a variety of proteins from more 

complex eukaryotes, such as humans (Homo sapiens), mouse (Mus musculus), zebrafish (Danio 
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rerio), fruit fly (Drosophila melanogaster) and worm (Caenorhabditis elegans). Noticeable, both 

engines identify as well these domains in the Cnidarian Hydra vulgaris. In this organism a gene 

encoding a receptor protein-tyrosine kinase closely related to the vertebrate insulin receptor has 

been identified [471]. This finding supports the idea that an intercellular signalling pathway 

involving an insulin-like molecule was a component of the earliest multi-cellular animals. Although 

no insulin-signalling-like pathway has been described in yeast, this appear to have precursors of 

such a metabolic control pathway that function in the glucose/nutrient-signalling cascade and are 

orthologous to the serine/threonine kinase Akt/PKB of insulin-signalling pathways in C. elegans 

and mammals [321]. 

Given the Sps2p and Sps22p results concerning domain analysis, we confirmed the 

existence of yeast proteins that contain L domains using a database of structural and functional 

annotation for all proteins and genomes – SUPERFAMILY database (Table II). The SUPERFAMILY 

database contains a library of hidden Markov models (HMMs) based on the domains of known tri-

dimensional structure, and the assignments made by these HMMs to the predicted proteins of all 

completely sequenced genomes. The SUPERFAMILY database takes the definition of domains 

from the structural classification of proteins (SCOP) database, using the superfamily level of 

classification, which groups together domains sharing a common evolutionary ancestor [472, 

473]. 

The yeast proteins in Table II display L domains, characteristic of some mammalian receptors, 

such as the IGF1R and the IR. Two L domains from these receptors make up the bilobal ligand 

binding site [466]. The proteins presented in Table II show the highest similarity in pairs: Pst1p is 

most similar to Ecm33p, and Sps2p to Sps22p [474]. Ecm33p has the same features as Pst1p, 

and both display typical features of GPI-anchored proteins [452, 474]. GPI proteins are widely 

found in lower and higher eukaryotic organisms [475]. In mammals, although functionally 

diverse, many of these proteins have, or are predicted to have, hydrolytic activity, or serve as 

receptors or adhesive proteins [476]. They are also important for the cell surface display of a 

variety of proteins and glycol-conjugates in parasitic protozoa [477]. In yeast, GPI-proteins are 

found at the cell surface, either attached to the plasma membrane or as an intrinsic part of the 

cell wall [452, 474], where they may be involved in cell wall biosynthesis and cell wall 

remodelling. They may also determine surface hydrophobicity and antigenicity, and are thought 

to have a role in adhesion and virulence [452, 476, 478]. Interestingly, all the four proteins, 
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Ecm33p, Pst1p, Sps2p and Sps22p, have been grouped in the so-called SPS2 family [452], 

named after the first described member. According to our survey and also to the literature [474], 

the SPS2 family contains the only S. cerevisiae proteins where L domains has been detected. 

Some proteins from SPS2 family are conserved amongst fungi [474]. 

 

Table II - S. cerevisiae proteins harbouring L domains. Domain assignments to the following gene 

products were taken from the SUPERFAMILY database version 1.75. All the below proteins are located on 

the yeast’s cell surface as were found in the keyword search and harbour L domains.  

Standard 

name 

Systematic 

name 

E 

Value 
Region 

Domain 

Family 
Description 

ECM33 YBR078W 

2.24e-14 35-136 L domain 

GPI-anchored protein of unknown 

function, has a possible role in 

apical bud growth; GPI-anchoring on 

the plasma membrane crucial to 

function; phosphorylated in 

mitochondria; similar to Sps2p and 

Pst1p 

8.6e-11 161-291 L domain 

SPS22 YCL048W 

9.27e-14 286-398 L domain Protein of unknown function, 

redundant with Sps2p for the 

organization of the beta-glucan layer 

of the spore wall 1.36e-12 72-172 L domain 

PST1 YDR055W 

1.5e-12 32-129 L domain Cell wall protein that contains a 

putative GPI-attachment site; 

secreted by regenerating 

protoplasts; up-regulated by 

activation of the cell integrity 

pathway, as mediated by Rlm1p; 

upregulated by cell wall damage via 

disruption of FKS1 

1.75e-10 199-284 L domain 

2.91e-08 257-355 L domain 

0.0808 144-202 
Internalin LRR 

domain1 

SPS2 YDR522C 

6.28e-14 280-425 L domain 
Protein expressed during 

sporulation, redundant with Sps22p 

for organization of the beta-glucan 

layer of the spore wall; S. pombe 

orthologue is a spore wall 

component 

3.8e-12 101-214 L domain 

Note: 1. Both L domain and Internalin LRR (leucine-rich repeat) domain families belong to the L domain-like 

superfamily.  
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Overall, yeast proteins Sps2p and Sps22p were a common result. They are present in the 

cell’s surface (Table I from Supplementary Material), they emerged in the protein BLAST when 

the domain I/L1 was used as a query sequence (Table I), although, the alignment had a high E 

value representing low evidence for homology. But, most importantly, they have two L domains 

resembling domains I/L1 and III/L2 of EGFR (table II). Thus, accordingly to this bioinformatics 

approach, these proteins appear as suitable candidates for EGFR yeast counterparts. 

 

2. Identification of the Yeast Target of Cetuximab by Western 

Blot 

 

Cetuximab, as a monoclonal antibody (mAb), recognizes a single epitope on an antigen, 

differently from a polyclonal antibody that recognizes several different epitopes on each antigen. 

Because of their specificity, mAbs are excellent as primary antibodies in an assay, since cross-

reactions with other proteins are less likely to occur [479]. The recombinant human/mouse 

chimeric mAb cetuximab has a high affinity for EGFR located on the cells surface [239].  

Based on the high specificity assumption, we performed a Western blot using cetuximab 

as primary antibody and the whole yeast proteome of S. cerevisiae BY4741 strain, as well as 

proteic fractions of plasma membrane, cell wall and cytosol, obtained as described in the 

Material & Methods (representative results in Fig. 18A). Three immunoreactive bands appeared 

(black arrows), one of molecular weight around 63kDa and two around 20kDa. They were 

present in all of the cellular fractions (lanes 1-3) as well as on the whole cell extract (lane 4), 

although considerably more evident on the cytosol fraction (lane 3). Moreover, a similar 

experiment containing the same samples was performed using only the HRP-conjugated anti-

mouse antibody (Fig. 18B) to discriminate if any of the bands that appeared in Fig. 18A was a 

result of the secondary antibody hybridization and not directly due to cetuximab recognition. As 

observed in Fig. 18B lane 3 (grey arrows), the two bands around 20kDa also appeared in the 

cytosol fraction of the membrane incubated only with HRP-conjugated anti-mouse antibody. 

In a similar way to our experimental approach, a Western blot assay using cetuximab as a 

primary mAb and a secondary HRP-conjugated anti-human antibody allowed to successfully 

measure EGFR expression level in seven tumour types [480]. The anti-human secondary antibody 
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recognized the human and free constant regions (Fc) of the heavy and light chains of cetuximab 

that match to 2/3 of the antibody. The region that is recognized by the anti-mouse antibody is 

the cetuximab’s variable region (Fv) of the heavy and light chains, both from a mouse anti-EGFR 

monoclonal antibody. The variable region of cetuximab is responsible for binding the antigen and 

only corresponds to 1/3 of the antibody. Still, the HRP-conjugated anti-mouse antibody we used 

was also able to detect several concentrations of cetuximab as can be seen in the dot blot in Fig. 

18C.  

 

 

 

 

 

 

 

 

 

 

Figure 18 - Identification of yeast target of monoclonal antibody cetuximab by Western blot. SDS-PAGE 

followed by immunoblotting of S. cerevisiae BY4741 plasma membrane fraction (lane 1), cell wall fraction (lane 2), 

cytosol fraction (lane 3) and whole cell extract (lane 4), obtained as described in material and methods section. (A) 

Membrane incubated with the mAb cetuximab as primary antibody and with a HRP-conjugated anti-mouse antibody 

as secondary antibody. The black arrows indicate the bands that were excised from the SDS-PAGE and sent to 

protein identification. (B) Membrane incubated only with HRP-conjugated anti-mouse antibody. The immunoreactive 

bands obtained are indicated by the gray arrows. (C) Dot blot: 5µL of the Erbitux® stock solution of 5mg/mL and the 

same solution diluted 5, 20, 50 and 100 times (from top to bottom) were placed on PVDF membrane further 

incubated with HRP-conjugated anti-mouse antibody.  

