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Abstract. In this work, a metabolomics dataset from 1H nuclear magnetic re-
sonance spectroscopy of Brazilian propolis was analyzed using machine learn-
ing algorithms, including feature selection and classification methods. Partial 
least square-discriminant analysis (PLS-DA), random forest (RF), and wrapper 
methods combining decision trees and rules with evolutionary algorithms (EA) 
showed to be complementary approaches, allowing to obtain relevant informa-
tion as to the importance of a given set of features, mostly related to the  
structural fingerprint of aliphatic and aromatic compounds typically found in 
propolis, e.g., fatty acids and phenolic compounds. The feature selection and 
decision tree-based algorithms used appear to be suitable tools for building 
classification models for the Brazilian propolis metabolomics regarding its geo-
graphic origin, with consistency, high accuracy, and avoiding redundant infor-
mation as to the metabolic signature of relevant compounds. 

Keywords: Supervised classification techniques, evolutionary algorithms, Ran-
dom Forest, PLS-DA, wrapper methods, NMR-based metabolomics.   

1 Introduction 

One and two dimensional NMR spectroscopy (1D-, 2D-NMR) has increasingly been 
used for complex matrix analysis such as plant extracts and biofluids in metabolomics 
studies. From a 1H-NMR spectrum, a set of peaks, or features, indicative of the meta-
bolite signatures and chemical composition of the sample is obtained and may be used 
as a basis to build descriptive and predictive models (e.g. for classification tasks). In 
this context, feature selection may be employed to improve classification accuracy or 
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aid model explanation by establishing a subset of class discriminating features. Fac-
tors such as experimental noise and threshold selection may adversely affect the set of 
selected features. Furthermore, the high dimensionality and multi-collinearity inherent 
to 1H-NMR signals may increase discrepancies between the set of features retrieved 
and those required to provide a complete explanation of metabolite signatures. Thus, 
previously to classification of metabolomics data, it is interesting to perform descrip-
tive studies, e.g. using principal component analysis (PCA) [1]. 

Discriminant analyses such as soft independent modelling by class analogy 
(SIMCA), support vector machine (SVM), partial least squares discriminant analysis 
(PLS-DA), and more recently random forests (RF) have also been used within the 
metabolomics domain.  

Feature selection may be employed to improve a classification model in terms of 
generalization, performance, and accuracy by eliminating non-informative features, as 
well as to gain deeper insights into the rationale underlying class divisions within a 
particular domain. In the context of metabolomics, retrieving the set of class discrimi-
nating features may aid in the identification of the class determining metabolites. 
However, features selected on the basis of classification accuracy, i.e. features that are 
sufficient to separate classes, may not to always be the best approach due to the re-
dundancy of information. This is typically found in high dimensional NMR-based 
metabolomics studies, where a metabolite may be represented by one or more spectral 
features as only a part of the metabolite signature identification may be enough to 
provide a perfect classification model.  

In this work, to overcome such constraints we have adopted an approach where ac-
curacy based approaches are complemented with feature selection methods less prone 
to the bias effects of multi-collinear features, including those based on variable influ-
ence on the projection (VIP) values, derived from PLS-DA and variable importance 
produced by a RF classifier. Indeed, contrarily to PLS-DA, RF is a non-parametric 
technique unaffected by feature scale so that the techniques seem to be somewhat 
complementary.  

PLS extracts the set of latent variables which model the data, but which are also 
correlated to the class membership vector. Once a PLS model has been built the influ-
ence of individual features is captured by measuring the VIP scores derived from the 
PLS coefficients for the optimal set of features. After that, features are ranked by 
these scores and selected considering the choice of an appropriate threshold (usually Į 
� 1), a step that may greatly affect the set of retrieved features. Finally, PLS-DA is 
also a scale dependent technique as the choice of scaling factor affects the features 
selected [2]. 

In its turn, RF is a classification technique based on growing many classification 
trees, in which feature values are used to build a model that enables the classification 
of unlabeled samples. RF allows assigning importance values to features resulting 
from their influence on the classification accuracy of the forest, aiding feature selec-
tion, and allowing gaining further insights into the data. The importance of a particu-
lar feature is determined by randomly permuting the feature over samples in each 
tree's 'out-of-bag' test set, followed by the reclassification of the samples using the 
RF. Such a calculation approach is advantageous for feature selection because it cov-
ers both the impact of each feature individually and its multivariate interactions with 
other features. Besides, as RF is a decision tree-based technique it also deals well with 
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differently scaled features [3], a relevant trait for NMR-based metabolomics where 
the peaks vary greatly in intensity. 