 

The 3 immunoreactive bands (indicated by the black arrows and further named, from top 

to bottom, as “prot 1”, “prot 2” and “prot 3”) were excised from the SDS-PAGE and sent to 

Alphalyse for protein analysis. According to the protein identification report supplied by the 

company, the protein samples were reduced and alkylated with iodoacetamide, i.e. 

carbamidomethylated, and subsequently digested with trypsin that cleaves after lysine and 

arginine residues. The resulting peptides were concentrated on a ZipTip micropurification column 

and eluted onto an anchorchip target for analysis on a Bruker Autoflex Speed MALDI TOF/TOF 
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instrument. The peptide mixture was analysed in positive reflector mode for accurate peptide 

mass determination. MALDI MS/MS was performed on 15 peptides for peptide fragmentation 

analysis, i.e partial sequencing. The MS and MS/MS spectra were combined and used for 

database searching using the Mascot software. The data were then BLASTED against in-house 

protein databases downloaded from NCBI, including the NRDB database containing more than 

17 million known non-redundant protein sequences. The results from protein identification are 

shown in Table III. 

 

Table III - Protein identification by MS peptide mapping and sequencing analysis.  

Sample 

name 
Protein found in database GI-number MW Score 

Seq. 

cov. 

Prot 1 Pdc1p [S. cerevisiae VL3] gi|323353922 69666 218 18% 

Prot 2 Rpl16bp [S. cerevisiae S288c] gi|6324260  22235  85  36% 

Prot 21 

Putative D-Ala-D-Ala carboxypeptidase 

3 (S13) [Synechococcus sp. 

RS9916] 1 

gi|116074849 1 47198 1 66 1 19% 1 

Prot 3 
Rpl19ap 

[S. cerevisiae  FostersB]  
gi|323306117  18878  86  6% 

Prot 3 
Rpl20bp 

[S. cerevisiae  FostersB]  
gi|323303008  17314  76  43% 

Note: 1. The identification of this protein is uncertain because the score is outside the 95% confidence level. 

 

A) Putative Ribosomal Peptides (Prot. 2 and 3) 

 

Rpl16bp (YNL069C) [481-486], Rpl19ap (YBR084C-A) [482-484, 486, 487] and Rpl20bp 

(YOR312C) [482-484, 486] code for the ribosomal 60S subunit proteins L16B, L19A and L20B, 

and each of the proteins is ortholologous to mammalian ribosomal protein L13A, L19 and L18A, 

respectively. The sub-cellular localization of the three ribosomal proteins according to the SGD 

database is at the cytosolic large ribosomal subunit where they participate in translation. Yet, 

several ribosomal proteins were detected in the surfome (cell surface proteome) of a wild type S. 
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cerevisiae laboratory yeast strain [488] and in a wild type wine strain [489]. Nevertheless, and 

probably due to differences in strain and growth conditions, only a few ribosomal proteins 

appeared in both works. This suggests that there might be a sort of strain specific signature for 

the cell surface proteins, depending also of factors such as growth conditions and/or stress. 

Although the exact role for the incorporation of this group of proteins in yeast cell wall at the 

moment can only be speculated, several lines of evidence indicate that mutations in ribosomal 

genes may result in altered organization of cells or their buds, abnormal cell morphology and 

altered cell shape [490-492], which is not consistent with the exclusive participation in an 

indiscriminate molecular process of translation. 

 

B) Pyruvate decarboxylase (Prot. 1) 

 

In S. cerevisiae, Pdc1p (YLR044C) is the major of three pyruvate decarboxylase 

isoenzymes. It is a key enzyme in alcoholic fermentation, decarboxylating pyruvate to 

acetaldehyde, and it is also involved in amino acid catabolism [493-496]. Moreover, Pdc1p sub-

cellular localization, according to databases, is known to be at cytoplasm and nucleus. Yet, 

studies concerning the proteomic analysis of yeast surfome, revealed the presence of Pdc1p on 

the cell wall of S. cerevisiae [488, 489, 497, 498] and also C. albicans [499-501]. More 

specifically, Pdc1p has been found among the cell surface-exposed peptides of log phase cells of 

glucose fermenting S. cerevisiae BY4741 [488]. However, in S. cerevisiae K310, a wild type wine 

strain, Pdc1p was only detected at the beginning of fermentation [489]. Given this dual location, 

it remains to be elucidated if Pdc1p actually is a “moonlighting protein”, i.e. a protein that display 

different functions depending on sub-cellular localization, expression, state, concentration of 

ligand, cofactor or substrate [502]. As components of the cell surface, some glycolytic enzymes 

can act as binding receptors to extracellular matrix proteins [503], immunodominant antigens 

[504, 505], or constitutive proteins of the cell wall [505], as well as working as enzymatically 

active proteins [506, 507]. Hence, the dual location of proteins “classically” considered to be 

confined to the cytosol, might imply the presence of alternative secretory pathway(s) besides the 

classical endoplasmic reticulum - Golgi pathway which is driven by a canonical N-terminal signal 

peptide [508]. 

In vivo, the yeast cell wall and the plasma membrane determine yeast permeability to 

several molecules. Many reports on secretion describe that the rigid walls of growing cells of S. 
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cerevisiae allow the exit of molecules with relative masses as great as 400kDa, that often diffuse 

quite freely through intact yeast cell walls [509], while the molecular weight limit for easy entry 

through the intact yeast cell wall seems to be about 700Da [510]. This value depends markedly 

on the yeast strain and physiological conditions [509]. Since cetuximab has an approximated 

molecular weight of 152kDa, the yeast envelope would probably prevent the direct interaction of 

cetuximab with proteins in the membrane or even farther, in the intracellular space. Considering 

that Pcd1p may localize to the cell wall it is probable that the putative recognition is done at the 

cell surface and not otherwise. 

Imatinib mesylate is an effective inhibitor of tyrosine kinases, such as c-KIT, c-ABL, and 

platelet-derived growth factor receptor (PDGFR), which are important regulators of cell growth 

[511-514]. These proteins have important roles in certain leukemia and sarcomas development 

[515, 516]. S. cerevisiae is naturally sensitive to imatinib that inhibits its growth [517]. The 

survey of the whole single deletion mutant collection EUROSCARF identified an array of mutants 

loosing this sensitivity. Among the genes required for imatinib resistance is one component of the 

large (60S) ribosomal subunit, Rpl27Ap, but Pdc1p is not included [517]. However, a 

subsequent study of the yeast phospho-proteome in response to imatinib showed that several 

glycolytic proteins, including Pdc1p, presented a reduced level of phosphorylation in response to 

imatinib [518]. Nonetheless, the treatment of head and neck squamous carcinoma cells with 

clinically relevant concentrations of imatinib, induced changes in cell morphology and growth 

similar to changes associated with EGFR activation. Those changes were blocked with the EGFR 

antagonist cetuximab, which suggested direct involvement of EGFR in this process [519]. An in 

vitro kinase assay showed that imatinib did not directly affect EGFR kinase activity, suggesting 

involvement of EGFR-activating molecules. In other words, imatinib affects EGFR activation and 

signalling pathways through rapid release and increased expression of endogenous EGFR-

activating ligands. Although, imatinib primarily inhibits tyrosine kinases, it also stimulates the 

activity of EGFR tyrosine kinase in head and neck squamous tumours [519]. 

Pdc1p has a human orthologue named HACL1 (2-Hydroxyacyl-CoA lyase 1) (E-value 2.0e-

20) [518]. Yeast Pdc1p participates in glucose fermentation to ethanol as mentioned above, 

acetoin biosynthesis II pathway, degradation of isoleucine, tryptophan, valine and phenylalanine, 

as well as in the superpathway of acetoin and butanediol biosynthesis (Fig 18) [495, 520]. On 
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the other hand, human HACL1 has a role in peroxisome, alpha-oxidation of phytanate and 

peroxisomal lipid metabolism [521, 522]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 - The possible fates of pyruvate. The fate of pyruvate, a highly-oxidized product of glycolysis, in 

intermediary metabolism varies depending on the organism or tissue and on whether conditions are anaerobic or 

aerobic. In anaerobic conditions, pyruvate can be reduced by NADH, as catalyzed by lactate dehydrogenase yielding 

lactate and regenerating NAD+. Alternatively, pyruvate is first decarboxylated to acetaldehyde by pyruvate 

decarboxylase, which then is reduced to ethanol by alcohol dehydrogenase. The processes occurring anaerobically 

that lead from pyruvate to lactate or ethanol are characterisic of fermentation, i.e. glycolysis under anerobic 

conditions. Under aerobic conditions, pyruvate undergoes oxidative decarboxylation by pyruvate dehydrogenase 

(PDH), ultimately yielding acetyl CoA, which feeds directly into the citric acid cycle. Both pyruvate and 

phosphoenolpyruvate can undergo carboxylation reactions yielding oxaloacetate. These three compounds are 

intermediates of the gluconeogenic pathway. Adapted from [523]. 
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Yeast and cancer cells rely on increased glucose uptake and high glycolytic activity to fuel 

the biosynthesis of biomass as already discussed previously in introduction. For lipid synthesis, 

the major carbon precursor is acetyl-CoA, derived from the ATP:citrate lyase reaction in humans 

and from the Pdc activity in S. cerevisiae [524]. Both cancer cells and yeast maintain high 

glycolytic rates for biomass formation and for ATP production by substrate-level phosphorylation.  

Most of the NADH derived from glycolysis is reoxidized through cytosolic reactions: in 

cancer cells, pyruvate is reduced to lactate by the lactate dehydrogenase. In yeast, reduction is 

preceded by decarboxylation of pyruvate to acetaldehyde by Pdc, and yields ethanol, which is 

excreted from the cell, as happens with lactate in cancer cells [400, 404]. Lactate 

dehydrogenase is also present in yeast: two isoforms are located in the mitochondrial inner 

membrane [525, 526]. The mitochondrial forms irreversibly oxidize lactate to pyruvate and 

participate in the respiratory chain [525, 527], being the role of the cytoplasmic isoform still 

unknown. The reduction of pyruvate metabolism in cytosol depends mainly on Pdc [494]. Even 

though the cytoplasmic pyruvate metabolism is not strictly the same as that of tumour cells, an 

increased flow through this pathway inhibits the substrate supply to oxidative metabolism, just as 

seen with the increased activity of lactate dehydrogenase in cancer cells [400]. 

 

3. Testing Yeast Susceptibility to Cetuximab 

 

3.1. Effect of Monoclonal Antibody Cetuximab on Yeast Growth 

 

Yeast has been broadly used to test toxicity of certain drugs and compounds, as well as to 

identify new drugs [320, 517, 528, 529]. In what concerns to anticancer agents, such as 

Cisplatin (a DNA-damaging agent) [530, 531] and imatinib (a tyrosine kinase inhibitor of the 

oncogenic kinases) [517] among several others [532-535], S. cerevisiae has been used as 

eukaryotic model system to better understand the mode of action, as well as potential 

mechanisms of resistance to these drugs. Regarding the antibodies used in the treatment of 

neoplastic diseases [536], such as the mouse-human chimeric IgG1 cetuximab or the fully 

human IgG2 panitumumab, both targeting domain III of EGFR, to our knowledge, yeast has never 

been used to study these compounds.  
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Cetuximab inhibits cell proliferation, in a dose-dependent fashion, of various tumour cell 

lines in culture or xenografts, including cell lines derived from cancers of the vulva [248, 537, 

538], breast [539, 540], prostate [251], ovarian [541], bladder [261], kidney [542], lung [543, 

544], colon [264, 545], head and neck [254, 255], gastric [546], among other EGFR-

overexpressing cancers. In several studies, and also depending of the cell line, concentrations up 

to 100µg/mL of cetuximab have been used showing anti-tumour effects mediated either by 

inhibition of cellular proliferation and angiogenesis, and by enhancement of apoptosis [540, 544, 

546-548]. According to the manufacturer and following the FDA-recommended dose regimen 

(400mg/m2 initial dose; 250mg/m2 weekly dose) [549], cetuximab concentrations reached 

steady-state levels, in the human body, by the third weekly infusion with mean peak and trough 

concentrations across studies ranging from 168 to 235 and 41 to 85µg/mL, respectively. 

Hence, a cetuximab’s concentration of 100µg/mL is likely to have been utilized in many studies 

to reflect an intermediate point of these values.  

Preliminary results from our laboratory suggested that S. cerevisiae might be naturally 

sensitive to cetuximab, much like what has been described to happen with imatinib. These 

previous trials pointed to an optimal concentration of antibody causing a moderate effect in a 

very narrow range of concentrations, around 30nM. This was tested under “standard” growth 

conditions, i.e., 30°C, 50% aeration and liquid minimal medium [550].  

The effect of this drug was herein examined in S. cerevisiae parental strain from 

EUROSCARF collection BY4741 and the mutants defective in the genes identified as the best 

candidates for cetuximab targets by the in silico survey - Sps2p and Sps22p - as well as through 

Western blot - Pdc1, Rpl16p and Rpl20p. A substantial difference between the susceptibility of wt 

and any of the mutants should indicate that the deleted gene has a role in the recognition of 

cetuximab. Yeast cells express SPS2 only during the middle/late stage of sporulation [551], 

when it plays a role in spore wall formation [552]. As to Sps22p there is some evidence 

indicating that it functions redundantly with Sps2p in the organization of the β-glucan layer of the 

spore wall [552-554]. Only diploid a/α cells of the budding yeast S. cerevisiae undergo a 

specialized developmental program termed sporulation when transferred to a nitrogen-free 

medium containing potassium acetate as non-fermentable carbon source. The final product of 

sporulation is an ascus that consists of four haploid spores surrounded by the ascus wall, the 

former vegetative cell wall [555]. Even though BY4741 strain is haploid, and so it cannot 
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sporulate, we decided to test sps2∆ and sps22∆ susceptibility to cetuximab since, as 

mentioned, their roles have been scarcely studied. It remains to be elucidated whether it would 

be more appropriate to test a diploid strain and the correspondent null mutant on SPS2, SPS22 

or both.  

BY4741wt and the mutants sps2∆, sps22∆, pdc1∆, rpl16∆ and rpl20∆ were cultivated 

at 30ºC in minimal medium supplemented with cetuximab 30nM, 150nM, 300nM and 900nM 

(Fig. 20). Under these conditions, incubation of cetuximab with yeast cells for approximately 24h 

did not achieve a significant effect in any of the strains. In fact, we observed that, under these 

experimental conditions, the culture growth is not influenced by any of the drug concentrations 

tested, being growth pattern almost indistinguishable from the one obtained in the absence of 

drug (Fig. 20). Another wt strain of S. cerevisiae, W303-1A, was included in this susceptibility test 

to evaluate if the genetic background was a factor to consider. Yet, this wt strain behaved 

identically to BY4741 (data not shown). 

To better understand the results obtained in what concerns yeast growth in the presence 

of cetuximab, we looked into the literature on how antibodies, particularly cetuximab, could lose 

activity due to, for example, fragmentation, and how yeast could interfere in this process. 

Antibodies are usually recognized by several receptors that have binding affinities to either the 

protein and carbohydrate moieties on the Fc region. The binding of the antibodies to these 

receptors is usually followed by its internalization and further catabolism. All of these pathways 

involve the biodegradation of the antibody to smaller peptides or even amino acids [556, 557]. 

Several pathways have been described that may contribute to the metabolism of antibodies in 

human cells. Targeted antibodies such as cetuximab are metabolized via a specific, saturable 

target (antigen) through an elimination process based on receptor/ligand internalization [372-

374]. At a certain serum concentration, the EGFRs will become saturated. At this point, a 

second, non-saturable, unspecific elimination occurs, and this is common to all antibodies [558]. 