An alternative approach for feature selection is the use of wrapper methods. In 
wrapper approaches, the feature selection processes are performed by optimization 
algorithms that search the space of possible subsets of attributes, to find the best alter-
native. These approaches train the classifier with a subset of the available attributes 
and estimate its generalization error. These methods are dependent on the classifier 
that is used. Indeed, there is no guarantee that an optimal subset of attributes chosen 
for one classifier will be the optimal one when used with another algorithm.  

The wrapper approach followed in this work is based on two components: the use 
of classifiers implemented by the open-source data mining software Weka [4] for the 
inner layer (decision trees and rule set induction methods will be used), and the use of 
Evolutionary Algorithms (EAs) as the optimization engine. Together, these tech-
niques may allow extracting relevant features from a given dataset, minimizing the 
redundant information as to metabolite signature identification. This work aimed at 
proving the later assertion as our scientific hypothesis, using a high dimensional, mul-
ti-collinear metabolomics dataset (80 samples x 81675 variables) of Brazilian propolis 
NMR spectra as a study model.  

Propolis has been chosen because it has long been recognized as a useful source of 
valuable compounds for human health, but due to its huge chemical heterogeneity, the 
production of standardized and homogeneous extracts is a difficult task. This is due to 
the fact that chemical characterization and standardization of propolis extract is tech-
nically tedious, time expensive, and non-cost effective as one adopt traditional analyt-
ical selective techniques such as high performance liquid chromatography. Besides, 
the effect of flora composition on the propolis’ chemical profile is well known and 
considering the huge biodiversity of plant species found in some producer regions [5], 
e.g., Atlantic Rainforest in Santa Catarina State, southern Brazil, one could expect a 
high chemical heterogeneity among samples from distinct geographic regions where 
propolis has been collected; an important underlying assumption addressed in this 
study.   

On the other hand, over the past years nuclear magnetic resonance (NMR) spec-
troscopy has been recognized as a powerful tool as one aims at characterizing chemi-
cally complex matrices. Indeed, NMR spectroscopy is a fast, robust, and non-selective 
analytical technique able to detect virtually any molecule in a solution, given a mini-
mum value of concentration (detection limit, ug/ml). However, the amount of infor-
mation afforded by NMR analysis is huge as a typical high dimensional 1H-NMR 
spectrum easily contains 32.000 or 64.000 data points. The analysis of such an 
amount of information is unthinkable without the aid of powerful computational tools, 
but one should bear in mind this scenario for metabolomics studies.  
��������� ������������� ������������������ǡ������������� ���������������������

�������� ��� build descriptive and predictive models. Here, machine learning and che-
mometrics techniques are thought to be a suitable approach to gain insights as to im-
portant spectroscopic features associated to the chemical composition and geographic 
origin of propolis produced in Santa Catarina state, southern Brazil.  For that, empha-
sis will be given to accurate feature selection and classification techniques in order to 
avoid retrieving redundant information (i.e., multi-collinear features) and overfitting 
in classification models by using prominent machine learning algorithms.  
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2 Methods 

2.1 Propolis Sample Preparation and NMR Spectroscopy 

In autumn, 2010, propolis samples (n=16) were collected from each of the five geo-
graphic regions (East, Central, Highlands, North, and West) of Santa Catarina State, 
southern Brazil. The lyophilized ethanolic extracts (2g/10 ml, EtOH 70%, v/v) were 
added of 700 µl of CD3OD, centrifuged (5 krpm/10min), and transferred to 5 mm 
NMR tubes. The propolis 1H-NMR spectra were acquired on a Varian Inova 600 
MHz NMR spectrometer by collecting (time domain) 32,000 data points (32 scans, 
acquisition time = 4s, delay time = 2s, recycle time = 6s, 25ºC) over a spectral win-
dow of 8000 Hz, and water signal suppression. The recycle time was considered of 
sufficient length (e.g. 3 T1 s) to avoid significant (<10%) peak saturation. Prior to 
Fourier transformation (FT), the 1D FIDs were zero-filled to 64K data points and a 
line broadening factor of 0.5 Hz was applied. A routine implemented in the 
ACD/NMR processor software (v.12.01) consisting of phasing, baseline correction, 
and calibration (TSPįH 0.00ppm) was used for processing all the 1H-NMR spectra. 
Each relevant peak, i.e., selected feature, in the spectrum was integrated using a quan-
titation script of the Quanalyst tool of ACD/NMR processor software. 