A key component for either endogenous antibodies or therapeutic mAbs to link antigen to 

immune effector cells is the structural integrity of the hinge region. Although antibodies are 

generally regarded as highly resistant to proteolytic-mediated breakdown, diverse studies have 

shown that antibodies are in fact susceptible to proteolytic breakdown by multiple physiologically-

relevant bacterial or mammalian proteases [559-561]. Candidate extracellular proteases included  
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Figure 20 - Effect of monoclonal antibody cetuximab on yeast growth. Growth curves of parental strain 

BY4741 and mutants sps2∆, sps22∆, pdc1∆, rpl16∆ and rpl20∆ in YNB medium and in the same basal medium 

supplemented with 30nM, 150nM, 300nM and 900nM of cetuximab. Growth at 30ºC was followed by measuring 

OD600nm. The results are representative of at least three independent growth experiments. 
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several matrix metalloproteinases that are elaborated in tumour and wound healing environments 

[562, 563].Some proteases associated with cancer, in particular the matrix metalloproteinases, 

have the ability to cleave IgGs, [559, 560, 564, 565] therefore, it has been speculated that 

antibody cleavage could be another method of tumour immune evasion [566]. In addition, a 

number of microorganisms express immunoglobulin-degrading proteases that have been 

implicated as virulence factors in aiding bacterial colonization [561, 567, 568]. Also, yeasts are 

able to secrete extracellular proteases [569, 570], which may play important roles in the 

virulence of pathogenic yeast strains, namely from Candida sp [571-573]. Proteases, secreted by 

different fungal genera, have multiple biological functions, ranging from the regulation of cellular 

processes to the degradation of exogenous proteins for obtaining nutrients, and/or the adaptation 

to various external habitats [574-576]. A study shows that protease secretion by S. cerevisiae 

was induced in the presence of yeast extract, or of purified proteins, such as bovine serum 

albumin, casein, or ovalbumin, and some proteolytic activity was present also without protein 

inducer. This same study also found that properties of proteinases induced under cultivation 

conditions were different in various aspects (temperature- and pH-dependencies, substrate 

specificities, sensitivities to proteinase inhibitors). This variability in the secretion of proteolytic 

enzymes is not purely concordant with their nutritive function and may reflect some other, e.g., 

recognition aspects [570]. Further studies are needed to clarify whether the proteases secreted 

by yeast are capable of degrading cetuximab to smaller molecules, such as small peptides or 

amino acids. If the IgG1 mAb cetuximab does not maintain integrity during the growth assay due 

to the action of proteases there cannot be any phenotype associated.  

 

3.2. Effect of Monoclonal Antibody Cetuximab on Ethanol Production 

 

Yeasts are historically recognized for their fermentative capabilities and have been used in 

the elaboration of food and beverages for human consumption in practically all civilizations [577, 

578]. With the advent of industrial fermentation technology, these microorganisms have been 

used by the food industry mostly for their production of ethanol and carbon dioxide, which are 

important to the brewing, winemaking and baking processes .{Faria-Oliveira, 2013 #7538} 

Most organisms use glycolysis as a major means of metabolizing hexoses. This pathway 

produces pyruvate, which, in the yeast S. cerevisiae, either enters fermentation to yield carbon 
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dioxide and ethanol, or is channelled into different fates as above mentioned, from which the TCA 

cycle/aerobic respiration (pyruvate converted to acetyl-CoA by the pyruvate dehydrogenase 

complex) [581] is the most prominent. However, most of the glucose entering the cells is 

metabolized through fermentation, even under aerobic growth conditions [582] - the so-called 

Crabtree effect mentioned in the Introduction. Pyruvate decarboxylase (Pdc), which catalyses the 

decarboxylation of pyruvate to acetaldehyde, further reduced to ethanol can be attributed to is the 

axis role that this enzyme plays, committing the glycolytic flux towards either ethanol or other 

fates including its reversion through gluconeogenesis (pyruvate converted to oxaloacetate, by 

pyruvate carboxylase) (Fig. 19) [520]. Pyruvate decarboxylase can also decarboxylate other 2-oxo 

acids such as indolepyruvate and 2-keto-3-methyl-valerate, and this activity contributes to the 

catabolism of the amino acids isoleucine, phenylalanine, tryptophan, and valine [495]. 

In S. cerevisiae, six PDC genes have been identified, of which three are structural genes 

(PDC1, PDC5 and PDC6) and encode for active Pdc enzymes independently. The regulatory 

genes PDC2, PDC3 and PDC4 encode proteins that are probably involved in the regulation of 

PDC1 and PDC5 expression [494]. Structurally, the catalytically active Pdc enzyme is a tetramer 

composed of two dimers, each consisting of two subunits that are identical and tightly bound. 

Each subunit has a molecular mass of approximately 60kDa making up a tetramer of 250kDa 

[583]. The catalytic activity of the Pdc1 enzyme requires the presence of thiamine diphosphate 

(ThDP) and the metal ion Mg2+ as cofactors [584] with the optimum activity of the tetramer at pH 

6.2. Increasing pH towards alkalinity results in the dissociation of the Pdc tetramer into inactive 

dimers, and this dissociation is pH-dependent and reversible [585, 586]. Yeast Pdc enzyme is 

activated by its substrate, i.e. pyruvate, but Pi is a competitive inhibitor [587, 588].  

The Pdc1p was recognized by cetuximab in the Western blot assay (Fig. 18A). Bearing in 

mind that Pdc is a key enzyme in alcoholic fermentation, prompted us to evaluate the effect of 

cetuximab in ethanol production. This was done using in the wt and pdc1∆ mutant from BY4741 

background. Cells were grown at 30ºC in minimal medium without cetuximab, and in the same 

medium supplemented with 30nM, 150nM e 900nM of the monoclonal antibody (Fig. 21). 

Ethanol production was assessed at T0h (latency phase), T6h (exponential growth phase), T12h 

(stationary phase) and T24h (late stationary phase) of culture growth. This preliminary 

experiment displayed, as expected, that ethanol production increases over time in the wt culture 

without cetuximab in the medium. In the presence of 30nM, 150nm and 900nM of cetuximab, 

the ethanol production increased identically, the presence of the drug not causing significant 
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differences (Fig. 21). The pdc1∆ mutant behaved identically to wt with one exception. The pdc1∆ 

growth in the presence of 900nM of cetuximab at T6h, and at T12h, presented a lower 

production of ethanol than the wt strain in the same circumstances, respectively 30,4% and 

27,8% less, which appears to be recovered after 24h growth. The statistical significance and 

meaning of these differences remain to be confirmed and explored in the future.  

Pdc1p is the major Pdc isoenzyme and is strongly expressed in actively fermenting yeast 

cells. However, under the same conditions the nearly identical Pdc5p is also expressed, even if 

its expression is hardly detected, or not detectable at all according to some studies [494, 589-

592]. Still, the expression of PDC1 and PDC5 genes is enhanced during growth on glucose with 

PDC1 mRNA levels being five-fold higher than that of the PDC5 mRNA levels [589]. This should 

be the case of wt BY4741 strain, in which case Pdc1p should the main responsible for the 

production of ethanol while the Pdc5p should be poorly expressed. 

Conversely, in the absence of PDC1, actively fermenting yeast cells strongly express Pdc5p 

[593], which redundantly substitutes the missing Pdc1 in alcoholic fermentation, justifying the 

identical ethanol production observed in both wt and pdc1∆ strains (Fig. 21). The deletion in 

PDC5 does not cause any decrease in the specific pyruvate decarboxylase activity, while deletion 

of PDC1 gene results in a five-fold increase in the transcription of PDC5 mRNA, yielding a 

decrease of only approximately 20% of the wild type Pdc activity [494, 590, 591, 593]. Since the 

promoter activity of PDC1 is stimulated in a mutant lacking the coding region of PDC1, this 

phenomenon has been termed Pdc auto-regulation [494, 496, 591]. It was also demonstrated 

that Pdc1p (but not its catalytic activity) is required to mediate repression of PDC5. Thus, a 

property of Pdc1p that is independent of catalysis appears to be to mediate auto-regulation 

[591]. This may be even more complex considering that both PDC1 and PDC5 are expressed 

under thiamine limitation [594]. All taken, in the pdc1∆ mutant grown on glucose, PDC5 

becomes strongly expressed [593], becoming responsible for the ethanol production observed in 

the pdc1∆ mutant strain (Fig. 21).  
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Figure 21 - Effect of monoclonal antibody cetuximab on ethanol production. BY4741 wt strain and the 

pdc1∆ mutant were grown at 30ºC in YNB medium without cetuximab and in the same medium supplemented with 

30nM, 150nM e 900nM of the monoclonal antibody. Ethanol production was assessed by HPLC at 0, 6, 12 and 24h 

of culture growth. The ethanol production by the wt culture and the pdc1∆ mutant culture increase over time, either 

in the absence or presence of the 30nM, 150nM e 900nM of cetuximab. The amount of ethanol produced by the 

two isogenic cell cultures is also similar, except in the presence of 900nM at 6h and at 12h where the mutant 

produces less ethanol than the wt strain (approximately 30%) in the same condition, as well as the pdc1∆ cultures 

with lower drug concentration. The results displayed refer only to an independent experiment. The experiment must 

be repeated to reach a suitable number of replicates in order to achieve statistical significance. 

 

Subsequently, we performed a Western blot assay using the whole protein extract of the 

pdc1∆ mutant and cetuximab as primary antibody (Fig. 22), employing an identical procedure to 

the one in Fig. 18. An immunoreactive band of similar localization to the band identified as 

Pdc1p in the wt strain (Fig. 22A) was observed in the pdc1∆ strain (Fig. 22 B). As pdc1∆ 

deletion strain does not express Pdc1p, we can guess that the band corresponds to Pdc5p, 

which is consistent with the above-mentioned overexpression of PDC5 in pdc1∆ mutant [593]. 

The very similar molecular weight between Pdc1p and Pdc5p, respectively 61,495 Da and 

61,912 Da, can sustain undistinguishable SDS-PAGE results. More importantly, the amino acid 

sequences of Pdc1p and Pdc5p are 88% identical as well as the tri-dimensional structure which 

is highly similar [494]. This, and in spite of the very affirmative result of peptide band 

identification reported by Alphalyze, we can postulate that cetuximab can recognize either or both 

Pdc1 and Pdc5p. The further construction of a double mutant pdc1∆pdc5∆ would be ideal to 

confirm this possibility. 
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Figure 22 - Both yeast Pdc1p and Pdc5p seem to be recognized by the monoclonal antibody 

cetuximab. Western blot assay was performed using the whole yeast proteome of wt S. cerevisiae BY4741 (lane 1) 

and the isogenic Pdc-negative strain - pdc1∆ (lane 2), and cetuximab as primary antibody. In both conditions it was 

obtained the same pattern of immunoreactive bands observed in Fig. 18 (see for more details). As pdc1∆ strain is 

deleted in Pdc1p, which is highly similar to Pdc5p that is expressed in the absence of the first, it is probably Pdc5p 

protein that is being recognized by cetuximab (lane 2). 

 

4. Pdc1p and Pdc5p Structural Characteristics 

 

In the yeast S. cerevisiae the major structural gene PDC1 codes for a 563 amino acids 

protein [493]. Still, as said above, the catalytically active Pdc enzyme is a tetramer composed of 

two dimers [583]. Each monomer is built up of three independent domains, which were denoted 

as pyrimidine (PYR) binding domain, regulatory (R) domain and diphosphate (PP) binding domain 

[595]. Two subunits form a dimer in the asymmetric unit and the R domains participate in the 

dimer-dimer interactions [584]. Furthermore, the loops comprising residues 104-113 and 290-

304 take part in the closing of the substrate-binding sites and are crucial components in the new 

dimer-dimer interface formed in the tetramer assembly of form B Pdcp (according to the 

crystallization of yeast Pdcp in the presence of the activator pyruvamide [596]). As a result, these 

chain segments undergo a disorder-order transition resulting in the closure of two active sites in 

the dimer [584].  

Optimal sequence alignments between EGFR and isoenzymes Pdc1p and Pdc5p were 

generated using ClustalW2 (Fig. 23). This program produces biologically meaningful multiple 
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sequence alignments of divergent sequences and it calculates the best match for the selected 

sequences. In a simplistic way, the alignment of the EGFR protein and Pdc isoenzymes (Fig. 23) 

shows that Pdc proteins begin to align in the region of EGFR domain II (CR1), followed by domain 

III (L2), domain IV (CR2), the transmembrane and juxtamembrane domains and the tyrosine 

kinase domain as well a portion of the autoregulatory region of EGFR. Pdc1p residues 104-113 

(red), that are important in dimer-dimer interaction, align with EGFR domain that binds cetuximab 

domain III/L2 (yellow), while residues 290-304 (red), also important in dimer-dimer interaction, 

align in the region of the transmembrane (light gray) and juxtamembrane (dark gray) EGFR’s 

domains. Furthermore, in Fig. 23 also the amino acid residues of EGFR important for the binding 

of cetuximab were highlighted The crystal structure of the EGFR-cetuximab complex revealed that 

the epitope covers a large surface on domain III (yellow) of the EGFR [127], in which some 

functionally critical residues have been identified by diverse groups: Q384, Q408, H409, K443, 

K465, I467, and S468 (dark blue, black residues) [127, 434, 597, 598]. More recently, some 

more domain III residues were identified (F352, D355, P387) (dark blue, white residues), which 

according to the literature should be involved in cetuximab binding as well, since their mutation 

resulted in a significant decrease (>50%) of antibody binding ability. Positions P349, P362, 

W386, E388, R390, F412, and I438 (light blue) seem to be of some minor importance for the 

EGFR-cetuximab interaction as their mutation results in a binding reduction of 30% to 50% [273].  

 

Pdc1p        ------------------------------------------------------------ 
Pdc5p        ------------------------------------------------------------ 
EGFR         LEEKKVCQGTSNKLTQLGTFEDHFLSLQRMFNNCEVVLGNLEITYVQRNYDLSFLKTIQE 60 
                                                                             
 
Pdc1p        ------------------------------------------------------------ 
Pdc5p        ------------------------------------------------------------ 
EGFR         VAGYVLIALNTVERIPLENLQIIRGNMYYENSYALAVLSNYDANKTGLKELPMRNLQEIL 120 
                                                                             
 
Pdc1p        ------------------------------------------------------------ 
Pdc5p        ------------------------------------------------------------ 
EGFR         HGAVRFSNNPALCNVESIQWRDIVSSDFLSNMSMDFQNHLGSCQKCDPSCPNGSCWGAGE 180 
                                                                             
 
Pdc1p        ------------------------------------------------------------ 
Pdc5p        ------------------------------------------------------------ 
EGFR         ENCQKLTKIICAQQCSGRCRGKSPSDCCHNQCAAGCTGPRESDCLVCRKFRDEATCKDTC 240 
                                                                             
 
Pdc1p        ------------MSEITLGKYLFERLKQVNVNTVFGLP---------------------- 26 
Pdc5p        ------------MSEITLGKYLFERLSQVNCNTVFGLP---------------------- 26 
EGFR         PPLMLYNPTTYQMDVNPEGKYSFGATCVKKCPRNYVVTDHGSCVRACGADSYEMEEDGVR 300 
                         *.  . *** *      :    : :.                       
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Pdc1p        ------------------GDFNLSLLDKIYEVEGMR----WAGNANELNAAYAADGYARI 64 
Pdc5p        ------------------GDFNLSLLDKLYEVKGMR----WAGNANELNAAYAADGYARI 64 
EGFR         KCKKCEGPCRKVCNGIGIGEFKDSLSINATNIKHFKNCTSISGDLHILPVAFRGDSFTHT 360 
                               *:*: **  :  ::: ::     :*: : * .*: .*.:::  
 
Pdc1p        KGMS----------------CIITTFG-----VGELSALNGIAGSYAEH----------- 92 
Pdc5p        KGMS----------------CIITTFG-----VGELSALNGIAGSYAEH----------- 92 
EGFR         PPLDPQELDILKTVKEITGFLLIQAWPENRTDLHAFENLEIIRGRTKQHGQFSLAVVSLN 420 
               :.                 :* ::      :  :. *: * *   :*            
 
Pdc1p        VGVLHVVGVPSISAQAKQLLLHHTLGNGDFTVFHRMSANISETTAMITDIATAPAEIDRC 152 
Pdc5p        VGVLHVVGVPSISSQAKQLLLHHTLGNGDFTVFHRMSANISETTAMITDIANAPAEIDRC 152 
EGFR         ITSLGLRSLKEISDGDVIISGNKNLCYANTINWKKLFGTSGQKTKIISNRGENSCKATGQ 480 
             :  * : .: .**     :  ::.*  .:   :::: .. .:.* :*:: .  ..:     
 