2.2 Metabolomics Data Processing 

From the processed full spectra dataset (0.80 – 13.00 ppm) a peak list was extracted 
using a two-column comma separated values format, where the first column indicates 
peak position (ppm) and the second one represents peak intensities. A set of 80 sam-
ples was used, containing a total of 81675 peaks with an average of 425.4 peaks per 
sample. Peak alignment grouped proximal peaks together according to their position 
using a moving window of 0.03ppm and a step of 0.015ppm. Peaks of the same group 
were aligned to their median positions across all samples and those detected in very 
few samples (< 50% in both classes) were excluded. Besides, the missing and zero 
values were replaced with a value of 0.00005, the half of the minimum positive values 
in the original data, assuming to be the detection limit. Indeed, most missing values 
are caused by low abundance metabolites with contents lower than the detection limit. 

In order to identify and remove variables that are unlikely to be of use when mod-
eling data, a filtering protocol was applied based on interquantile range, affording a 
5% reduction in features. No phenotype information was used in the filtering process, 
allowing the result to be used in any downstream analysis. Such processing step is 
strongly recommended for datasets with large number of variables (> 250) containing 
much noise [6] as typically found in NMR-based metabolomics analysis. Taking into 
account the very distinct orders of magnitude of the variables, quantile normalization 
within replicates of the dataset was performed [7].  

2.3 Statistical and Machine Learning Data Analysis 

In order to extract latent information from the 1H-NMR dataset, classification models 
were built by applying supervised classification and feature selection methods. The Me-
taboAnalyst 2.0 tool provides a framework for conducting analyses over metabolomics 
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datasets and was used to perform PLS-DA and RF analysis [8]. The wrapper approach 
was implemented by combining classifiers from the Weka open-source data mining 
software (v. 3.6.6) [4] and EAs were implemented using the Java open-source library 
JECoLi (http://darwin.di.uminho.pt/jecoli). 

The methods used in this work are described in detail next: 
 

PLS-DA: PLS is a supervised method that uses multivariate regression techniques to 
extract via linear combination of original variables (X) the information that can pre-
dict the class membership (Y). To assess the significance of class discrimination, a 
permutation test is performed. In each permutation, a PLS-DA model is built between 
the data (X) and the permuted class labels (Y) using the optimal number of compo-
nents determined by cross-validation for the model based on the original class as-
signment. Further variable importance in projection (VIP), a weighted sum of squares 
of the PLS loadings taking into account the amount of explained Y-variation in each 
dimension was measured for purpose of calculation of the feature importance.  

The PLS regression was performed using the plsr function provided by R pls pack-
age. The classification and cross-validation were performed using the corresponding 
wrapper function of the caret package [9, 10]. 

 
Random Forest (RF): Random Forest is a supervised learning algorithm suitable for 
high dimensional data analysis. It uses an ensemble of classification trees, each of 
which is grown by random feature selection from a bootstrap sample at each branch. 
Class prediction is based on the majority vote of the ensemble. RF also provides other 
useful information such as OOB (out-of-bag) error, variable importance measure, and 
outlier measures. During tree construction, about one-third of the instances are left out 
of the bootstrap sample. This OOB data is then used as test sample to obtain an un-
biased estimate of the classification error. Variable importance is evaluated by mea-
suring the increase of the OOB error when it is permuted. The outlier measures are 
based on the proximities during tree construction. RF analysis was performed using 
the randomForest package for R [11]. 
 
Wrapper Approach - Weka Classifiers and Evolutionary Algorithms: An EA is 
used to evolve the best set of attributes for the classification task, using a set-based 
representation to encode each solution. Regarding the reproduction operators, two 
types were used: crossover and mutation. The crossover operator used was inspired on 
uniform crossover and works as follows: the genes that are present in both parent sets 
are kept in both offspring; the genes that are present in only one of the parents are sent 
to one of the offspring, selected randomly with equal probabilities. Regarding muta-
tion, the random mutation operator was deployed, replacing a gene in the set by a ran-
dom value in the allowed range. Both reproduction operators are used with equal prob-
abilities to create new solutions. The operators are implemented taking into  
consideration the need to comply with the constraints imposed by the minimum and 
maximum set size and also to avoid repeated elements in the sets. In the experiments 
reported in this work, the minimum size is always set to 1 and the maximum size to 10. 
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The selection procedure is a tournament scheme with k=2. In each generation, 50% of 
the individuals are kept from the previous generation and 50% are bred by the applica-
tion of the reproduction operators. An elitism value of 1 is used, allowing the best indi-
vidual of the population to be always kept. The EA’s population size is set to 100 and 
the termination criterion was defined based on a maximum of 100 generations. The EA 
was executed 30 times for each case. 