Pdc1p        IRTTYVTQRPVYLGLPANLVDLNVPAK----------LLQTPIDMSLKPNDAESEKEVID 202 
Pdc5p        IRTTYTTQRPVYLGLPANLVDLNVPAK----------LLETPIDLSLKPNDAEAEAEVVR 202 
EGFR         VCHALCSPEGCWGPEPRDCVSCRNVSRGRECVDKCNLLEGEPREFVENSECIQCHPECLP 540 
             :  :  : .  :   * : *. .  ::          *   * ::  :.:  :.. * :  
 
Pdc1p        TILALVKDAKNP---VILADACCSRHDVKAETKKLIDLTQFPAFVTPMGKGSIDEQHP-- 257 
Pdc5p        TVVELIKDAKNP---VILADACASRHDVKAETKKLMDLTQFPVYVTPMGKGAIDEQHP-- 257 
EGFR         QAMNITCTGRGPDNCIQCAHYIDGPHCVKTCPAGVMGENNTLVWKYADAGHVCHLCHPNC 600 
               : :   .:.*   :  *.   . * **: .  ::. .:  .:  . .    .  **   
 
Pdc1p        -------RYGGVYVGTLSKPEVKEAVESADLILSVGALLSDFNTG--------SFSYSYK 302 
Pdc5p        -------RYGGVYVGTLSRPEVKKAVESADLILSIGALLSDFNTG--------SFSYSYK 302 
EGFR         TYGCTGPGLEGCPTNGPKIPSIATGMVGALLLLLVVALGIGLFMRRRHIVRKRTLRRLLQ 660 
                       *  ..  . *.:  .: .* *:* : **  .:           ::    : 
 
Pdc1p        TKNIVEFHSDHMKIRNATFPGVQMKFVLQKLLTT-------------IADAAKGYKPVAV 349 
Pdc5p        TKNIVEFHSDHIKIRNATFPGVQMKFALQKLLDA-------------IPEVVKDYKPVAV 349 
EGFR         ERELVEPLTPSGEAPNQALLRILKETEFKKIKVLGSGAFGTVYKGLWIPEGEKVKIPVAI 720 
              :::**  :   :  * ::  :  :  ::*:                *.:  *   ***: 
 
Pdc1p        PARTPANAAVPASTPLKQEWMWNQLGN---------FLQEGDVVIAETGTSAFGINQTTF 400 
Pdc5p        PARVPITKSTPANTPMKQEWMWNHLGN---------FLREGDIVIAETGTSAFGINQTTF 400 
EGFR         KELREATSPKANKEILDEAYVMASVDNPHVCRLLGICLTSTVQLITQLMPFGCLLDYVRE 780 
                   . . . .  :.: ::   :.*          * .   :*::  . .  :: .   
 
Pdc1p        PNNTYGISQVLWGSIGFTTGATLGAAFAAEEIDPKKRVILFIGDGSLQLTVQEISTMIRW 460 
Pdc5p        PTDVYAIVQVLWGSIGFTVGALLGATMAAEELDPKKRVILFIGDGSLQLTVQEISTMIRW 460 
EGFR         HKDNIGSQYLLNWCVQIAKGMNYLEDRRLVHRDLAARNVLVKTPQHVKITDFGLAKLLGA 840 
              .:  .   :*  .: :: *          . *   * :*.     :::*   ::.::   
 
Pdc1p        GLKPYLFVLN------------------------NDGYTIEKLIHGPKAQYNEIQGWDHL 496 
Pdc5p        GLKPYIFVLN------------------------NNGYTIEKLIHGPHAEYNEIQGWDHL 496 
EGFR         EEKEYHAEGGKVPIKWMALESILHRIYTHQSDVWSYGVTVWELMTFGSKPYDGIPASEIS 900 
               * *    .                        . * *: :*:      *: * . :   
 
Pdc1p        SLLPTFG----------------------------------------AKDYETHRVATTG 516 
Pdc5p        ALLPTFG----------------------------------------ARNYETHRVATTG 516 
EGFR         SILEKGERLPQPPICTIDVYMIMVKCWMIDADSRPKFRELIIEFSKMARDPQRYLVIQGD 960 
             ::* .                                          *:: : : *   . 
 
Pdc1p        EWDKLTQDKSFNDNSKIRMIEIMLPVFDAPQNLVEQAKLTAATNAKQ------------- 563 
Pdc5p        EWEKLTQDKDFQDNSKIRMIEVMLPVFDAPQNLVKQAQLTAATNAKQ------------- 563 
EGFR         ERMHLPSPTDSNFYRALMDEEDMDDVVDADEYLIPQQGFFSSPSTSRTPLLSSLSATSNN 1020 
             *  :*.. .. :    :   * *  *.** : *: *  : ::..:.:              
 
Pdc1p        ------------------------------------------------------------ 
Pdc5p        ------------------------------------------------------------ 
EGFR         STVACIDRNGLQSCPIKEDSFLQRYSSDPTGALTEDSIDDTFLPVPEYINQSVPKRPAGS 1080 
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Pdc1p        ------------------------------------------------------------ 
Pdc5p        ------------------------------------------------------------ 
EGFR         VQNPVYHNQPLNPAPSRDPHYQDPHSTAVGNPEYLNTVQPTCVNSTFDSPAHWAQKGSHQ 1140 
                                                                             
 
Pdc1p        ---------------------------------------------- 
Pdc5p        ---------------------------------------------- 
EGFR         ISLDNPDYQQDFFPKEAKPNGIFKGSTAENAEYLRVAPQSSEFIGA 1186 

 

Figure 23 - Alignment between human EGFR and S. cerevisiae protein Pdc1p and its close homologue 

Pdc5p. EGFR protein sequence of 1186 amino acids was obtained from NCBI (accession: NP_005219.2 GI: 

29725609), that corresponds to the EGFR isoform a precursor, and from which it was removed the signal sequence 

(24 residues) to simplify further analysis. Pdc isoenzymes sequences, both of 563 amino acids, were obtained from 

SGD. Red – important domains to dimer-dimer interaction in Pdc1p; Orange – EGFR L1/I domain; Yellow - EGFR 

L2/III domain; Light grey – EGFR transmembrane domain; Dark grey – EGFR juxtamembrane domain; Dark 

blue i) black residues – critical residues involved in cetuximab binding; ii) white residues – mutation in this residues 

results in an abrogation (>50%) of antibody binding to EGFR; Light blue – residues of minor importance for the 

EGFR-cetuximab interaction. The sequences were aligned using clustalW2 coupled with the default parameters. An 

alignment will display by default the following symbols denoting the degree of conservation observed in each column: 

* - the residues in that column are identical in all sequences in the alignment; : - conserved substitutions have been 

observed; . - semi-conserved substitutions are observed.  

 

Using the same strategy outlined above, it was performed an alignment between the EGFR 

and yeast proteins Sps2p and Sps22p (Fig. 24), which resulted from the bioinformatics approach 

as the best candidates to be the yeast counterpart of EGFR. We started by using the 1186 amino 

acid sequence of EGFR, but the alignment had many gaps and did not seem the most 

appropriate situation (data not shown). Instead, it was decided to use only the extracellular 

domain of EGFR, since the results from the in silico survey indicated that these proteins were 

possibly more similar to the EGFR ectodomain than any other region of the receptor. 

Furthermore, it is actually this region that contains the important residues for binding of ligands 

and cetuximab. In general, the alignment of the proteins is fairly good, including the L domains of 

the different proteins partially overlap between them. But, regarding to the region that would be 

important since it is the epitope of cetuximab (blue residues in the Fig. 24), there are several 

(big) gaps, and only 4 amino acids (of a total of 17) are conserved in Sps proteins. 

 

Sps2p        MPIWKTQTFFTSISVIQIVNKETKVSTKKEKDSMLNQLNTILRFLFLFLQLIKSSAAVEP 60 
Sps22p       ------------------MNRITRKS---------CLFAIIFASLFVTHALG---AAIDP 30 
EGFR         --------LEEKKVCQGTSNKLTQLG-------TFEDHFLSLQRMFNNCEVVLGNLEITY 45 
                                *: *: .               :  :*    :      :   
 
Sps2p        NGGPNILDHNIMLVNTN----ATIPKKEQT---DFEVIS--PTKQTQVDEDCKKGLYHIE 111 
Sps22p       PRRPHNVKP---FHNGN----LELQRRANEPFFEIDVKS--LNTNSPISELCKKDLHVIE 81 
EGFR         VQRNYDLSFLKTIQEVAGYVLIALNTVERIPLENLQIIRGNMYYENSYALAVLSNYDANK 105 
                   :.    : :        :    .    ::::       :.       ..    : 
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Sps2p        NAGNLIELQAKCWKVVGNIEISSNYSGSLIDLGLIREIEGDLIIKNNKHIFRIQGYNLES 171 
Sps22p       SSHDLFHLQNQCEFILGSLKVT-NYDSNILDLNSLRAIGGDLIIQDSPELIRIQAGNLNK 140 
EGFR         TGLKELPMRNLQEILHGAVRFSNNPALCNVESIQWRDIVSSDFLSNMSMDFQNHLGSCQK 165 
             .. . : ::     : * :..: *     ::    * * .. ::.:    :: :  . :. 
 
Sps2p        LG------------KLELDSLTSFVSLDFPALKEVETVDWRVLP------ILSSVVING- 212 
Sps22p       IEG-----------LFQLQGLTSLVSVEIPTLKFCQSLEWKVVP------ILNYVSMDSQ 183 
EGFR         CDPSCPNGSCWGAGEENCQKLTKIICAQQCSGRCRGKSPSDCCHNQCAAGCTGPRESDCL 225 
                             : : **.::. :  : :   .               .    :   
 
Sps2p        NIKKIKNIIISDTALTSIDYFN------NVKKVDIFNINNNRFLENLFASLESVTKQLTV 266 
Sps22p       NIEIIKDIVISDTSLANIENFN------KVQEIDTFNINNNRFLETIHSNVKTIRGQFSV 237 
EGFR         VCRKFRDEATCKDTCPPLMLYNPTTYQMDVNPEGKYSFGATCVKKCPRNYVVTDHGSCVR 285 
               . :::   .. : . :  :*      .*:  . :.:. . . :     : :   .    
 
Sps2p        HSNAKELELDLSNLHTVEN--------------------MTIKDVSEIKLAKLSSVNSSL 306 
Sps22p       HANAKELELEMPHLREVEN--------------------ITIRDTSLVYLPQLTKVKSSL 277 
EGFR         ACGADSYEMEEDGVRKCKKCEGPCRKVCNGIGIGEFKDSLSINATNIKHFKNCTSISGDL 345 
              ..*.. *::   ::  ::                    ::*. ..   : : :.:...* 
 
Sps2p        EFIENQFSSLELPLLAKVQG--------------------------------TLGLID-- 332 
Sps22p       EFIENYFYELNLNNLQKIGG--------------------------------TLGIIN-- 303 
EGFR         HILPVAFRGDSFTHTPPLDPQELDILKTVKEITGFLLIQAWPENRTDLHAFENLEIIRGR 405 
             .::   *   .:     :                                  .* :*    
 
Sps2p        ------------NKNLKKLNFSNATDIQGG-LMIANNTELAKIDFFPKLRQIGGAIYFEG 379 
Sps22p       ------------NVNLIKVNLENLTDIQGG-LMIADNESLEDITFLPNLKQIGGAIFFEG 350 
EGFR         TKQHGQFSLAVVSLNITSLGLRSLKEISDGDVIISGNKNLCYANTINWKKLFGTSGQKTK 465 
                         . *: .:.: . .:*..* ::*:.* .*     :   : :* :      
 
Sps2p        SFDKIDLPELKLVKGSAYIKSSSE------ELNCEEFTSPKAGR------SIIRGGK--- 424 
Sps22p       SFKDIMFDSLKLVKGSAFIKSSSN------VLDCNKWTNPSNGR------SIIRGGK--- 395 
EGFR         IISNRGENSCKATGQVCHALCSPEGCWGPEPRDCVSCRNVSRGRECVDKCNLLEGEPREF 525 
              :..    . * .   ..  .*.:        :* .  . . **      .::.*      
 
Sps2p        ------IECTSGMKSKMLNVDEEGN-----VLGKQETDNDNGKKEKGKNGA-KSQGSSKK 472 
Sps22p       ------FTCISGKKENTLNVKQDGT-----IIEKGYKD----LTQEGEDSK-KRVIS--K 437 
EGFR         VENSECIQCHPECLPQAMNITCTGRGPDNCIQCAHYIDGPHCVKTCPAGVMGENNTLVWK 585 
                   : * .    : :*:   *      :      *     .    .   :      * 
 
Sps2p        MENSAPKNIFIDAFKMSVYAVFTVLFSIIF------ 502 
Sps22p       YANSANPSMQLDPLLFGTCLVAMLLF---------- 463 
EGFR         YADAGHVCHLCHPNCTYGCTGPGLEGCPTNGPKIPS 621 

 

Figure 24 – Alignment between EGFR ectodomain and S. cerevisiae proteins Sps2p and Sps22p. 

EGFR extracellular protein sequence of 621 amino acids was obtained from NCBI (accession: NP_005219.2 GI: 

29725609 - EGFR isoform A precursor residues 25-645). Sps2p and Sps22p sequences were obtained from SGD. 

Orange – EGFR L1/I domain; Yellow - EGFR L2/III domain; Violet – Sps2p L domain domain (see Table II for 

more information concerning Sps proteins domains); Pink – Sps2p L domain; Drak green - Sps22p L domain; 

Light green - Sps22p L domain. Dark blue i) black residues – critical residues involved in cetuximab binding; ii) 

white residues – mutation in this residues results in an abrogation (>50%) of antibody binding to EGFR; Light blue – 

residues of minor importance for the EGFR-cetuximab interaction. The sequences were aligned using clustalW2 

coupled with the default parameters. * - the residues in that column are identical in all sequences in the alignment; : 

- conserved substitutions have been observed; . - semi-conserved substitutions are observed.  

 

Conversely, five of the seven amino acid residues critical for the binding of cetuximab to 

EGFR are present in Pdc1p and Pdc5p or a semi-conserved substitution is observed. Concerning 
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the amino acid residues whose mutation results in an abrogation (> 50%) of antibody binding to 

EGFR, two of the three amino acids are present in Pdc isoforms or semi-conserved substitutions 

are observed. Regarding the seven EGFR residues of minor importance for the EGFR-cetuximab 

interaction, only one is semi-conserved in Pdc. Moreover, in the absence of substrate the enzyme 

is in the open, nonactivated state, with four equivalent active sites. In this state, the loop regions 

104-113 and 290-304 are disordered. In the activated state, the tetramer assembly has 

rearranged, with substrate bound at the active site and with two of the four active sites in the 

closed conformation. The loops 104-113 and 290-304 are now ordered in the active subunits 

and take part in the closing of the substrate-binding sites and in the new dimer-dimer 

interactions. After turnover at the two active sites, the tetramer might form an analogous 

assembly in which the other two substrate-binding sites are activated [584]. Thus, if cetuximab is 

interacting with Pdc1p (and/or Pdc5p), in vivo, near one of the sites responsible for the dimer-

dimer interaction namely the 104-113 residues region as suggested in the alignment performed 

(see Fig. 23) and observing the superficial location of this region in the tri-dimensional structure 

of Pdc dimer (Fig. 25A) and consequently of easy access by cetuximab, it is most probably 

interfering with the formation of the tetramer (Fig. 25B), which is the catalytically active form of 

the enzyme.  

 

Figure 25 - Tri-dimensional structure of S. cerevisiae Pdc1p/Pdc5p. (A) Pdc dimer and (B) Pdc tetramer 

tri-dimensional structure were obtained using Swiss-PdbViewer version 4.01 [599]. The loop comprising residues 

104-113 (green, blue, orange, dark yellow – each monomer has its colour) take part in the closing of the substrate-

binding sites and is a crucial component in the new dimer-dimer interface formed in the tetramer assembly, as well 

the residues 290-304 (not shown).  