Each solution in the EA is evaluated by retrieving the attributes encoded in its ge-
nome and building classifiers based solely on those attributes. These classifiers are 
built and evaluated resorting to Weka and therefore it is easy to select different clas-
sifiers implementing distinct data mining algorithms. In this work, we used J48, a 
classification decision tree induction method based on the well known C4.5 algorithm 
and JRip, a rule set induction method inspired in the RIPPER algorithm. The fitness 
function of each solution is computed calculating an accuracy estimation of the clas-
sifier, obtained by performing 5-fold cross-validation over the available dataset. 

3 Results 

The dataset for this classification task includes 80 samples with five classes, one per 
each geographic region. The dataset is balanced since there are 16 samples for each 
class. The aim is to classify samples regarding their geographic region. 

Previously to PLS-DA and RF analyses, a descriptive model was built based on the 
calculation of the principal components (PCAs) for the 1H-NMR dataset as previously 
suggested [1]. PC1 and PC2 afforded for 89.9% of the explained variance of the data, 
but a clear discrimination was not achieved as the samples spread over the PC1 and 
PC2 axes. These findings prompted us to adopt a classification model in order to gain 
insights as to the relevant features associated to an eventual discrimination according 
to the propolis sample chemical composition and its geographic origin. In order to 
extract relevant but not redundant information we applied PLS-DA and RF to the 
propolis metabolomics dataset.  

A model was built by performing PLS-DA that was able to identify important fea-
tures to predict the propolis sample classification by measuring the variable impor-
tance in projection (VIP) as shown in Table 1. The most important fifteen 1H-NMR 
resonances, i.e. features, were identified by PLS-DA and most of them (10) resulting 
from aliphatic compounds, as five features were associated to anomerical ones. 
Among other, the features detected by PLS-DA were mostly assigned to chemical 
groups of the alkane moiety (e.g., C-CH2-C, 1.30-1.33 ppm; C-CH-C, 1.21 and 1.47 
ppm) or acetyl group (COCH3, 2.07-2.37 ppm) [12, 13, 14] of fatty acids and waxes 
commonly found in propolis. One-way ANOVA followed by the post-hoc Tukey test 
of the 1H -NMR dataset confirmed the significance of most of the selected features.  
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Table 1. Important features (1H resonances) ranked according to the VIP score calculated by  
PLS-DA of propolis samples. The colored boxes on the right indicate the relative concentrations of 
the corresponding metabolite in each studied group, i.e., geographic region.  

 
Resonances 
(δH ppm) 

VIP score p-value1 
(-log 10) 

 

   3C   E   H   N   W 

 

1.30 4.57 47165e-14 

2.29 3.08 2.9594e-10 

1.33 2.88 n.s2 

5.26 2.78 5.8257e-19 

1.21 2.74 1.3077e-17 

4.84 2.63 8.9478e-10 

1.47 2.43 5.9462e-14 

4.81 2.21 6.9457e-10 

5.07 2.16 3.7371e-18 

2.12 2.11 2.4206e-09 

4.87 2.09 1.0308e-10 

2.07 2.02 3.1639e-10 

1.80 1.87 1.1753e-17 

1.53 1.82 n.s 

2.37 1.81 n.s 
 1 One-way ANOVA and post-hoc Tukey test (p<0.05), 2not significant, 3geographic regions of Santa  

      Catarina state (southern Brazil): C = central, E = east, H = highlands, N = north, and W = west. 
 
 

 
Fig. 1. Performance of the PLS-DA model classification using different numbers of compo-
nents. The red asterisk indicates the best classifier. 
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The quantitative measure of the performance for PLS-DA classification model giv-
en by the R2, Q2, and accuracy values showed to be higher than 83% for those statis-
tics and reveals a good performance of the method (Fig. 1). 

In a second set of experiments, the non parametric RF analysis was applied to the 
1H-NMR dataset allowing to selecting extra and non-redundant features for an accu-
rate classification of Brazilian propolis according the geographic origin (Table 2). 
Eleven out of the top fifteen features identified by RF analysis occur in the spectral 
window of aliphatic compounds, corroborating the PLS-DA findings, but expanding 
the metabolite signatures associated to the selected features. Indeed, features asso-
ciated to saturated (C-CH3, C-CH-C, C-CH2-C) and unsaturated (=C-CH3) alkyl and 
acetyl (COCH3) groups were predominantly identified by the RF supervised learning 
algorithm. Preliminary analysis of the features selected by RF, PLS-DA, and also 2D-
NMR experiments (data not shown) suggests the presence of long chain fatty acids in 
propolis samples such as arachidonic, oleic, stearic, and palmitic/palmitoleic acids, 
associated to the resonances at 1.30, 1.64, 2.04, and 2.76 ppm, for instance [14]. 
 

Table 2. Significant features (1H resonances) ranked by the mean decrease in classification 
accuracy when permuted by RF analysis. The colored boxes on the right indicate the relative 
effect of the corresponding metabolite in each group of propolis in study, according to their 
regions of production.   

 
Resonances 
(δH ppm) 

Mean decrease 
Accuracy 

p-value1 
(-log 10) 

 
3C  E  H  N  W 

 

2.04 0.035 3.1456e-22 

1.08 0.034 3.2706e-21 

2.46 0.028 9.7457e-25 

1.18 0.026 3.7861e-16 

1.30 0.024 4.7165e-14 

2.56 0.023 3.9608e-16 

5.07 0.021 3.7371e-18 

2.61 0.020 7.9958e-11 

2.49 0.019 6.5947e-20 

1.64 0.018       n.s2 

5.20 0.017 5.6611e-21 

6.16 0.016 3.4739e-11 

2.76 0.015       n.s 

2.98 0.014 3.8818e-18 

6.10 0.013 3.6287e-19 
1 One-way ANOVA and post-hoc Tukey test (p<0.05), 2not significant, 3geographic regions of Santa  

     Catarina state (southern Brazil): C = central, E = east, H = highlands, N = north, and W = west. 

 
The confusion matrix revealed a quite interesting performance of the RF super-

vised learning algorithm, since the classification error found for the predicted class 
and actual class was zero. Besides, the descriptive model based on the univariate  
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statistics one-way ANOVA followed by the post-hoc Tukey test corroborate thirteen 
out of the top fifteen features selected by RF analysis. Indeed, only two features (1.30 
ppm and 5.20 ppm) were simultaneously detected by both PLS-DA and RF, characte-
rizing redundant information. 

PLS-DA and RF methods were also able to reveal distinct effects of the selected 
features regarding the geographic origin of propolis samples (Tables 1 and 2). A 
quantitative approach was applied to the PLS-DA selected features by calculating the 
values of their absolute integral (data not shown). Differences in relative concentra-
tions of the corresponding metabolite in each studied group (geographic origin) were 
detected for all the features, adding extra information to the classification model. 
Thus, for example, the propolis samples originated from the east region of Santa Cata-
rina state were characterized for their lower content of metabolites comparatively to 
samples from the other studied regions. 

Finally, it is worth mentioning that propolis is a complex matrix well known for its 
phenolic constituents so that the most interesting spectral windows are 5.50-8.25 ppm, 
containing mainly the aromatic compound signals, and 8.25-13.00 ppm, where the 
carbonylic and carboxylic proton signals are found. However, features belonging to 
those spectral regions did not influence the classification by PLS-DA and RF analysis. 

The following task involved the validation of the wrapper approach described in 
section 2.3. In this study, the coupling of J48, a decision tree-inducing algorithm, and 
JRip, a rule set induction method, to EA as an optimization engine, in a wrapper ap-
proach allowed to identify a certain number of features over the 1H-NMR spectral 
window as shown in Table 3.  

Table 3. J48-EA and JRip-EA wrapper performances and the 15-top 1H-NMR resonances 
identified taking into account a calculation for 5 and 10 features. The EA was executed 30 times for 
each case and the prediction accuracy of the classifiers was evaluated using 5-fold cross-validation. 