 

A B 
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Another possibility can be considered, that cetuximab is actually interfering with the 

catalytic domain substrate recognition/binding site of the enzyme, as the sequences displayed in 

red (Fig. 23) are involved in the closure of two active sites in the dimer. Besides, one of these 

loops (104-113 and 290-304) in each monomer is part of the active site in the activated 

molecule [584]. 
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Considering the results from the in silico survey of S. cerevisiae proteome, proteins from 

the yeast SPorulation Specific family (SPS2 family), in particular proteins Sps2p and Sps22p 

appeared as the most suitable candidates for EGFR yeast counterparts. These yeast proteins 

localize to the cell-surface, as EGFR in mammalian cells [102], and the C. elegans and D. 

melanogaster orthologues [101]. Moreover, similarly to EGFR’s ligand-binding domains I and III 

[125], and the cetuximab-binding domain III [127], Sps2p and Sps22p belong to the sole S. 

cerevisiae family of proteins (SPS2) displaying L domains, i.e., leucine-rich aminoacid repeats 

(10-16%) [600]. Furthermore, the tri-dimensional structure of EGFR’s ectodomain shows the L1 

and L2 domains to consist of single-stranded right-handed β-helices [126, 466]. In the 

SUPERFAMILY database the L domains of Sps2 and Sps22 are annotated as right-handed β-α 

superhelix. Databases dedicated to protein structural information (www.yeastgenome.org/cgi-

bin/protein/get3) use the information on proteins of known tri-dimensional structure with 

sequence similarity to a query protein to predict its structure throughout model building by 

homology. There is no structural information for Sps22p, yet the structure of S. cerevisiae protein 

Sps2p can be theoretically inferred from similarity with internalin (InlA) of Listeria monocytogenes 

[601]. Finally, the alignment between these proteins and EGFR’s ectodomain showed that a 

small number of residues important for binding of cetuximab are conserved in these proteins. 

Considering that the expression pattern of these proteins is related to sporulation, which operates 

through meiosis therefore requiring diploidy, it remains to be elucidated whether cetuximab has 

any effect over phenotypes on a S. cerevisiae diploid strain, namely on sporulation and mating 

processes. 

Probing S. cerevisiae total proteins with the monoclonal antibody cetuximab identified 

Pdc1p as the recognized antigen. Ribossomal 60S subunit proteins Rpl16bp, Rpl19ap and 

Rpl20bp were also identified. However, due to the fact that they were also identified by the 

secondary antibody used in the Western blot and produced a dubious identification, the results 

were inconclusive. Therefore, at this stage, Pdc1p was chosen to further analysis and discussion. 

This is the most expressed isoform - 1 - of the glycolytic enzyme Pyruvate Decarboxylase. This 

enzyme operates at the level of cytosol as a tetramer, catalysing the conversion of pyruvate to 

acetaldehyde, ultimately yielding ethanol. It is the most important enzyme in channelling 

glycolytic flux towards alcoholic fermentation [520]. Besides whole protein and cytosol extracts, 
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Pdc1p was recognized by cetuximab in extracts from cell wall and plasma membrane. This 

protein has been reported to appear in yeasts cell surface, where its function and structure 

remain unknown [488, 489]. As mentioned above, Pdc1p is strongly expressed in fermenting 

yeast cells, but the isoenzyme Pdc5p is also expressed, even if at low levels, taking over the 

fermentation needs when PDC1 is deleted [494, 589-593]. In addition to their functional 

redundancy, these two proteins are very similar. From the six Pdc proteins, Pdc5p is the closest 

to Pdc1p, with 86% identity. For this reason in the future it will be necessary to double delete 

PDC1 and PDC5 genes in order to actually evaluate whether cetuximab is able to equally 

recognize either protein monomer. 

Additionally, intracellular Pdc activity has been also used as an indicator of viability in 

fermenting cells [602]. Therefore, in this study the susceptibility of the wt strain to the presence 

of cetuximab was compared to the one of the mutant defective in PDC1. Preliminary results 

showed that pdc1∆ strain was sensitive to cetuximab at high concentrations, 900nM, and only at 

the level of ethanol production. Cells cultivated this way presented a 30% lower production of 

ethanol than the wt strain in the same circumstances. Otherwise, growth seemed not to be 

influenced by any of the drug concentrations tested (30nM to 900nM). This raised the question 

whether the proteases secreted by yeasts might cause degradation of cetuximab [569, 570], or if 

any other cause might be affecting the response of the cells to cetuximab, including the fact that 

it may affect other phenotypes not assayed within the scope of this thesis. Either way the 

recognition of Pdc monomer by cetuximab raises even more and wider questions.  

At the moment we can only hypothesize that cetuximab can recognize either or both 

Pdc1p and Pdc5p, and the consequences this might bring to the catalytically active form of the 

enzyme. The further use of the pdc5∆ and the construction of a double mutant pdc1∆pdc5∆ 

would be ideal to clarify by Western blot which Pdc, or if both, are recognized by cetuximab. 

Nevertheless, due to the presence of the yeast cell envelope that prevents cetuximab diffusion to 

the cell interior, it should be only the Pdc secreted to the cell exterior that is recognized (and 

hypothetically inhibited) by cetuximab and that should not impair the intracellular function of the 

protein. There will be always a good fraction of Pdc inside the cell to perform in fermentation and 

in ethanol production as well as other cellular processes, in spite of cetuximab presence in the 

exterior.  

The protein alignments between EGFR, Pdc1p and Pdc5p showed that the several residues 

that constitute cetuximab epitope [127, 273] are present in Pdc proteins, next to the residues 
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104-113 that (i) are part of the active site, (ii) have a role in the closing of the substrate-binding 

site, and (iii) are also essential components in the dimer-dimer interface formed in the tetramer 

assembly [584]. Consequently, if cetuximab is interacting with Pdc1p (and/or Pdc5p) near the 

site responsible for the dimer-dimer interaction, it is most probably interfering with the formation 

of the tetramer, assuming its occurrence in the cell exterior, which is the catalytically active form 

of the enzyme and/or interfering with the catalytic domain substrate recognition/binding site of 

the enzyme. Unlike the Sps2p and Sps22p proteins, databases do not recognize the putative 

existence of L domains in Pdc1p. On the other hand, cetuximab is specific for EGFR, not 

recognizing other human proteins that have L domains such as the IR. Furthermore, similarly to 

our approach, a Western blot assay using cetuximab as a primary antibody allowed to 

successfully measure EGFR expression level in seven tumour types [480]. In a Western blot, the 

proteins are essentially denatured and therefore cannot assume their natural tri-dimensional 

conformations. Hence, antibodies that recognize linear epitopes instead of conformational 

epitopes are chosen for immunodetection. Even so, contrarily to monoclonal antibody 225 (the 

predecessor of the cetuximab) that also binds to domain III of the EGFR but has conformational 

specificity, since heat denaturation of the receptor abolished the antibody binding to EGFR [433], 

cetuximab is able to recognize its epitope independently of tri-dimensional structure (at least in 

vitro). 

Throughout this work cetuximab was used as antibody, being therefore supposed to attach 

only to an extracellular protein which might inhibit its activity. With the recognition of a major 

glycolytic enzyme monomer, this work opens the way to a whole new range of possible functions 

for this and other glycolytic enzymes that were recently described at the cell surface and whose 

function remains unknown. This comes at hand with the emerging cancer hallmark, the 

reprogramming of energy metabolism, namely at the level of glucose respiration [41]. It is widely 

accepted that tumours display enhanced glycolytic activity and impaired oxidative 

phosphorylation (Warburg effect) [400], reason why the disruption of glycolysis might be a 

promising candidate for specific anti-cancer therapy [400, 404, 603]. Tumour cells and 

fermenting yeast S. cerevisiae share several features, including metabolism regulation by genes 

that are orthologues to known oncogenes [400]. Additionally, imatinib, when administered in 

yeast S. cerevisiae, affects the expression and phosphorilation of many proteins, including 

glycolytic enzymes [518]. Concerning our study, there is no knowledge of any positive or negative 
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regulatory function that may be attributed to Pdc at cell surface, either as monomer, dimer or 

tetramer. The Ras/cAMP/PKA pathway is known to mediate the response of yeast to glucose 

through activation of glycolytic enzymes, which in turn contributes with intracellular glucose 

signals and other molecules that might act as putative upstream regulators of the 

Ras/cAMP/PKA pathway [402] [604]. Therefore, similarly to what happens with EGFR and the 

downstream regulation of Ras/Raf/MAPK pathway in mammalian cells, other molecules, equally 

susceptible to cetuximab, may act in yeast as upstream regulators of the Ras/cAMP/PKA 

pathway, this way controlling metabolism, stress resistance, cell cycle, growth, and transcription. 

This remains to be assessed in the future. 
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