Wrappers Features Mean 
fitness 

(%) 

Standard 
deviation 

Mean 
cross-

validation 
accuracy 

(%) 

Standard 
deviation 

Resonances (δH ppm) 

J48-EA 5 99.84 0.34 93.70 2.61 2.04, 5.61, 6.64, 0.89, 
4.97, 5.37, 5.29, 7.21, 
3.10, 7.05, 7.08, 1.27, 
2.12, 4.84, 7.62 

10 99.67 0.19 94.27 2.80 5.61, 1.08, 2.04, 5.20, 
7.05, 2.49, 1.27, 6.49, 
4.00, 1.50, 7.62, 8.07, 
7.12, 2.10, 5.10 

JRip-EA 5 99.67 0.57 92.09 2.92 1.64, 3.63, 6.46, 2.04, 
6.64, 6.72, 6.79, 8.07, 
6.25, 0.88, 5.17, 1.02, 
6.16, 9.18, 6.82 

10 99.90 0.21 92.77 2.82 2.12, 1.08, 5.29, 1.86, 
7.05, 7.08, 6.79, 5.79, 
1.56, 0.81, 2.76, 6.46, 
2.04, 1.60, 8.07 
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Contrarily to PLS-DA and RF supervised learning algorithms, the wrapper algo-
rithms selected features that spread over all the 1H-NMR spectral regions, but a predo-
minance of meaningful resonances associated to the aromatic ring moiety of metabolites 
i.e., 5.50-8.25 ppm, could be detected, typically suggesting an important effect of, e.g., 
(poly)phenolic compounds in the classification models.  Furthermore, it is also possible 
to notice some redundant information given by both wrapper methods.     

The J48/JRip-EA wrapper methods showed to complement RF and PLS-DA since 
important features addressing the occurrence of phenolic compounds were identified, 
even suggesting the occurrence of phenolic acids (gallic – 7.05 ppm, singlet; t-cinnamic – 
6.49, duplet; hydrocinnamic – 2.50 ppm, triplet and 7.12 ppm, multiplet; and caffeic – 
8.07 ppm, singlet, 7.08 ppm, double duplet, 6.82 ppm, singlet, 6.79 ppm, duplet), as well 
as the tentatively assigned flavone apigenin (6.16 ppm-duplet, 6.46 ppm-duplet, and 6.72 
ppm-singlet) [15] in the studied propolis. In fact, in this regard the application of the 
wrapper algorithms to the propolis metabolomics dataset expanded the possibilities of 
detecting relevant metabolite signatures typically found in that complex matrix. Such 
findings were further confirmed by reverse-phase high performance liquid chromatogra-
phy coupled to a UV-visible detector (data not shown).  

Besides, similarly to PLS-DA and RF analysis, among the significant top fifteen 
features identified by J48/JRip-EA wrapper methods a series of resonances (0.88, 
1.27, 1.60, 2.04, 2.12, 2.76, and 5.29 ppm) associated to metabolite signatures of the, 
e.g., alkane moiety (C-CH3, 0.88-1.02 ppm; C-CH2-C, 1.27-1.30 ppm) and acetyl 
group (COCH3, 2.04-2.37 ppm) [12, 13, 14] of monosaturated or unsaturated fatty 
acids was found in propolis samples. Finally, the presence of the nucleoside uridine in 
the samples is inferred as meaningful for the classification model, since typical reson-
ances at 5.61 ppm-duplet, 5.37 ppm-duplet, and 3.63 ppm-double duplet were identi-
fied by the J48/JRip-EA algorithms  and further confirmed by 2D-NMR (TOCSY 
and HSQC experiments). 

The wrapper models showed very high mean fitness (≥ 99%) and prediction accu-
racy (≥92%) on the cross-validation studies. The validation of each final solution was 
conducted by doing an independent validation procedure, performing a 10 times 5-
fold cross-validation process, using the set of selected features coming from the EA’s 
best solution. Such a finding is worth mentioning taking into account the effect of the 
EA as optimization engine in controlling overfitting in classification-tree models. It is 
quite interesting to notice that the performance of the classifiers is quite acceptable 
with only 5 features, showing the ability of the classifiers to provide high accuracy 
models with a very limited set of features. 

Taken together, the several test domains performed by running the J48/JRip-EA in-
terfaces showed to be effective for feature selection and to develop a classification 
model tree with high prediction accuracy and consistency.  

4 Conclusions 

The selected classification methods PLS-DA, RF and the wrapper methods J48/EA 
and JRip/EA based on machine learning and feature selection appear usable tools for 
building classification models for the Brazilian propolis metabolomics, with high 
prediction accuracy. 
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PLS-DA, RF and J48-EA/JRip-EA analyses of the NMR-based propolis metabo-
lomics dataset showed to be complementary approaches by retrieving and expanding 
the set of class discriminating features and by adding relevant information for the 
identification of the class determining metabolites. This allowed further elucidation of 
the system under investigation in regards to the metabolite signature of important 
compounds, i.e., chemical fingerprint, and geographic origin of Brazilian propolis. 
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